

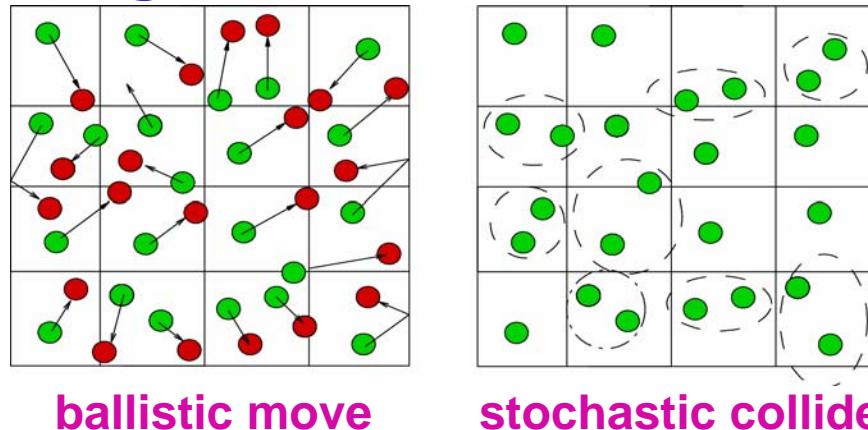
DSMC Convergence Behavior for Transient Flows

M. A. Gallis, J. R. Torczynski, and D. J. Rader

Engineering Sciences Center
Sandia National Laboratories
Albuquerque, New Mexico

American Institute of Aeronautics & Astronautics
37th Fluid Mechanics Conference
Miami, Florida; June 25-28, 2007

Convergence of Transient DSMC



Reasons to investigate convergence of transient DSMC

- DSMC is standard to judge other noncontinuum methods
- Investigators starting to do transient DSMC simulations
- Although inherently transient, only steady flows studied

Systematic study of transient convergence is needed

- Focus on generic flows
- Converge to “right answer”?
- How does it converge?

Goal: extract maximum accuracy with minimum effort

- Identify major parameters controlling DSMC accuracy
- Perform systematic convergence study

DSMC Numerical Error

Four parameters control DSMC numerical error

- Sample size per cell (M_c)
- Simulators per cell (N_c)
- Cell size (Δx)
- Time step (Δt)

} → statistical error
} → discretization error

Early DSMC users followed rule-of-thumb guidelines

- Sample enough to drive statistical error down
- Keep time step smaller than $\sim 1/4$ mean collision time
- Keep cell size smaller than $\sim 1/3$ mean free path
- Use a minimum of ~ 20 simulators per cell

Cell-Size Error

Error related to cell width, Δx

- Collision partners selected from anywhere in same cell
- Some potential partners move into adjacent cells
- Some invalid partners move into the same cell

Green-Kubo theoretical analysis (Alexander *et al.*, 1998)

- Thermal conductivity for hard-sphere gas ($\Delta t \rightarrow 0$, $N_c \rightarrow \infty$)

$$\frac{K_{DSMC}}{K} = 1 + \frac{32}{225\pi} \left(\frac{\Delta x}{\lambda} \right)^2 = 1 + 0.04527 \left(\frac{\Delta x}{\lambda} \right)^2$$

- Where the hard-sphere mean free path is $\lambda = \frac{1}{\sqrt{2\pi} d_{ref}^2 n}$
- Supporting DSMC calculations provided
- *More data needed for $\Delta x/\lambda < 1$*

Time-Step Error

Error related to time step, Δt

- Collisions occur at the end of time step
- Collisions should be uniformly distributed over time step

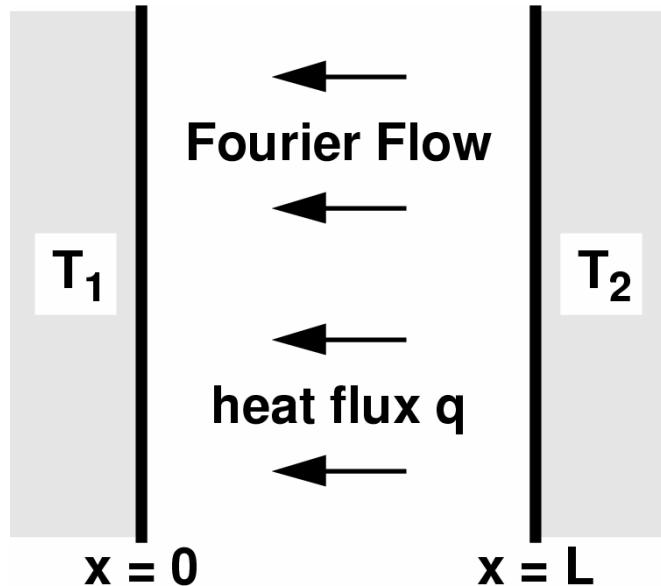
Green-Kubo theoretical analysis (Hadjiconstantinou, 2000)

- Thermal conductivity for hard-sphere gas ($\Delta x \rightarrow 0$, $N_c \rightarrow \infty$)

$$\frac{K_{DSMC}}{K} = 1 + \frac{64}{675\pi} \left(\frac{\Delta t}{t_o} \right)^2 = 1 + 0.03018 \left(\frac{\Delta t}{t_o} \right)^2$$

- With the hard-sphere mean collision time $t_o = \frac{\lambda}{c_o} = \frac{\lambda}{\sqrt{2k_B T / m}}$
- Supporting DSMC calculations (Garcia & Wagner, 2000)
- *More data needed for $\Delta t/t_o < 1$*

Rader et al. Convergence Analysis for Fourier Flow



$$q = -K(T) \frac{dT}{dx}$$

K = thermal conductivity
 T = gas temperature

One-dimensional gas-phase conduction

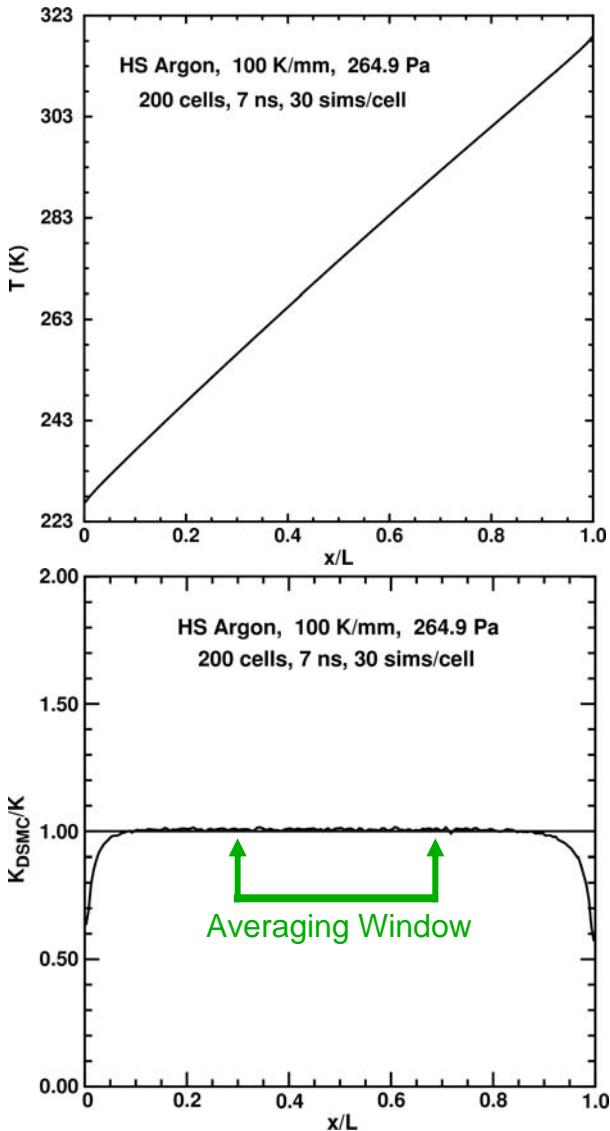
Temperature, heat flux calculated from DSMC molecular velocity distribution

- Knudsen layers at walls (*not* of interest here)
- If continuum, *Chapman-Enskog* in interior

Conditions:

- Molecules Hard-sphere “argon”
- Walls 223.15 and 323.15 K
- Width 0.001 m (1 mm)
- Pressure 264.9 Pa (~2 torr)
- L/λ ~42
- t_o 71 ns (273.15 K)

DSMC Calculations



Temperature Profile

- Nearly linear
- Small jumps near walls
- Low level of statistical scatter

Thermal Conductivity Ratio Profile

- Calculated from CE theory & **DSMC values**

$$\frac{K_{DSMC}}{K} = \frac{T_{ref}^{1/2}}{K_{ref}} \frac{|q_{wall}|}{T^{1/2}} \left(\frac{dT}{dx} \right)^{-1}$$

- Knudsen layers apparent near walls
- Good agreement with theory in center

Average over central 40% of domain to obtain a single convergence metric

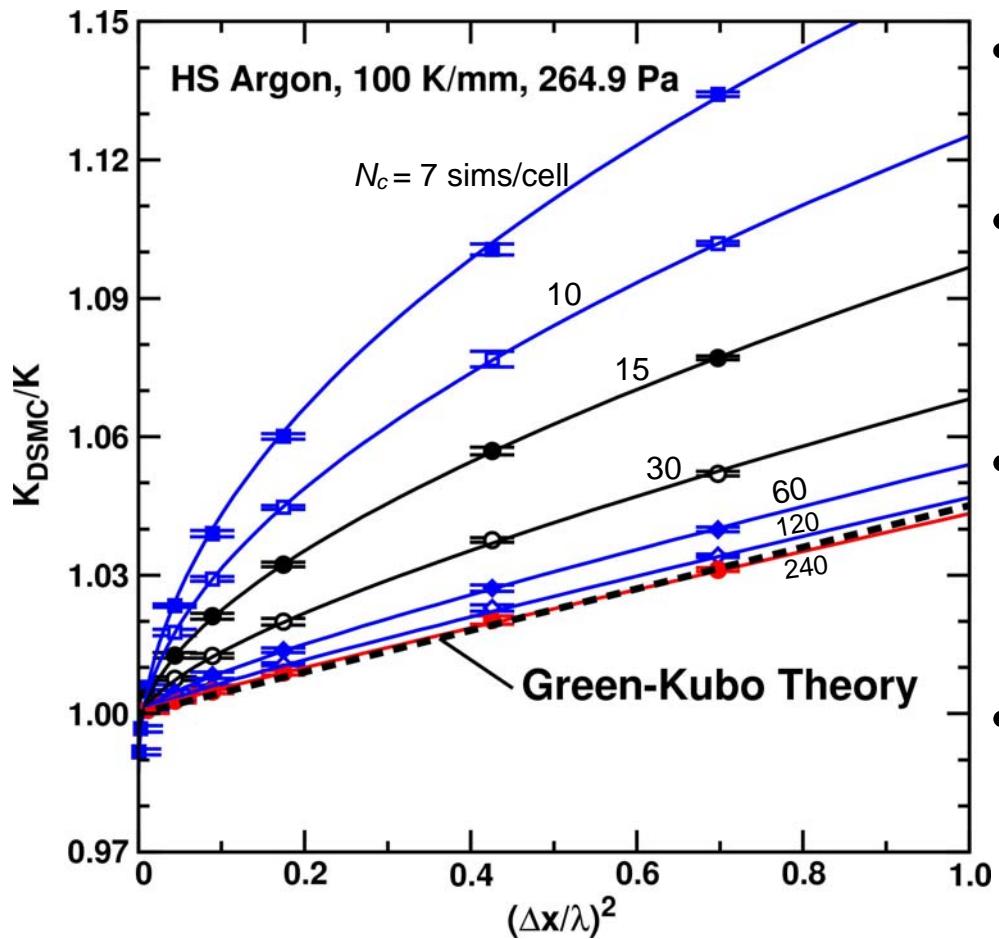
Time-Step Convergence



- Complicated behavior of error with time step
- Quadratic dependence on time step observed only for large N_c
- Quadratic coefficient (0.029) agrees with G-K theory (0.0302) in the limit $N_c \rightarrow \infty$
- Curves through data from least squares fitting

Cell-Size Convergence

$\Delta t = 7 \text{ ns}, \Delta t/t_0 = 0.1$



- Complicated behavior of error with cell size
- Quadratic dependence on cell size observed only for large N_c
- Quadratic coefficient (0.041) agrees with G-K theory (0.0453) in the limit $N_c \rightarrow \infty$
- Curves through data from least squares fitting

Functional Form of Error

Goal: find a functional form that represents DSMC data

Taylor series expansion in Δx , Δt , and $1/N_c$

Perform least-squares fitting of entire data set

Retain statistically significant terms:

$$\frac{K_{DSMC}}{K} = 1.0001 + 0.0286 \left(\frac{\Delta t}{t_o} \right)^2 + 0.0411 \left(\frac{\Delta x}{\lambda} \right)^2 - 0.01 \left(\frac{\Delta t}{t_o} \right)^2 \left(\frac{\Delta x}{\lambda} \right)^2 - 0.147 \frac{1}{N_c} + \frac{1}{N_c} F \left[\frac{\Delta t}{t_o}, \frac{\Delta x}{\lambda}, \left(\frac{\Delta t}{t_o} \right)^2 \right]$$

Key results:

DSMC reproduces CE conductivity to within fitting uncertainty

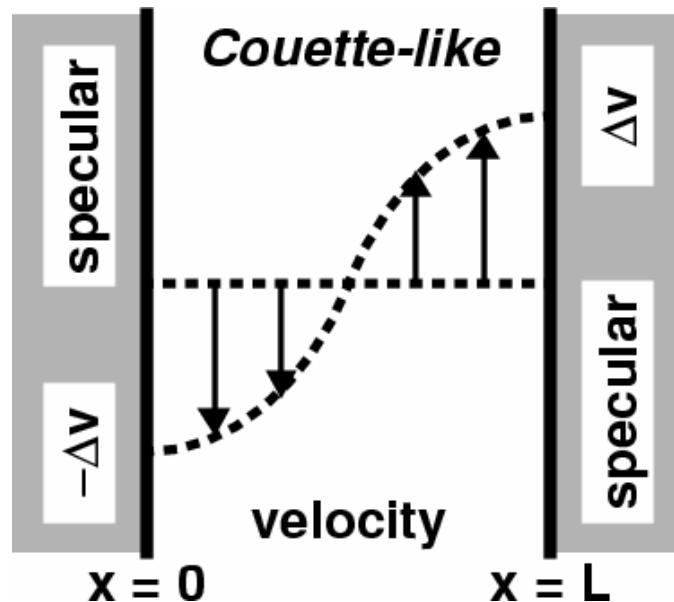
Quadratic terms $(\Delta x)^2$ and $(\Delta t)^2$ agree with Green-Kubo theory

Other terms have not been reported previously

DSMC Convergence for Steady State Problems

- DSMC reproduces CE conductivity to within 0.01%
- DSMC limiting convergence behavior matches theory
 - Quadratic convergence in time step ($\Delta x/\lambda \rightarrow 0, N_c \rightarrow \infty$)
 - Quadratic convergence in cell size ($\Delta t/t_o \rightarrow 0, N_c \rightarrow \infty$)
 - Linear convergence in $1/N_c$ for $N_c \geq 30$ simulators/cell
 - *Coefficients* in good agreement with available theory
- For finite values of parameters, convergence behavior is a complicated function of higher-order cross terms
- Problem: How does DSMC converge for transient problems

Couette-like Transient Flow



Decaying shear flow with slippery walls

- Initial conditions: half-cosine v velocity; zero u , w velocities; uniform pressure, temperature, density.
- Boundary conditions: specular walls (symmetry)
 - No Knudsen layers, investigate bulk flow behavior
- Long times: motionless; conserve mass, energy

Couette-like Transient Convergence Study

Parameters from steady convergence investigations

- Follow Rader, Gallis, Torczynski, and Wagner (2006)
- Domain: $0 < x < L$, $L = 1$ mm
- Gas: hard-sphere argon (Bird, App A, STP)
- Temperature: 273.15 K

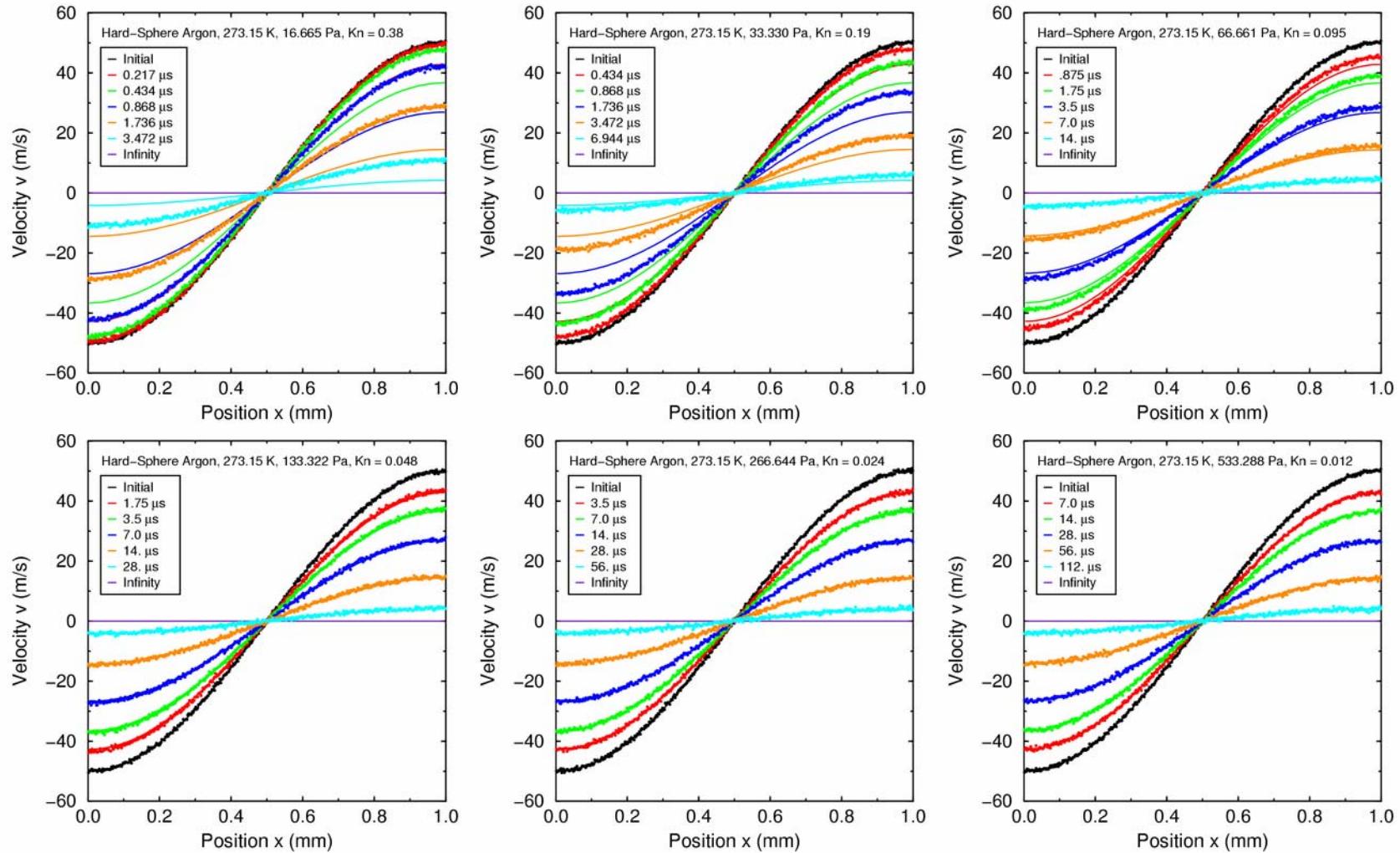
Quantities varied in simulations

- Velocity: $v = -\Delta v \cdot \cos[\pi x / L]$, $\Delta v = 50-500$ m/s, $c = 381$ m/s
- Pressure: $p = 4, 2, 1, 0.5, 0.25, 0.125$ torr (focus on 2 torr)
 $Kn = \lambda/L = 0.012, 0.024, 0.048, 0.095, 0.19, 0.38$
- Cell size: $0.1 < \Delta x / \lambda < 1$ (MFP at 2 torr, $\lambda = 0.024$ mm)
- Time step: $0.1 < \Delta t / t_0 < 1$ (coll. time at 2 torr, $t_0 = 70$ ns)

Simulation specifics

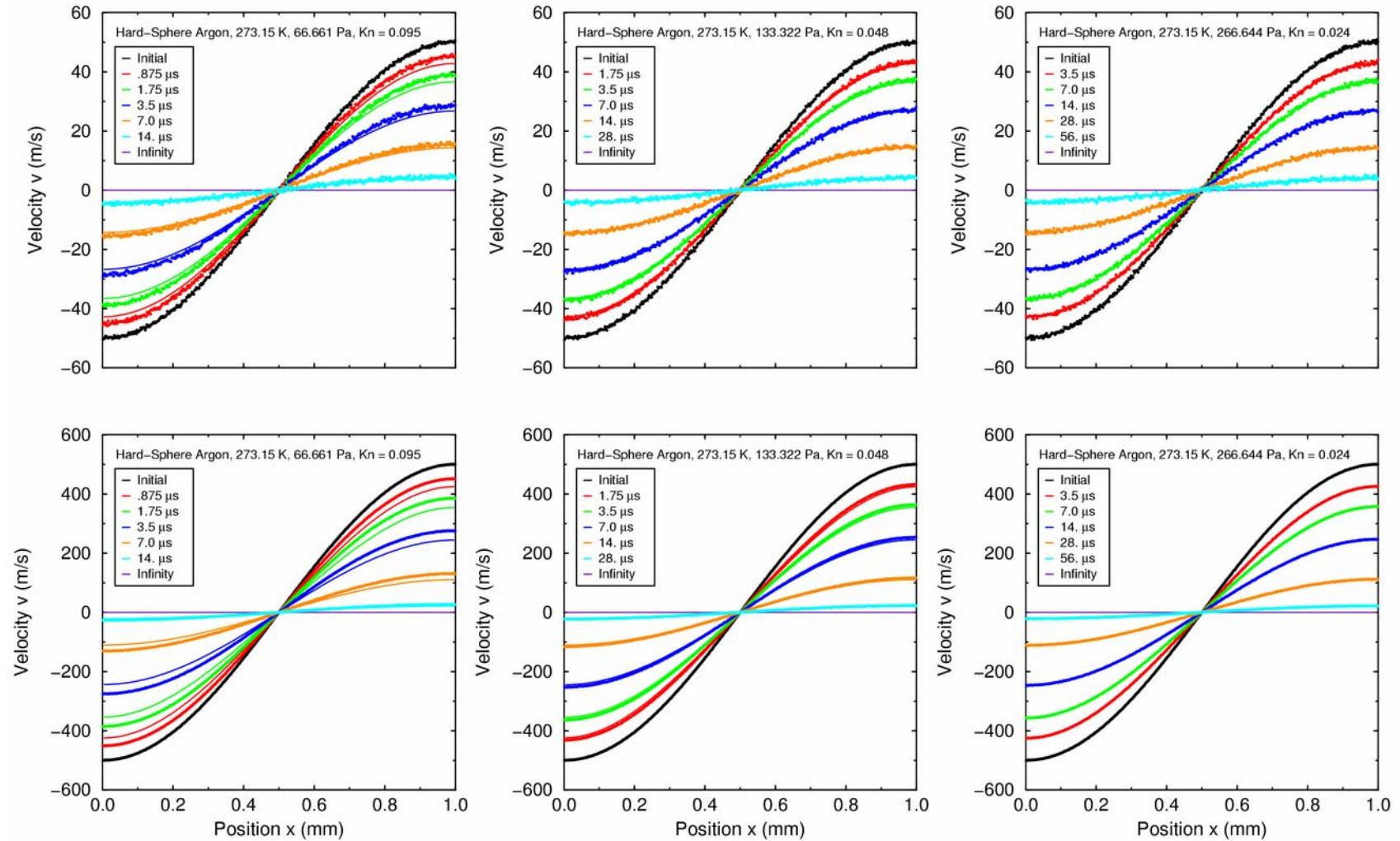
- Algorithm: Bird (1994), move-sample-collide-sample
- Molecules: 10,000,000 (25,000-250,000 per cell)

Pressure (Knudsen Number) Dependence



For $\text{Kn} < 0.03$, highly resolved DSMC (dots) and continuum (curves) agree closely

Velocity Dependence



Low-speed (top) and high-speed (bottom) DSMC
behave similarly in approach to continuum

DSMC Effective Viscosity

$$\nu = -\Delta v \cos\left(\frac{\pi x}{L}\right) \exp\left(-\frac{\pi^2 \mu_{\text{eff}} t}{\rho L^2}\right)$$

Find DSMC effective viscosity at particular Δx and Δt

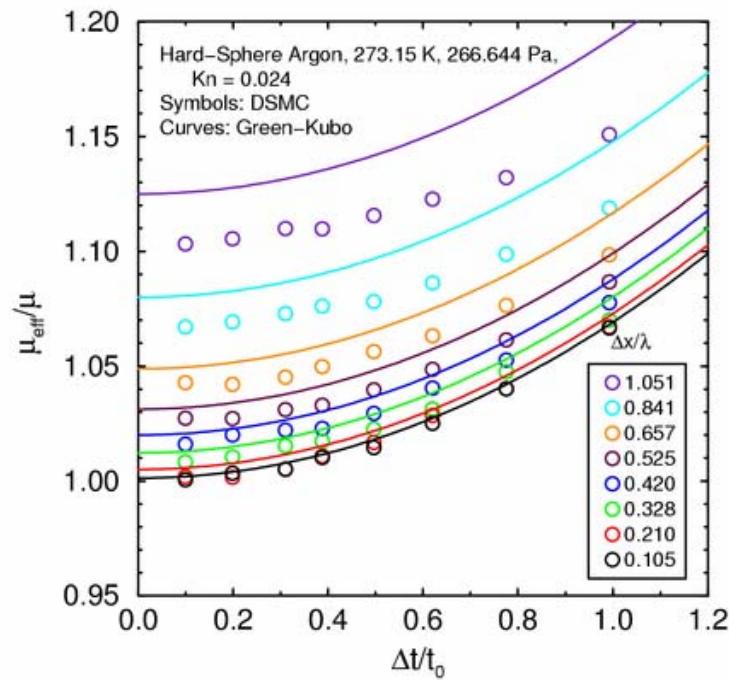
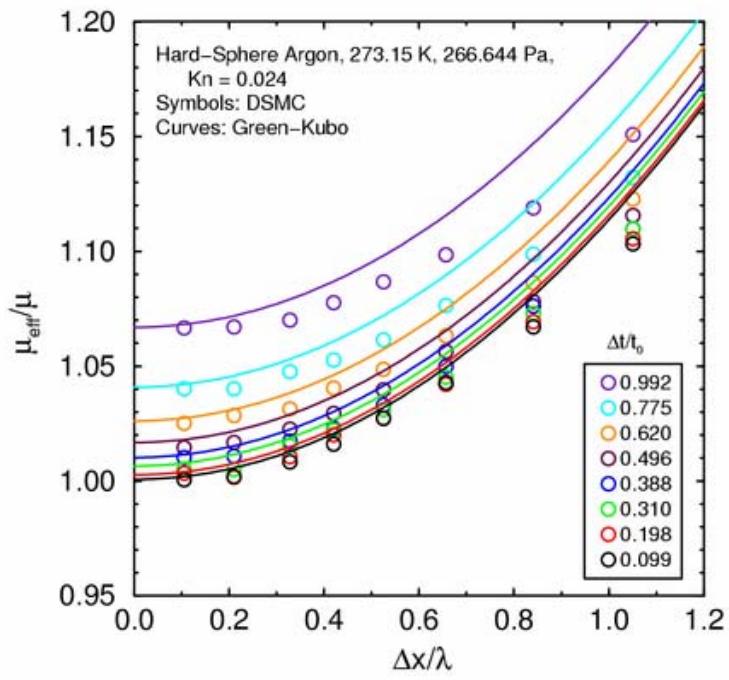
- Compare DSMC to continuum analytical solution
 - Appropriate for vanishing Knudsen numbers
 - Appropriate for constant uniform temperature
- Accurate for $\Delta v = 50$ m/s at 2 torr and 273.15 K
 - Small Knudsen numbers: system, 0.024; shear, 0.006
 - Small temperature rise: 2 K (viscosity increases 0.3%)
- Adjust continuum effective viscosity to match DSMC

Repeat for many different combinations of Δx and Δt

- Compare to predictions of Green-Kubo theory of Garcia & Wagner and Hadjiconstantinou (2000)

Comparison to Green-Kubo Theory

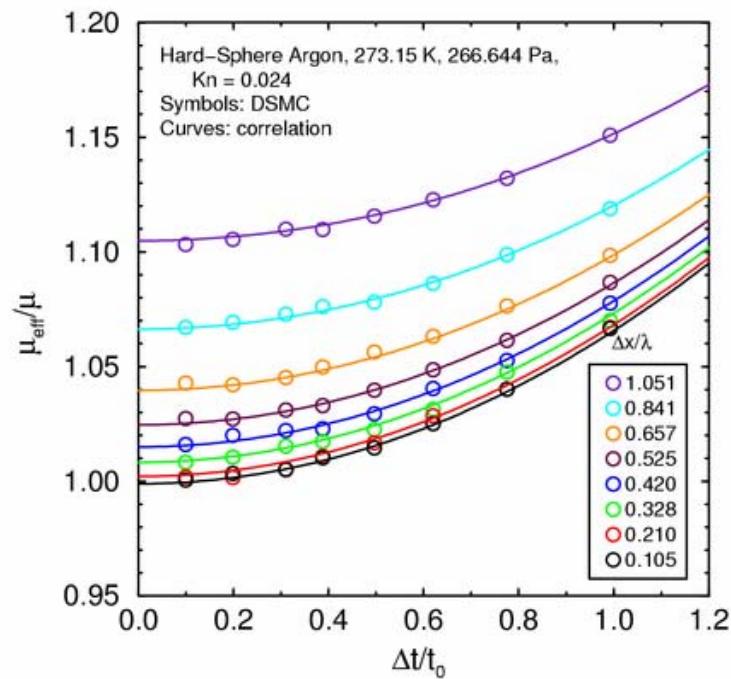
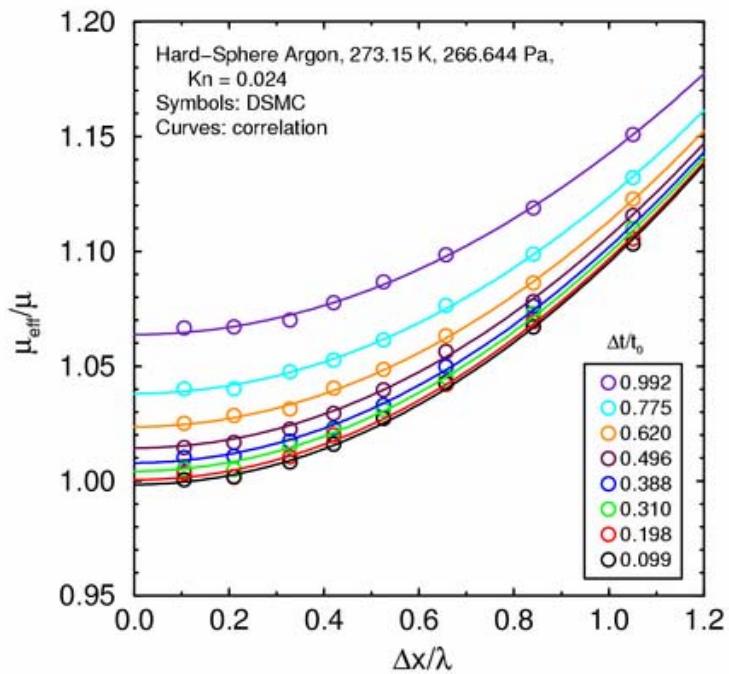
$$\frac{\mu_{\text{eff}}}{\mu} = 1 + \frac{16}{75\pi} \left(\frac{\Delta t}{t_0} \right)^2 + \frac{16}{45\pi} \left(\frac{\Delta x}{\lambda} \right)^2 = 1 + 0.0679 (\Delta \tilde{t})^2 + 0.1132 (\Delta \tilde{x})^2$$



DSMC and Green-Kubo results agree reasonably
Green-Kubo error estimate is slightly conservative

Polynomial Correlation

$$\frac{\mu_{\text{eff}}}{\mu} = 0.9978 + 0.0670(\Delta\tilde{t})^2 + 0.0969(\Delta\tilde{x})^2 - 0.0209(\Delta\tilde{t})^2(\Delta\tilde{x})^2 + 0.0025(\Delta\tilde{t})^3(\Delta\tilde{x})^2$$

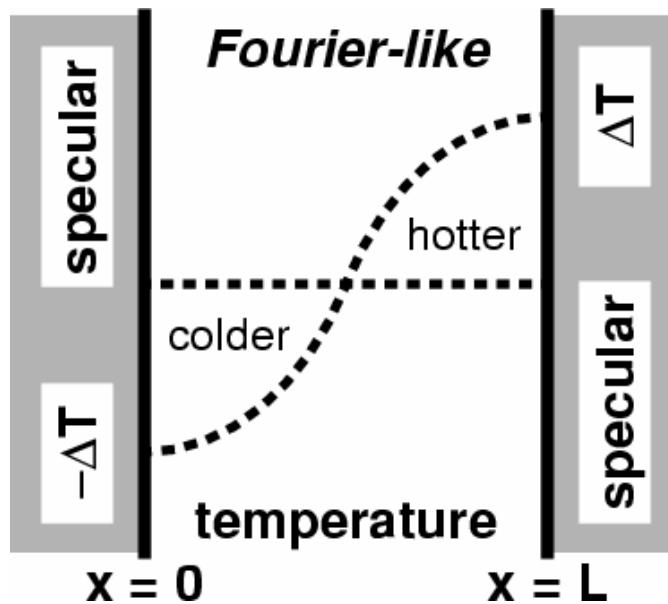


Viscosity differs by 0.3%, close to thermal variation

Pure terms agree reasonably with Green-Kubo

Cross terms are required to correlate values

Fourier-like Transient Flow



Decaying heat flow with non-conductive walls

- Initial conditions: half-cosine T temperature; uniform pressure, density varies accordingly, quiescent gas
Boundary conditions: specular walls (symmetry)
 - No Knudsen layers, investigate bulk flow behavior
- Long times: motionless; conserve mass, energy

Fourier-like Transient Convergence Study

Parameters from steady convergence investigations

- Follow Rader, Gallis, Torczynski, and Wagner (2006)
- Domain: $0 < x < L$, $L = 1$ mm
- Gas: hard-sphere argon (Bird, App A, STP)

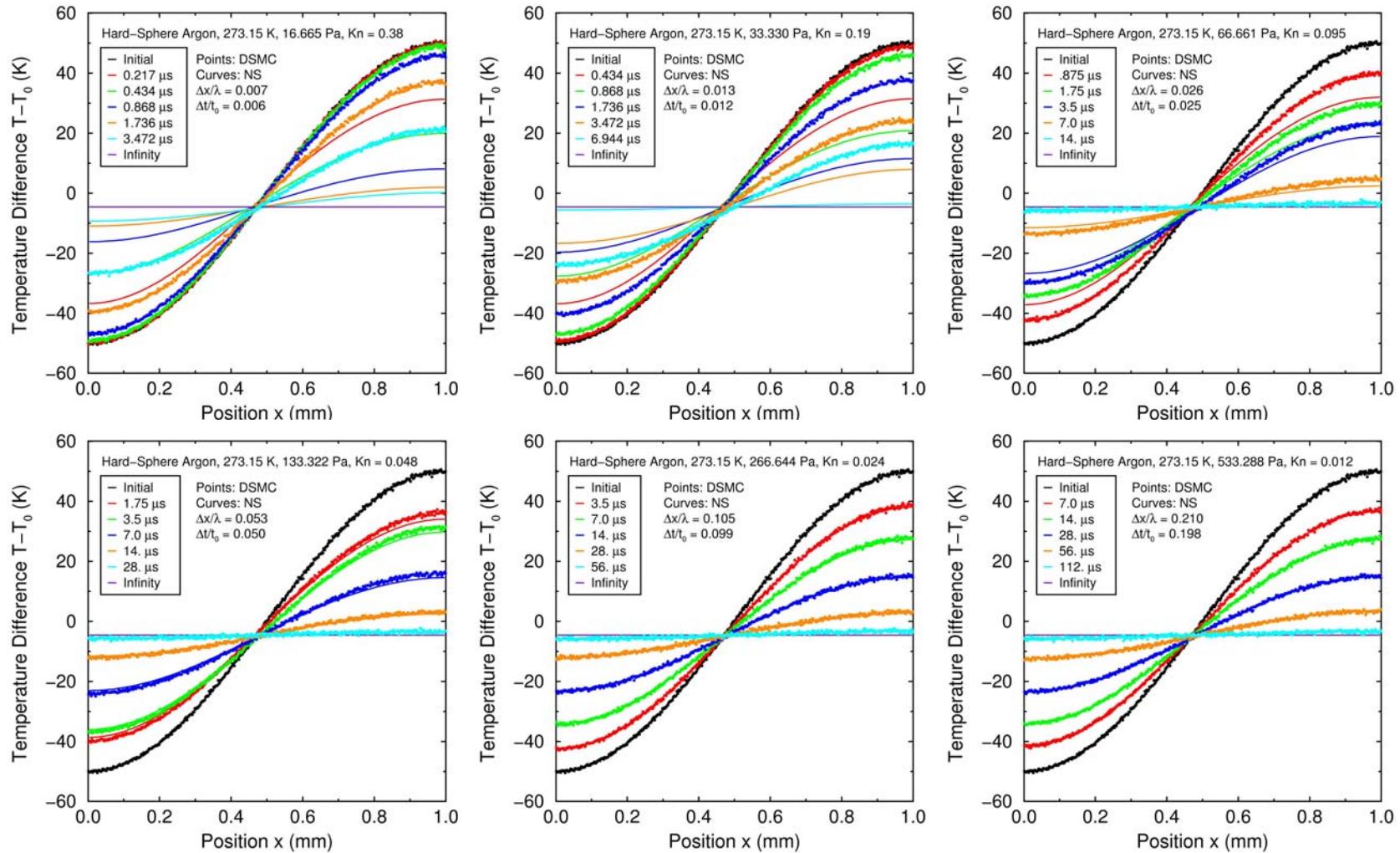
Quantities varied in simulations

- Temperature: $T[x, 0] = T_0 - \Delta T \cos[\pi x / L]$, $\Delta T = 50$ K
- Pressure: $p = 4, 2, 1, 0.5, 0.25, 0.125$ torr (focus on 2 torr)
 $Kn = \lambda/L = 0.012, 0.024, 0.048, 0.095, 0.19, 0.38$
- Cell size: $0.1 < \Delta x / \lambda < 1$ (MFP at 2 torr, $\lambda = 0.024$ mm)
- Time step: $0.1 < \Delta t / t_0 < 1$ (coll. time at 2 torr, $t_0 = 70$ ns)

Simulation specifics

- Algorithm: Bird (1994), move-sample-collide-sample
- Molecules: 10,000,000 (25,000-250,000 per cell)

Pressure (Knudsen Number) Dependence



For $\text{Kn} < 0.03$, highly resolved DSMC (dots) and continuum (curves) agree closely

Conclusions

Convergence of transient DSMC investigated for two flows without Knudsen layers

- Couette-like flow
 - DSMC in good agreement for $\text{Kn} < 0.3$
 - DSMC yields correct viscosity to within 0.3%
 - DSMC errors similar to Green-Kubo theory
- Fourier-like flow
 - DSMC in good agreement for $\text{Kn} < 0.3$
 - Convergence behavior more complicated to analyze