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} Convergence of Transient DSMC
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Reasons to investigate convergence of transient DSMC
— DSMC is standard to judge other noncontinuum methods
— Investigators starting to do transient DSMC simulations
— Although inherently transient, only steady flows studied
Systematic study of transient convergence is needed
— Focus on generic flows
— Converge to “right answer”?
— How does it converge?

Goal: extract maximum accuracy with minimum effort
« |dentify major parameters controlling DSMC accuracy

« Perform systematic convergence study @ S
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%j DSMC Numerical Error

Four parameters control DSMC numerical error
o Sample size per cell (M) } —> statistical error
« Simulators per cell (N¢)
» Cell size (AX) > —> discretization error
* Time step (At) )

Early DSMC users followed rule-of-thumb guidelines
« Sample enough to drive statistical error down
» Keep time step smaller than ~1/4 mean collision time
» Keep cell size smaller than ~1/3 mean free path
« Use a minimum of ~20 simulators per cell
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}’- Cell-Size Error

Error related to cell width, Ax
* Collision partners selected from anywhere in same cell
« Some potential partners move into adjacent cells
« Some invalid partners move into the same cell

Green-Kubo theoretical analysis (Alexander et al., 1998)
« Thermal conductivity for hard-sphere gas (At — 0, N¢ — o)
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Kosue _q, 32 (AX] =1+0.04527(gj
K 2257\ 4 A

* Where the hard-sphere mean free path is 1= =
J2rdZn
e Supporting DSMC calculations provided

 More data needed for Ax/A <1
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p Time-Step Error

Error related to time step, At
» Collisions occur at the end of time step
 Collisions should be uniformly distributed over time step

Green-Kubo theoretical analysis (Hadjiconstantinou, 2000)
e Thermal conductivity for hard-sphere gas (Ax — 0, Nc — o)

2 2
Kose _q, 04 [AL) 4 403018/ A
K 6757\ t,

(0]

B A
C, +2kgT/m
» Supporting DSMC calculations (Garcia & Wagner, 2000)

» With the hard-sphere mean collision time t, =

 More data needed for At/t, < 1
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Fourier Flow

heat flux g
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K = thermal conductivity
T = gas temperature

Rader et al. Convergence
Analysis for Fourier Flow

One-dimensional gas-phase conduction

Temperature, heat flux calculated from
DSMC molecular velocity distribution

 Knudsen layers at walls (not of interest here)
* [f continuum, Chapman-Enskog in interior

Conditions:

* Molecules Hard-sphere “argon”

» Walls

* Width

e Pressure
e L/A

.tO

223.15 and 323.15 K
0.001 m (1 mm)
264.9 Pa (~2 torr)
~42

71 ns (273.15 K)
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DSMC Calculations

HS Argon, 100 K/mm, 264.9 Pa
200 cells, 7 ns, 30 sims/cell
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HS Argon, 100 K/mm, 264.9 Pa
200 cells, 7 ns, 30 sims/cell
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Temperature Profile
* Nearly linear
« Small jumps near walls
» Low level of statistical scatter

Thermal Conductivity Ratio Profile
 Calculated from CE theory & DSMC values

KDSI\/IC :Tr%a‘/f2 ‘qwall‘ dT -
K K, T Udx

» Knudsen layers apparent near walls

» Good agreement with theory in center

Average over central 40% of domain to
obtain a single convergence metric
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% Time-Step Convergence

200 cells, Ax/A=0.209

115 T | ! 4 » Complicated behavior of
- HS Argon, 100 K/mm, 264.9 Pa 5 error with time step

1.12

Ne = 7 sims/cell | » Quadratic dependence on
_ time step observed only
1 09k : | forlarge N;
X 10
s 1 » Quadratic coefficient (0.029)
¥ 1.06F : L agrees with G-K theory

(0.0302) in the limit N.—>o0

1'03 - ~1 » Curves through data from
: o a2~ Green-Kubo Theory {  l€ast squares fitting
100G 04 06 08 1.0
(Att,)?
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}' Cell-Size Convergence

At =7 ns, At/t,= 0.1

1.15 I T T I [ . .
[ HS Argon, 100 K/mm, 264.9 Pa Compllc_ated behawor of
i error with cell size
1121 N = 7 sims/cell
[ . » Quadratic dependence on
1.09 10 cell size observed only
x [ 15 for large N
%106— : .
2 30 o= * Quadratic coefficient (0.041)

120

agrees with G-K theory

103 /o (0.0453) in the limit Ng—oo

. /-f- 240
- L z *=
1 o

00 =" Green-Kubo Theory

« Curves through data from
least squares fitting
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}’- Functional Form of Error

Goal: find a functional form that represents DSMC data
Taylor series expansion in Ax, At, and 1/Nc

Perform least-squares fitting of entire data set

Retain statistically significant terms:

2 2
Kbsvc _1 40014 0.0286 At +0.0411(Q‘j
K tg A

2 2 2
ool A (ij o047 L, L p|At AX (AL
Key results:
DSMC reproduces CE conductivity to within fitting uncertainty

Quadratic terms (Ax)? and (At)? agree with Green-Kubo theory
Other terms have not been reported previously
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# DSMC Convergence for

Steady State Problems

« DSMC reproduces CE conductivity to within 0.01%

« DSMC limiting convergence behavior matches theory
— Quadratic convergence in time step (Ax/A — 0, N, — )
— Quadratic convergence in cell size (At/t, — 0, N; — )
— Linear convergence in 1/N. for N; > 30 simulators/cell
— Coefficients in good agreement with available theory

* For finite values of parameters, convergence behavior is a
complicated function of higher-order cross terms

* Problem: How does DSMC converge for transient problems
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}r Couette-like Transient Flow

Couette-like
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Decaying shear flow with slippery walls

— Initial conditions: half-cosine v velocity; zero u, w
velocities; uniform pressure, temperature, density.

— Boundary conditions: specular walls (symmetry)
* No Knudsen layers, investigate bulk flow behavior
— Long times: motionless; conserve mass, energy
@ Sandia
National
Laboratories



V‘ '
& Couette-like Transient Convergence Study

— Follow Rader, Gallis, Torczynski, and Wagner (2006)
—Domain: 0<x<L,L=1mm
— Gas: hard-sphere argon (Bird, App A, STP)
— Temperature: 273.15 K
Quantities varied in simulations
— Velocity: v=—-Av-cos[nx /L] , Av =50-500 m/s, ¢ = 381 m/s
— Pressure: p=4, 2,1, 0.5, 0.25, 0.125 torr (focus on 2 torr)
Kn=A/L =0.012, 0.024, 0.048, 0.095, 0.19, 0.38
— Cell size: 0.1 < Ax/L <1 (MFP at 2 torr, A = 0.024 mm)
— Time step: 0.1 < At/t; < 1 (coll. time at 2 torr, t; = 70 ns)
Simulation specifics
— Algorithm: Bird (1994), move-sample-collide-sample
— Molecules: 10,000,000 (25,000-250,000 per cell)
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Velocity v (m/s)

Velocity v (m/s)
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Hard-Sphere Argon, 273.15 K, 16.665 Pa, Kn =0.38
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Hard-Sphere Argon, 273.15 K, 133.322 Pa, Kn = 0.048
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Hard-Sphere Argon, 273.15 K, 33.330 Pa, Kn =0.19
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Hard-Sphere Argon, 273.15 K, 266.644 Pa. Kn = 0.024
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Pressure (Knudsen Number) Dependence

Hard-Sphere Argon, 273.15 K, 66.661 Pa, Kn = 0.095
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Hard-Sphere Argon, 273.15 K, 533.288 Pa. Kn = 0.012
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For Kn < 0.03, highly resolved DSMC (dots) and
continuum (curves) agree closely
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Velocity v (m/s)

Velocity v (m/s)
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Velocity Dependence
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Hard-Sphere Argon, 273.15 K, 66.661 Pa, Kn = 0.095
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Hard-Sphere Argon, 273.15 K, 133.322 Pa, Kn = 0.048
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Hard-Sphere Argon, 273.15 K, 266.644 Pa. Kn = 0.024
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% DSMC Effective Viscosity
2
V= —Avcos[ﬁj exp[— i ﬂesztj
L ol B

— Compare DSMC to continuum analytical solution
» Appropriate for vanishing Knudsen numbers
» Appropriate for constant uniform temperature

— Accurate for Av = 50 m/s at 2 torr and 273.15 K
 Small Knudsen numbers: system, 0.024; shear, 0.006
« Small temperature rise: 2 K (viscosity increases 0.3%)

— Adjust continuum effective viscosity to match DSMC
Repeat for many different combinations of Ax and At

— Compare to predictions of Green-Kubo theory of
Garcia & Wagner and Hadjiconstantinou (2000) @ w—
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omparison to Green-Kubo Theory
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Hard-Sphere Argon, 273.15 K, 266.644 Pa,
Kn = 0.024

Symbwols: DSMC

o 4 115 } Curves: Green-Kubo

| Hard-Sphere Argon, 273.15 K, 266.644 Pa,
[ Kn=0.024

| Symbols: DSMC
| Curves: Green-Kubo

1.10 110 |
e L
= .08 ~ 1.05
1.00 F=o—2 1.00 =0 = 00.388 | 1
‘ 00.310
00.198
i 00.099
0.95 S e 0.95 T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 02 0.4 06 0.8 1.0 12
At AXIA

DSMC and Green-Kubo results agree reasonably
Green-Kubo error estimate is slightly conservative

Sandia
National
Laboratories



Polynomial Correlation
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Hett _ 9978+ 0.0670(AF)’ +0.0969(AX)’ —0.0209(AF)’ (AX)” +0.0025(Af )’ (AR)
7,

1.20 T T T : T 1.20 T T T T
Hard-Sphere Argon, 273.15 K, 266.644 Pa, Hard-Sphere Argon, 273.15 K, 266.644 Pa,
Kn = 0.024 Kn=0.024
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Viscosity differs by 0.3%, close to thermal variation
Pure terms agree reasonably with Green-Kubo
Cross terms are required to correlate values @ Sandia
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}’- Fourier-like Transient Flow

Fourier-like
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Decaying heat flow with non-conductive walls

— Initial conditions: half-cosine T temperature; uniform
pressure, density varies accordingly, quiescent gas
Boundary conditions: specular walls (symmetry)

 No Knudsen layers, investigate bulk flow behavior
— Long times: motionless; conserve mass, energy
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% Fourier-like Transient Convergence Study

— Follow Rader, Gallis, Torczynski, and Wagner (2006)
—Domain: 0<x<L,L=1mm
— Gas: hard-sphere argon (Bird, App A, STP)
Quantities varied in simulations
— Temperature: T[X,0]=T, - ATcos[nx /L], AT =50K
— Pressure: p =4, 2,1, 0.5, 0.25, 0.125 torr (focus on 2 torr)
Kn=A/L =0.012, 0.024, 0.048, 0.095, 0.19, 0.38
— Cell size: 0.1 < Ax/A <1 (MFP at 2 torr, A = 0.024 mm)
— Time step: 0.1 < At/t; < 1 (coll. time at 2 torr, t; = 70 ns)
Simulation specifics
— Algorithm: Bird (1994), move-sample-collide-sample
— Molecules: 10,000,000 (25,000-250,000 per cell)
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Pressure (Knudsen Number) Dependence
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For Kn < 0.03, highly resolved DSMC (dots) and |
continuum (curves) agree closely Naons
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#‘ Conclusions

Convergence of transient DSMC investigated for two flows
without Knudsen layers

» Couette-like flow
— DSMC in good agreement for Kn < 0.3
— DSMC yields correct viscosity to within 0.3%
— DSMC errors similar to Green-Kubo theory

e Fourier-like flow

— DSMC in good agreement for Kn < 0.3
— Convergence behavior more complicated to analyze
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