
Computational Modeling Sciences Department

Darryl Melander

Cubit User Meeting

Using Aprepro In CUBIT

SAND2007-3742P

Computational Modeling Sciences Department

Darryl Melander

Outline

• Introduction to Aprepro

• Variables

• Operators

• Functions

• Control Statements

• Examples

Computational Modeling Sciences Department

Darryl Melander

Introduction to Aprepro

• Aprepro = Algebraic Pre-Processor

• A built-in miniature programming language

• Purposes

– Parameterize a journal file

– Error checking

– Other control logic

Computational Modeling Sciences Department

Darryl Melander

Basic Aprepro Syntax

• Aprepro expressions are wrapped in curly braces

• Aprepro evaluated first, results inserted into
command:

Brick X {10}
And

Brick X {5*2}
Are Equivalent To

Brick X 10

Computational Modeling Sciences Department

Darryl Melander

Aprepro Variables

• Variables are named values

• Names are case sensitive

• Variable type is Number or String

• Defined in a comment

{width=2}
{r=“radius”}

• Use anywhere in a command, as if you typed the
variable’s value:

brick x {width}
cylinder height 5 {r} 10

Computational Modeling Sciences Department

Darryl Melander

Aprepro Equations

• Variable values can be changed

{x = 1}
{x = 5} ##This will give you a warning
{x++} ## Increase value of x by one, no warning

– To avoid warnings, make variable name start with an
underscore (_), or use ++ and --

• Convenient way to see variable value: comment command

Comment x
User Comment: 6

Comment “x is” x “and y is” y

User Comment: x is 6 and y is <undefined>

Computational Modeling Sciences Department

Darryl Melander

Operators

• Addition: +

• Subtraction: -

• Multiplication: *

• Division: /

• Power of: ^ ({3^2} = 9)

• Math expressions can be used just about
anywhere:

{width=3}
{width_squared = width^2}
brick x {width} y {width*2} z {width_squared}

Computational Modeling Sciences Department

Darryl Melander

Aprepro Functions

• Functions calculate or look up values

• Function name followed by parameters in parentheses

• The number and type of parameters depends on the
function

• Commas between parameters

• Parameters can be constants, variables, or equations

{errs = get_error_count()}
{x=cos(PI/2)}
{vertex_x = Vx(30)}
{random_number = rand(10, 20)}
{Print (“Hello World”)}

Computational Modeling Sciences Department

Darryl Melander

Types of Functions

• Math Functions

– sin(num), cos(num), asin(num), etc…

– sqrt(num), exp(num), log(num), ln(num), etc…

• String Manipulation Functions

– Quote(string), toupper(string), tolower(string)

• Utility Functions

– Print(string), PrintError(string)

– FileExists(string), HasFeature(string)

Computational Modeling Sciences Department

Darryl Melander

Types of Functions

• Session Information Functions

– NumVolumes(), NumSurfaces(), etc…

– get_error_count(), set_error_count(num)

• Entity Information Functions

– Vx(num), Nz(num)

– Radius(num), SurfaceArea(num), Length(num)

– CurveAt(num, num, num), HexAt(num, num, num)

Computational Modeling Sciences Department

Darryl Melander

Flow Control

• Three types of flow control

– If statements

– Loops

– Include files

Computational Modeling Sciences Department

Darryl Melander

If Statements

• If true then do

#{if (my_variable < 3)}
brick x 3

#{else}
brick x {my_variable}

#{endif}
• If defined and not zero then do

#{ifdef(make_a_brick)}
brick x 3

#{endif}
• If zero or not defined then do

#{ifndef(skip_the_brick)}
brick x 3

#{endif}

Computational Modeling Sciences Department

Darryl Melander

Loops

• Repeat a set of commands some number of times

Create 3 bricks
#{Loop(3)}

brick x 10
#{EndLoop}

• Loop statement accepts numbers or variables,
but not expressions

{Loop(3)} #OK
{Loop(x)} #OK
{Loop(x-1)} #error

Computational Modeling Sciences Department

Darryl Melander

Include Files

• Include statement “pastes” contents of another
file into journal file

• A lot like the CUBIT “playback” command

{include (“filename”)}

Computational Modeling Sciences Department

Darryl Melander

Example 1 - Parameterized Sizes

{geom_size=3}
{mesh_size=.5}
Brick x {geom_size}
Volume 1 size {mesh_size}
Mesh Volume 1

Computational Modeling Sciences Department

Darryl Melander

Example 2 – Check for Success

#{errors_before=get_error_count()}
Blah blah blah
#{If(get_error_count() > errors_before)}
#{PrintError(“Woops”)
Quit

#{EndIf}

Computational Modeling Sciences Department

Darryl Melander

Example 3 – Accurate Coordinates

Create Vertex {Vx(1) + 10} {Vy(1)} {Vz(1)}

Computational Modeling Sciences Department

Darryl Melander

Example 4 – Count Entities

#{Loop(5)}
Brick x 10

#{EndLoop}
Mesh Volume All
Group “all_meshed_vols” add volume with is_meshed = true
#{If(NumInGrp(“all_meshed_vols”) == NumVolumes())}

Comment “Hurray, everything meshed”
#{Else}

#{PrintError(“Some of the volumes didn’t mesh!”)}
quit

#{EndIf}

Computational Modeling Sciences Department

Darryl Melander

Example 5 – Name that Volume

Create Brick Width 1
Create Brick Width 1
Volume {Id(“volume”)-1} Name “Martha”
Volume {Id(“volume”)} Name “George”

Computational Modeling Sciences Department

Darryl Melander

Example 6 – Partless Volumes

Import acis ‘example6.sat’ xml ‘artifact.dta’
Loop through the volumes
{num_vols=NumVolumes()}
{cur_id = 1}
{original_err_count = get_error_count()}
{cur_err_count = original_err_count}
{ids_string = "Volumes without metadata: "}
{Loop(num_vols)}
{PartInVol(cur_id)}
{If(get_error_count() != cur_err_count)}
{cur_err_count = get_error_count()}
{ids_string = ids_string // tostring(cur_id) // " "}
{EndIf}
{cur_id++}
{EndLoop}
{set_error_count(original_err_count)}
Print out the results
Comment ids_string

Computational Modeling Sciences Department

Darryl Melander

Example 7 – Row Of Bricks

Set parameters
{num_bricks=5}
{brick_size=1}
#
Create the bricks
{Loop(num_bricks)}

Brick Width {brick_size}
{EndLoop}
#
Scoot them into a line
{cur_brick = 1}
{Loop(num_bricks)}

Volume {cur_brick} move {(cur_brick-1)*brick_size}
#{cur_brick++}

{EndLoop}

Computational Modeling Sciences Department

Darryl Melander

Example 8 – Connect the Dots

Create Points
Create Vertex 0 0 0
Create Vertex 1 0 0
Create Vertex .5 1 0
#
Create id string
{_id_str = " "}
{vert_count = NumVertices()}
{cur_vert_id=1}
{Loop(vert_count)}

{_id_str = _id_str // " " // tostring(cur_vert_id++)}
{EndLoop}
#
Create the Surface
Create Surface Vertex {_id_str}

Computational Modeling Sciences Department

Darryl Melander

Example 9 – Working with Files

{myfile = “foo.jou”}
Play {Quote(myfile)}

#Play f1.jou to f3.jou
{cur=1}
{Loop(3)}

play {Quote(“f” // tostring(cur++) // “.jou”)}
{EndLoop}

Computational Modeling Sciences Department

Darryl Melander

Aprepro in the GUI

• Use aprepro anywhere in
the GUI, using curly braces

Computational Modeling Sciences Department

Darryl Melander

For More Information

• Online Users Manual:
http://cubit.sandia.gov

– Click on “Documentation”

– Click on “CUBIT 10.2 On-Line
User's Manual (October 2006)”

– Click on “Appendix” in Table of
Contents

– Click on “APREPRO”

