
LLNL-CONF-814029

CRADL: Proxy Application for Concurrent
Relaxation through Accelerated Deep
Learning

K. Zieb, K. Lewis, C. Doutriaux, A. Maguire, A. Toreja,
J. Kallman, I. Karlin, B. Van Essen

August 27, 2020

HiPar20: Hierarchical Parallelism for Exascale Computing
Atlanta, GA, United States
November 15, 2020 through November 20, 2020



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



CRADL: Proxy Application for Concurrent
Relaxation through Accelerated Deep Learning

Kristofer Zieb
Lawrence Livermore National

Laboratory
Livermore, CA

Email: zieb1@llnl.gov

Katherine Lewis
Lawrence Livermore National

Laboratory
Livermore, CA

Charles Doutriaux
Lawrence Livermore National

Laboratory
Livermore, CA

Alister Maguire
Lawrence Livermore National

Laboratory
Livermore, CA

Allen Toreja
Lawrence Livermore National

Laboratory
Livermore, CA

Josh Kallman
Lawrence Livermore National

Laboratory
Livermore, CA

Ian Karlin
Lawrence Livermore National

Laboratory
Livermore, CA

Brian Van Essen
Lawrence Livermore National

Laboratory
Livermore, CA

Abstract—We captured portions of large-scale multi-physics
codes that require user-intensive input and replaced them with a
trained machine learning model. Scalability and computational
costs of such techniques for high-frequency, large-scale inference
are currently an open question, specifically when querying every
mesh element at every timestep. Targeting this area, our work
presents early results of a proxy app developed to predict
mesh tangling and determine which nodes in the mesh require
relaxation in large scale hydrodynamic simulations. We capture
the involved bandwidth and latency issues of offloading exascale
workloads onto GPUs, as well as new machine learning specific
hardware. Nvidia Tesla V100 GPUs have been targeted for their
capability of accelerating half-precision operations and for their
ease of use with the TensorFlow and Pytorch libraries. Behavior
of the proxy app will be used to inform future integration into
existing hydrodynamic codes for concurrent execution on current
Top500 computing platforms.

Keywords – proxy application, machine learning, mesh
relaxation, hydrodynamics

I. INTRODUCTION

With application specific hardware becoming the new stan-
dard in high performance computing (HPC), it becomes
necessary for code developers to determine how to best
utilize these devices with their existing codebases. As it is
unreasonable to port large codes to new hardware with no
promise of performance gain, the idea of a mini/proxy app
is essential. These minimally representative applications allow
for flexible development, and exploration of best practices on
newly procured hardware. Numerous mini/proxy applications
have been developed that capture the approximate behavior
of specific portions of multi-physics codes. Whether that be
memory impact specifically, say for cross section retrieval
(Quicksilver or XSBench) [1,2], or the behavior of a full
hydrocode, but on a much smaller scale (LULESH) [3]. As
machine learning (ML) comes into vogue, along with hardware
specific to its application, the development of a mini/proxy
app capturing its potential changes to program performance
becomes necessary to evaluate memory, accuracy, and runtime
needs of an application. This works serves as the introduction

of CRADL (the proxy app for Concurrent Relaxation through
Accelerated Deep Learning) and the first such mini/proxy app
for the performance evaluation of inference to predict mesh
relaxation on current and novel accelerators.

Novel ideas in this paper

• First ever, to our knowledge, proxy application that
integrates machine learning and scientific codes together.

• Performance evaluation of a proxy application on current
hardware.

• Description of envisioned usage of proxy application
on an HPC system with disaggregated machine learning
accelerators.

• The development of best practices for machine learning
proxy applications as part of the Exascale Computing
Project catalog.

II. PROXY APPLICATION DESIGN

Proxy apps are intended to be the most reduced representa-
tion of a larger application’s behavior. The intent behind this
is to prevent unwieldly porting of large codebases to the latest
accelerator when a performance improvement is uncertain.
Example characteristics that can be modeled include memory
bandwidth and latency, scalability and programming style.
This compact representation of the larger application allows
a nimbler environment for experimentation and answering
research and development questions. Lessons learned from the
proxy application can then be applied to the full application,
to system procurements or to system design decisions [4].

The HPC community has leveraged the value of these
smaller applications in many investigations. Programming
model explorations have shown the relative value of different
approaches (e.g. LULESH [3]), Proxy applications have been
designed to help determine the best way to port applications
to accelerators [1] or the optimal data layout to use in a
code rewrite [5]. Large HPC procurements often use proxy
applications as benchmarks by adding run rules and specific



problem specifications, as in the Department of Energy Cross-
roads procurement plan [6].

Recognizing the importance proxy applications play in
testing new software, vendor interactions and external en-
gagement the Exascale Computing Project (ECP) includes
a proxy application project. The project developed a set of
standards to ensure a minimum quality for applications in
its catalog. In addition, it provided a curated suite [7] that
aims to give researchers a diverse set of applications of
high quality as a good starting point. However, the suite and
catalog are mostly comprised of HPC applications written in
prominent compiled languages. A notable exception is two
recent additions, CANDL [8] and MiniGAN [9] which are
machine learning applications written in Python.

CRADL captures more complex scientific workflows which
incorporate inference into a single job (e.g. the MuMMI
workflow [10]). To express this complexity, we developed
CRADL to serve as a proxy for how to use inference to
decide which spatial mesh elements should be relaxed, or
allowed to move away from the material boundary, at each
temporal cycle within an Arbitrary Lagrangian-Eulerian (ALE)
hydrodynamics code.

Since machine learning proxy applications are new, often
written in interpreted languages, and contain auxiliary data for
the purposes of training, they require different standards for
development. This makes it essential that the CRADL proxy
application is developed to also serve as an example for future
Python proxy application development.

III. ARBITRARY LAGRANGE-EULER HYDRODYNAMICS

Our underlying application of interest for development
is Arbitrary Lagrange-Euler (ALE) hydrodynamics codes
[11,12]. These are used in the area of high energy density
physics simulations. In ALE codes the mesh moves and
distorts with the materials (Lagrangian), to better capture the
physics of multi-material interactions, while the materials are
permitted to relax away from the mesh boundary (Eularian),
as needed to remain numerically stable.

A. Algorithm Structure

ALE codes commonly have options for the coordination of
Lagrangian and Eulerian steps, allowing multiple Lagrangian
steps for every Eulerian step, multiple Eulerian steps for every
Lagrangian step, or a single Lagrangian step for every Eulerian
step, however it is uncommon to have multiple Eulerian steps
for each Lagrangian step. For the purpose of this paper,
we focus on a single Lagrangian step for a single Eulerian
step.. Figure 2 gives examples of two problems run in a
hydrodynamics code.

During the Lagrangian movement stage, there is a possibil-
ity for mesh elements to end up inverted or “tangled”. Mesh
tangling can lead to a code crashing and the progression of an
element from a healthy state to a tangled state will negatively
affect the calculation even before the tangle. The quality of the
mesh elements can be measured by numerous mesh quality
metrics (i.e. purely geometric information). These metrics, as

Fig. 1. Hydrodynamic simulations in an ALE code. With the “Bubble Shock”
problem depicted top and the “Shock Tube” problem depicted bottom. The
problem evolves over time from left to right.

well as physical quantities, can in turn be used to control ALE
hydrodynamics. [13] Mesh tangling and low-quality mesh el-
ements can be mitigated by sufficiently frequent or aggressive
Eulerian relaxation steps. Sustained low-quality elements due
to insufficient relaxation causes unphysical behavior and can
cause the simulation to fail, requiring manual inspection and
restarting at a checkpoint in the code, or in some cases a
complete restart at cycle 0, with modified relaxation controls.
The time spent generating data after a checkpoint but prior
to a failure is essentially wasted cycles. Moreover, the time
spent to manually inspect, analyze, and mitigate against the
failure can account for a large majority of walltime to run a
simulation to completion.

B. Relaxation and Tangling

As the mesh moves during the Lagrangian and Eulerian
phases of the physics timestep, a mesh element can have
non-positive sub-areas in the element creating nonphysical
quantities. Conversely, allowing the mesh to overrelax results
in under constrained material boundaries within the mesh
element, creating nonphysical behavior, particularly when ma-
terial properties vary greatly.

When a mesh becomes tangled the user of the ALE code
must interactively determine the failure and create relaxation
strategies to mitigate against the failure. These strategies
involve triggering relaxation when user-set thresholds are
reached for specific mesh quality metrics, e.g. an interior
corner angle that is nearly zero suggests a very flat or
elongated element. A user may set a relaxation threshold for
this metric as a preventative measure with the experience that
certain physics will result in a failure, however these types
of strategies will often take time to learn as they are often
specific to a type of simulation. This process can be repeated
many times to get a single simulation to run. Often, this
results in overrelaxation in an attempt to run a simulation to
completion. The range of time spent getting a simulation to
run without failure can be difficult to quantify. In the simplest
case, a user’s simulation fails, they update their relaxation
strategy and are able to complete their run with less than an
hour spent on manual changes. In the extreme case of the
largest simulations using Lagrange hydrodynamics, alongside



radiation transport, they can take up to a month to complete
on their own. When these simulations fail repeatedly, the total
time spent on manual intervention can add up to days or even
weeks.

During repeated trial and error, the user of the ALE code
applies different techniques to mitigate mesh tangling based on
physical conditions and mesh quality metrics.The relaxation
strategy is often influenced by the user’s own experience
drawn from other, similar problems. Because of this, mesh
relaxation is an operation well suited for replacement with a
trained machine learning model, which can then be offloaded
to a machine learning accelerator in a High-Performance
Computing (HPC) system. We use a neural network that is
an extension of work completed earlier that is trained on
mesh quality metrics and predicts how far a mesh element
is from entering a low-quality state [14]. This prediction is
used to control which elements should be relaxed by the
Eulerian step. For this to work effectively, though, we need to
understand the tradeoff between the compute performance of
inline inference on the CPU and the cost of memory bandwidth
or latency bottlenecked operations necessary with accelerators.
Related, with high-frequency inference required by ALE we
need to understand the “slack” in computation between when
the features for inference are available and when the inference
prediction is needed for this specific application, to allow in-
terleaving of CPU and accelerator computation. This motivates
the development of CRADL.

IV. CRADL PROXY APPLICATION

Previous and continuing research [14] explores the feasibil-
ity of replacing user-learned, heuristic mesh relaxation meth-
ods with machine learned, inferred relaxation. The CRADL
proxy application quantifies performance of inline inference
for every mesh element, at each timestep using traditional
and machine learning specific accelerators in an HPC system.
Additionally, this will allow for the quantification of how
much CPU computation needs to be interleaved with the
accelerator computation to amortize computation delays due
to latency and bandwidth. Best practices in pursuing this are
still being determined, however the primary goal is offloading
high-frequency inference onto accelerator devices to achieve
runtime performance improvement.

A. Algorithm Structure

CRADL begins with a time series of a domain decomposed
mesh, see Fig 2, and its corresponding spatial varying feature
set. Currently CRADL trains on mesh quality metrics, with
performance being the primary focus. These metrics consist
solely of geometric information about the mesh, with all
element centered data converted to be node centered for
consistency and convenience. Once an inference model trained
on physical quantities has been developed, the feature set data
will include this information as well. CRADL is packaged with
a repository of data extracted from many simulations. This
data allows for users to scale the amount of data and capture
the corresponding performance of the inference model. ALE

Fig. 2. Domain decomposition of the mesh in the “bubble shock” problem
depicted in Fig. 1 (top), with different colors corresponding to regions for a
particular MPI process.

codes make use of the SILO file format, which is built on
top of HDF5[15]. In practice, there will not be commonality
in how different ALE codes utilize the SILO file format.This
data is stored in NPY files to allow users to create their own
data repositories in a very common format.

The feature set packaged with CRADL was generated using
a hydrodynamics code running variations of the Shock Tube
problem. CRADL loads a user-defined percentage of this total
pool of data and streams it to a specified device. This is
intended to mimic what inline inference performance would
look like in an ALE code. In a a production setting, CRADL’s
functionality would appear as follows. At each timestep in
a simulation, mesh quality metrics at each node will be
streamed to the accelerator for inference while the physics
code completes its current cycle. The accelerator will return a
list of nodes that are predicted to require relaxation during the
simulation. The nodes that are predicted to require relaxation
prior to failure will then be returned to the physics code which
will apply displacements to the returned nodes accordingly.
CRADL will have access to “per cycle” feature sets to perform
inference on, prior to a Lagrangian mesh movement step being
performed by the ALE code. For the purpose of this miniapp,
the behavior of the application will be the same, however the
user is provided a pregenerated pool of data.

This data is then loaded onto the accelerator of choice,
where inference is performed by a previously trained machine
learning model. The structure of this model was developed
through trial and error while training on ALE simulation data.
The model is intended to predict when an element is likely to
fail in a simulation and recommend it be relaxed by the ALE
code. The structure of this model is given in Table 2.

B. Python Based Miniapp Standards

The ECP provides a list of standards that must be adhered
to for inclusion into the miniapp catalog. These standards
were originally developed for compiled languages, and do not
all apply to an interpreted language like Python. As such,
the CRADL project has followed the ECP standards when
applicable, and will provide feedback to the ECP team for
novel obstacles that come with the use of Python. For example,
in place of a cmake build, an automated install script is



TABLE I
CRADL MODEL STRUCTURE USED FOR INFERENCE ON ALE DATA.

Samples Kernel Size Kernel Count
Conv1d samples ∗ 5 ∗ 10 3 128
MaxPool1d - 3 -
Conv1d 128 3 256
MaxPool1d - 3 -
Conv1d 256 3 256
MaxPool1d - 3 -
Conv1d 256 3 256
MaxPool1d - 3 -
Conv1d 256 3 256
MaxPool1d - 3 -
Conv1d 256 3 256
MaxPool1d - 3 -
Linear samples ∗ 256 - 1024
BatchNorm1d - - 1024
Dropout (0.5 dropout) - -
Linear 1024 - 512
BatchNorm1d - - 512
Dropout (0.5 dropout) - -
Linear 512 - 256
BatchNorm1d - - 256
Dropout (0.5 dropout) - -
Linear 256 - samples

provided for the required python library dependencies. An
additional ECP standard is verification of code compilation,
in CRADL an analogous concern is verifying the necessary
python libraries are present, and presenting an informative
error when the library is not present, rather than yielding a
failed run, with a pointer to the corresponding line of code.

C. Slack Time

In a simulation for a typical ALE code, a user’s problem
specification selects the necessary physics packages required
to capture the behavior of interest. In addition to the physics,
as stated previously, there will be cycles where Eulerian mesh
relaxation is active and the physical quantifies of the pre-
relaxed mesh is remapped onto the relaxed mesh. Because the
Lagrangian step moves the mesh, this step needs to complete
before the mesh quality metrics can be computed and passed
as features to our neural network. The prediction needs to
be returned before the Eulerian mesh relaxation and remap
can be performed. For the purposes of this paper, this time
that we have to complete the prediction while other physics
packages are running is referred to as “slack” time. If the
inference is completed within the slack time, it is essentially
free, computationally, if it is performed on an accelerator. For
a relatively simple problem like the Shock Tube simulation,
the main physics at play is Lagrange hydrodynamics. In this
case there is little slack time to hide the cost of inference. In
a problem with more complex physics, like a simulation of
a Hohlraum experiment at the National Ignition Facility [16],
there are many more calculations required in a single cycle,
yielding a greater slack time to hide the cost of inference.
Table 1 shows the percentage of time spent in each physics
package, in two different simulations.

Slack time will be affected by the ratio between Lagrangian
and Eulerian steps. For the purposes of this paper, we calculate

TABLE II
PERCENTAGE OF TOTAL WALLCLOCK TIME SPENT IN DIFFERENT

PACKAGES FOR THE SHOCK TUBE PROBLEM AND THE HOHLRAUM
PROBLEM.

ALE Code Package Shocktube [%] Hohlraum [%]
Eulerian Relaxation 67.0 0.8
Timestep Calculation 16.2 23.3
Lagrange Hydrodynamics 9.9 2.9
Energy Conservation 3.3 2.4
Miscellaneous 1.0 0.9
Radiation Transport 0.0 57.2
Laser Physics 0.0 10.0

slack time using a single Lagrangian step for every Eulerian
step. For Shock Tube calculation the slack time is determined
to be 21.8% of the cycle time or 0.008 seconds per cycle.
For the Hohlraum, these values are 96.3% and 0.328 seconds,
respectively.

It should be noted that exceeding slack time will be expected
in many cases. The trade-off for this increase in computa-
tion is the prevention of time spent on restarts and manual
intervention. Time spent on salvaging a failed simulation is
indeterminate and can vary widely depending on user experi-
ence and problem complexity. Furthermore, sufficient Eulerian
relaxation can have other benefits on runtime that are not
currently captured with our current slack time metric. As the
mesh quality remains high, the change in simulation time per
cycle can be higher (i.e., it takes fewer cycles to reach the same
simulation time). For a low-resolution version of this Shock
Tube simulation with a manual relaxation strategy, 29,500
cycles were required to complete the simulation. Using the
machine learned relaxation strategy, only 11,270 cycles were
required to reach the same simulation time. If computation
time per cycle is consistent across simulations, our slack time
would be 2.62 times the quantities given in this paper.

V. CRADL IN PRACTICE

There are a number of considerations necessary when
executing CRADL. Primary factors include what accelerator a
user wishes to profile, the architecture of their ML algorithm,
and what command line configurations they intend to run to
best capture their full scale application.

A. Limiting Accelerator Characteristics

The most critical consideration for characterizing a novel
accelerator for concurrent inference with a physics code is
the “slack time” available for our operation. This concept
comprises the walltime between when the feature set is
available and when the set of nodes that require relaxation is
needed to advance the run. This is the time in which inference
must occur to appear free. The operations are free in the
sense of not increasing total runtime of the application, but
will necessitate an increased computational cost through the
inclusion of concurrently executed machine learning model.
There will be an added monetary cost as well, with the addition
of new accelerator hardware into the execution model. If an
accelerator is unable to complete inference within the slack



Fig. 3. Different execution configurations for the CRADL proxy application.
Sections highlighted in light green are parts of the execution model that are
occupied with physics computations.

period then the calculation cost becomes exposed. This does
not necessarily exclude the accelerator from future use, as
the prevention of user input and mesh tangling are important
quantities to consider.

B. CRADL Use Cases

CRADL is designed to profile three specific HPC machine
configurations, selectable by the user at runtime. See Figure 3
for a visual representation.

1) CPU: Running solely on the CPU, the inference al-
gorithm will be serialized with physics calculations. In this
configuration memory bandwidth and latency may not be bot-
tlenecks, but the inference cannot be “hidden” by concurrent
execution.

2) CPU/GPU: With an accelerator available, inference can
be offloaded and completed while the physics calculation is
running. Memory management becomes a concern in this
configuration. Profiling in this configuration captures charac-
teristics of data movement, namely if memory bandwidth is
being fully utilized, and if the walltime of the inference can
be amortized between timesteps in the physics code.

3) Disaggregated ML Accelerator: This configuration is for
use with ML specific hardware that does not permit a general
purpose programming model. There will be similar concerns
for a CPU/GPU setup, however in this case the accelerator
does not live on node. An additional consideration is the
available on-node GPUs that can be used to accelerate physics
calculations while the inference is executed on the accelerator
platform. This may result in a smaller window of time for the
inference to be “hidden”.

C. Targeted Hardware Platforms

A key underlying thrust of this work is portability to
multiple accelerator platforms. Characterizing both popular
and novel hardware is essential to determine the value in
adopting them into an application’s workflow.

1) Multi-CPU/GPU: The two most recent [17] Top500
spots are currently occupied by HPC systems with CPU-
GPU compute nodes. The popularity of such a configuration
makes it a necessary target for proxy application development
alongside more exotic hardware.

2) Nvidia Tesla V100: Nvidia has introduced a tensorcore
architecture that provides a fused matrix multiply-add opera-
tion for half-precision values. We make use of Nvidia’s Apex
library [18] , in particular the submodule AMP (Accelerated
Mixed Precision). AMP provides a wrapper for machine
learning optimizers to target the tensor cores in Nvidia’s Tesla
generation of architecture.

3) Cerebras CS-1: The CS-1 platform is a machine learning
specific accelerator currently being integrated into the Lassen
system at LLNL. At the time of writing, the platform is
not fully available for execution, but is a target for CRADL
development. [19]

VI. PERFORMANCE EXPERIMENTS

CRADL captures the metrics of interest for adopting an
accelerator for concurrent execution of physics simulations
with an inference model; these are listed in Table 3.

TABLE III
REPORTED PERFORMANCE METRICS FROM CRADL

Captured Performance
Metrics

Units

Device Used -
APEX Library Used -
PyTorch Benchmarking -
Pinned Memory Used -
Time for Model Load s
Time for Data Load s
Time for Inference s
Time for Inference per
Cycle

s

Total Time s
Slack Time Coverage per
Cycle

%

Slack time coverage per cycle (STC) is an optional metric
for advanced users of CRADL. This metric is calculated as
follows.

STC = 100 ∗ tinference
tSPC ∗ cyclesdatapool

(1)

The total cycles are dependent on the user-selected per-
centage of the data pool to use. The slack time per cycle
(SPC), tSPC , comes from either a Shock Tube or Hohlraum
calculation that was run previously in an ALE code. STC
represents what percentage of the slack time available in a
particular simulation was used to perform inference.

There are nuances to the calculation of SPC. In practice, the
actual slack time available will vary from cycle to cycle for



Fig. 4. Data throughput for different sized data pools, run with different cycle
count.

Fig. 5. Inference normalized per cycle per node, the gray region is the area
representing where inference is within slack time for simple physics (Shock
Tube) and green represents where inference is within slack time for complex
physics (Hohlraum).

many reasons, one of which being Eulerian mesh movement
isn’t required for each timestep.

There are two parallelization schemes provided directly by
PyTorch at this time. The simplest scheme to implement is
DataParallel. This scheme operates independently of MPI, and
is intended for a single CPU with access to multiple GPUs.
When using DataParallel, inference data is passed to a single
GPU which determines how to distribute it equally across the
GPUs visible to the CPU. From here the initial data is copied
back to the host device and divided across the accelerators
accordingly for inference. In a serial execution mode, a data
loader is used to send batches of samples at a time to a single
GPU so as to not receive an out of memory error (OOM).

In Figure 4, as the number of cycles is increased for
a CRADL run, the data throughput increases as well. It’s
observed that a limit is reached in peak data throughput. This
can be attributed to a bottleneck in the bandwidth between
the host CPU and the GPU being used. This peak throughput
is achieved with a large enough datapool, or if a user runs
for a sufficiently high number of cycles, 1000 or greater.
When assessing the slack time, it is important to normalize
to a per cycle, per node basis. This provides the most direct
comparison of inference calculations against the time taken
to process the physics and other packages in an ALE code.
This comparison is provided in Figures 5 and 6. In the green
region and below, the inference operation for the Hohlraum

Fig. 6. Inference normalized per cycle per node, as in Figure 5, but with a
forced synchronization between loading data and performing inference.

Fig. 7. Percentage walltime of primary operations in CRADL, with increasing
numbers of cycles.

problem (dubbed complex physics) can be performed for
free. In the lighter gray region, inference for the Shock Tube
problem (dubbed simple physics) can be performed for free. In
Figure 6 the synchronization option in CRADL is turned on.
This barrier exist between the data loading and the inference
operation on the GPU. The effect of which prevents the free
streaming of data and asynchronous execution of operations
on the GPU. the inference time is measured starting after
the data is completely moved to the GPU and ends before
the data is moved back to the CPU. The end result reduces
the performance difference between runs with different user
defined cycles.

To effectively utilize the GPU, it must be saturated with
work. For a sufficiently large number of cycles (greater
than 1000), the time spent loading data can be amortized
by the inference operation in CRADL, which can be seen
in Figure 7. Large cycle counts are representative of what
inline inference in a mature multiphysics code will look like.
Spending more time performing inference is preferred as there
are more options for optimizing this operation compared to
preprocessing data. When run solely on the CPU the same
inference execution takes up to four orders of magnitude
greater wallclock time to complete.



VII. CONCLUSIONS AND FUTURE EFFORTS

The data delivered by CRADL provides critical information
on both hardware performance as well as future application
design of ALE codes intending to perform inference inline.
It has been made clear that to see benefits of performing
inference, a user must ensure that they are using a large enough
datapool, and operating for over 1000 cycles. Also apparent is
the limited slack time available for simulations with simpler
physics, meaning the cost of inference can be exposed. The
implication of both of these results suggest that CRADL will
be most beneficial when applied to large, complex simulations,
not only to hide the cost of inference, but also due to the
increased difficulty in mitigating simulation failures manually.

CRADL has been released publicly, and is under continued
development. Support for additional hardware platforms will
be added, some of which are currently under NDA.

An important focus is also developing validation method-
ologies to guarantee that CRADL is representative of the
execution model planned for a concurrent hydrodynamics
code/machine learning model application. Feature reduction
on the data extracted from hydrocodes will prevent movement
of unnecessarily bloated data sets that provide duplicate infor-
mation on the simulation state.

Currently, users may load their own custom model, but must
ensure their data is properly formatted and dimensioned to be
fed through. Future versions of CRADL will parse data for
users to simplify the profiling workflow as much as possible.
There are also development plans for a TensorFlow version of
CRADL as well.

CRADL is expected to be added to the ECP proxy ap-
plication catalogue Fall of 2020 to aid in determining value
added with new hardware procurement, and test performance
on existing HPC platforms.

ACKNOWLEDGMENT

The authors thank Dave Richards for his collaboration
and discussions regarding ECP proxy applications written in
Python. This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344. Lawrence
Livermore National Security, LLC

REFERENCES

[1] Quicksilver. (1.0.0). Lawrence Livermore National Laboratory. [Online].
Available: https://github.com/LLNL/Quicksilver

[2] XSBench. (18.0.0). Argonne National Laboratory. [Online]. Available:
https://github.com/ANL-CESAR/XSBench

[3] LULESH. (2.0.2). Lawrence Livermore National Laboratory. [Online].
Available: https://github.com/LLNL/LULESH

[4] D. Richards et. al,”Best Practices for Using Proxy Apps as Benchmarks,”
2020 ECP Annual Meeting, Houston, TX, USA 2020.

[5] Kripke. (1.1). Lawrence Livermore National Laboratory. [Online]. Avail-
able: https://github.com/LLNL/Kripke

[6] Crossroads-Benchmarks and Performance Analysis: A critical
element for improved predictive capability. Los Alamos National
Laboratory. Accessed on: Apr. 15, 2020 [Online]. Available:
https://www.lanl.gov/projects/crossroads/benchmarks-performance-
analysis.php

[7] ECP Proxy Applications. Exascale Computing Project. Accessed on : Apr.
15, 2020 [Online]. Available : https://proxyapps.exascaleproject.org/app/

[8] CANDLE. (0.1). Argonne National Laboratory. [Online]. Available:
https://github.com/ECP-Candle/Benchmarks

[9] miniGAN. (1.0.0). Sandia National Laboratories. [Online]. Available:
https://github.com/SandiaMLMiniApps/miniGAN

[10] T. Patki et al.,”Comapring GPU Power and Frequency Capping: A
Case Study with the MuMMI Workflow,” 2019 IEEE/ACM Workflows
in Support of Large-Scale Science (WORKS), Denver, CO, USA, 2019,
pp. 31-39

[11] C. Noble et al., “ALE3D: An Arbitrary Lagrangian-Eulerian Multi-
Physics Code,” LLNL, Livermore, CA, USA, Tech. Rep. LLNL-TR-
732040, 2017.

[12] P. Anninos, “Kull ALE: II. Grid motion on unstructured arbitrary
polyhedral meshes,” LLNL, Livermore, CA, USA, Tech. Rep. UCRL-
ID–147297-PT-2, 2002.

[13] P. Knupp, L. Margolin, and M. Shashkov, “Reference Jacobian
optimization-based rezone strategies for arbitrary Lagrangian Eulerian
methods,” Journal of Comp. Phys., vol. 176, pp. 93-128, February 2002.

[14] M. Jiang, et al, IEEE International Conference on Machine Learning
and Applications (ICMLA), pp. 977–982, 2016

[15] HDF5. (1.12.0) The HDF5 Group. [Online]. Available:
https://portal.hdfgroup.org/display/support/HDF5+1.12.0

[16] J.D. Moody, et al, Lawrence Livermore National Laboratory; 57th APS
Division of Plasma Physics, Savannah, GA, United States, Nov 16 - Nov
20, 2015 2015

[17] Top500. “Top500 List – November 2019”,
https://www.top500.org/list/2019/11/

[18] Apex, “A PyTorch Extension: Tools for easy mixed precision
and distributed training in Pytorch,” Nvidia. [Online]. Available:
https://github.com/NVIDIA/apex

[19] “The Cerebras CS-1: Achieving Industry Best Performance Through A
Systems Approach,” Cerebras, Los Altos, CA, USA. [Online]. Available:
https://secureservercdn.net/198.12.145.239/a7b.fcb.myftpupload.com/wp-
content/uploads/2020/01/The-Cerebras-CS-1-Product-Overview-
rev20200112.pdf


