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Abstract—We observed the ability to capture portions of large-

scale multi-physics codes that require user intensive input and 

replace them with a well-trained machine learning model. 

Scalability and computational costs of such techniques for high-

frequency, large-scale inference is currently an open question, 

specifically when querying every mesh element at every timestep. 

Targeting this area, our work presents early results of a proxy app 

developed to predict mesh tangling and determine appropriate 

relaxation in large scale hydrodynamic simulations. Efforts are 

made to capture the involved bandwidth and latency issues of 

offloading exascale workloads onto GPUs, as well as new machine 

learning specific hardware. Nvidia Tesla V100 GPUs have been 

targeted for their capability of accelerating half-precision 

operations and for their ease of use with the TensorFlow and 

Pytorch libraries. Behavior of the proxy app will be used to inform 

future integration into exiting hydrodynamic codes for concurrent 

execution on current Top500 computing platforms. 

Keywords—proxy application, machine learning, mesh 

relaxation, hydrodynamics 

I. INTRODUCTION AND MOTIVATION 

The loss of tracking with Moore's law using traditional CPU 

architecture has spurred the development of novel accelerators, 

as well as the need for evaluation to determine their limiting 

capabilities. With the doubling of transistors no longer a reality 

for CPUs, the advent of application specific hardware is 

becoming the new standard. As it is unreasonable to port large 

codes to new hardware with no promise of performance gain, 

the idea of a mini/proxy app is essential. Numerous mini/proxy 

applications have been developed that capture the approximate 

behavior of specific portions of multi-physics codes. Whether 

that be memory impact specifically, say for cross section 

retrieval (Quicksilver or XSBench) [1,2], or the behavior of a 

full hydrocode, but on a much smaller scale (LULESH) [3]. As 

machine learning (ML) comes into vogue, along with hardware 

specific to its application, the development of a mini/proxy app 

capturing its potential changes to program performance 

becomes necessary to evaluate memory, accuracy, and runtime 

needs of an application. This works serves as the introduction of 

CRADL (the proxy app for Concurrent Relaxation through 

Accelerated Deep Learning) and the first such mini/proxy app 

for the evaluation of mesh relaxation prediction performance on 

current and novel accelerators.  

Novel ideas in this paper 

• First ever, to our knowledge, CogSim proxy 

application that integrates machine learning and 

scientific codes together. 

• Performance evaluation of a CogSim proxy 

application on current hardware. 

• Description of envisioned usage of proxy 

application on a CogSim system with 

disaggregated machine learning accelerators. 

• The development of best practices for machine 

learning proxy applications as part of the Exascale 

Computing Project catalog. 

II. PROXY APPLICATION DESIGN 

Proxy apps are intended to be the most reduced 

representation of a larger application's behavior. The intent 

behind this is to prevent unwieldly porting of large codebases to 

the latest accelerator when a performance improvement is 

uncertain. Example characteristics that can be modeled include 

memory bandwidth and latency, scalability and programming 

style. This compact representation of the larger application 

allows a nimbler environment for experimentation and 

answering research and development questions.  Lessons 

learned from the proxy application can then be applied to the full 

application, to system procurements or to system design 

decisions [4]. 

The HPC community has leveraged the value of these 
smaller applications in many investigations.  Programming 
model explorations have shown the relative value of different 
approaches (e.g. LULESH [3]),  Proxy applications have been 
designed to help determine the best way to port applications to 



accelerators [1] or the optimal data layout to use in a code 
rewrite [5].  Large HPC procurements often use proxy 
applications as benchmarks by adding run rules and specific 
problem specifications, as in the Department of Energy 
Crossroads procurement plan [6]. 

Recognizing the importance proxy applications play in 
testing new software, vendor interactions and external 
engagement the Exascale Computing Project (ECP) includes a 
proxy application project.  The project developed a set of 
standards to ensure a minimum quality for applications in its 
catalog.  In addition, it provided a curated suite [7] that aims to 
give researchers a diverse set of applications of high quality as a 
good starting point. However, the suite and catalog are mostly 
comprised of HPC applications written in prominent compiled 
languages.  A noticeable exception is two recent additions, 
CANDL [8] and MiniGAN [9] which are machine learning 
applications written in Python.  

MiniGAN and CANDL are focused on training or inference 
only.  However, more complex scientific workflows incorporate 
training and/or inference into a single job (e.g. the MuMMI 
workflow [10]). To express this complexity, we developed 
CRADL, which serves as a proxy for how to use inference to 
decide which spatial mesh elements should be relaxed, or 
allowed to move away from the material boundary, at each 
temporal cycle within an Arbitrary Lagrangian-Eulerian (ALE) 
hydrodynamics code. 

Since machine learning proxy applications are new, often 

written in interpreted languages, and contain auxiliary data for 

the purposes of training, they require different standards for 

development. This makes it essential that the CRADL proxy 

application is developed to also serve as an example for future 

Python proxy application development. 

III. ARBITRARY LAGRANGE-EULER HYDRODYNAMICS 

Our underlying application of interest for development is 

Arbitrary Lagrange-Euler (ALE) hydrodynamics codes [11,12]. 

These are used in the area of high energy density physics 

simulations. In ALE codes the mesh moves and distorts with the 

materials (Lagrangian), to better capture the physics of multi-

material interactions, while it is permitted to relax away from the 

mesh boundary (Eularian), as needed to remain numerically 

stable.  

A. Algorithm Structure 

ALE codes commonly consist of a series of Lagrangian steps 

interspersed with an Eulerian step or steps at specified intervals. 

Fig 2 gives examples of two problems run in a hydrodynamics 

code.  

 

 

a. 

 

 

b. 

Fig. 1. Hydrodynamic simulations in an ALE code. With the “bubble shock” 

problem depicted in (a) and the “shocktube” problem depicted in (b) 

During the Lagrangian movement stage, there is a possibility 

for mesh zones to end up inverted or “tangled”. This tangling is 

actually determined by numerous mesh quality metrics (i.e. 

purely geometric information). These metrics, as well as 

physical quantities, can in turn be used to control ALE 

hydrodynamics. [13] Mesh tangling can be mitigated by 

sufficiently frequent or aggressive Eulerian relaxation steps. 

Sustained tangling (insufficient relaxation) causes unphysical 

behavior and can cause the simulation to fail, requiring manual 

inspection and restarting at a checkpoint in the code, with 

modified relaxation controls. The time spent generating data 

after a checkpoint but prior to a failure is essentially wasted 

cycles.  Moreover, the time spent to manually inspect, analyze, 

and mitigate against the failure can account for a large majority 

of walltime to run a simulation to completion.  

B. Relaxation and Tangling 

As the mesh moves during the Lagrangian and Eulerian 

phases of the physics timestep, a mesh element can become 

inverted or tangled resulting in non-positive sub-areas in the 

element creating nonphysical quantities. Conversely, allowing 

the mesh to overrelax results in under constrained material 

boundaries within the mesh element, creating nonphysical 

behavior, particularly when material properties vary greatly. 

When a mesh becomes tangled the user of the ALE code 

must interactively determine the failure and create relaxation 

strategies to mitigate against the failure. This process can be 

repeated many times to get a single simulation to run.  Often, 

this results in overrelaxation in an attempt to run a simulation 

to completion.  After repeated trial and error, the user of the 

ALE code learns different techniques to mitigate mesh tangling 

based on physical conditions and mesh quality metrics.  

Because of this, mesh relaxation is an operation well suited for 

replacement with a trained machine learning model, which can 

then be offloaded to a machine learning accelerator in a High-

Performance Computing (HPC) system. For this to work 

effectively, though, we need to understand the tradeoff between 

the compute performance of inline inference on the CPU and 

the cost of memory bandwidth or latency bottlenecked 

operations necessary with accelerators.  Related, we need to 

understand the “slack” in computation between when the 

features for inference are available and when the inference 

prediction is needed for this specific application, to allow 

interleaving of CPU and accelerator computation. This 

motivates the development of CRADL. 



IV. CRADL PROXY APPLICATION 

Previous and continuing research [14] explores the 

feasibility of replacing user-learned, heuristic mesh relaxation 

methods with machine learned, inferred relaxation. The CRADL 

proxy application creates a method for quantifying performance 

of inline inference for every mesh element, at each timestep 

using machine learning accelerators in an HPC system.  

Additionally, this will allow for the quantification of how much 

CPU computation needs to be interleaved with the accelerator 

computation to amortize computation delays due to latency and 

bandwidth.  Best practices in pursuing this are still being 

determined, however the primary goal is offloading high-

frequency inference onto accelerator devices to achieve runtime 

performance improvement. 

A. Algorithm Structure 

CRADL begins with a time series of a domain decomposed 

mesh, see Fig 2, and its corresponding spatial varying feature 

set. Currently CRADL trains solely on geometric coordinates, 

with performance being the primary focus. In the future, feature 

set data will include mesh quality metrics and physical 

quantities.  This data is stored in the HDF5 [15] file format, and 

is imported directly into CRADL. Popular ALE codes make use 

of the SILO file format, which is built on top of HDF5, allowing 

for consistency. In practice, there will not be commonality in 

how different ALE codes utilize the SILO file format, but its 

specification for structuring data will remain the same.  

To generate test feature sets in HDF5 file format for 

CRADL, the Conduit library is used. [16] This spatially varying 

feature set is transferred to the accelerator where the trained 

machine learning model exists. The full application that 

CRADL is meant to model will have the machine learning 

model executed parallel to the ALE code. The ALE code will 

offload the feature set to be processed by the trained model. The 

accelerator will return a list of nodes that are predicted to 

require relaxation during the simulation. The nodes that are 

predicted to require relaxation prior to failure can then be 

compared against those generated by the user informed method. 

CRADL will have access to “per cycle” feature sets to perform 

inference on, prior to a Lagrangian mesh movement step being 

performed by the ALE code. 

 

Fig. 2. Domain decompostion of the mesh in the “bubble shock” problem 
depicted in Fig. 1.a, with different colors corresponding to regions for a 

particular MPI process. 

B. Limiting Accelerator Characteristics 

The most critical consideration for characterizing a novel 

accelerator for concurrent inference with a physics code is the 

“slack time” available for our operation. This concept 

comprises the walltime between when the feature set is 

available and when the set of nodes that require relaxation is 

needed to advance the run. This is the time in which inference 

must occur to appear free. The operations are free in the sense 

of not increasing total runtime of the application, but will 

necessitate an increased computational cost through the 

inclusion of concurrently executed machine learning model. 

There will be an added monetary cost as well, with the addition 

of new accelerator hardware into the execution model. If an 

accelerator is unable to complete inference within the slack 

period then the calculation cost becomes exposed. This does not 

necessarily disclude the accelerator from future use, as the 

prevention of user input and mesh tangling are important 

quantities to consider. 

C. CRADL Use Cases 

CRADL is designed to profile three specific HPC machine 

configurations, selectable by the user at runtime. See Fig. 3  for 

a visual representation. 

a) CPU:  Running solely on the CPU, the inference 

algorithm will be serialized with physics calculations. In this 

configuration memory bandwidth and latency may not be 

bottlenecks, but the inference cannot be “hidden” by concurrent 

execution. 

b) CPU/GPU: With an accelerator available, inference 

can be offloaded and completed while the physics calculation 

is running. Memory management becomes a concern in this 

configuration. Profiling in this configuration captures 

characteristics of data movement, namely if memory bandwidth 

is being fully utilized, and if the walltime of the inference can 

be amortized between timesteps in the physics code. 

c) Disaggregated ML Accelerator: This configuration is 

for use with ML specific hardware that does not permit a 

general purpose programming model. There will be similar 

concerns to a CPU/GPU setup, however in this case the 

accelerator does not live on node. An additional consideration 

is the available on-node GPUs that can be used to accelerate 

physics calculations while the inference is executed on the 

accelerator platform. This may result in a smaller window of 

time for the inference to be “hidden”. 



 

Fig. 3. Different execution configurations for the CRADL proxy application. 
Sections highlighted in light green are parts of the execution model that are 

occupied with physics computations. 

D. Comunication with Large Datasets 

Communication is performed with a halo scheme. Meshes 

in the HDF5 format currently used in CRADL are in a 

structured representation.  

Feature sets of the mesh geometry are generated and output 

during runtime already domain decomposed to a particular MPI 

rank. There will be a buffer zone of shared mesh nodes between 

MPI ranks. There will not be conflict on determining whether a 

mesh node decides in this buffer zone when returned to the ALE 

code. 

E. Targeted Hardware Platforms 

A key underlying push of this work is portability to multiple 
accelerator platforms. Characterizing both popular and novel 
hardware is essential to determine the value in adopting them 
into an application’s workflow. 

a) Multi-CPU/GPU: The two most recent [17] Top500 

spots are currently occupied by HPC systems with CPU-GPU 

compute nodes. The popularity of such a configuration makes 

it a necessary target for proxy application development 

alongside more exotic hardware. 

b) Nvidia Tesla V100: Nvidia has introduced a tensorcore 

architecture that provides a fused matrix multiply-add operation 

for half-precision values. We make use of Nvidia's Apex library 

[18] , in particular the submodule AMP (Accelerated Mixed 

Precision). AMP provides a wrapper for machine learning 

optimizers to target the tensor cores in Nvidia's Tesla 

generation of architecture.  

c) Cerebras CS-1: The CS-1 platform is a machine 

learning specific accelerator currently being integrated into the 

Lassen system at LLNL. At the time of writing, the platform is 

not fully available for execution, but is a target for CRADL 

development. [19] 

V. PERFORMANCE EXPERIMENTS 

CRADL captures the metrics of interest for adopting an 

accelerator for concurrent execution of physics simulations 

with an inference model. To this aim, scalability of the code in 

its early stages of development is necessary. For both strong 

and weak scaling, a variety of feature set sizes have been 

created in HDF5 files to be imported and processed by a simple 

machine learning model. The Lassen machine at LLNL was 

used to profile CRADL’s performance. Each compute node is 

equipped with 44 IBM Power 9 cores, as well as 4 Nvidia V100 

Volta GPUs. Weak scaling results are demonstrated in Fig. 4. 

  

 

Fig. 4. Weak scaling of CRADL on the Lassen system at LLNL. Ideal 

behavior in weak scaling is a flat profile for increasing number of MPI 
processes with constant features per MPI proccess. The different color bands 

overlayed on the image designate increasing numbers of Lassen compute nodes 

necessary. Moving from left to right, the number of nodes are 1,2,4, and 8. 

The behavior shows close to ideal weak scaling behavior, 

with an increasing number of processors resulting in a small 

increase in runtime once the problem is running on multiple 

nodes. 

In regards to slack time, at its slowest, CRADL takes 14.6 

seconds to execute. During the running of an ALE code, if the 

time between generation of feature sets and a relaxation step is 

larger than 14.6 seconds, our compute time will be “exposed”. 

Additionally, when run concurrently with a hydrodynamics 

code, this time will replace the time taken when a simulation 
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fails, and a user must adjust their relaxation strategy, a process 

on the order of minutes to hours. 

The slowdown for lower MPI processes is due to not 

saturating the GPU memory. Upon exceeding 16 MPI processes 

on a single compute node, the CUDA runtime API returns an 

out of memory error. To resolve this, an increasing number of 

compute nodes are used, with 16 processes dispatched per node. 

A strong scaling study was performed on Lassen as well, 

seen in Fig. 5. 

 

Fig. 5. Strong scaling of CRADL on the Lassen system at LLNL. Ideal 

behavior in strong scaling is a decrease in runtime for the same problem size, 
with an increasing number of MPI processes. The different color bands 

overlayed on the image designate increasing numbers of Lassen compute nodes 

necessary. Moving from left to right, the number of nodes are 1,2,4, and 8. 

With 105 and 106 features, a decrease in runtime is not 

realized. For this amount of data, the memory transfer overhead 

that accompanies an increased number of MPI processes will 

result in slower runtimes. With 107 features, the benefit of more 

MPI processes is just starting to be realized and allow for 

shorter runtimes. 

VI. CONCLUSIONS AND FUTURE EFFORTS 

The CRADL proxy application is currently in very early 

stages of development. There will be additional hardware 

platforms added, some of which are currently under NDA. The 

final version of the proxy application may have a different 

algorithm structure as the project progresses.  

An important focus is also developing validation 

methodologies to guarantee that CRADL is representative of the 

execution model planned for a concurrent hydrodynamics 

code/machine learning model application. The importing of 

pretrained machine learning models is also being improved. 

Feature reduction on the data extracted from hydrocodes will 

prevent movement of unnecessarily bloated data sets that 

provide duplicate information on the simulation state. 

Finally, CRADL is intended to be released as an open source 

application and join the ECP proxy application catalogue. 
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