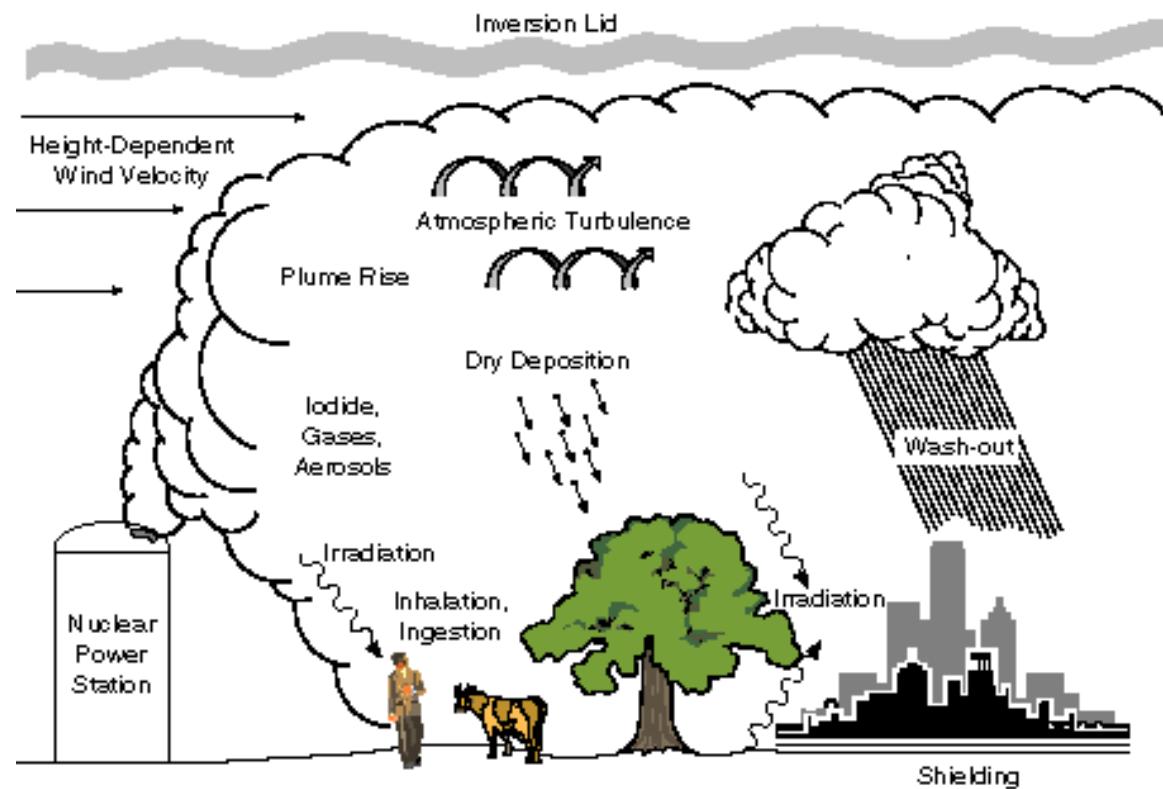


# MACCS2

**Nathan Bixler (PI)**  
**Katherine McFadden, Charlie Morrow,**  
**Lee Eubanks, Rick Haaker,**  
**Jamie Cash, Josh Phillips, Virginia Cleary**

**Sandia National Laboratories**  
**Analysis and Modeling Department 6862**


**Presented**  
**June 18, 2007**



# Outline

---

- **Uses**
- **Recent and Ongoing Development**
- **Future directions**



TRI-048-001-0



# NRC Uses for MACCS2


---

- MACCS2 is used to analyze **offsite consequences** from an accidental atmospheric release of radioactive material.
  - Early and latent **health** effects
  - **Land** contamination
  - **Economic** impact
- Types of **uses**:
  - Support **level-3 PRA** analyses
    - ▶ MELCOR source-term predictions
  - **Planning**
  - **Cost-benefit** analyses

# MACCS2 Development

## ■ Recent and ongoing development (RES/DSARE)

- New capabilities (Y6786)
  - ▶ KI ingestion model
  - ▶ Land-contamination estimation
  - ▶ Dose-threshold model
- Pursuit of best-estimate modeling
  - ▶ Improved dose threshold model for latent health effects
    - Annual/lifetime threshold
    - Piecewise-linear dose model
  - ▶ Enhanced plume modeling
    - Buoyancy
    - Dispersion
  - ▶ Improved model for mixing height
- MACCS2 inputs (Y6628)
  - ▶ Distributions to capture degree of belief





# Supporting Development

---

## ■ **WinMACCS** development (Y6628)

- **Input file builder**
  - ▶ Single run
  - ▶ Multiple runs
  - ▶ Multiple realizations using LHS for parameter sampling
- **Graphical display of output**

## ■ **MELMACCS** development (Y6802)

- Tool for calculating **source terms** from MELCOR output
- Creates **MACCS2** input



## MACCS2 Training

---

- Accident consequences analysis training (**P-301**) for the NRC (Russ Anderson through INEEL)
- Training and support for **Kalinin PRA** (John Lane through BNL)
- Training workshop for DOE's Severe Accident Working Group (**SAWG**)



# Recent and Ongoing Applications - Vulnerability

---

- NPP vulnerability to aircraft
  - Surry & Peach Bottom (RES/DET)
  - Indian Point & Limerick (RES/DSARE)
  - Sequoyah & Grand Gulf (RES/DSARE)
- Vulnerability of spent fuel pool (done by RES)
- Vulnerability of fuel in dry-cask storage (NMSS/SFPO)
- Research and test reactor (RTR) vulnerability (35 sites) (NRR/DRIP)
- Vulnerability of Greek Demokritos reactor for 2004 Summer Olympics



## Recent and Ongoing Applications – Other NRC

---

- Plume model adequacy evaluation (RES/DSARE)
- Evaluation of competing evacuation/sheltering strategies (NSIR/EPPO)
- Rebaselining NUREG-1150 consequences for CRIC-ET (RES/DSARE)
  - Used to evaluate risk-significance of candidate generic issues



# Future Directions

---

- Driven by trends in **advanced reactors and fuels**
  - High-burnup fuel
  - MOX fuel
  - PBMR
  - ACR 700
- Consequence analyses will **require**
  - Reactor- and fuel-specific fission-product **inventories**
  - **Routine** quantification of **input** and **weather uncertainties**
  - Quantification of effect of a dose **threshold**
  - **More cohorts**
- Focus should be to **improve models strategically** to minimize unnecessary regulatory burden



## Future Code Needs

---

- Integrated weather and input parameter sampling
- Threshold model for multiple cohorts
- Faster run times
  - Improved code architecture
  - Dynamic memory allocation
  - Distributed computing
- Support for multiple fission product inventories
- Improved models for rate-dependent health effects
- More flexible and detailed economic model



## Future Data Needs

---

### ■ Access to more and better data

- Surface roughness
- Land use
- Diurnal variations in population
- Economic Data
- Weather data