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i Sandia Experience

e Conducting and analyzing tracer tests

» Analysis of tracer tests to develop parameters
and conceptual models for PA

Sandia
National
Laboratories



Tracer Tests at the WIPP Site
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Convergent-Flow Tracer Tests

Tracer Addition Well

Tracer Concentration

Pumping Well
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Dipole Tracer Tests

Explanation

@ Tracer Addition Well
O Tracer Withdrawal (pumping) Well
-= [racer Travel Path
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Strengths and Weaknesses of
Convergent-Flow Tests

¥,.

* Strengths:
— Best test for defining advective porosity

— Provides most information on three-
dimensional variation in transport properties
(heterogeneity)

Weaknesses:

— High requirements (wells, equipment, tracers,
analyses, time, money)

— Relatively insensitive to multiple rates of
diffusion
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*‘ Strengths and Weaknesses
of Dipole Tests
« Strengths:

— Equipment requirements are relatively
modest—injection and extraction pumps

—Does not produce large amount of fluids to be
disposed
 Weaknesses:
— Provides little information on heterogeneity
— Provides no clear signature of matrix diffusion
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? Strengths and Weaknesses of

Single-Well Injection-Withdrawal Tests

e Strengths:

— Best test for demonstrating multirate matrix
diffusion

— Low requirements (wells, equipment, tracers,
analyses, time, money)

 Weaknesses:
— Provides little information on heterogeneity
—Insensitive to advective (transport) porosity
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} Design Considerations for

Convergent-Flow Test Well Locations

Heterogeneity :
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Design Considerations for
Tracer Solutions

}

* Tracer solubility needs to be sufficiently high to
allow detection after dilution by 4-5 orders of
magnitude

— Tracer concentration will decrease in formation due
to dispersion and mixing

— Tracer concentration will further decrease due to
matrix diffusion and sorption (if applicable)

* Density contrast between tracer solution and
formation water needs to be minimized

— High-density solution will tend to sink to bottom of
injection interval

— Once in formation, high-density solution will tend
to move vertically downward in addition to the
QL
ational
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”‘ Groundwater Tracers Used

 Nal
— aqueous diffusion coefficient 18.0 x 10-1° m?/s
* Fluorobenzoates
— aqueous diffusion coefficients 7.4 to 8.2 x 1019 m?/s

e Chlorobenzoates
— aqueous diffusion coefficients 6.8 to 7.3 x 10-1° m?/s
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? Benefits of Fluoro- and

Chlorobenzoates as Groundwater Tracers

e Conservative

— Tested with batch sorption experiments
e Suitable solubilities
* Low detection limits

* Available in ~20 isomers that can be separated
chromatographically

— Allows for use of numerous tracers along different
flowpaths

 Low concentrations in natural groundwaters
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? Design Considerations for Tracer-

Injection Systems

 Deliver tracer uniformly over thickness of tested
formation

— Need injection ports evenly distributed both vertically
and horizontally (radially)

— Injection ports need to be progressively sized (diameter
increases with depth) to maintain uniform injection rate
 Minimize interactions between borehole and
tracers

— Solid tool volume should be large to minimize fluid
volume in injection interval

— Tracer needs to be chased (displaced) by untraced water
so it enters the formation rapidly with minimal density-
driven stratification
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* 1.27-cm O.D. (outside diameter) tracer-injection line
from surface to injection manifold at top of injection
tool

* Injection manifold splits tracer into four lines of ports

* Ports are ~36 cm apart and increase from 0.56 mm at
top to 3.05 mm at bottom for full-thickness tool, 2.44
to 3.91 mm for upper Culebra tool, and 1.04 to 3.05
mm for lower Culebra tool

 Packers set above and below Culebra for all wells,
and in middle of Culebra for three wells

* Tool solid volume reduced downhole fluid volume
from borehole volume of ~140 L to ~50 L

e Tubing volume ~16 L

Tracer-Injection Systems
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Tracer-Injection Systems
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Tracer Injection
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* Performed in fractured Culebra dolomite
« SWIW and convergent-flow tests performed

« Convergent-flow tests involved three and six
different flow paths—preliminary testing
performed before locations for final three tracer-
injection wells determined

 Employed tracers with different diffusion
coefficients

* Tracers injected over full and partial thicknesses
of Culebra

* Two different pumping rates used

— Different velocities allow different times for
diffusion

1995-96 Tracer Tests

Sandia
National
Laboratories



A
} Original Design Concept for H-19 Wells

H-19 Hydropad

€ Central Well
() Surrounding Wells

60 m

R
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As-Built Locations of First Four H-19
Wells
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Final Locations of Seven H-19 Wells

H-19b6
H-19b4
&
O 0
11 m 4
H-19b3
H-19b5 S
b 3
Well Locations H-19b7
O Surface
& Culebra N
(229.2 m below Q 2 0 5
ground surface) M
\ eters
i Sandia
Pumping Well = H-19b0 H-19b2 National
Laboratories




Tracer Testing at H-19 Hydropad

H-19b6 Hydropad designed
to provide 6 injection
wells and 1 pumping

H-19b4 well.
O
S Different tracers
P injected in each well.
11m 4"
H-19b3 Upper and lower
Culebra isolated in
H-19b5 5 S three nearest wells
and separate tracers
Well Locations H-19b7 .
O Surface injected.
& Culebra N
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P
.. Tracer Testing at H-19 Hydropad (2)

 SWIW tests preceded both convergent-flow tests
— Tracers injected followed by chaser

— Pause duration of 18 hr before beginning
pumping to recover tracers

 Pumping continued for 5 days to create steady
flow field (~constant inter-well gradients [1.3-3.7
m/m]) for convergent-flow tests

* Preliminary test performed at single pumping rate
(0.24 L/s) with first three injection wells
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Advantages of Preliminary Tests

* Allow testing of equipment
* Provide experience for field crew

* Allow estimation of properties for better
placement of additional wells
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# SWIW Tracer Injection at H-19

* Preliminary test:

—1000 L of a 5 g/L tracer solution 1 injected over
the entire Culebra

—1000 L of a 2 g/L tracer solution 2 injected over
the entire Culebra

—1000 L of chaser solution used to displace
tracer into formation

e Final test:

— 850 L of a 6 g/L tracer solution injected over the
lower Culebra only

— 1700 L of chaser solution used to displace
tracer into formation

* Tracer and chaser injection rates ranged from |
0.12to0 0.13 L/s @ Moo

Laboratories
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2 Convergent-Flow Tracer Injection

«200 L of a 10-g/L tracer solution injected in
most cases

e Chaser volumes 2-3 times the borehole
fluid volume used to displace tracer into
formation

e Tracer and chaser injection rates ranged
from 0.008 to 0.23 L/s
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- ' 3 Rounds of Tracer Injection at H-19

* Round 1, Q = 0.27 L/s, injection over full Culebra
in H-19b2, 3, 4, 6, and 7, injection over upper and
lower Culebra separately in H-19b5, simultaneous
injection of tracers with different diffusion
coefficients in H-19b3

* Round 2, Q = 0.25 L/s, injection over full Culebra
in H-19b5, injection over upper and lower Culebra
separately in H-19b3 and 7

* Round 3, Q = 0.16 L/s, injection over full Culebra
in H-19b3, 6, and 7, simultaneous injection of
tracers with different diffusion coefficients in
H-19b7
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* Tracer-injection time (t;) needs to be
corrected for travel time down tubing to
injection interval

* Tracer-recovery times need to be
corrected for travel time up tubing to
sampling point

* Typical correction times 35-75 minutes

Time Corrections
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Analysis of Tracer Tests to
Provide a Defensible Model for PA

Single-Porosity H 1
Fractre-only Transport  CoNceptual Model Numerical Implementation
Effective- Conventional Multirate
Porosity Single-Rate Diffusion
Model Diffusion
Double-Porosity ool #
Nonreactive Transport HH L [t '@;A g
(Physical Retardation) |
* One * Two Domains ‘
Domain < Homogeneous « Two Domains
glatr;x and « Heterogeneous
racture Matrix and Fracture
0 1.0 /—
e e et Double-Porosity R

e 0L Transport | Reaurement ] Reactive Transport o8
A E . . . i
g | 1 (Physical and Chemical Retardation) DuskPoresty Mode!
E b r Double- 15 8 081 /
& i Porosity ] )
:g 104{ franspert E 0.4 :::Ii-r;:mslly Model |
.§ 10‘4', Trarlljs%‘tj)?{ewliatgrgso%tion -
o ; i 02

0.0

1 i " 1 " i L " n 1 i "
i ] 0 2000 4000 6000 8000 10000 3andia
10 sl aul aul A | 1 Time (vears .
10% 10*% 10% 102 10" 10° 10" 102 10° v ) \lational

C22J laboratories

Summed Normalized Releases, R



V
>,
" Numerical Interpretation of Tracer Tests

 Two-dimensional heterogeneous, single-porosity
model

— Test the appropriateness of single-porosity vs.
double-porosity conceptualization

* One-dimensional, single-diffusion-rate, double-
porosity model (STAMMT-R)

* One-dimensional, multiple-diffusion-rate, double-
porosity model (STAMMT-R)
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Dal = a(f*+1)LR/v
a = mass-transfer coefficient (1/T)
* = capacity coefficient
L = advection travel length (L)
R = retardation coefficient
v = pore water velocity (L/T)

Dal > 100 -- “instantaneous” diffusion -- local
equilibrium assumption (LEA)

Dal < 0.01 -- no diffusion -- transport only in advective
porosity

Double-porosity behavior is observed when Dal is
between 0.01 and 100

Damkohler Numbers

Sandia
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= STAMMT-R

» Solute Transport and Multirate Mass Transfer in
Radial Coordinates

— One-dimensional (radial) simulator for SWIW and
convergent-flow tests

— Assumes power-law distribution of diffusion rate
coefficients

— Determines best-fit distribution of diffusion rates by
optimizing on advective porosity, longitudinal
dispersivity, mean of diffusion rate distribution, and
standard deviation of diffusion rate distribution

— Does not (currently) include sorption or radionuclide
decay

« STAMMT-L (linear) version can be used for PA
calculations of transport

Sandia
National
Laboratories
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Multiple Scales of Culebra Porosity
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*94-98% mass recovered

Log-log tracer-recovery curves do not
exhibit the -1.5 slope expected from matrix
diffusion (at a single rate)

* Observed slopes of -2.2 to -2.8 can be
explained by multiple rates of matrix
diffusion

SWIW Test Results
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Normalized Tracer Concentration (C/C)

SWIW Test Data
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STAMMT-R Results for SWIW Tests

Multirate Model

Single-Rate Model
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STAMMT-R Results for SWIW Tests
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# Convergent-Flow Final Test Results

* 74-103% mass recovered for full and lower
Culebra intervals; 5-18% mass recovered for
upper Culebra intervals

* Times to peak concentration do not show uniform
relationship to travel path length

* Peak heights show little difference for pumping
rate variations of less than a factor of two

* Multirate diffusion model fits breakthrough
curves only slightly better than single-rate model
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H-19 Tracer Test Data

Tracer Concetration (mg/L)
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H-19 Breakthrough Curves (BTC’s)

for High Pumping Rate
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Comparison of BTC’s
for High and Low Pumping Rates
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Comparison of BTC’s for Tracers

with Different Diffusion Coefficients
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Comparison of BTC's for
Injection Into Upper and Lower Culebra
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A
} STAMMT-R Results for
Convergent-Flow Tests
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STAMMT-R Results for
Convergent-Flow Tests
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i Expected Culebra Transport Behavior
as a Function of Distance and Time

Single Double Porosity , Single
(advective) (LEA)
Porosity  single-Rate Multi-Rate Single-Rate Porosity

/‘R/_R/—‘ —\\/\/‘A\

Transport in
Small Portion
of Porosity
(e.g., fractures)

Transport in
all Porosity

Length
Time

Replotted in Linear Scale
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Integration of Tracer Tests into Site Licensing

Tracer Tests: 1980-1988

* 5 locations
» Types of tests
1) Convergent-flow tests
2) Dipole tests
* Analysis method:
1) radial (1D) single-rate,
double-porosity model

Recognized need to reduce
conceptual model and data
uncertainty (1994)

Tracer Tests: 1995-1996

2 locations

Types of tests:

1) Convergent-flow tests

2) Single-well injection-withdrawal tests

Analysis methods:

1) 2D (heterogeneous) single-rate, double-porosity model
2) radial (1D) single-rate, double-porosity model
3) radial (1D) multirate, double-porosity model

Comments of

Independent Reviewers

e Questioned matrix diffusion as
mechanism for retardation
» Suggested alternative mechanisms:
1) Channeling caused heterogeneity
2) Delayed release of tracer from
the injection wells

Use for Compliance and Certification

Confirmed matrix diffusion as a mechanism for retardation|
Provided credible, defensible and realistic model

Model reviewed and accepted by EPA-mandated
Conceptual Model and Natural Barriers Peer Review
Panels

Provided basis for simplified PA model

Provided important physical transport parameters for PA

Provided rationale for parameters {E’ Sa" n_dial
Laboratories



-~ &
4 Recommendations for Tracer Testing

« Combine use of SWIW and convergent-flow tests:
— SWIW tests sensitive to multiple rates of diffusion
— Convergent-flow tests sensitive to advective porosity

« Vary pumping rates and tracer diffusion coefficients
over as wide ranges as possible:

— Use to discriminate matrix diffusion from heterogeneity
« “Validate” results by blind prediction of results
expected for as-yet-untested flow path(s)

— Convert tracer-injection well from first test(s) to

pumping well for new test, and perform new tests with
different orientation of hydraulic gradients

Sandia
National
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« Better definition of injection source term:
— Concentration in injection wellbore as function of time

— Relative percentages of tracer entering formation at
different levels / fractures

 Better definition of interwell velocities:

— First order: account for anisotropy in transmissivity
(flow to pumping well is NOT uniformly distributed
radially)

— Second order: account for vertical heterogeneity (fast
vs. slow layers)

* Integrated analysis of multiple breakthrough curves:

— Determine single distribution of diffusion rates that
provides best fits to ALL data simultaneously
@ mgﬁal
Laboratories

Avenues for Future Research
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