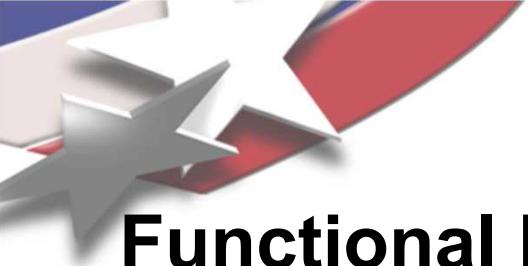


Characterization: Dealing With Uncertainty

KHNP Training Program Module 4: Repository Siting and Characterization

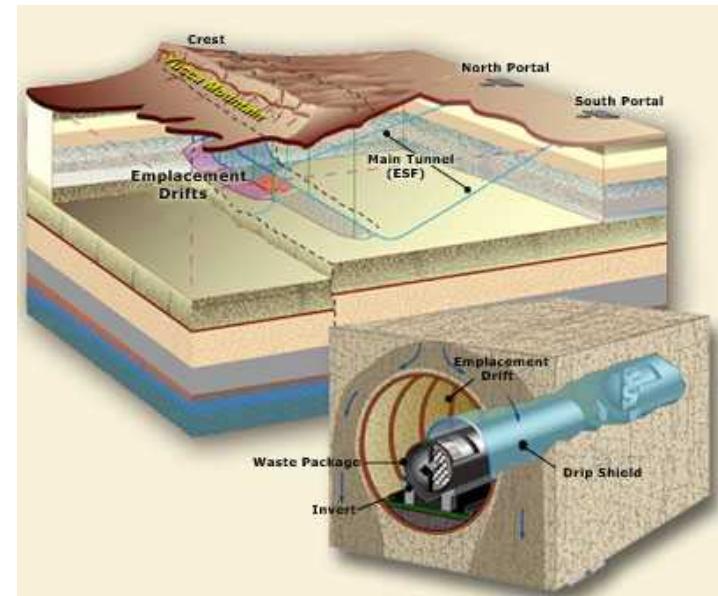
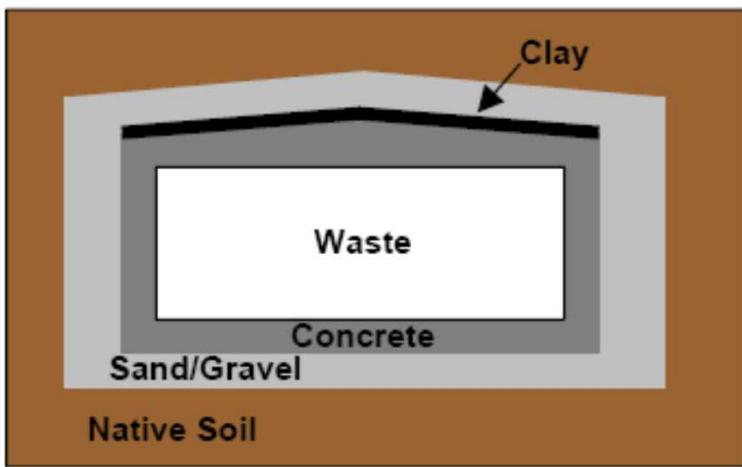
June 20, 2007

**Joseph Kanney, Ph. D.
Performance Assessment and Decision Analysis Department
Carlsbad Programs Group
Sandia National Laboratories**


SAND 2007-

Outline

- **Review of requirements for geologic disposal**
- **Key uncertainties and investigation techniques**
- **Brief tour of uncertainty**
- **Formal methods for dealing with uncertainty in model building**
- **Iterative refinement**



Functional Requirements for Geologic Disposal

- No releases (at hazardous levels) into biosphere
- Isolation for sufficient period of time
 - from human activity
 - from catastrophic natural events
- Disposal technology must be available at acceptable cost
- Retrieval technology must be feasible (optional)
- Processes that determine performance must be well-characterized
 - models and data sufficient to reliably demonstrate predicted performance
 - uncertainty reduced to manageable level

Defense-in-Depth: Multiple Barrier Concept

- Waste form (**engineered**)
- Waste container/canister (**engineered**)
- Backfill/buffer (**engineered**)
- Geosphere (**natural**)

Multiple Barriers: Functions

- **Waste form**
 - restricts releases
- **Waste container/canister**
 - prevent/reduce contact with water
 - favorable chemical environment (short-term)
- **Backfill/buffer**
 - prevent/reduce contact with water
 - delay/restrict release (diffusion)
 - favorable chemical environment (short-term)
- **Geosphere**
 - retard transport
 - slow flow/long travel times
 - diffusion and dispersion
 - Sorption/immobilization
 - favorable chemical environment (long-term)
 - stable geologic conditions

Key Uncertainty – Waste Form Performance

- Depends on materials and design
 - cements, ceramics, glass, SNF, polymer resins, bitumen
- Mechanical properties
 - fracture resistance, thermal properties
- Reactivity/stability
 - dissolution, weathering, leaching
- Typical characterization strategy
 - laboratory experiments to estimate material properties (surrogates for SNF), build models
 - underground investigations, modeling to estimate potential physical and chemical environments

Key Uncertainty – Waste Container Performance

- Depends on materials and design
 - alloy, wall thickness, welds
- Mean time to containment failure
- Distribution of containment failure over time
- Mode of containment failure
 - general corrosion
 - localized corrosion (pitting, stress corrosion cracking, inter-granular corrosion)
 - other (seismic?)
- Typical characterization strategy
 - laboratory experiments to estimate material properties, build models
 - underground investigations, modeling to estimate potential physical and chemical environments

Key Uncertainty – Backfill Performance

- Depends on materials and design
 - cements, clays, crushed rock
 - barrier, divert water, reduce settling/motion, conduct heat
- Mechanical properties
 - swelling, plasticity, bearing capacity, thermal conductivity
- Hydraulic properties
 - Hydraulic conductivity, filtration coefficient
- Chemical properties
 - Retardation/sorption, buffering capacity
- Typical characterization strategy
 - laboratory experiments to estimate material properties, build models
 - underground investigations, modeling to estimate potential physical and chemical environments

Key Uncertainties – Geosphere

- Depends upon type of geologic formation
 - crystalline (granite), salt dome, bedded salt, mudstone/shale, basalt, volcanic tuff
- Hydrogeologic conditions
 - “dry”, saturated (diffusion), saturated (fracture flow)
- Chemical conditions
 - active control of oxidation potential, buffering of oxidation potential and/or pH, no buffering
- Near-field environment
 - behavior influenced by presence of repository and/or waste
- Far-field environment
 - behavior controlled by natural conditions

Near-Field Investigation

- **Underground Research Laboratory**
- **Detailed characterization of rock mass within repository volume**
- **Large-scale *in situ* experiments**
 - groundwater flow experiments
 - geochemical and transport experiments
 - measure response of host rock to excavation
 - measure response of host rock to waste emplacement (thermal stress)

Far-Field Investigation (I)

- **Groundwater flow and radionuclide transport typically area of greatest of uncertainty**
- **Complexity**
 - fractures, fracture zones, faults
 - lithology/mineralogy changes
- **Heterogeneity/spatial variability**
 - hydraulic conductivity
 - dispersion
 - retardation

Far-Field Investigation (II)

- **Field investigations**
 - geologic mapping
 - surface geophysical surveys
 - exploratory drilling
 - borehole geophysical investigation
 - groundwater flow mapping, age dating
 - groundwater sampling
 - aquifer testing
 - tracer tests
- **Laboratory investigations**
 - detailed lithology/mineralogy
 - geochemistry
 - core-scale hydraulic and transport
- **Model building**

Brief Tour of Uncertainty


- **Aleatory uncertainty**
 - **irreducible uncertainty, inherent randomness, future events**
 - **examples: future climate, precipitation, human activities**
- **Epistemic uncertainty**
 - **reducible uncertainty, lack of knowledge about system**
 - **examples: material properties, model structure, model parameters, heterogeneity**

Aleatory Uncertainty

- **Characterize/model uncertainty in process**
 - investigate natural analogs
 - investigate past behavior
- **Multiple models**
 - develop alternative scenarios
 - human activities
 - climate
 - develop alternative models
 - undisturbed behavior
 - disturbed behavior

Epistemic Uncertainty

- **Model structure (governing equations)**
 - **correct processes correctly modeled?**
- **Model domain and discretization**
 - **system well-defined?**
 - **appropriately resolve key processes?**
 - **layering?**
- **Model boundary and initial conditions**
 - **influence of boundaries?**
 - **how well are initial conditions known?**
- **Model inputs (parameters)**

Quantifying and Reducing Uncertainty

- **Sensitivity Analysis**
 - determine appropriate spatial and temporal resolution
 - investigate sensitivity to initial and boundary conditions
 - identify sensitive parameters
- **Model Calibration**
 - hand calibration
 - automated parameter estimation via inverse problem (PEST)
 - generalized Likelihood Uncertainty Estimation (GLUE)
- **Monte Carlo Simulations**
 - forward simulations with models that meet calibration criteria

Epistemic Uncertainty

- **For a given model**
 - **uncertainty/Sensitivity analysis**
 - guide collection of new data
 - **model calibration**
 - reproduce observed behavior at site/regional scale
- **What about uncertainty in model structure?**
 - **generalized likelihood uncertainty estimation (GLUE)**
 - **multi-model ranking and inference (MMRI)**
 - **model averaging**

GLUE Methodology

- Choose model structure(s) for the system
- Choose ranges and prior distributions for the parameters to be identified
- Use Monte Carlo simulations to choose feasible parameter sets
 - use sampling to construct parameter sets
 - run simulations for all feasible parameter sets
- Evaluate a likelihood measure comparing simulation results with available knowledge of observations (i.e. match with present landscape)
- Reject nonbehavioral models and parameter sets
- Use likelihood weights associated with each model retained to form nonparametric distribution functions for predicted variables

Multi-Model Ranking

- **Akaike Information Criteria**

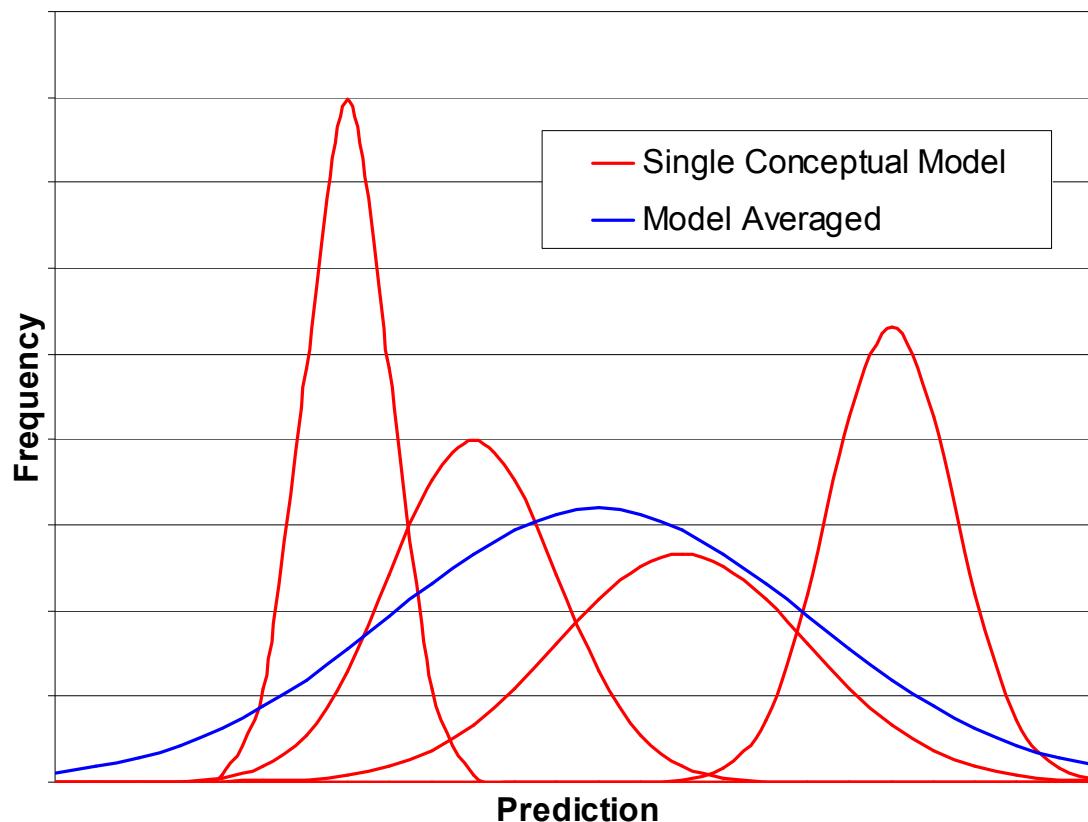
$$AICc = n \log(\sigma^2) + 2k + \left(\frac{2k(k+1)}{n-k-1} \right)$$

n = # of observations; s^2 = residual variance = $WSSR/n$; k = # of parameters

- **Ranking by simple difference, model probabilities, or evidence ratios**
- **Questions:**
 1. **What if one model is not overwhelmingly best?**
 2. **What if all models show high variability around a prediction?**

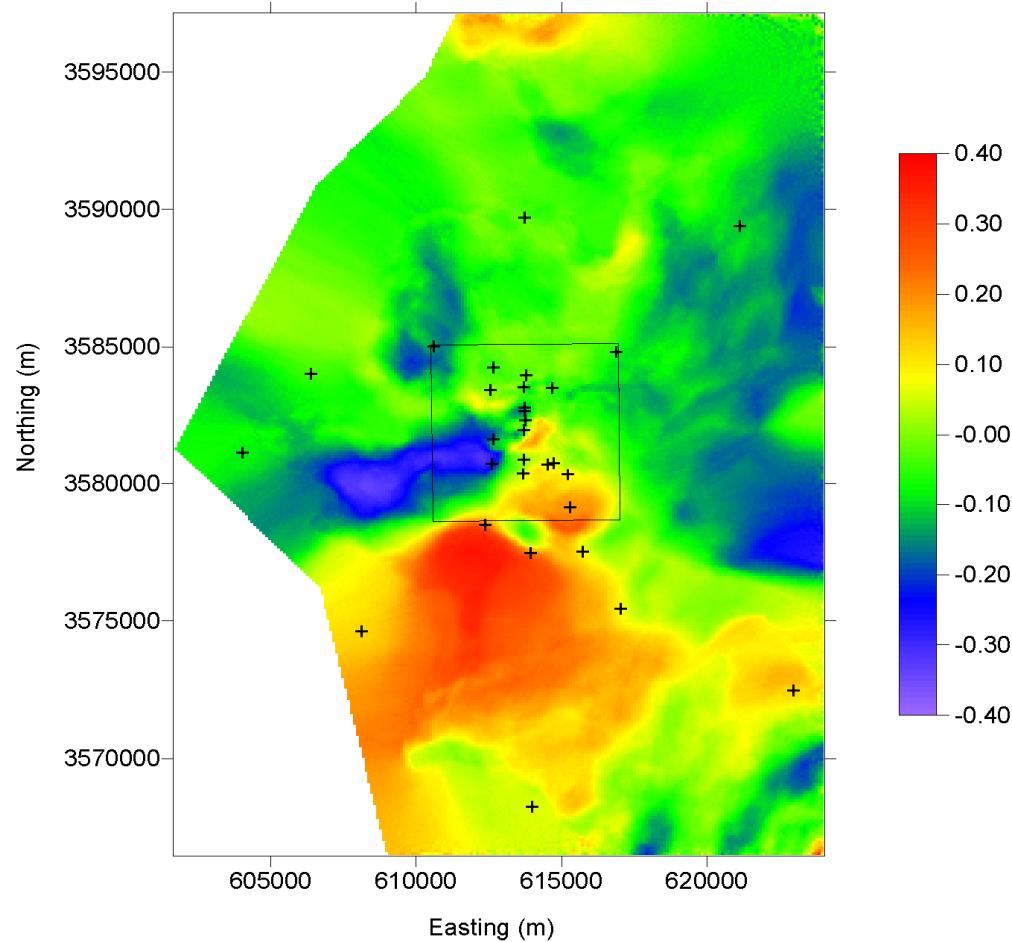
Multi-Model Averaging

- Compute an estimate of the predicted and parameter values by weighting the model predictions:


$$\hat{\bar{y}} = \sum_{i=1}^R w_i \hat{y}_i \quad \hat{\bar{\beta}}_j = \sum_{j=1}^{R'} w'_j \hat{\beta}_{j,i}$$


- Allows estimation of optimal parameter values and predictions from multiple models
- Can predict multi-model variance
 - provides bounds on possible parameter values
 - can compute confidence intervals

Multi-Model Averaging


Iterative Refinement: Big Picture

- **Phased site selection and characterization**
 - **site selection program**
 - 1 or more sites selected
 - **phase 1 site characterization**
 - regional scale
 - climate, geology, groundwater hydrology
 - **phase 2 site characterization**
 - local scale
 - precipitation patterns, detailed stratigraphy and structure, infiltration, groundwater paths, flow velocities
 - **phase 3 site characterization**
 - repository scale
 - interaction of repository and waste with local conditions

Iterative Refinement: WIPP Hydrology Example

- Given existing site information and models, investigate sensitivity of travel-time predictions to key model inputs (sampling-based sensitivity)
- The sign of the rank correlation coefficient (RCC) indicates the sign of the correlation between head and travel time
- Regions of greatest sensitivity of travel-time to head estimates are to south of WIPP site and to west of WIPP site
- Use as a guide to collecting additional head data

