

Overview of the Massively Parallel
Quantum Chemistry Program

Core Developers

Sandia National Laboratories

Curtis Janssen
Ida Nielsen
Joe Kenny

Matt Leininger

Virginia Tech

Edward Valeev

SAND2007-3153P

Outline

● Scalable Computing R & D Dept. Overview
– Cluster Research: Networks and Storage
– Performance Tools
– Software Architecture
– Applications rethinking the way scientific software is written:

● Sundance and symbolic PDE solution
● Particle Simulation Toolkit and Multi-scale modeling

● MPQC
– Background
– Performance for DFT, MP2, and LMP2
– Common Component Architecture work in MPQC

8961 broadly integrates all aspects of
high performance computing

Hardware

Production
Computing

Performance Tools,
Benchmarks

Applications

Middle-ware

H
P

C

FPGAs, InfiniBand, 10GigE

OpenMPI, CCA

PST, MPQC,
and outside collaborators

Open|SpeedShop, mpiP

Unified production and research
cluster infrastructure

Silicon Design

89
61

Next generation clusters
● Modeling and simulation is a pillar of modern science

– Replaces experiments and improves our understanding
– Reliable, high performance, and inexpensive computing is needed to

support modeling and simulation
● Sandia has lead the effort to develop the InfiniBand interconnect

for use in high performance computing
– Collaboration between industry, national labs, and universities
– Sandia leds NNSA ASC PathForward funding for OpenFabrics
– Started workshop that has grown from 30 to 220 attendees over 4 years
– OpenFabrics software stack is now in production on many tri-Lab

clusters: 12.5K nodes (2Q07) and predict 17K nodes (2Q08)
– Sandia expertise is sought by outside customers: Wall Street, Oil & Gas,

Pharma, etc.
● Remaining challenges include:

– Provide foundations for applications scaling up in
● number of nodes
● number of cores per node

– Load balancing of network traffic/routing
– Better support for scientific computing
– Virtual machines and I/O

Advanced networking for storage
and distance computing

● Large scale applications can generate hundreds of TeraBytes of data
– Data must be saved in persistent storage
– Data must be moved to local sites for interpretation and visualization
– Storage and wide-area networks are limiting factors in large scale

computation
● A variety of approaches can be used to address storage

– Hardware accelerated protocol processing reduces the processing
requirements for sending and receiving data

– Remote direct memory access eliminates operating system intervention and
data copying during I/O operations

● Future work:
– Investigate various 10Gbps and beyond networking technologies in network

storage
– Develop evaluation and extrapolation methodologies to give confidence in

modeling and simulation of storage for future platform designs
– Apply virtual machine technology to both storage and Storage Intensive

Super Computing

Performance and programming tools

● Both architectures and software are changing, and developers
need to understand performance to get good utilization
– Architectures shifting from faster processors to more cores and more

complex memory hierarchies
– Software is becoming more sophisticated and complex

● Understanding performance and debugging is more difficult
– A (very modest) 20% performance improvement on a $20M machine is

effectively a savings of $5M in purchase (plus maintenance savings)
● 8961 is working with LLNL and LANL on next generation tools

– Performance Measurement: Open|SpeedShop, mpiP
– Debugging: Valgrind (memory and thread debugging)

● Future avenues of work:
– Performance modeling and prediction

● supporting hardware architecture design
– Tools that assist in the interpretation of performance data
– Programming models for next generation machines and applications

Software architectures

● Effective software engineering is the key to world-class
computational science
– Complex systems are modeled by complex code

● Components are the accepted means to manage complexity
● Common Component Architecture is dedicated to high performance computing

– Full realization of scientific potential requires innovative simulation capability
– Complete solutions unlikely from “hero programmers” or even “hero groups”
– Progress requires large-scale collaborations within and between domains

● 8961 is providing leadership in both development and application of
Common Component Architecture (CCA) work to address these
challenges through two SciDAC2 projects.
– CCA core development
– CCA components for quantum chemistry

● Future work:
– Improved solver components, components for interfacing quantum

mechanics and molecule mechanics

Overview of Sundance/Nihilo

● Sundance is a package of high-level components for building
parallel PDE simulations

● User builds problem description using high-level symbolic objects
– Just write the equation set!

● Automatic functional differentiation built in → optimization &
sensitivity analysis

● Abstract interfaces for atomistic-continuum coupling
– In use for multiscale simulation of nanofluidic ion transport in a pore

● Easy to write a high-performance multiphysics simulator

Flow velocity above an electrode gap in a microfluidic
channel. Sundance was used to develop a simulator coupling
electrical, thermal, and fluid effects. Time between receipt of
the paper describing the problem’s physics to the creation of

a working simulation code was under 24 hours
(KL and B. van Bloemen Waanders, 2006)

Particle Simulation Toolkit (PST)
and multi-scale modeling

● Enormous improvements in computational
power have dramatically increased the scope of
what is computable
– Traditional scientific computing software fails in:

● does not efficiently address the large range of scales
● handling coupled nature of current problems

● We have developed highly effective, problem-
oriented multi-scale computing methodologies
– Example application: nanopore studies of

separations, transport efficiency and selectivity

Continuum
model

Brownian
dynamics

Molecular
dynamics

Quantum
mechanics

The Massively Parallel
Quantum Chemistry program (MPQC)

● MPQC is a scalable, extensible QC package
– Standard methods such as Hartree-Fock and Density-Functional Theory
– Highly scalable perturbation theory and explicitly correlated methods
– Parallelized to permit large-scale calculations
– Local correlation methods to extend range of applicability
– Development of chemistry CCA components

● Hybrid multi-threading/distributed memory testbed
● Implementation

– 370,000 lines of C++
– Object-oriented design
– Parallelized from the outset

DFT Performance

● B3LYP hybrid functional
● Uracil Dimer
● 264 basis functions
● Dual 3.06GHz Intel Xeon

nodes
● Infiniband 4X interconnect
● Total time on 70 nodes:

– 38.74 seconds

MP2 Performance

● Uracil Dimer
● 264 basis functions
● Dual 3.06GHz Intel Xeon

nodes
● Infiniband 4X interconnect
● Total time on 70 nodes:

– 101 seconds

LMP2 Scaling and Performance

● System scaling runs: CnH2n+2
● Parallel scaling runs: C32H66
● cc-pVDZ basis
● Dual 3.6 Ghz Intel Xeon nodes
● Infiniband 4X

 Component Architectures
for Quantum Chemistry: Forging New

Capabilities and Insights

CCA/Chemistry
team members and collaborators

Steve Benson
Jason Sarich
Lois Curfman McInnes

David Bernholdt
Ricky Kendall

Yuri Alexeev
Manojkumar Krishnan
Elizabeth Jurrus
Carl Fahlstrom
Jarek Nieplocha

Joe Kenny
Curtis Janssen
Ida Nielsen
Rob Armstrong
Ben Allan

Theresa Windus
Sasha Sosonkina
Fang Peng
Mark Gordon

Edward Valeev

Gary Kumfert

Simulation sciences are maturing

• Mainstream research tool

• Reliable and on par with experiment

• Full realization of scientific potential requires innovative simulation capability
• Complete solutions unlikelyfrom “hero programmers” or even “hero groups”
• Progress requires large-scale collaborations within and between domains

Effective software engineering is key to world-class
computational science

State of modeling & simulation software

Many fundamental problems remain intractable

• Accurate simulations at biologically interesting scales

• Progress requires innovative, multi-disciplinary, multi-
 scale approaches

http://www-irn.sandia.gov/4328/images/systemphotos/redstorm-BDNov04CNV19.jpg
http://en.wikipedia.org/wiki/Image:ProteinStructure.jpg

Scientists as programmers
● Not known for sound software engineering practices

– Simplest approach often preferred, even if inefficient

– Coding practices are often out-dated
● Poor style, little documentation, incomplete testing
● Difficult to convert to modern programming techniques

– Learning curve, poor training, and legacy code are issues.
– Common programming tools that helped make large-scale scale

software efforts such as GNU/Linux successful are not uniformly
utilized:

● minimal use of software configuration management, build systems

● Diverse community of government/academic, noncommercial
quantum chemistry (QC) packages
– Limit ability to leverage existing capabilities

– Interaction between QC and other fields even more difficult

Diverse computer architectures
are another complicating factor

Multicore Processors
Heterogeneous Multicore “Cell”

Processors Accelerator Cards, FPGAs

● Supporting N advanced computer architectures requires > N
times the effort of running only on my laptop

● Currently at another junction in computer architecture: can no
longer rely on clock speed increases to improve performance

http://images.google.com/imgres?imgurl=http://www.physics.udel.edu/wwwusers/watson/scen103/intel-new.gif&imgrefurl=http://www.physics.udel.edu/wwwusers/watson/scen103/intel.html&h=387&w=538&sz=6&tbnid=bx4xzP_CUCPyMM:&tbnh=93&tbnw=130&hl=en&start=1&prev=/images%3Fq%3DMoore%2527s%2BLaw%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN
http://images.google.com/imgres?imgurl=http://ific.uv.es/sct/activities/detectors/iv2.gif&imgrefurl=http://ific.uv.es/sct/activities/detectors/current.html&h=566&w=566&sz=13&tbnid=9X5uAmfZhpN5NM:&tbnh=131&tbnw=131&hl=en&start=1&prev=/images%3Fq%3Dleakage%2Bcurrent%26svnum%3D10%26hl%3Den%26lr%3D
http://images.google.com/imgres?imgurl=http://www.computerworld.com/computerworld/records/images/story/MulticoreArchitecture1.gif&imgrefurl=http://www.computerworld.com/hardwaretopics/hardware/story/0,10801,102540,00.html&h=237&w=250&sz=14&tbnid=bwByfN0Ixc4GuM:&tbnh=100&tbnw=106&hl=en&start=51&prev=/images%3Fq%3Dmulticore%26start%3D40%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN
http://images.google.com/imgres?imgurl=http://arstechnica.com/images/cell/figure7.png&imgrefurl=http://arstechnica.com/articles/paedia/cpu/cell-2.ars&h=534&w=378&sz=22&tbnid=y5wvYkP37oRKjM:&tbnh=129&tbnw=91&hl=en&start=9&prev=/images%3Fq%3DIBM%2BCell%26svnum%3D10%26hl%3Den%26lr%3D

Diversity isn't a bad thing

● Diversity in software
– Allows exploration of alternative solutions

– Allow individuals with different skill sets to participate

– Perfect coordination takes unlimited effort

● Diversity in architectures
– Opportunity to find high levels of performance with less cost and

lower power requirements

– Different algorithms have different architecture needs
● Hetergeneous solutions may eventually be a part of the solution

But must avoid the monolithic code trap
● Total effort is divided by duplicating capabilities
● Limits the quality of capabilities

● Limits the capabilities

Optimization

Solver

X

Solver

DK3/MP2-R12

MP2-R12e-

e-

p×V p
DK3

XX

http://www-fp.mcs.anl.gov/division/default.asp
http://images.google.com/imgres?imgurl=http://mathworld.wolfram.com/images/eps-gif/GlobalOptimization_1000.gif&imgrefurl=http://mathworld.wolfram.com/GlobalOptimization.html&h=296&w=366&sz=40&tbnid=tSUF-xMYavbKMM:&tbnh=95&tbnw=118&hl=en&start=4&prev=/images%3Fq%3Doptimization%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DG
http://images.google.com/imgres?imgurl=http://mathworld.wolfram.com/images/eps-gif/GlobalOptimization_1000.gif&imgrefurl=http://mathworld.wolfram.com/GlobalOptimization.html&h=296&w=366&sz=40&tbnid=tSUF-xMYavbKMM:&tbnh=95&tbnw=118&hl=en&start=4&prev=/images%3Fq%3Doptimization%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DG

How can human effort scale in this
 diverse software/architecture environment?

● Object-oriented methodologies? There are issues:
– Cannot leave out legacy codes

– Even with modern codes, design patterns may be similar but
implementation/language is not. Code bases incompatible at a low
level.

– Not a complete solution

● Characteristics of a solution:
– Must support multiple languages

– Must allow for mostly independent programming in packages using
it

– Community must agree on a few well-defined or common elements
in the design that place minimal constraints on each software
package

– The Common Component Architecture is designed to satisfy these
requirements.

Illustration of complications in QC:
Chromium hydroxides

● Accurate thermochemical knowledge needed to understand
contamination in industrial settings and pollution

● Experimental data is missing or inconsistent
● Six reactions used to obtain heat of formation for Cr(OH)

n
, n = 2–

6 and CrO(OH)
4
.

Cr(OH)
2
 + Cr → 2 CrOH

Cr(OH)
3
 + 2 Cr → 3 CrOH

Cr(OH)
4
 + 3 Cr → 4 CrOH

Cr(OH)
5
 + CrOH → CrOH

Cr(OH)
6
 → CrO

3
 + 3 H

2
O

CrO(OH)
4
 → CrO

3
 + 2 H

2
O

High accuracy is hard
● Thousands of hours of CPU time and four quantum chemistry

code suites later ...

● Limited by abilities of each code
– Assumed additive contributions for different effects

– Choice of methods not always optimal

Table from: Nielsen, Allendorf, J. Phys. Chem. A, 110, p4093, 2006

What made this problem so hard?
● Different program suites have different strengths

– Some overlap, but important differences in supported methods

– Different numerical properties

– Different levels of support for various architectures

– Need better ways of interchanging program suites and sharing
capabilities between suites

● Gets even harder when quantum chemistry is a component of
multi-scale, multi-physics computations
– Building applications that rely on multiple application domains is

even more complex

– Need ability to export and import capabilities

Component architectures are
designed to address these problems

● Language neutral interface
specification
– Different code teams focus only on the

common interface

– Use SIDL: Scientific Interface
definition language

● Provides a runtime environment
– Can dynamically compose an

application

C

C++

f77

f90

Python

Java

Two applications of the
Common Component Architecture

● High-level components for geometry optimization
● Low-level components for enabling new methods

High level components and
their use in geometry optimization

Solver(TAO)
ui+1 = ui + αs …

Coordinate Model
perform transformations

f,g,Hsg,H

User
Input

Ui+1

f,g,H

Build
options

Ui+1
(Visualization)

f energy

u cartesian coordinates

u internal coordinates

g gradient in cartesians

g gradient in internals

H Hessian in cartesians

H Hessian in internals

s update in internals

NWChem
Model Factory

GUI

MPQC
Model Factory

Model

Ui+1

Builder
Construct application using
framework builder services

Linear
Algebra

PETSc Linear
Algebra Factory

GA Linear
Algebra Factory

Chemistry Components

Mathematics Components

Infrastructure

SIDL Classes

Enabled direct comparison of
various solvers for molecular structures

Number of energy/gradient evaluations required to determine minimum energy structure

Stand-alone
MPQC/NWChem

TAO Solver
Component

30/30—/—33/3330/3027/27Cholesterol (C27H46O)

51/5183/4243/4348/4854/54
Acetylsalicylic Acid
(C9H8O4)

67/67121/6179/7962/6285/85
Phosphoserine
(C3H8NO6P)

45/4589/4556/5643/4375/75Isoprene (C5H10)

19/1965/3333/3319/1926/26Glycine (C2H5NO2)

scaled unit0.5*unit0.5*unitscaled unitunitGuess Hessian

yesyesnoyesnoLine Search

TAO/LMVMBFGSBFGSTAO/LMVMBFGSAlgorithm

NWChemNWChemNWChemMPQCMPQCQC Package

+27%

+27%

-11%

+43%

+21%

Integration gave us insights into problems with our solvers ... and a
new solver

Low-level components to
extend capabilities of programs

● Integrals of many operators are at the core of quantum chemistry
programs:

● Integrals programs do not implement all integral types
● Ability to share integrals and combine packages will

– enable new science

– permit selection of most efficient package for each machine

∫dr1r ∇
22 r 

∫dr1dr 21r12r1
1
r12

3r 24r2

∫dr1dr 21r12r1r123r24r2

∫dr1dr 21r12r1[∇ 1
2 , r12]3r24 r2

i r =x i
a y i

b z i
c e−i r−R i

2

Low-level components
provide an extreme test of the CCA

● Low-level components tend to be finer grained with more function
call overhead. For Hartree-Fock:

This is a worst case scenario:
– More sophisticated methods, vector interfaces, and non-direct

methods = less overhead

– Latest version of the CCA software improves results

7.0%219.1204.8gradient

8.6%93.786.3energyC5H10 cc-pVDZ

4.6%41.339.5gradient

5.5%21.019.9energyH2O cc-pVQZ

OverheadCCAMPQC

Using the integral
components to develop a new method

● Douglas-Kroll allows simple relativistic effect inclusion:

● r
12

 methods allow more rapid wfn convergence

Combination of these methods had not been done
– Even though ideal for high Z core correlation

h1
sf=c  p2c21/2−c2ApV A pB p p⋅V p B pF p p×V pY p p×V p F p

special integral types

MP2-R12
1 =dab

ij aij
abckl

ij R
kl aij

 

special integral type

Missing piece: component to
combine multiple integral packages

Architecture:

● Example of where significant functionality gets implemented into
component specific code

NWChem
Integral Evaluator

Factory

Libint
Integral Evaluator

Factory

p.Vp
Eval.

pxVp
Eval.

R12
Eval.

Integral Super
Factory

IntV3
Integral Evaluator

Factory

MPQC MPQC
MP2-R12

Applying this to the
chromium hydroxide example

● Opportunity to combine three corrections in to one:
δ[core] + δ[rel.] + δ[basis] → δ[core+rel.+basis]

(Σ = -1.79) (Σ = 0.33)

A cautionary note
● Components greatly increase the flexibility of programming

– Make it easier for non-experts to construct applications

● But must understand whether or not the applications are valid
● Example from this case:

– MP2-R12 requires matrix elements of:

● Must compute additional terms, or quantify error
– Sophisticated software architectures do not eliminate the need for

experts, but they do improve the expert's productivity

[f , r12]
n.r.

 [−∇ 2/2 , r12][K ,r12]

likewise for [r12 ,[f , r12]]

[f , r12]
rel

 [c  p2c21 /2ApV A pB p p⋅V p B p...K ,r12]

Future Work

● Planned:
– Common Component Architecture work

● Quantum mechanics/molecular mechanics interface & implementation
● Effective Fragment Potential
● General one body operator interfaces (solvation, for example)

● Areas of interest:
– Fully distributed Fock build for memory-starved machines
– Reduced scaling HF/DFT
– High-level correlation with Tensor Contraction Engine
– Exploration of high accuracy methods for materials (beyond DFT)
– Properties
– Manycore performance issues

For more information

● MPQC Home Page
– http://www.mpqc.org

● MPQC Project Page
– http://www.sf.net/projects/mpqc

● Bug tracking
● Mailing lists
● CVS repository
● Code releases

● CCA Home Page
– http://www.cca-forum.org

● Send questions to
– cljanss@sandia.gov

http://www.mpqc.org/
http://www.sf.net/projects/mpqc
mailto:cljanss@sandia.gov

