
Linking INPAG-N to GoldSim

June 2007

Patrick Mattie

Don Kalinich

Sandia National Laboratories

Email: pdmatti@sandia.gov or dakalin@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

SAND2007-3528P

mailto:dakalin@sandia.gov
mailto:pdmatti@sandia.gov

Overview

• Introduction

– Requirements

– Functional Design

– Specifications

• Launch_INPEG DLL

• GoldSim model file that runs multiple realizations of
INPEG-N

Link INPAG-N with GoldSim

1. Code must interface with GoldSim

GoldSim requirements:

 code compiled as a DLL

 code written in C,C++, or FORTRAN

2. Code must run INPAG-N model

 Launch the EXE

 Iterate over multiple input files

 Save output

Requirements

DLL
Input
Array

GoldSim.exe INPAGN_Launcher.DLL Operations

Model
File

Select
Subroutine

Code
Selector
Switch

External
DLL Link

Read
input file

subroutine
INPAGNx
Input File

Insert
Uncertain

Parameter
Values

INPAG-N

INPAG-NV2
(MSCI)

INPAG-NV2
(INER)

INPAG-NH
(MSCI)

INPAG-N
(INER)

DLL
Subroutines Execute Write Subroutine

Write to Input File

DLL
Output
Array

Read
output files
subroutine

INPAG-Nx
EXE

Execute INPAGNx and Read Output Files Subroutine

INPAG-N
Output
Files

Output

Input

Need three parts:

1. GoldSim model file

2. DLL

3. INPAGN.EXE

Functional Design

Operations:

1. Input data is passed from
the model file to the DLL

2. DLL Writes Input File

3. DLL Launches the EXE

4. DLL reads Output files
and the data is loaded
into an array read by the
model file

5. GoldSim Saves Output

• GoldSim is a probabilistic code the DLL was designed
to be executed over multiple realizations

• DLL coded to accept the input data required for five
versions of INPAG-N

• DLL able to write five different input file formats for
INPAG-N

• DLL able to read five different output file types for
INAPG-N

Specifications

GoldSim External Functions –
Linking a Model File to a DLL

Understanding External DLL’s

Refer to GoldSim User’s Guide – Appendix C: Understanding
External (DLL) Elements (GTG, 2006)

• The external functions are bound to the GoldSim executable code at
run time using DLL technology.

• The function name and argument list (set of input and output data for
the function) are specified in the GoldSim model file using an External
Element function.

• Data are passed from GoldSim to the external function and back
again via arrays of double percision floating point arguments.

External Function Format

• GoldSim calls the DLL in a defined sequence

– Method = 0 [XF_INITIALISE]

– Initialize DLL (Load into Memory)

– Method = 2 [XF_REP_VERSION]

– DLL Reports DLL Version

– Method = 3 [XF_REP_ARGUMENTS]

– DLL reports # of input arguments expected

– DLL reports # of output argument expected

– Method = 1 [XF_CALCULATION]

– In() array arguments are loaded

– Begin DLL Calculation

– Pass out() array argument to GoldSim

– Method = 99 [XF_CLEANUP]

– Deallocate Arrays

– Close DLL and Release from Memory

Launch_INPAG DLL

Launch_INPAGN DLL

• Source Code Written in Fortran 90

• Compiled using “Digital Visual Fortran” from Intel, as
recommended in the GoldSim User Manual (Appendix C,
p. 556)

• Source code could be translated and compiled in C or
C++

• Code was developed in a modular format, using
subroutines to read and write the INPAG-N input blocks

Launch_INPAGN DLL Logic

• Method = 0
– Code Initializes

• Method = 2
– Report Version = 3.0

• Method = 3
– # inputs arguments = (57+(7*nrni)

• Number of radionuclides read from RN.DAT file (nrni)

• 7 inputs arguments are vectors by # of RN’s

• 57 input arguments are single values

– # ouput arguments = (nrni*200*3)+200
• 200 maximum output times in INPAG-N

• 3 output files maximum for INPAG-N

• Method = 1
– Calculation (details in following slides)

• Method =99
– Deallocate Arrays

– Close Files

Launch_INPAGN DLL Calculation Logic

• Method = 1 Calculation:

– Determine which version of INPAG-N is to be run
• based on flag value passed from GoldSim

– Read input
• RN names from the rn.dat file

• constants and stochastics from the GoldSim input vector

– Write the INPAG-N input to an input data file

– Run INPAG-N using the input data file

– Read INPAG-N results from its output file(s) and pass
them into GoldSim

DLL Logic Flowchart

Determine
INPAG-N version

INPEG-N (MSCI)
• create the input file by calling

the following subroutines:
• call Title
• call Containment
• call Timestep_Control
• call Decays
• call Density_NM_NV2M_NH
• call Diffusion_NM
• call Flux_Output
• call Geometry_NM
• call Inventory
• call Porosity_NM
• call Solubility
• call Sorption
• call Output_Times
• call Velocity_NM

• run INPEG-N
• read INPEG-N output file(s)
• send results from output file(s)

to GoldSim

INPEG-NV2 (MSCI)

INPEG-NV2 (INER)

INPEG-NH (MSCI)

INPEG-NH (INER)

Read RN names
(unstable and stable)
from rn.dat file

Determine element names
from RN names
(needed for Solubility and
Sorption input blocks)

Read from GoldSim input vector
• INPAG-N version
• realization #
• # radionuclides

Each INPEG-N version
has a separate segment
of code that calls the
subroutines and opens
the input and output files
appropriate for that
version of INPEG-N

INPEG-N Input Blocks

• INPEG-N input is read
in the following order:

– Containment

– Timestep_Control

– Decays

– Density

– Diffusion

– Flux Output

– Geometry

– Inventory

– Porosity

– Solubility

– Output_Times

– Velocity

• Blocks are read from the
input vector and written to
the input file by subroutines

• Underlined blocks have
different inputs for different
INPEG-N versions

• Separate subroutines have
been written to handle the
different input for different
INPEG-N versions

Input to DLL from GoldSim

• Control parameters

– INPAG-N version to run

– realization number

– number of radionuclides in model problem

• Input for INPAG-N modules

– some modules (e.g., DECAY) have the same input for all
INPAG-N versions

– other modules (e.g., GEOMETRY) have different inputs for

different INPAG-N versions

• GoldSim input vector is sized to account for all potential
INPAG-N inputs

– 58 scalar inputs

– 7 radionuclide vector inputs

Example of DLL Input Vector

! Description of DLL input vector
! INPAG-N version
! index parameter N(M) NV2(M) NV2(I) NH(M) NH(I)
! 1 -- INPAG-N selector y y y y y
! 2 -- realization y y y y y
! 3 -- # of radionuclides (nRN) y y y y y
!-CONTAINMENT---
! 4 -- FAIL-TIME y y y y y
! 5 -- INV-START-TIME y y y y y
! 6 -- ALTER-TIME y y y y y
!-TIMESTEP-CONTROL--
! 7 -- TOLERANCE y y y y y
! 8 -- MIN-TIMESTEP y y y y y
!-DECAYS--
! 9 -- DECAYS(1) y y y y y
! 8+nRN -- DECAYS(nRN) y y y y y
!-DENSITY---
! 9+nRN -- CANISTER y y y y y
! 10+nRN -- BENTONITE y y y y y
! 11+nRN -- ROCK y y y y y
! 12+nRN -- EDZ NO NO y NO NO
! 13+nRN -- TUNNEL NO NO y NO NO
!-DIFFUSION---
! 14+nRN -- CANISTER y y y y y
! 15+nRN -- BENTONITE y y y y y
! 16+nRN -- EDZ y y y y y
! 17+nRN -- ROCK-FRACTURE NO y y y y
! 18+nRN -- ROCK-MATRIX NO y y y y
! 19+nRN -- TUNNEL NO y y NO NO

Example DLL Input Vector

parameter input i =

INPAG-N selector 1 1

Realization # 1 2

of radionuclides 4 3

FAIL-TIME 4

INV-START-TIME 5

ALTER-TIME 6

TOLERANCE 7

MIN-TIMESTEP 8

DECAY(1) 9

DECAY(2) 10

DECAY(3) 11

DECAY(4) 12

CANISTER 13

BENONITE 14

ROCK 15

EDZ 0 16

TUNNEL 0 17

CANISTER 18

BENONITE 19

EDZ 20

ROCK-FRACTURE 0 21

ROCK-MATRIX 0 22

TUNNEL 0 23

inputs 16 and 17 are skipped by
Density_NM_NV2M_NH subroutine;
counter is incremented to i=18

inputs 21, 22, and 23 are
skipped by
Diffusion_NM
subroutine; counter is
incremented to i=24

a value of 0 is put in the
input vector for inputs
that do not exist in a
given INPEG-N version

Containment

Timestep-Control

Decay

Density

Diffusion

INPEG-N (MSCI)

four radionuclides in this example;
therefore the DECAY subroutine
reads in four values

rn.dat Input

• rn.dat file contains

– # of radionuclides

– # of stable radionuclides

– parent daughter

40
6
C-14
Cl-36
Ni-59
Ni-63
Se-79
Sr-90
Zr-93
Nb-94
Tc-99
Pd-107
Sn-126
I-129
Cs-135
Cs-137
Sm-151
Pu-240 U-236
U-236 Th-232
...
...
Se-79S
Zr-93S
Nb-94S
Pd-107S
Sn-126S
Ni-59S

sample rn.dat file

stable RNs

INPAG-N INPUT Files

• INPAG-N (MSCI)

– inpag_n.dat

• INPAG-NV2 (MSCI)

– inpag_nv2.dat

• INPAG-NV2 (INER)

– inpag_nv2i.dv2

• INPAG-NH (MSCI)

– inpag_nhm.dat

• INPAG-NH (INER)

– inpag_nhi.dh1

INPAG-N Output Files

• INPAG-N (MSCI)

– basenf.flx

• RN release rates

• INPAG-NV2 (MSCI)

– inpag_nv2.flx

• RN release rates (total, tunnel, rock)

• INPAG-NV2 (INER)

– inpag_nv2i.fxn

• RN release rates (Total)

– inpag_nv2iN.fxn

• RN release rates (Tunnel)

– inpag_nv2iR.fxn

• RN release rates (Rock)

INPAG-N Output Files

• INPAG-NH (MSCI)

– inpag_nhm.flx

• RN release rates (total, fracture, rock)

• INPAG-NH (INER)

– inpag_nhi.fxn

• RN release rates (Total)

– inpag_nhiF.fxn

• RN release rates (Fracture)

– inpag_nhiR.fxn

• RN release rates (Rock)

INPAG-N Output Files

• Separate subroutines used to read INPAG-N output
files(s)

• Output passed back into GoldSim as a 2-D table(s) of RN
release rate (mol/yr) vs. time

Algorithm for Reading Output Times

• Used for reading Monitor Scientific versions of INPAG-N,
INPAG-NV and INPAG-NH:

**

If # intervals = 0 then

time steps =
(log(end_time) – log(start_time)) * # per decade

else

time steps =
(end_time – start_time)/(# intervals) + 1

INER Algorithm for added TS

• !***

• subroutine INER_ADD_TS

• write (99,*) '************ INER_ADD_TS SUBROUTINE **************'

• ! calculate number of timesteps in INER Modified Code Output files
• if(interval.eq.0) then
• nb_timesteps = ((LOG10(end_time) - LOG10(start_time)) * no_per_decade)
• write (99,*) 'NO_PER_DECADE: nb_timesteps= ', nb_timesteps
• ! ADDED BY DR.JU TO INCREASE OUTPUT
• IF (start_time.GE.999999.9) THEN
• KSTEP=(no_per_decade*6)
• ELSEIF (start_time.GE.99999.9) THEN
• KSTEP=(no_per_decade*5)
• ELSEIF (start_time.GE.9999.9) THEN
• KSTEP=(no_per_decade*4)
• ELSEIF (start_time.GE.999.9) THEN
• KSTEP=(no_per_decade*3)
• ELSEIF (start_time.GE.99.9) THEN
• KSTEP=(no_per_decade*2)
• ELSEIF (start_time.GE.9.9) THEN
• KSTEP=no_per_decade
• ELSE
• KSTEP=0
• ENDIF
• write (99,*) 'NO_PER_DECADE: KSTEP(', KSTEP,') + (',nb_timesteps,') nb_timesteps = nb_timesteps(adjusted)'
• nb_timesteps= nb_timesteps+KSTEP

• else
• nb_timesteps = (((end_time - start_time)/interval))+1
• write (99,*) 'INTERVAL: nb_timesteps= ', nb_timesteps
• endif

• write (99,*) 'nb_timesteps (adjusted)= ', nb_timesteps
• end subroutine INER_ADD_TS

• Used for reading INER versions of INPAG-NV & INPAG-NH:

Array Deallocation and File Closure

• Once the program has completed its calculations

– all allocated arrays are deallocated

– input and output files are closed

• If arrays are not deallocated, the associated memory
becomes inaccessable. Over multiple realizations (i.e.,
mutiple executions of the DLL) enough memory can be
“lost” such that it impacts execution of the DLL,
GoldSim, or other programs.

• Ensuring all files are closed prevents possible errors
when attempting to reopen the files

GoldSim Model File That Runs INPAG-N

Radionuclide definition INPEG-N calculation elements

“Root” Container

Declaration of radionuclides

Radionuclide decay rates

Materials Container

Near_Field_Calculations Container

Null value (0)
placeholder for
non-existent
input INPAG-N flag

=1; INPAG-N (MSCI)
=2; INPAG-NV2 (MSCI)
=3; INPAG-NV2 (INER)
=4; INPAG-NH (MSCI)
=5; INPAG-NH (INER)

Number of
radionuclides

Containers
for individual
INPAG
versions

INPAG_N Container

DLL numeric
inputs
(constants and
stochastic)

DLL

2-D array receiving
results of the
calculation

Plot of
calculation
results

INPAG_N_Input_Data Container

Input for each
block is in a
separate
container

Geometry Container

Constant inputs

Stochastic inputs

Geometry block
inputs

Note that input types
(constant or stochastic)
can be changed by
deleting the element and
replacing it with an
element of the other type
but with the same name

DLL Element

65 inputs
58 scalar inputs
7 vector inputs
(by # of RN)

Showing Geometry
block input (note Null
values for non-existent
inputs)

Radionuclide Dependent Inputs

Radionuclide dependent inputs
are declared for each
radionuclide

Elements must be
added/deleted corresponding to
the addition/deletion of
radionuclides from the problem

Input values are
grouped into an
array, whose size is
defined by the
number of species

The links to this
element must be
updated if the
number of
radionuclides is
changed

Plotting INPAG-N Output

In this example, the
I129 release rate
(mol/yr) is in the 4th

column of the 2-d
table

INPAG-N output files are
passed back into GoldSim
as 2-d tables (release rate
of RNs vs time)

Plot of 100 realizations of
I129 release rate. Note that
data can be accessed in
tabular form from plot
element

Individual RN output is
accessed from the 2-d table
by referencing it in a data
element

0

1.0e-05

2.0e-05

3.0e-05

4.0e-05

0 1.0e03 2.0e03 3.0e03 4.0e03 5.0e03 6.0e03 7.0e03 8.0e03 9.0e03 1.0e04

(m
o

l/y
r)

Time (yr)

I129

INPAG-N Multiple Realization Output in GoldSim

Each colored
line is the result
from one
realization

Debugging

• scratch.txt file; contains information useful for
debugging

– INPAG-N version being run

– DLL input vector

– contents of the INPAG-N output file(s) that is read by
the DLL

– DLL output vector

– comments indicating milestones in the program
execution

• Additional information can be added to the file by
editing the source code to write information to
unit=99 and recompiling the DLL

Debugging

• Output files for METHOD=0, METHOD=2, and METHOD=3

– allows information from those method calls to be saved

– lets the programmer know if method was/was not executed

• The function name in the DLL element dialog box must
match exactly with the name in the !DEC$ ATTRIBUTES
dllexport, c command (i.e., launch_inpagn)

• Changes to the number of input and output parameters
(scalars or vectors by RN) have to be reflected in the
METHOD=3 coding for the number of input and output
parameters

Lockheed Martin

Sandia National Laboratories:

Don Kalinich – Co-Developer of DLL
Hong-Nian Jow – Program Manager
Cedric Sallaberry – Software development
Jerry McNeish, Mgr.– Technical Editing and Approval

Acknowledgements

