
LLNL-CONF-808884

CRADL: Proxy Application for Concurrent
Relaxation through Accelerated Deep
Learning

K. Zieb, K. Lewis, C. Doutriaux, A. Maguire, J.
Kallman, I. Karlin, B. Van Essen

April 21, 2020

SC20: The International Conference for High Performance
Computing, Networking, Storage, and Analysis
Atlanta, GA, United States
November 15, 2020 through November 20, 2020

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

CRADL: Proxy Application for Concurrent

Relaxation through Accelerated Deep Learning

Kristofer Zieb

Lawrence Livermore National

Laboratory

Livermore, CA

zieb1@llnl.gov

Katherine Lewis

Lawrence Livermore National

Laboratory

Livermore, CA

Charles Doutriaux

Lawrence Livermore National

Laboratory

Livermore, CA

Alister Maguire

Lawrence Livermore National

Laboratory

Livermore, CA

Josh Kallman

Lawrence Livermore National

Laboratory

Livermore, CA

Ian Karlin

Lawrence Livermore National

Laboratory

Livermore, CA

Brian Van Essen

Lawrence Livermore National

Laboratory

Livermore, CA

Abstract—We observed the ability to capture portions of large-

scale multi-physics codes that require user intensive input and

replace them with a well-trained machine learning model.

Scalability and computational costs of such techniques for high-

frequency, large-scale inference is currently an open question,

specifically when querying every mesh element at every timestep.

Targeting this area, our work presents early results of a proxy app

developed to predict mesh tangling and determine appropriate

relaxation in large scale hydrodynamic simulations. Efforts are

made to capture the involved bandwidth and latency issues of

offloading exascale workloads onto GPUs, as well as new machine

learning specific hardware. Nvidia Tesla V100 GPUs have been

targeted for their capability of accelerating half-precision

operations and for their ease of use with the TensorFlow and

Pytorch libraries. Behavior of the proxy app will be used to inform

future integration into exiting hydrodynamic codes for concurrent

execution on current Top500 computing platforms.

Keywords—proxy application, machine learning, mesh

relaxation, hydrodynamics

I. INTRODUCTION AND MOTIVATION

The loss of tracking with Moore's law using traditional CPU

architecture has spurred the development of novel accelerators,

as well as the need for evaluation to determine their limiting

capabilities. With the doubling of transistors no longer a reality

for CPUs, the advent of application specific hardware is

becoming the new standard. As it is unreasonable to port large

codes to new hardware with no promise of performance gain,

the idea of a mini/proxy app is essential. Numerous mini/proxy

applications have been developed that capture the approximate

behavior of specific portions of multi-physics codes. Whether

that be memory impact specifically, say for cross section

retrieval (Quicksilver or XSBench) [1,2], or the behavior of a

full hydrocode, but on a much smaller scale (LULESH) [3]. As

machine learning (ML) comes into vogue, along with hardware

specific to its application, the development of a mini/proxy app

capturing its potential changes to program performance

becomes necessary to evaluate memory, accuracy, and runtime

needs of an application. This works serves as the introduction of

CRADL (the proxy app for Concurrent Relaxation through

Accelerated Deep Learning) and the first such mini/proxy app

for the evaluation of mesh relaxation prediction performance on

current and novel accelerators.

Novel ideas in this paper

• First ever, to our knowledge, CogSim proxy

application that integrates machine learning and

scientific codes together.

• Performance evaluation of a CogSim proxy

application on current hardware.

• Description of envisioned usage of proxy

application on a CogSim system with

disaggregated machine learning accelerators.

• The development of best practices for machine

learning proxy applications as part of the Exascale

Computing Project catalog.

II. PROXY APPLICATION DESIGN

Proxy apps are intended to be the most reduced

representation of a larger application's behavior. The intent

behind this is to prevent unwieldly porting of large codebases to

the latest accelerator when a performance improvement is

uncertain. Example characteristics that can be modeled include

memory bandwidth and latency, scalability and programming

style. This compact representation of the larger application

allows a nimbler environment for experimentation and

answering research and development questions. Lessons

learned from the proxy application can then be applied to the full

application, to system procurements or to system design

decisions [4].

The HPC community has leveraged the value of these
smaller applications in many investigations. Programming
model explorations have shown the relative value of different
approaches (e.g. LULESH [3]), Proxy applications have been
designed to help determine the best way to port applications to

accelerators [1] or the optimal data layout to use in a code
rewrite [5]. Large HPC procurements often use proxy
applications as benchmarks by adding run rules and specific
problem specifications, as in the Department of Energy
Crossroads procurement plan [6].

Recognizing the importance proxy applications play in
testing new software, vendor interactions and external
engagement the Exascale Computing Project (ECP) includes a
proxy application project. The project developed a set of
standards to ensure a minimum quality for applications in its
catalog. In addition, it provided a curated suite [7] that aims to
give researchers a diverse set of applications of high quality as a
good starting point. However, the suite and catalog are mostly
comprised of HPC applications written in prominent compiled
languages. A noticeable exception is two recent additions,
CANDL [8] and MiniGAN [9] which are machine learning
applications written in Python.

MiniGAN and CANDL are focused on training or inference
only. However, more complex scientific workflows incorporate
training and/or inference into a single job (e.g. the MuMMI
workflow [10]). To express this complexity, we developed
CRADL, which serves as a proxy for how to use inference to
decide which spatial mesh elements should be relaxed, or
allowed to move away from the material boundary, at each
temporal cycle within an Arbitrary Lagrangian-Eulerian (ALE)
hydrodynamics code.

Since machine learning proxy applications are new, often

written in interpreted languages, and contain auxiliary data for

the purposes of training, they require different standards for

development. This makes it essential that the CRADL proxy

application is developed to also serve as an example for future

Python proxy application development.

III. ARBITRARY LAGRANGE-EULER HYDRODYNAMICS

Our underlying application of interest for development is

Arbitrary Lagrange-Euler (ALE) hydrodynamics codes [11,12].

These are used in the area of high energy density physics

simulations. In ALE codes the mesh moves and distorts with the

materials (Lagrangian), to better capture the physics of multi-

material interactions, while it is permitted to relax away from the

mesh boundary (Eularian), as needed to remain numerically

stable.

A. Algorithm Structure

ALE codes commonly consist of a series of Lagrangian steps

interspersed with an Eulerian step or steps at specified intervals.

Fig 2 gives examples of two problems run in a hydrodynamics

code.

a.

b.

Fig. 1. Hydrodynamic simulations in an ALE code. With the “bubble shock”

problem depicted in (a) and the “shocktube” problem depicted in (b)

During the Lagrangian movement stage, there is a possibility

for mesh zones to end up inverted or “tangled”. This tangling is

actually determined by numerous mesh quality metrics (i.e.

purely geometric information). These metrics, as well as

physical quantities, can in turn be used to control ALE

hydrodynamics. [13] Mesh tangling can be mitigated by

sufficiently frequent or aggressive Eulerian relaxation steps.

Sustained tangling (insufficient relaxation) causes unphysical

behavior and can cause the simulation to fail, requiring manual

inspection and restarting at a checkpoint in the code, with

modified relaxation controls. The time spent generating data

after a checkpoint but prior to a failure is essentially wasted

cycles. Moreover, the time spent to manually inspect, analyze,

and mitigate against the failure can account for a large majority

of walltime to run a simulation to completion.

B. Relaxation and Tangling

As the mesh moves during the Lagrangian and Eulerian

phases of the physics timestep, a mesh element can become

inverted or tangled resulting in non-positive sub-areas in the

element creating nonphysical quantities. Conversely, allowing

the mesh to overrelax results in under constrained material

boundaries within the mesh element, creating nonphysical

behavior, particularly when material properties vary greatly.

When a mesh becomes tangled the user of the ALE code

must interactively determine the failure and create relaxation

strategies to mitigate against the failure. This process can be

repeated many times to get a single simulation to run. Often,

this results in overrelaxation in an attempt to run a simulation

to completion. After repeated trial and error, the user of the

ALE code learns different techniques to mitigate mesh tangling

based on physical conditions and mesh quality metrics.

Because of this, mesh relaxation is an operation well suited for

replacement with a trained machine learning model, which can

then be offloaded to a machine learning accelerator in a High-

Performance Computing (HPC) system. For this to work

effectively, though, we need to understand the tradeoff between

the compute performance of inline inference on the CPU and

the cost of memory bandwidth or latency bottlenecked

operations necessary with accelerators. Related, we need to

understand the “slack” in computation between when the

features for inference are available and when the inference

prediction is needed for this specific application, to allow

interleaving of CPU and accelerator computation. This

motivates the development of CRADL.

IV. CRADL PROXY APPLICATION

Previous and continuing research [14] explores the

feasibility of replacing user-learned, heuristic mesh relaxation

methods with machine learned, inferred relaxation. The CRADL

proxy application creates a method for quantifying performance

of inline inference for every mesh element, at each timestep

using machine learning accelerators in an HPC system.

Additionally, this will allow for the quantification of how much

CPU computation needs to be interleaved with the accelerator

computation to amortize computation delays due to latency and

bandwidth. Best practices in pursuing this are still being

determined, however the primary goal is offloading high-

frequency inference onto accelerator devices to achieve runtime

performance improvement.

A. Algorithm Structure

CRADL begins with a time series of a domain decomposed

mesh, see Fig 2, and its corresponding spatial varying feature

set. Currently CRADL trains solely on geometric coordinates,

with performance being the primary focus. In the future, feature

set data will include mesh quality metrics and physical

quantities. This data is stored in the HDF5 [15] file format, and

is imported directly into CRADL. Popular ALE codes make use

of the SILO file format, which is built on top of HDF5, allowing

for consistency. In practice, there will not be commonality in

how different ALE codes utilize the SILO file format, but its

specification for structuring data will remain the same.

To generate test feature sets in HDF5 file format for

CRADL, the Conduit library is used. [16] This spatially varying

feature set is transferred to the accelerator where the trained

machine learning model exists. The full application that

CRADL is meant to model will have the machine learning

model executed parallel to the ALE code. The ALE code will

offload the feature set to be processed by the trained model. The

accelerator will return a list of nodes that are predicted to

require relaxation during the simulation. The nodes that are

predicted to require relaxation prior to failure can then be

compared against those generated by the user informed method.

CRADL will have access to “per cycle” feature sets to perform

inference on, prior to a Lagrangian mesh movement step being

performed by the ALE code.

Fig. 2. Domain decompostion of the mesh in the “bubble shock” problem
depicted in Fig. 1.a, with different colors corresponding to regions for a

particular MPI process.

B. Limiting Accelerator Characteristics

The most critical consideration for characterizing a novel

accelerator for concurrent inference with a physics code is the

“slack time” available for our operation. This concept

comprises the walltime between when the feature set is

available and when the set of nodes that require relaxation is

needed to advance the run. This is the time in which inference

must occur to appear free. The operations are free in the sense

of not increasing total runtime of the application, but will

necessitate an increased computational cost through the

inclusion of concurrently executed machine learning model.

There will be an added monetary cost as well, with the addition

of new accelerator hardware into the execution model. If an

accelerator is unable to complete inference within the slack

period then the calculation cost becomes exposed. This does not

necessarily disclude the accelerator from future use, as the

prevention of user input and mesh tangling are important

quantities to consider.

C. CRADL Use Cases

CRADL is designed to profile three specific HPC machine

configurations, selectable by the user at runtime. See Fig. 3 for

a visual representation.

a) CPU: Running solely on the CPU, the inference

algorithm will be serialized with physics calculations. In this

configuration memory bandwidth and latency may not be

bottlenecks, but the inference cannot be “hidden” by concurrent

execution.

b) CPU/GPU: With an accelerator available, inference

can be offloaded and completed while the physics calculation

is running. Memory management becomes a concern in this

configuration. Profiling in this configuration captures

characteristics of data movement, namely if memory bandwidth

is being fully utilized, and if the walltime of the inference can

be amortized between timesteps in the physics code.

c) Disaggregated ML Accelerator: This configuration is

for use with ML specific hardware that does not permit a

general purpose programming model. There will be similar

concerns to a CPU/GPU setup, however in this case the

accelerator does not live on node. An additional consideration

is the available on-node GPUs that can be used to accelerate

physics calculations while the inference is executed on the

accelerator platform. This may result in a smaller window of

time for the inference to be “hidden”.

Fig. 3. Different execution configurations for the CRADL proxy application.
Sections highlighted in light green are parts of the execution model that are

occupied with physics computations.

D. Comunication with Large Datasets

Communication is performed with a halo scheme. Meshes

in the HDF5 format currently used in CRADL are in a

structured representation.

Feature sets of the mesh geometry are generated and output

during runtime already domain decomposed to a particular MPI

rank. There will be a buffer zone of shared mesh nodes between

MPI ranks. There will not be conflict on determining whether a

mesh node decides in this buffer zone when returned to the ALE

code.

E. Targeted Hardware Platforms

A key underlying push of this work is portability to multiple
accelerator platforms. Characterizing both popular and novel
hardware is essential to determine the value in adopting them
into an application’s workflow.

a) Multi-CPU/GPU: The two most recent [17] Top500

spots are currently occupied by HPC systems with CPU-GPU

compute nodes. The popularity of such a configuration makes

it a necessary target for proxy application development

alongside more exotic hardware.

b) Nvidia Tesla V100: Nvidia has introduced a tensorcore

architecture that provides a fused matrix multiply-add operation

for half-precision values. We make use of Nvidia's Apex library

[18] , in particular the submodule AMP (Accelerated Mixed

Precision). AMP provides a wrapper for machine learning

optimizers to target the tensor cores in Nvidia's Tesla

generation of architecture.

c) Cerebras CS-1: The CS-1 platform is a machine

learning specific accelerator currently being integrated into the

Lassen system at LLNL. At the time of writing, the platform is

not fully available for execution, but is a target for CRADL

development. [19]

V. PERFORMANCE EXPERIMENTS

CRADL captures the metrics of interest for adopting an

accelerator for concurrent execution of physics simulations

with an inference model. To this aim, scalability of the code in

its early stages of development is necessary. For both strong

and weak scaling, a variety of feature set sizes have been

created in HDF5 files to be imported and processed by a simple

machine learning model. The Lassen machine at LLNL was

used to profile CRADL’s performance. Each compute node is

equipped with 44 IBM Power 9 cores, as well as 4 Nvidia V100

Volta GPUs. Weak scaling results are demonstrated in Fig. 4.

Fig. 4. Weak scaling of CRADL on the Lassen system at LLNL. Ideal

behavior in weak scaling is a flat profile for increasing number of MPI
processes with constant features per MPI proccess. The different color bands

overlayed on the image designate increasing numbers of Lassen compute nodes

necessary. Moving from left to right, the number of nodes are 1,2,4, and 8.

The behavior shows close to ideal weak scaling behavior,

with an increasing number of processors resulting in a small

increase in runtime once the problem is running on multiple

nodes.

In regards to slack time, at its slowest, CRADL takes 14.6

seconds to execute. During the running of an ALE code, if the

time between generation of feature sets and a relaxation step is

larger than 14.6 seconds, our compute time will be “exposed”.

Additionally, when run concurrently with a hydrodynamics

code, this time will replace the time taken when a simulation

1

10

100

2 8 32 128
R

u
n

ti
m

e
[s

]
MPI Procs

1e4 features/proc
3.3e4 features/proc
1e5 features/proc

0.1

1

10

2 8 32 128

Sp
ee

d
u

p
 [

Se
ri

al
/P

ar
al

le
l]

MPI Procs

1e4 features/proc
3.3e4 features/proc
1e5 features/proc

fails, and a user must adjust their relaxation strategy, a process

on the order of minutes to hours.

The slowdown for lower MPI processes is due to not

saturating the GPU memory. Upon exceeding 16 MPI processes

on a single compute node, the CUDA runtime API returns an

out of memory error. To resolve this, an increasing number of

compute nodes are used, with 16 processes dispatched per node.

A strong scaling study was performed on Lassen as well,

seen in Fig. 5.

Fig. 5. Strong scaling of CRADL on the Lassen system at LLNL. Ideal

behavior in strong scaling is a decrease in runtime for the same problem size,
with an increasing number of MPI processes. The different color bands

overlayed on the image designate increasing numbers of Lassen compute nodes

necessary. Moving from left to right, the number of nodes are 1,2,4, and 8.

With 105 and 106 features, a decrease in runtime is not

realized. For this amount of data, the memory transfer overhead

that accompanies an increased number of MPI processes will

result in slower runtimes. With 107 features, the benefit of more

MPI processes is just starting to be realized and allow for

shorter runtimes.

VI. CONCLUSIONS AND FUTURE EFFORTS

The CRADL proxy application is currently in very early

stages of development. There will be additional hardware

platforms added, some of which are currently under NDA. The

final version of the proxy application may have a different

algorithm structure as the project progresses.

An important focus is also developing validation

methodologies to guarantee that CRADL is representative of the

execution model planned for a concurrent hydrodynamics

code/machine learning model application. The importing of

pretrained machine learning models is also being improved.

Feature reduction on the data extracted from hydrocodes will

prevent movement of unnecessarily bloated data sets that

provide duplicate information on the simulation state.

Finally, CRADL is intended to be released as an open source

application and join the ECP proxy application catalogue.

ACKNOWLEDGMENT

The authors thank Dave Richards for his collaboration and

discussions regarding ECP proxy applications written in Python.

This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National

Laboratory under contract DE-AC52-07NA27344. Lawrence

Livermore National Security, LLC

REFERENCES

[1] Quicksilver. (1.0.0). Lawrence Livermore National Laboratory. [Online].
Available: https://github.com/LLNL/Quicksilver

[2] XSBench. (18.0.0). Argonne National Laboratory. [Online]. Available:
https://github.com/ANL-CESAR/XSBench

[3] LULESH. (2.0.2). Lawrence Livermore National Laboratory. [Online].
Available: https://github.com/LLNL/LULESH

[4] D. Richards et. al,”Best Practices for Using Proxy Apps as Benchmarks,”
2020 ECP Annual Meeting, Houston, TX, USA 2020.

[5] Kripke. (1.1). Lawrence Livermore National Laboratory. [Online].
Available: https://github.com/LLNL/Kripke

[6] Crossroads-Benchmarks and Performance Analysis: A critical element
for improved predictive capability. Los Alamos National Laboratory.
Accessed on: Apr. 15, 2020 [Online]. Available:
https://www.lanl.gov/projects/crossroads/benchmarks-performance-
analysis.php

[7] ECP Proxy Applications. Exascale Computing Project. Accessed on :
Apr. 15, 2020 [Online]. Available :
https://proxyapps.exascaleproject.org/app/

[8] CANDLE. (0.1). Argonne National Laboratory. [Online]. Available:
https://github.com/ECP-Candle/Benchmarks

[9] miniGAN. (1.0.0). Sandia National Laboratories. [Online]. Available:
https://github.com/SandiaMLMiniApps/miniGAN

[10] T. Patki et al.,”Comapring GPU Power and Frequency Capping: A Case
Study with the MuMMI Workflow,” 2019 IEEE/ACM Workflows in
Support of Large-Scale Science (WORKS), Denver, CO, USA, 2019, pp.
31-39

[11] C. Noble et al., “ALE3D: An Arbitrary Lagrangian-Eulerian Multi-
Physics Code,” LLNL, Livermore, CA, USA, Tech. Rep. LLNL-TR-
732040, 2017.

[12] P. Anninos, “Kull ALE: II. Grid motion on unstructured arbitrary
polyhedral meshes,” LLNL, Livermore, CA, USA, Tech. Rep. UCRL-ID-
-147297-PT-2, 2002.

[13] P. Knupp, L. Margolin, and M. Shashkov, “Reference Jacobian
optimization-based rezone strategies for arbitrary Lagrangian Eulerian
methods,” Journal of Comp. Phys., vol. 176, pp. 93-128, February 2002.

[14] M. Jiang, B. Gallagher, J. Kallman, and D. Laney,”A Supervised Learning
Framework for Arbitrary Lagrangian-Eulerian Simulations,” IEEE
International Conference on Machine Learning and Applications
(ICMLA), pp. 977-982, 2016.

[15] HDF5. (1.12.0) The HDF5 Group. [Online]. Available:
https://portal.hdfgroup.org/display/support/HDF5+1.12.0

[16] Conduit. (0.5.1). Lawrence Livermore National Laboratory. [Online].
Available: https://github.com/LLNL/conduit/releases

[17] Top500. “Top500 List – November 2019”,
https://www.top500.org/list/2019/11/

[18] Apex, “A PyTorch Extension: Tools for easy mixed precision and
distributed training in Pytorch,” Nvidia. [Online]. Available:
https://github.com/NVIDIA/apex

[19] “The Cerebras CS-1: Achieving Industry Best Performance Through A
Systems Approach,” Cerebras, Los Altos, CA, USA. [Online]. Available:
https://secureservercdn.net/198.12.145.239/a7b.fcb.myftpupload.com/w
p-content/uploads/2020/01/The-Cerebras-CS-1-Product-Overview-
rev20200112.pdf

1

10

100

2 8 32 128

R
u

n
ti

m
e

[s
]

MPI Procs

1e5 features
1e6 features
1e7 features

