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Next generation clusters
● Modeling and simulation is a pillar of modern science

– Replaces experiments and improves our understanding
– Reliable, high performance, and inexpensive computing is needed to 

support modeling and simulation
● Sandia has lead the effort to develop the InfiniBand interconnect 

for use in high performance computing
– Collaboration between industry, national labs, and universities
– Sandia leds NNSA ASC PathForward funding for OpenFabrics 
– Started workshop that has grown from 30 to 220 attendees over 4 years
– OpenFabrics software stack is now in production on many tri-Lab 

clusters: 12.5K nodes (2Q07) and predict 17K nodes (2Q08)
– Sandia expertise is sought by outside customers: Wall Street, Oil & Gas, 

Pharma, etc.
● Remaining challenges include:

– Provide foundations for applications scaling up in
● number of nodes
● number of cores per node

– Load balancing of network traffic/routing
– Better support for scientific computing
– Virtual machines and I/O



  

Advanced networking for storage
and distance computing

● Large scale applications can generate hundreds of TeraBytes of data
– Data must be saved in persistent storage
– Data must be moved to local sites for interpretation and visualization
– Storage and wide-area networks are limiting factors in large scale 

computation
● A variety of approaches can be used to address storage

– Hardware accelerated protocol processing reduces the processing 
requirements for sending and receiving data

– Remote direct memory access eliminates operating system intervention and 
data copying during I/O operations

● Future work:
– Investigate various 10Gbps and beyond networking technologies in network 

storage
– Develop evaluation and extrapolation methodologies to give confidence in 

modeling and simulation of storage for future platform designs
– Apply virtual machine technology to both storage and Storage Intensive 

Super Computing



  

Performance and programming tools

● Both architectures and software are changing, and developers 
need to understand performance to get good utilization
– Architectures shifting from faster processors to more cores and more 

complex memory hierarchies
– Software is becoming more sophisticated and complex

● Understanding performance and debugging is more difficult
– A (very modest) 20% performance improvement on a $20M machine is 

effectively a savings of $5M in purchase (plus maintenance savings)
● 8961 is working with LLNL and LANL on next generation tools

– Performance Measurement: Open|SpeedShop, mpiP
– Debugging: Valgrind (memory and thread debugging)

● Future avenues of work:
– Performance modeling and prediction

● supporting hardware architecture design
– Tools that assist in the interpretation of performance data
– Programming models for next generation machines and applications



  

Software architectures

● Effective software engineering is the key to world-class 
computational science
– Complex systems are modeled by complex code

● Components are the accepted means to manage complexity
● Common Component Architecture is dedicated to high performance computing

– Full realization of scientific potential requires innovative simulation capability
– Complete solutions unlikely from “hero programmers” or even “hero groups”
– Progress requires large-scale collaborations within and between domains

● 8961 is providing leadership in both development and application of 
Common Component Architecture (CCA) work to address these 
challenges through two SciDAC2 projects.
– CCA core development
– CCA components for quantum chemistry

● Future work:
– Improved solver components, components for interfacing quantum 

mechanics and molecule mechanics



  

Overview of Sundance/Nihilo

● Sundance is a package of high-level components for building 
parallel PDE simulations

● User builds problem description using high-level symbolic objects
– Just write the equation set!

● Automatic functional differentiation built in → optimization & 
sensitivity analysis 

● Abstract interfaces for atomistic-continuum coupling
– In use for multiscale simulation of nanofluidic ion transport in a pore 

● Easy to write a high-performance multiphysics simulator

Flow velocity above an electrode gap in a microfluidic 
channel. Sundance was used to develop a simulator coupling 
electrical, thermal, and fluid effects. Time between receipt of 
the paper describing the problem’s physics to the creation of 

a working simulation code was under 24 hours
(KL and B. van Bloemen Waanders, 2006) 



  

Particle Simulation Toolkit (PST)
and multi-scale modeling

● Enormous improvements in computational 
power have dramatically increased the scope of 
what is computable
– Traditional scientific computing software fails in:

● does not efficiently address the large range of scales
● handling coupled nature of current problems

● We have developed highly effective, problem-
oriented multi-scale computing methodologies
– Example application: nanopore studies of 

separations, transport efficiency and selectivity

Continuum
model

Brownian
dynamics

Molecular
dynamics

Quantum
mechanics



  

The Massively Parallel
Quantum Chemistry program (MPQC)

● MPQC is a scalable, extensible QC package
– Standard methods such as Hartree-Fock and Density-Functional Theory
– Highly scalable perturbation theory and explicitly correlated methods
– Parallelized to permit large-scale calculations
– Local correlation methods to extend range of applicability
– Development of chemistry CCA components

● Hybrid multi-threading/distributed memory testbed
● Implementation

– 370,000 lines of C++
– Object-oriented design
– Parallelized from the outset



  

DFT Performance

● B3LYP hybrid functional
● Uracil Dimer
● 264 basis functions
● Dual 3.06GHz Intel Xeon 

nodes
● Infiniband 4X interconnect
● Total time on 70 nodes:

– 38.74 seconds



  

MP2 Performance

● Uracil Dimer
● 264 basis functions
● Dual 3.06GHz Intel Xeon 

nodes
● Infiniband 4X interconnect
● Total time on 70 nodes:

– 101 seconds



  

LMP2 Scaling and Performance

● System scaling runs: CnH2n+2
● Parallel scaling runs: C32H66
● cc-pVDZ basis
● Dual 3.6 Ghz Intel Xeon nodes
● Infiniband 4X



  

 Component Architectures 
for Quantum Chemistry: Forging New 

Capabilities and Insights
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Simulation sciences are maturing

• Mainstream research tool

• Reliable and on par with experiment

• Full realization of scientific potential requires innovative simulation capability
• Complete solutions unlikelyfrom “hero programmers” or even “hero groups”
• Progress requires large-scale collaborations within and between domains

Effective software engineering is key to world-class              
computational science

State of modeling & simulation software

Many fundamental problems remain intractable

• Accurate simulations at biologically interesting scales

• Progress requires innovative, multi-disciplinary, multi-   
   scale approaches

http://www-irn.sandia.gov/4328/images/systemphotos/redstorm-BDNov04CNV19.jpg
http://en.wikipedia.org/wiki/Image:ProteinStructure.jpg


  

Scientists as programmers
● Not known for sound software engineering practices 

– Simplest approach often preferred, even if inefficient

– Coding practices are often out-dated
● Poor style, little documentation, incomplete testing
● Difficult to convert to modern programming techniques

– Learning curve, poor training, and legacy code are issues. 
– Common programming tools that helped make large-scale scale 

software efforts such as GNU/Linux successful are not uniformly 
utilized:

● minimal use of software configuration management, build systems

● Diverse community of government/academic, noncommercial 
quantum chemistry (QC) packages
– Limit ability to leverage existing capabilities

– Interaction between QC and other fields even more difficult



  

Diverse computer architectures 
are another complicating factor

Multicore Processors 
Heterogeneous Multicore “Cell” 

Processors Accelerator Cards, FPGAs

● Supporting N advanced computer architectures requires > N 
times the effort of running only on my laptop

● Currently at another junction in computer architecture: can no 
longer rely on clock speed increases to improve performance

http://images.google.com/imgres?imgurl=http://www.physics.udel.edu/wwwusers/watson/scen103/intel-new.gif&imgrefurl=http://www.physics.udel.edu/wwwusers/watson/scen103/intel.html&h=387&w=538&sz=6&tbnid=bx4xzP_CUCPyMM:&tbnh=93&tbnw=130&hl=en&start=1&prev=/images%3Fq%3DMoore%2527s%2BLaw%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN
http://images.google.com/imgres?imgurl=http://ific.uv.es/sct/activities/detectors/iv2.gif&imgrefurl=http://ific.uv.es/sct/activities/detectors/current.html&h=566&w=566&sz=13&tbnid=9X5uAmfZhpN5NM:&tbnh=131&tbnw=131&hl=en&start=1&prev=/images%3Fq%3Dleakage%2Bcurrent%26svnum%3D10%26hl%3Den%26lr%3D
http://images.google.com/imgres?imgurl=http://www.computerworld.com/computerworld/records/images/story/MulticoreArchitecture1.gif&imgrefurl=http://www.computerworld.com/hardwaretopics/hardware/story/0,10801,102540,00.html&h=237&w=250&sz=14&tbnid=bwByfN0Ixc4GuM:&tbnh=100&tbnw=106&hl=en&start=51&prev=/images%3Fq%3Dmulticore%26start%3D40%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN
http://images.google.com/imgres?imgurl=http://arstechnica.com/images/cell/figure7.png&imgrefurl=http://arstechnica.com/articles/paedia/cpu/cell-2.ars&h=534&w=378&sz=22&tbnid=y5wvYkP37oRKjM:&tbnh=129&tbnw=91&hl=en&start=9&prev=/images%3Fq%3DIBM%2BCell%26svnum%3D10%26hl%3Den%26lr%3D


  

Diversity isn't a bad thing

● Diversity in software
– Allows exploration of alternative solutions

– Allow individuals with different skill sets to participate

– Perfect coordination takes unlimited effort

● Diversity in architectures
– Opportunity to find high levels of performance with less cost and 

lower power requirements

– Different algorithms have different architecture needs
● Hetergeneous solutions may eventually be a part of the solution



  

But must avoid the monolithic code trap
● Total effort is divided by duplicating capabilities
● Limits the quality of capabilities

● Limits the capabilities

Optimization

Solver

X

Solver

DK3/MP2-R12

MP2-R12e-

e-

p×V p
DK3

XX

http://www-fp.mcs.anl.gov/division/default.asp
http://images.google.com/imgres?imgurl=http://mathworld.wolfram.com/images/eps-gif/GlobalOptimization_1000.gif&imgrefurl=http://mathworld.wolfram.com/GlobalOptimization.html&h=296&w=366&sz=40&tbnid=tSUF-xMYavbKMM:&tbnh=95&tbnw=118&hl=en&start=4&prev=/images%3Fq%3Doptimization%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DG
http://images.google.com/imgres?imgurl=http://mathworld.wolfram.com/images/eps-gif/GlobalOptimization_1000.gif&imgrefurl=http://mathworld.wolfram.com/GlobalOptimization.html&h=296&w=366&sz=40&tbnid=tSUF-xMYavbKMM:&tbnh=95&tbnw=118&hl=en&start=4&prev=/images%3Fq%3Doptimization%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DG


  

How can human effort scale in this
 diverse software/architecture environment?

● Object-oriented methodologies?  There are issues:
– Cannot leave out legacy codes

– Even with modern codes, design patterns may be similar but 
implementation/language is not.  Code bases incompatible at a low 
level.

– Not a complete solution

● Characteristics of a solution:
– Must support multiple languages

– Must allow for mostly independent programming in packages using 
it

– Community must agree on a few well-defined or common elements 
in the design that place minimal constraints on each software 
package

– The Common Component Architecture is designed to satisfy these 
requirements.



  

Illustration of complications in QC:
Chromium hydroxides

● Accurate thermochemical knowledge needed to understand 
contamination in industrial settings and pollution

● Experimental data is missing or inconsistent
● Six reactions used to obtain heat of formation for Cr(OH)

n
, n = 2–

6 and CrO(OH)
4
.

Cr(OH)
2
 + Cr  → 2 CrOH

Cr(OH)
3
 + 2 Cr → 3 CrOH

Cr(OH)
4
 + 3 Cr → 4 CrOH

Cr(OH)
5
 + CrOH → CrOH

Cr(OH)
6
 → CrO

3
 + 3 H

2
O

CrO(OH)
4
 → CrO

3
 + 2 H

2
O



  

High accuracy is hard
● Thousands of hours of CPU time and four quantum chemistry 

code suites later ...

● Limited by abilities of each code
– Assumed additive contributions for different effects

– Choice of methods not always optimal

Table from: Nielsen, Allendorf, J. Phys. Chem. A, 110, p4093, 2006



  

What made this problem so hard?
● Different program suites have different strengths

– Some overlap, but important differences in supported methods

– Different numerical properties

– Different levels of support for various architectures

– Need better ways of interchanging program suites and sharing 
capabilities between suites

● Gets even harder when quantum chemistry is a component of 
multi-scale, multi-physics computations
– Building applications that rely on multiple application domains is 

even more complex

– Need ability to export and import capabilities



  

Component architectures are
designed to address these problems

● Language neutral interface 
specification
– Different code teams focus only on the 

common interface

– Use SIDL: Scientific Interface 
definition language

● Provides a runtime environment
– Can dynamically compose an 

application

C

C++

f77

f90

Python

Java



  

Two applications of the
Common Component Architecture

● High-level components for geometry optimization
● Low-level components for enabling new methods



  

High level components and
their use in geometry optimization

Solver(TAO)
ui+1 = ui + αs …

Coordinate Model
perform transformations

f,g,Hsg,H

User 
Input

Ui+1

f,g,H

Build 
options

Ui+1 
(Visualization)

f   energy

u  cartesian coordinates

u  internal coordinates

g  gradient in cartesians

g  gradient in internals

H  Hessian in cartesians

H  Hessian in internals

s  update in internals

NWChem
Model Factory

GUI

MPQC 
Model Factory

Model

Ui+1

Builder
Construct application using 
framework builder services

Linear 
Algebra

PETSc Linear
Algebra Factory

GA Linear 
Algebra Factory

Chemistry Components

Mathematics Components

Infrastructure

SIDL Classes



  

Enabled direct comparison of
various solvers for molecular structures

Number of energy/gradient evaluations required to determine minimum energy structure 

Stand-alone 
MPQC/NWChem

TAO Solver 
Component

      

30/30—/—33/3330/3027/27Cholesterol (C27H46O)

51/5183/4243/4348/4854/54
Acetylsalicylic Acid 
(C9H8O4)

67/67121/6179/7962/6285/85
Phosphoserine 
(C3H8NO6P)

45/4589/4556/5643/4375/75Isoprene (C5H10)

19/1965/3333/3319/1926/26Glycine (C2H5NO2)

scaled unit0.5*unit0.5*unitscaled unitunitGuess Hessian

yesyesnoyesnoLine Search

TAO/LMVMBFGSBFGSTAO/LMVMBFGSAlgorithm

NWChemNWChemNWChemMPQCMPQCQC Package

+27%

+27%

-11%

+43%

+21%

Integration gave us insights into problems with our solvers ... and a 
new solver



  

Low-level components to
extend capabilities of programs

● Integrals of many operators are at the core of quantum chemistry 
programs:

● Integrals programs do not implement all integral types
● Ability to share integrals and combine packages will

– enable new science

– permit selection of most efficient package for each machine

∫dr1r ∇
22 r 

∫dr1dr 21r12r1
1
r12

3r 24r2

∫dr1dr 21r12r1r123r24r2

∫dr1dr 21r12r1[∇ 1
2 , r12 ]3r24 r2

i r =x i
a y i

b z i
c e−i r−R i

2



  

Low-level components
provide an extreme test of the CCA

● Low-level components tend to be finer grained with more function 
call overhead.  For Hartree-Fock:

This is a worst case scenario:
– More sophisticated methods, vector interfaces, and non-direct 

methods = less overhead

– Latest version of the CCA software improves results

     

7.0%219.1204.8gradient 

8.6%93.786.3energyC5H10 cc-pVDZ
   

4.6%41.339.5gradient 

5.5%21.019.9energyH2O cc-pVQZ
   

OverheadCCAMPQC  



  

Using the integral
components to develop a new method

● Douglas-Kroll allows simple relativistic effect inclusion:

● r
12

 methods allow more rapid wfn convergence

Combination of these methods had not been done
– Even though ideal for high Z core correlation

h1
sf=c  p2c21/2−c2ApV A pB p p⋅V p B pF p p×V pY p p×V p F p

special integral types

MP2-R12
1 =dab

ij aij
abckl

ij R
kl aij

 

special integral type



  

Missing piece: component to
combine multiple integral packages

Architecture:

● Example of where significant functionality gets implemented into 
component specific code

NWChem
Integral Evaluator

Factory

Libint 
Integral Evaluator

Factory

p.Vp
Eval.

pxVp
Eval.

R12
Eval.

Integral Super
Factory

IntV3 
Integral Evaluator

Factory

MPQC MPQC
MP2-R12



  

Applying this to the
chromium hydroxide example

● Opportunity to combine three corrections in to one:
δ[core] + δ[rel.] + δ[basis] → δ[core+rel.+basis]

(Σ = -1.79) (Σ = 0.33)



  

A cautionary note
● Components greatly increase the flexibility of programming

– Make it easier for non-experts to construct applications

● But must understand whether or not the applications are valid
● Example from this case:

– MP2-R12 requires matrix elements of:

● Must compute additional terms, or quantify error
– Sophisticated software architectures do not eliminate the need for 

experts, but they do improve the expert's productivity

[ f , r12]
n.r.

 [−∇ 2/2 , r12 ][K ,r12]

likewise for [r12 ,[ f , r12 ]]

[ f , r12]
rel

 [c  p2c21 /2ApV A pB p p⋅V p B p...K ,r12]



  

Future Work

● Planned:
– Common Component Architecture work

● Quantum mechanics/molecular mechanics interface & implementation
● Effective Fragment Potential
● General one body operator interfaces (solvation, for example)

● Areas of interest:
– Fully distributed Fock build for memory-starved machines
– Reduced scaling HF/DFT
– High-level correlation with Tensor Contraction Engine
– Exploration of high accuracy methods for materials (beyond DFT)
– Properties
– Manycore performance issues



  

For more information

● MPQC Home Page
– http://www.mpqc.org

● MPQC Project Page
– http://www.sf.net/projects/mpqc

● Bug tracking
● Mailing lists
● CVS repository
● Code releases

● CCA Home Page
– http://www.cca-forum.org

● Send questions to
– cljanss@sandia.gov

http://www.mpqc.org/
http://www.sf.net/projects/mpqc
mailto:cljanss@sandia.gov

