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Hypergames and Cyber-Physical Security for Control
Systems

CRAIG BAKKER, ARNAB BHATTACHARYA, SAMRAT CHATTERJEE, and DRAGUNA L.
VRABIE, Pacific Northwest National Laboratory

The identification of the Stuxnet worm in 2010 provided a highly publicized example of a cyber attack that

physically damaged an industrial control system. This raised public awareness about the possibility of similar

attacks against other industrial targets – including critical infrastructure. In this paper, we use hypergames to

analyze how strategic perturbations of sensor readings and calibrated parameters can be used to manipulate a

system that employs optimal control. Hypergames form an extension of game theory that enables us to model

strategic interactions where the players may have significantly different perceptions of the game(s) they are

playing. Past work with hypergames has been limited to relatively simple interactions consisting of a small set

of discrete choices for each player, but here, we apply hypergames to larger systems with continuous variables.

We find that manipulating constraints can be a more effective attacker strategy than directly manipulating

objective function parameters. Moreover, the attacker need not change the underlying system to carry out a

successful attack – it may be sufficient to deceive the defender controlling the system. It is possible to scale

our approach up to even larger systems, but this will depend on the characteristics of the system in question,

and we identify several characteristics that will make those systems amenable to hypergame analysis.
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1 INTRODUCTION
1.1 Stuxnet and Cyber-Physical Security
The Stuxnet worm was identified in 2010 as a piece of malware that targeted a very specific

Industrial Control System (ICS) – namely, uranium enrichment infrastructure [5, 20]. This may not

have been the first cyber attack to cause physical damage to an ICS, but it was highly publicized.

As such, Stuxnet brought the potential physical consequences of cyber attacks into the public eye.

Stuxnet was highly sophisticated. Part of its sophistication lay in its strategy for obtaining access

to its targets: it exploited four 0-day vulnerabilities, compromised two digital certificates, and

propagated itself through networks and removable devices [5]. Once it reached a control system, it

Authors’ address: Craig Bakker, craig.bakker@pnnl.gov; Arnab Bhattacharya, arnab.bhattacharya@pnnl.gov; Samrat Chat-

terjee, samrat.chatterjee@pnnl.gov; Draguna L. Vrabie, draguna.vrabie@pnnl.gov, Pacific Northwest National Laboratory,

902 Battelle Blvd. Richland, Washington, 99353.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0730-0301/2018/8-ART111 $15.00

https://doi.org/10.1145/1122445.1122456

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


111:2 Bakker et al.

continued to act stealthily. Stuxnet fed fake data to the ICS to disguise malicious actions [5, 11] and

limited its attacks to avoid detection [14]. The goal of Stuxnet was not to cause catastrophic failure

but rather to exploit the physical and cyber vulnerabilities inherent in the ICS in a stealthy fashion.

Stuxnet forced analysts to consider the risk associated with these kinds of cyber attacks. If we

understand risk as the product of consequence, vulnerability, and threat, we can address each of

those components separately. The potential for significant consequence is clear: many industrial

processes, including critical infrastructure systems (e.g., the power grid), rely on Supervisory

Control and Data Acquisition (SCADA) software and ICSs. These systems are also vulnerable.

Updates can be risky because they may cause previously functional systems to produce new errors

[14], and even if this is not the case, taking the system in question offline to perform the updates

may be difficult or infeasible [20]. There is a tradeoff between security and ease of use, and a

knowledge gap between cyber security specialists and control engineers can compound this.

There are twomore factors that increase the vulnerability of ICSs to cyber attack. Firstly, industrial

systems are often serviced by outside contractors, and the devices (computers, USB drives, etc.)

used by those contractors can provide a malware vector that bypasses traditional cyber security

measures such as air gaps [5]. Secondly, industry standardization also reduces uncertainty for

potential attackers; complexity, heterogeneity, and uncertainty make it more difficult for attackers

to design successful attacks. Most of the uncertainty regarding the risk of cyber attacks on ICSs

has to do with threat. The old consensus was that these systems were too specialized to attack [14].

Stuxnet, for example, required a great deal of specialized knowledge about the control systems in

question [5]. However, Stuxnet showed that these kinds of attacks are possible.

1.2 Hypergames
Game theory is a branch of mathematics that looks at strategic interactions between rational

entities. It has seen considerable use in economic [23] and security [27] applications. A fundamental

premise of strategic games in game theory is that all of the players are seeing and playing the

same game. This is not always true, though. Belief manipulation plays a key role in some strategic

interactions. In other cases, not all player objectives may be common knowledge. This necessitates

understanding more completely players’ perceptions of the game(s) they are playing; one way to

model this is through hypergames [3]. Hypergames allow players to play different games and can

account for differences in their perceptions of the same game without considering uncertainty

probabilistically. For example, one group of players may distinguish between certain actions while

another group considers those actions all to be identical. On the other hand, some players may not

be aware of the existence of other players in the game (or may not be aware of all of those other

players’ possible actions). Hypergames essentially enable us to extend the concept of rationality

to a bounded information situation. This, in turn, makes it possible for a given player to exploit

another player’s misperceptions. In analyzing the (potentially) different games that each player is

playing, though, we are still able to apply game theoretic concepts and thus build on existing game

theory research. We can describe a two-player game as GA,B = (P,S,U), where

P = {A,B} (1)

S = {SA, SB } (2)

U = {uA,uB } (3)

A and B are the players, SA and SB are those players’ respective action spaces, anduA,uB : SA×SB →

ℜ are their respective payoff functions, which provide a partial ordering over SA × SB for each

player. We can describe a first level hypergame as

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Hypergames and Cyber-Physical Security for Control Systems 111:3

HA,B
(
A,B,GA,B

)
=
{
p
(
A,GA,B

)
,p

(
B,GA,B

)}
(4)

where p
(
A,GA,B

)
is A’s perception ofGA,B – A’s subjective game. This subjective game could be

Bayesian, strategic, or even a hypergame itself, and it encodes the (mis)perceptions of each player.

The condition p
(
A,GA,B

)
, p

(
B,GA,B

)
could be caused by discrepancies such as p (A, {A,B}) =

{A}, which would indicate that A is not aware of B’s presence. We can also describe perceptions

about perceptions. For example, p (AB,uA) isA’s perception of B’s perception ofA’s utility function.
In a first level hypergame, the players are not aware of their misperceptions:

p
(
A,GA,B

)
, p

(
B,GA,B

)
(5)

p
(
AB,GA,B

)
= p

(
A,GA,B

)
(6)

p
(
BA,GA,B

)
= p

(
B,GA,B

)
(7)

In a second level hypergame, at least one player is aware of the misperceptions. For example, if

A is aware of the misperceptions but B is not, we have

p
(
AB,GA,B

)
, p

(
A,GA,B

)
(8)

p
(
BA,GA,B

)
= p

(
B,GA,B

)
(9)

Player B then plays p
(
B,GA,B

)
while A plays the hypergame

HA,AB
(
A,AB,GA,B

)
=
{
p
(
A,GA,B

)
,p

(
AB,GA,B

)}
(10)

The overall solution is called a Hyper Nash Equilibrium (HNE). It can be calculated by correctly

aggregating the solutions to the players’ perceived (hyper)games, which are also referred to as

their subjective games. In the hypergame literature, the subjective games are typically strategic

finite games, and their solutions are Nash equilibria. However, in principle, the solutions could be

equilibria of various kinds (Hyper Nash, Nash, Bayesian, Perfect, etc.), depending on the nature

of each subjective (hyper)game. The nature of the base-level subjective game (strategic, Bayesian,

etc.) has some effect on the complexity of the overall hypergame formulation and solution, but

nested hypergame structures, which correspond to multi-level belief hierarchies and higher level

hypergames, tend to drive the problem complexity more strongly.

In a first level hypergame, the HNE is (xA, xB ), where xA is A’s equilibrium strategy for the

game p
(
A,GA,B

)
and xB is B’s equilibrium strategy for the game p

(
B,GA,B

)
. For the second level

hypergame described above, xA would be A’s optimal strategy for HA,AB
(
A,AB,GA,B

)
, while xB

would still be B’s equilibrium strategy for p
(
B,GA,B

)
. These concepts extend naturally to higher

level hypergames and additional players. HNE can share properties possessed by other forms of

equilibria; HNE may be unique or mixed, for instance. Some other equilibrium properties may not

be as applicable, though. For example, the concept of equilibrium efficiency may not make sense

for HNE because of the potential gap (or even inverse correlation) between perceived and actual

payoffs. We have not seen any discussions of HNE efficiency in the hypergame literature, however.

See Kovach et al. [15] and Gutierrez et al. [9] for hypergame literature reviews.

There is a connection between hypergames and bounded rationality. Bounded rationality is

perhaps more commonly associated with approaches such as prospect theory [12] or quantal

responses [18], which do not assume strict utility maximization, or with models that assume limited

computational ability (e.g., [26]). These aspects of bounded rationality could perhaps be used with
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hypergames (e.g., a Quantal HNE), but we have not seen any such work. The focus of hypergame

research has instead been on levels of (mis)perceptions and systems that lack common knowledge;

this lack could be considered a kind of bounded rationality.

Reflexive control [21], Mirage Equilibria [25], and k-level reasoning [4, 31] have also been

applied to systems that may not have common knowledge. Despite some differences in notation

and nomenclature, these all incorporate hierarchies of beliefs (e.g., Player 1’s beliefs about Player

2’s beliefs). However, the first two, along with hypergames, differ somewhat from k-level reasoning
with respect to the accuracy of the player perceptions. Ink-level reasoning, the focus is on the degree
to which one player anticipates another. In principle, this approach does not rule out the possibility

that a given player might misperceive the nature of the game (payoff structure, available actions,

etc.), but in practice, this is not a key consideration. For hypergames, this is a key consideration.

The concept of a subjective game (i.e., p
(
A,GA,B

)
) is central to hypergame analysis, and belief

hierarchies exist to support that; the same is true for reflexive control and Mirage Equilibria.

For example, a key hypergame result is that hypergame equilibrium solutions can be stable

under misperceptions [28]. In these cases, each player does what the other players expect – which

can happen even when the players’ perceptions differ or are erroneous – and thus there is no

motivation for players to update their perceptions. This is similar to a conjectural equilibrium

[25] in that players do not know what they do not know. In a repeated hypergame context, then,

these equilibria are stable, and extending belief hierarchies to higher and higher levels would not

necessarily change that. Using the formalism we employed previously, a hypergame equilibrium is

stable if p (A, xB ) = xB and p (B, xA) = xA, which need not imply that p
(
A,GA,B

)
= p

(
B,GA,B

)
.

Hypergames have been used to studywater resourcemanagement [22], supply chain relationships

[8], and cyber attacks [10]. Some research has also looked at connecting hypergames with other

branches of game theory. Kanazawa et al. [13] studied an evolutionary version of hypergames. This

included calculating evolutionarily stable strategies and defining hypergame replicator dynamics.

Sasaki and Kijima [29, 30] showed how hypergames can be reformulated as Bayesian games in

some cases. In doing so, though, they identified reasons why it may be advantageous to avoid that

reformulation. Firstly, hypergames can provide a simpler and more natural epistemic representation

of the game’s players; the treatment of unawareness, for example, can be more convincing than

in the Bayesian case. Secondly, there are some hypergame solution concepts, such as stability

under misperception, that do not map to the Bayesian reformulation. For more discussion of the

relationship between Bayesian games and hypergames, see Sasaki and Kijima [29, 30].

The topic of misperception has also led to research into how repeated hypergames can be used

to improve or update perceptions [28]. Repeated hypergames offer the possibility of signalling and

misperception correction. As in a single-stage strategic game, a single-stage hypergame may not

involve signalling. However, in repeated interactions, observing unknown actions from another

player, observing unexpected actions from another player, or receiving payoffs that differ from the

expected value can all be ‘signals’ that players can use to recognize and address their misperceptions.

Gharesifard and Cortés study this in some detail [7]. House and Cybenko used both hidden Markov

models and a maximum entropy approach [10]. Takahashi et al., on the other hand, used a genetic

algorithm [32]. Bakker et al. [1] also show how this can be applied in a control systems context.

Generally speaking, the hypergame literature is relatively small, and almost all of the examples

that we have seen have involved hypergames with a relatively small number of discrete choices;

solving for the HNE has involved hand calculations and/or exhaustive enumeration.

1.3 Aim and Motivation
The goal of this paper is to show how hypergames can be used in optimal control where the control

system in question is subject to adversarial perturbations and to demonstrate how this analysis
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can apply to Stuxnet-like attacks. This research contributes to ongoing work in optimal control by

showing how manipulating controller perceptions can function as an attacker strategy; the attacker

actually uses the control system against itself. These analyses then highlight weaknesses in the

control system – weaknesses that are vulnerable to attack even if they might not be vulnerable

to random events. This research also advances hypergame research in two ways. Firstly, it brings

hypergames to bear on a new application area (i.e., optimal control) – one rather different than the

examples in previous papers. Secondly, it applies hypergame concepts to systems of significantly

greater complexity than previous hypergame research has used. The examples in this paper have

continuous variables, and the second example is a discrete-time optimal control problem with

time-varying variables. Both problems, moreover, require using numerical optimization methods

to find hypergame equilibria. Taking hypergames to this level of complexity makes the hypergame

concept more viable as a tool for analyzing real systems and not just toy problems.

This kind of investigation is highly relevant to addressing Stuxnet-like attacks from a control

perspective. The means by which an attacker might gain the network access and system knowledge

necessary to carry out such an attack are not trivial, but they are not the focus of our analysis

here. Rather, we assume the existence of an attacker with this kind of knowledge and access –

an Advanced Persistent Threat (APT) – and we then inquire about the potential outcomes. ICSs

provide examples of (potentially high-impact) cyber-physical systems where control provides the

connection between the ‘cyber’ and ’physical’ components. The idea behind this research, then, is

not to replace traditional cyber security methods but rather to recognize that control systems can

be used to provide another layer of robustness to attack if designed to do so and that the physical

weaknesses accessible through cyber means can be analyzed by looking at the control model.

2 STATIC PROBLEM FORMULATION
To demonstrate some of the concepts of this paper, we consider a static optimization problem

constrained within an operating envelope, which is represented as an inequality constraint:

min

u
J (u,θ ) (11)

g(u, c) ≤ 0 (12)

where u is the vector of decision variables, θ is the vector of objective function parameters, and c
is the vector of operating envelope parameters. Note that g may be a vector of constraint equations

дl , l = 1, 2, . . ., in which case (12) is equivalent to дl (u, c) ≤ 0 ∀ l .

2.1 Objective Function Manipulation
Here, we will consider a situation where the attacker can manipulate the defender’s observation

of objective function parameters;
ˆθ = θ + ∆θ , where the vector ˆθ denotes the quantities that the

defender observes. The attacker chooses a deterministic strategy over possible ∆θ values, and the

defender chooses a deterministic strategy over u values. The attacker optimization is then

max

∆θ
J (û∗,θ ) (13)

1

2

∥∆θ ∥2 ≤ δθ ,max (14)

û∗ = argmin

û

(
J
(
û, ˆθ

)
: д(û, c) ≤ 0

)
(15)
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where (15) describe what the attacker expects the defender’s optimization to be and (14) is a

constraint on the attacker’s manipulations, which is a reasonable assumption in a context of limited

attack budgets or when attack detection mechanisms are present in the system. This constitutes a

second level hypergame. If A represents the attacker and D represents the defender, we have

p (D,θ ) = ˆθ , θ = p (A,θ ) (16)

p (D, {A,D}) = {D} = p (AD, {A,D}) (17)

If the defender knows of the attacker, this leads to a higher level hypergame, where

p (DAD, {A,D}) = p (AD, {A,D}) = {D} (18)

The defender’s optimization is

min

u
J
(
u, ˆθ − ∆θ

)
(19)

g (u, c) ≤ 0 (20)

The true θ values are unknown to the defender, but the defender calculates the ∆θ values by solving

what is believed to be the attacker’s problem: (13)-(15).

max

∆θ
J (û∗,θ ) (21)

1

2

∥∆θ ∥2 ≤ δθ ,max (22)

û∗ = argmin

û

(
J
(
û, ˆθ

)
: g (û, c) ≤ 0

)
(23)

Given that the defender only knows
ˆθ , not θ , solving the attacker’s problem to determine ∆θ

will require using θ = ˆθ − ∆θ . As a further extension, we consider the scenario where the attacker

manipulates the defender’s perceptions of θ , the defender knows that the attacker is doing this,

and the attacker knows that the defender is anticipating the attacker’s perturbations. We refer to

this as a ‘double-bluff’ manipulation here and in the rest of the paper. This problem leads us to a

multi-level optimization problem:

max

∆θ
J (u∗,θ ) (24)

1

2

∥∆θ ∥2 ≤ δθ ,max (25)

u∗ = argmin

u

(
J
(
u, ˜θ

)
: g (u, c) ≤ 0

)
(26)

subject to

max

∆ ˆθ
J
(
û∗, ˜θ

)
(27)

1

2




∆ ˆθ



2 ≤ δθ ,max (28)

û∗ = argmin

û

(
J
(
û, ˜θ + ∆ ˆθ

)
: g (û, c) ≤ 0

)
(29)
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where p (D,θ ) = ˜θ = ˆθ − ∆ ˆθ is the defender’s estimate of the true value of θ . These nested

optimizations and the use of argmin, here and in the rest of the paper, are a shorthand way to

represent best responses – the solutions to different subjective games and nested hypergame levels.

Note that the defender’s perceived objective function value may differ from the true value in some

cases. For comparison, we can also model the attacker manipulating the true value of θ :

max

∆θ
min

u
J (u,θ + ∆θ ) (30)

∥∆θ ∥2 ≤ δθ ,max (31)

g (u, c) ≤ 0 (32)

Here, there are no misperceptions; the situation is simply a zero-sum game, not a hypergame.

2.2 Constraint Manipulation
The previous section had the attacker manipulating objective function parameters. This entails

a difference between manipulating the true values and the defender’s perceptions. Manipulating

constraints is different. If the attacker alters the constraint to be more restrictive, manipulating

the real constraint or the defender’s perceptions leads to the same result in either case (assuming

that the defender abides by the constraint); the perceived cost is also the true cost in both cases.

If the attacker alters the constraint to be less restrictive, the results are less clear. If the attacker

manipulates the defender perception, the control process may hit a physical limit and/or damage the

system trying to reach an infeasible state. This could be modelled with a large penalty for violations

of the true constraint. Relaxing the true constraint may be impossible if the constraint is a physical

limitation of the system. For this section, we specify that the attacker can manipulate the defender’s

perception of parameters in the constraint (ĉ = c+∆c are the quantities that the defender perceives).
The attacker chooses a deterministic strategy over ∆c values while the defender’s strategy set

remains the same. As before, attacker perturbations are subject to a constraint:

1

2

∥∆c∥2 ≤ δc ,max (33)

2.2.1 Maximizing Cost. Manipulating the defender’s perceptions to maximize cost produces a

series of multi-level optimization problems, corresponding to second or higher level hypergames,

like those described previously. If the attacker is deceiving an unsuspecting defender, we have

max

∆c
J (u∗,θ ) (34)

1

2

∥∆c∥2 ≤ δc ,max (35)

u∗ = argmin

u
(J (u,θ ) : g (u, ĉ) ≤ 0) (36)

If the defender is aware of the attack, we have

min

u
J (u,θ ) (37)

g (u, ĉ − ∆c) ≤ 0 (38)

subject to
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111:8 Bakker et al.

max

∆c
J (û∗,θ ) (39)

1

2

∥∆c∥2 ≤ δc ,max (40)

û∗ = argmin

û
(J (û,θ ) : g (û, ĉ) ≤ 0) (41)

In a situation analogous to that described in the previous section, the defender only knows ĉ, not
c, so solving the attacker’s problem to determine ∆c will require using c = ĉ − ∆c. If the attacker is
aware that the defender is anticipating an attack, the resulting problem is

max

∆c
J (u,θ ) (42)

1

2

∥∆c∥2 ≤ δc ,max (43)

u∗ = argmin

u
(J (u,θ ) : g (u, c̃) ≤ 0) (44)

subject to

max

∆ĉ
J (û∗,θ ) (45)

1

2

∥∆ĉ∥2 ≤ δc ,max (46)

û∗ = argmin

û
(J (û,θ ) : g (û, c̃ + ∆ĉ) ≤ 0) (47)

where p (D, c) = c̃ = ĉ − ∆c is the defender’s estimate of the true value of c.

2.2.2 Breaking the System. The attacker could try to cause the defender to deviate maximally from

the operating envelope constraint to cause a catastrophic failure. We refer to this as attempting to

break the system. If the attacker is deceiving an unsuspecting defender, we have

max

∆c
γT g (u∗, c) (48)

1

2

∥∆c∥2 ≤ δc ,max (49)

u∗ = argmin

u
(J (u,θ ) : g (u, ĉ) ≤ 0) (50)

where γ weights the sum of g’s components. If the defender is aware of the attack, we have

min

u
J (u,θ ) (51)

g (u, ĉ − ∆c) ≤ 0 (52)

subject to

max

∆c
γT g (û∗, c) (53)

1

2

∥∆c∥2 ≤ δc ,max (54)
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û∗ = argmin

û
(J (û,θ ) : g (û, ĉ) ≤ 0) (55)

If the attacker is aware that the defender is anticipating an attack, the resulting problem is

max

∆c
γT g (u∗, c) (56)

1

2

∥∆c∥2 ≤ δc ,max (57)

u∗ = argmin

u
(J (u,θ ) : g (u, c̃) ≤ 0) (58)

subject to

max

∆ĉ
γT g (û∗, c) (59)

1

2

∥∆ĉ∥2 ≤ δc ,max (60)

û∗ = argmin

û
(J (û,θ ) : g (û, c̃ + ∆ĉ) ≤ 0) (61)

where
˜θ is defined as before. There are various other possibilities in the same vein involving

asymmetric information or false beliefs.

2.3 Analytical Results
2.3.1 Objective Function Perturbations. In this section, we show that the defender can be robust

with respect to manipulated perceptions of θ . Let us assume that д (u, c) is convex for c ≥ 0 and

J (u,θ ) =
∑
k

θk fk (u) = θT f (u) (62)

where each fk (u) is convex. The optimization is convex for θ ≥ 0, and the optimality conditions

∑
k

∂ fk
∂u

θk +
∑
l

λl
∂дl
∂u
= θT

∂f
∂u
+ λT

∂g
∂u
= 0 (63)

0 ≤ λl ⊥ дl (u, c) ≤ 0 ∀ l (64)

are both necessary and sufficient; λ is the vector of Kuhn-Tucker multipliers. Let us also define

R (u) =
{
∂ fk
∂u

����
u
: k = 1, 2, . . . ,nθ

}
(65)

S (u) = {l : λl > 0} (66)

S ′ (u) = {l : дl (u, c) = 0} (67)

T (u) =
{
∂дl
∂u

����
u
: l ∈ S (u)

}
(68)

T ′ (u) =
{
∂дl
∂u

����
u
: l ∈ S ′ (u)

}
(69)
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where R and T are sets of vectors, S is a set of indices denoting the positive λl values at u, and S ′ is
a set of indices denoting the active set at u. Note that S (u) ⊆ S ′ (u), and S (u) , S ′ (u) only if there

are active constraints with corresponding multipliers that are zero.

Lemma 2.1. Assume that u∗ ∈ argmin

u
(J (u,θ ) : g (u, c) ≤ 0) and that ˆθ = θ + ∆θ ≥ 0. If there

exists ∆λ ≥ −λ such that

∆θT
∂f
∂u

����
u∗
+ ∆λT

∂g
∂u

����
u∗
= 0 (70)

∆λlдl (u∗, c) = 0 ∀ l (71)

then u∗ ∈ argmin

u

(
J
(
u, ˆθ

)
: g (u, c) ≤ 0

)
and ˆλ = λ + ∆λ are the new Kuhn-Tucker multipliers.

Proof. If

θT
∂f
∂u

����
u∗
+ λT

∂g
∂u

����
u∗
= 0 (72)

∆θT
∂f
∂u

����
u∗
+ ∆λT

∂g
∂u

����
u∗
= 0 (73)

then for
ˆθ = θ + ∆θ

(
ˆθ
T
− ∆θT

) ∂f
∂u

����
u∗
+
(
λT − ∆λT + ∆λT

) ∂g
∂u

����
u∗
= 0 (74)

ˆθ
T ∂f
∂u

����
u∗
+
(
λT + ∆λT

) ∂g
∂u

����
u∗
= 0 (75)

Furthermore, since ∆λ ≥ −λ and ∆λlдl (u∗, c) = 0 ∀ l ,

ˆθ
T ∂f
∂u

����
u∗
+ ˆλ

T ∂g
∂u

����
u∗
= 0 (76)

0 ≤ ˆλl ⊥ дl (u∗, c) ≤ 0 ∀ l (77)

where
ˆλ = λ + ∆λ. Since ˆθ ≥ 0 and J

(
u, ˆθ

)
and g (u, c) are convex, the optimization

min

u
J
(
u, ˆθ

)
(78)

g (u, c) ≤ 0 (79)

is convex, and the optimality conditions (76)-(77) are necessary and sufficient. u∗ satisfies these
conditions, so u∗ ∈ argmin

u

(
J
(
u, ˆθ

)
: g (u, c) ≤ 0

)
. �

Lemma 2.2. If span (R (u∗)) ⊆ span (T (u∗)), then there exists r > 0 such that for ∥∆θ ∥p ≤ r ,

p > 0, u∗ ∈ argmin

u
(J (u,θ ) : g (u, c) ≤ 0) implies that u∗ ∈ argmin

u

(
J
(
u, ˆθ

)
: g (u, c) ≤ 0

)
, where

ˆθ = θ + ∆θ .
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Proof. Let us define the matrix A such that the rows of A are the vectors
∂дl
∂u ∈ T (u∗). If

span (R (u∗)) ⊆ span (T (u∗)), then any linear combination of
∂fk
∂u ∈ R (u∗) exists within span (T (u∗)),

which is the rowspace of A. This implies that for any ∆θ , there exists ∆λ such that

∑
k

∆θk
∂ fk
∂u

����
u∗
+

∑
l ∈S (u∗)

∆λl
∂дl
∂u

����
u∗
= ∆θT

∂f
∂u

����
u∗
+ bTA = 0 (80)

∆λl = 0, l < S (u∗) (81)

and if A+ is the Moore-Penrose pseudo-inverse of A, then

bT = −∆θT
∂f
∂u

����
u∗
A+ (82)

satisfies this exactly because ∆θT ∂f
∂u

��
u∗ is in the rowspace of A. Define λmin = min

l ∈S (u∗)
λl . By

definition, λmin > 0. If ∥∆λ∥p ≤ λmin , then

max

l
|∆λl | = ∥∆λ∥∞ ≤ ∥∆λ∥p ≤ λmin, p > 0 (83)

Therefore, ∥∆λ∥p ≤ λmin implies that max

l
|∆λl | ≤ λmin and thus ∆λl ≥ −λmin ≥ −λl ∀ l . If

∥∆θ ∥p ≤
λmin

 ∂f
∂uA

+



p

= r (84)

then

∥∆λ∥p =





∆θT ∂f∂uA+



p ≤ ∥∆θ ∥p





 ∂f∂uA+



 ≤ λmin (85)

By Lemma 2.1, u∗ ∈ argmin

u

(
J
(
u, ˆθ

)
: g (u, c) ≤ 0

)
.

�

Corollary 2.2.1. Define the matrix A such that the rows of A are the vectors ∂дl
∂u ∈ T (u∗). If A is

invertible, then there exists r > 0 such that for ∥∆θ ∥p ≤ r , p > 0, u∗ ∈ argmin

u
(J (u,θ ) : g (u, c) ≤ 0)

implies that u∗ ∈ argmin

u

(
J
(
u, ˆθ

)
: g (u, c) ≤ 0

)
, where ˆθ = θ + ∆θ .

Proof. If A is invertible, then the rows of A are linearly independent and span (T (u∗)) = Rnu ,
where u ∈ Rnu , and thus span (R (u∗)) ⊆ span (T (u∗)). This satisfies the conditions of Lemma 2.2,

and thus the same conclusions follow.

�

Lemma 2.3. The set Θ (u∗) =
{
ˆθ : u∗ ∈ argmin

u

(
J
(
u, ˆθ

)
: g (u, c) ≤ 0

)
, ˆθ ≥ 0

}
is unbounded and

convex if it is non-empty.

Proof. J (u,θ ) is linear in θ , so J
(
u,a ˆθ

)
= aJ

(
u, ˆθ

)
for any positive scalar a. Optimal solutions

are invariant with respect to scalar multiples of the objective function:
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argmin

u

(
J
(
u, ˆθ

)
: g (u, c) ≤ 0

)
= argmin

u

(
aJ

(
u, ˆθ

)
: g (u, c) ≤ 0

)
= argmin

u

(
J
(
u,a ˆθ

)
: g (u, c) ≤ 0

)
(86)

Therefore, for any
ˆθ ∈ Θ (u∗) and any positive scalar a, a ˆθ ∈ Θ (u∗). Thus, Θ (u∗) is unbounded

if it is non-empty. Furthermore, for fixed u∗, the optimality conditions

ˆθ
T ∂f
∂u

����
u∗
+ ˆλ

T ∂g
∂u

����
u∗
= 0 (87)

ˆλl = 0 l < S ′ (u∗) (88)

ˆλl ≥ 0 l ∈ S ′ (u∗) (89)

form a set of linear inequalities in
ˆλ and

ˆθ ; because u∗ is fixed, we can disregard g (u∗, c) ≥ 0. The
space of

ˆλ and
ˆθ that satisfy these constraints is therefore convex. Since this space is convex, for

any

(
ˆθ 1, ˆλ1

)
and

(
ˆθ 2, ˆλ2

)
in this space(
α ˆθ 1 + (1 − α) ˆθ 2,α ˆλ1 + (1 − α) ˆλ2

)
, α ∈ [0, 1] (90)

remains inΘ (u∗). Thus for any ˆθ 1, ˆθ 2 ∈ Θ (u∗),
(
α ˆθ 1 + (1 − α) ˆθ 2

)
∈ Θ (u∗), soΘ (u∗) is convex. �

Theorem 2.4. If span (R (u∗)) ⊆ span (T (u∗)) and u∗ ∈ argmin

u
(J (u,θ ) : g (u, c) ≤ 0), there exists

a convex, unbounded set of ∆θ such that u∗ ∈ argmin

u
(J (u,θ + ∆θ ) : g (u, c) ≤ 0).

Proof. By Lemma 2.2, if span (R (u∗)) ⊆ span (T (u∗)) and u∗ ∈ argmin

u
(J (u,θ ) : g (u, c) ≤ 0),

then there exists r > 0 such that for ∥∆θ ∥p ≤ r , p > 0, u∗ ∈ argmin

u
(J (u,θ + ∆θ ) : g (u, c) ≤ 0).

Therefore, the set

Θ (u∗) =
{
ˆθ : u∗ ∈ argmin

u

(
J
(
u, ˆθ

)
: g (u, c) ≤ 0

)
, ˆθ ≥ 0

}
(91)

is non-empty. By Lemma 2.3 if Θ (u∗) is non-empty, it is unbounded and convex. �

Lemma 2.5. If span (R (u∗)) * span (T ′ (u∗)) for u∗ ∈ argmin

u
(J (u,θ ) : g (u, c) ≤ 0), then for any

ϵ > 0, there exists ∆θ such that ∥∆θ ∥ < ϵ and u∗ < argmin

u

(
J
(
u, ˆθ

)
: g (u, c) ≤ 0

)
.

Proof. Assume that for sufficiently small ϵ > 0, there is no ∆θ such that 0 < ∥∆θ ∥ < ϵ and

u∗ < argmin

u

(
J
(
u, ˆθ

)
: g (u, c) ≤ 0

)
. Then for sufficiently small ∆θ , there exists ∆λ such that

∆θT
∂f
∂u

����
u∗
+ ∆λT

∂g
∂u

����
u∗
= 0 (92)

∆λl ≥ −λl l ∈ S ′ (u∗) (93)

∆λl = 0 l < S ′ (u∗) (94)
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Since u∗ is fixed, the active set cannot change. Define the matrix A such that the rows of A are

vectors
∂дl
∂u ∈ T ′ (u∗) and define the vector b such that the elements of b are ∆λl , l ∈ S ′ (u∗). Then

∆θT
∂f
∂u

����
u∗
+ ∆λT

∂g
∂u

����
u∗
= ∆θT

∂f
∂u

����
u∗
+ bTA = 0 (95)

If span (R (u∗)) * span (T (u∗)) , l ∈ S ′ (u∗), then ∃ ∆θ 0 such that ∆θT
0

∂f
∂u < span (T (u∗)) and

∆θT
0

∂f
∂u

����
u∗
+ bTA , 0 ∀ b (96)

Moreover, for any such ∆θ 0, there exists ∆θ = a∆θ 0 such that for any a > 0

a∆θT
0

∂f
∂u

����
u∗
+ bTA , 0 ∀ b (97)

Since ∥a∆θ 0∥ = a ∥∆θ 0∥, for any ϵ > 0, there exists ∆θ = ϵ
∥∆θ 0 ∥

∆θ 0 such that

∆θT
∂f
∂u

����
u∗
+ bTA , 0 ∀ b (98)

The optimality conditions are necessary and sufficient and these conditions cannot be satisfied,

so u∗ < argmin

u
(J (u,θ + ∆θ ) : g (u, c) ≤ 0), and thus the lemma is proved by contradiction. �

If small ∆θ values change the value of u∗ but not the active set, it is possible to calculate the

∂u
∂∆θ for the optimal solution by differentiating the optimality conditions. This provides us with

a linear system that we can solve to calculate
∂u
∂∆θ , and u∗ (∆θ ) will be smooth and well-defined

as long as the active set does not change. We can therefore compare this kind of system with one

that is impervious to these small changes. For such a system, the measure of the ‘safe’ range is

conservative, but outside of it, continuous changes in
ˆθ could result in discrete jumps in u∗ as

the active set changes. If J (u,θ ) is nonlinear in θ but still convex for all θ ≥ 0, it may possible to

produce similar proofs , but this would require further assumptions regarding J (u,θ ).

2.3.2 Constraint Function Manipulations. Unfortunately, manipulations of c are not subject to the

same kinds of robustness that manipulations of θ are. This is essentially a consequence of the

discussion at the beginning of Section 2.2: manipulating the defender’s perception of the constraints

produces the same change in the decision variables as changing the true constraints would as long

as the defender abides by the perceived constraints. For example,

дl (u, c) = 0, l ∈ S (u) (99)∑
i

∂дl
∂ui

∂ui
∂c j
+
∂дl
∂c j
= 0 (100)

Therefore, if
∂дl
∂c j
, 0, then

∂ui
∂c j
, 0.
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2.4 Test Problem
As a demonstration, we consider minimizing power consumption for a fan in an HVAC system. A

problem like this could form a component in a larger Building Automation System (BAS), possibly

as a subsystem subject to repeated optimization under changing parameter values. Many large

commercial buildings use sophisticated BASs to monitor and control building equipment [19], and

standard communication protocols have been introduced to facilitate interoperability of connected

BAS components using publically accessible networks [16]. As such, BAS components may become

highly susceptible to cyber-physical attacks. The baseline defender optimization problem is

min

m,p
θ1m + θ2m

2 + θ3p (101)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
≤ 0 (102)

where m is the mass flow rate, p is the static pressure, the θ values are power consumption

parameters for the fan, and cm , cp , and cr are parameters defining the operating envelope. The

attacker can introduce perturbations ∆θi such that
ˆθi = θi + ∆θi and

1

2
∥∆θ ∥2

2
≤ δθ ,max or

perturbations ∆cm,∆cp,∆cr such that ĉm = cm + ∆cm , ĉp = cp + ∆cp , ĉr = cr − ∆cr , and
1

2
∥∆c∥2

2
≤

δc ,max . Note the negative sign in ĉr . This deviates slightly from our convention above, but it also

helps to simplify later calculations in some ways, and it does not ultimately change the results. In

our computations in the rest of the paper, we use θ1 = θ2 = 1, θ3 = 2, cm = cp = 5, and c2r = 10. The

1

2
constant in (102) does not change the mathematical properties of the optimization, but it, too,

simplifies some of the calculations used later in this paper; see Appendix A for these calculations.

3 DYNAMIC OPTIMIZATION
3.1 Model Formulation
We now bring hypergames to bear on a Model Predictive Control (MPC) problem, where the control

objective is to minimize a cost function subject to state dynamics constraints and operational

constraints over a time horizon of length τ :

min

ut

τ∑
t=1

J
(
ut , xt ,θ

)
(103)

xt = f
(
xt−1, ut ,α t , β

)
(104)

xτ − x0 = 0 (105)

g
(
xt , ut ,α t , β

)
≤ 0 (106)

where ut are the control decision variables, xt are the states of the system, α t
are the system

disturbances, and β are the model parameters. We assume that β and α t
can be affected by

adversarial perturbations. The attacker can either perturb the defender’s perception of parameters

β to maximize cost (‘Static Attack’) or perturb the defender’s perception of α t
to maximize cost

(’Dynamic Attack’). The perturbations denoted ∆β , and ∆α t
are bounded by constraints, normalized

as appropriate if they have different orders of magnitude; such constraints are then with respect to

relative perturbations on those parameters.

∆β

β
≡

[
∆β1
β1

∆β2
β2
. . .

]T
(107)
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1

2





∆ββ 



2 ≤ δβ ,max (108)

1

2

τ∑
t=1

∥∆α t ∥2 ≤ δα ,max (109)

The static attack problem is

max

∆β

τ∑
t=1

J (ut , xt ,θ ) (110)

1

2





∆ββ 



2 ≤ δβ ,max (111)

xt = f
(
xt−1, ut ,α t , β

)
(112)

x̂0 = x0 (113)

subject to

min

ut

τ∑
t=1

J (ut , x̂t ,θ ) (114)

x̂t = f
(
x̂t−1, ut ,α t , ˆβ

)
(115)

x̂τ − x̂0 = 0 (116)

g
(
x̂t , ut ,α t , ˆβ

)
≤ 0 (117)

This is a second level hypergame where p (D, β) = ˆβ , β . The defender optimization is with

respect to perceived values, not real values; the attacker perturbations mean thatp
(
D, xt

)
= x̂t , xt

even though the attacker does not directly manipulate the state variables. The static attack problem

has the attacker choose a deterministic strategy over ∆β values, while the attacker chooses a

deterministic strategy over ∆α t
values in the dynamic attack; in both cases the defender chooses a

deterministic strategy over ut values.

max

∆α t

τ∑
t=1

J
(
ut , xt ,θ

)
(118)

1

2

∑
t



∆α t


2 ≤ δα ,max (119)

xt = f
(
xt−1, ut ,α t , β

)
(120)

x̂0 = x0 (121)

subject to
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min

ut

τ∑
t=1

J
(
ut , x̂t ,θ

)
(122)

x̂t = f
(
x̂t−1, ut , α̂ t , β

)
(123)

x̂τ − x̂0 = 0 (124)

g
(
x̂t , ut , α̂ t , β

)
≤ 0 (125)

This, similarly, is a second level hypergame where p
(
D,α t ) = α̂ t , α t

. As before, we could

consider many variations on the dynamic and static attacks, but we will only look at these two

scenarios here.

3.2 Analytical Results
The analytical results derived for the static optimization problem are applicable here as well. If

the dynamic optimization is convex, there are analogous results for perturbations to θ , and it can

similarly be shown that constraint perturbations (to β and α t
, in this case) cannot exhibit the same

kind of local robustness as objective function perturbations.

3.3 Test Problem
Our MPC test problem is a single-zone HVAC system with a fan, heater, and chiller. The objective

is to minimize power consumption subject to physical constraints (e.g., the zonal temperature

evolution) and operational constraints (e.g., remaining within comfort-defined temperature limits).

The baseline optimal control problem for the system is

min

τ∑
t=1

[
θ1m

t + θ2
(
mt )2 + νhcpmt (T t

i − dtT t
0
−
(
1 − dt

)
T t
n
)

+νncpm
t (T t

s ,n −T t
s
)
+ νccpm

t (T t
i −T t

s
) ]

(126)

T t
n = (1 − γ )T t−1

n + βmt (T t
s ,n −T t

n
)
+ γT t

0
+Qt

n (127)

T τ
n −T 0

n = 0 (128)

ml ≤ mt ≤ mu (129)

T t
s ,n −T t

s ≥ 0 (130)

T l
n ≤ T t

n ≤ Tu
n (131)

dl ≤ dt ≤ du (132)

T l
s ,n ≤ T t

s ,n ≤ Tu
s ,n (133)

T t
i − dtT t

0
−
(
1 − dt

)
T t
n ≥ 0 (134)

T t
i −T t

s ≥ 0 (135)

where mt
is the mass flow rate, T t

i is the internal duct temperature, T t
s is the temperature of

the air put out by the chiller, T t
s ,n is the temperature of the air supplied to the zone, T t

n is the

temperature of the zone, and dt is the damper position. All of these are control variables. T t
0
is the

external temperature (set to 25
◦
C in this instantiation of the model); β and γ are scalar parameters

that capture the room thermal properties. Other quantities listed in the problem description are

parameters that are not affected by any adversarial perturbations. See Appendix B for more details.

The fan, heater, and chiller power consumption levels at each time step are

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2018.



Hypergames and Cyber-Physical Security for Control Systems 111:17

θ1m
t + θ2

(
mt )2

(136)

νhcpm
t (T t

i − dtT t
0
−
(
1 − dt

)
T t
n
)
νncpm

t (T t
s ,n −T t

s
)

(137)

νccpm
t (T t

i −T t
s
)

(138)

respectively. In this model, the static pressure is almost constant, and thus we omit it from the

fan component of the model. The static attack manipulates the defender perception of β and γ .
The attacker goal is to maximize power consumption over the entire time horizon given that the

defender observes
ˆβ = β + ∆β and γ̂ = γ + ∆γ and the attacker is constrained by

1

2

[(
∆β

β

)
2

+

(
∆γ

γ

)
2

]
≤ δmax (139)

subject to the defender optimization of the original baseline problem. Because β andγ are of different

magnitudes, using relative perturbations, not absolute ones, avoids some potential problems.We also

highlight the previously mentioned differences between the perceived and actual state variables

values. For example, the true zone temperature, T t
n , and the defender perception of the zone

temperature, T̂ t
n , will evolve according to the equations, respectively,

T t
n = (1 − γ )T t−1

n + βmt (T t
s ,n −T t

n
)
+ γT t

0
+Qt

n (140)

T̂ t
n = (1 − γ̂ ) T̂ t−1

n + ˆβmt
(
T t
s ,n − T̂ t

n

)
+ γ̂T t

0
+Qt

n (141)

There will be a similar discrepancy between T t
i and T̂ t

i . The dynamic attack manipulates the

defender’s perception of T t
0
so that T̂ t

0
= T t

0
+ ∆T t

0
and

1

2

∑
t

(
∆T t

0

)
2

≤ ∆Tmax . As in the static

parameter manipulation case, the defender will misperceive both T t
n and T t

i . The full formulations

for the static and dynamic manipulation problems are provided in Appendix B.

4 COMPUTATIONAL IMPLEMENTATION
The specific calculations to turn each hypergame problem into a tractable nonlinear program (NLP)

are provided in Appendices A and B. We summarize our general approach here. Each hypergame

produces a multi-level optimization problem. To solve this, we write the optimality conditions

of the lower level problems as complementarity conditions. In the case of the fan optimization,

we can transform these complementarity conditions into equality constraints and then solve the

resulting problem as an NLP. For the HVAC problem, we cannot do this, and this leaves us with a

Mathematical Program with Equilibrium Constraints (MPEC) [24]. We can solve the MPEC as a

series of NLPs by relaxing the complementarity constraints and penalizing the relaxation with a

progressively increasing weight. For the work described in this paper, this was both reliable and

efficient. To implement our approach, we derived the necessary optimality conditions by hand,

coded up the NLPs in MATLAB [17], and solved the NLPs using fmincon.

5 RESULTS
5.1 Fan Optimization
Table 1 shows the results for the attacker manipulation of the objective function parameters; power

consumption values in parentheses indicate the power usage perceived by the defender where it

differs from the actual usage. Manipulating the true θi values produced a notable increase in power
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Table 1. Objective Function Manipulation Results (δθ ,max = 0.1)

Case m p ∆θ1 ∆θ2 ∆θ3 Power

Baseline 2.06 3.85 - - - 13.97

True Manipulation 2.02 3.94 0.150 0.303 0.292 16.68

Perception Manipulation 2.29 3.38 -0.090 -0.411 0.151 14.26 (12.42)

Faulty Defender Anticipation 1.95 4.16 - - - 14.08 (14.71)

Double-Bluff Manipulation 1.89 4.42 0.00684 0.259 -0.358 14.30 (13.76)

consumption compared with the baseline. Manipulating defender perceptions, though, proved less

effective. For example, when the attacker manipulated the perceptions of an unsuspecting defender

(Perception Manipulation), the gap between the perceived and actual power usage was noticeable,

but the actual increase in power relative to the baseline case was small. Similarly, if the defender

erroneously thought that the attacker was manipulating the perceived values of θi (Faulty Defender
Anticipation), the true power usage was almost identical to the baseline case, though the perceived

power consumption was somewhat higher. When manipulating the defender’s perceptions, the

attacker got the defender to increasem and decrease p (relative to the baseline case) by decreasing

the perceived value of θ1 and θ2 (∆θ1 < 0, ∆θ2 < 0) and increasing the perceived value of θ3
(∆θ3 > 0). This approach is more beneficial for the attacker than decreasingm and increasing p
because the objective is quadratic inm but only linear in p. In the double-bluff situation, however,

the defender expects the attacker to employ this optimal strategy, and so the attacker does the

exact opposite (i.e., encourages the defender to increase p and decreasem), which provides a slight

additional benefit over the simple manipulation case.

Fig. 1. Visualization of ‘Perception Manipulation’ attack.

Fig. 1 shows the ‘Perception Manipulation’ case and why it produces so little payoff for the

attacker. The perceived objective function contours are essentially a rotated version of the original

objective function contours. That rotation, produced by changes in the relative magnitudes of the θi
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parameters, produces a perceived (i.e., false) optimum point that is noticeably different from the true

optimum point. However, even a significant difference in the solution location does not translate

to a large difference in the true objective function value because neither the constraint nor the

objective function contours have large curvatures near the true optimum – most of the translation

between the two points is parallel to the contours of the true objective function. Manipulating

constraints gave the attacker more options than manipulating the objective function parameters.

As Table 2 shows, constraint manipulation was also much more effective as an attacker strategy. For

example, when the attacker attempted to maximize power consumption against a defender who did

not believe an attack was underway (Power Max, Normal), the attacker was able to increase power

consumption by almost 30% compared with the baseline. Attempting to maximize the constraint

violation (Break System, Normal) resulted in a significant level of violation, too.

Table 2. Constraint Manipulation Results (δc ,max = 0.1)

Attacker Action Defender Belief m p Power Violation

No Attack Normal 2.06 3.85 13.97 -

Power Max Normal 2.59 4.22 17.76 -

No Attack Power Max 1.57 3.37 10.79 4.92

No Attack Break System 2.59 2.24 17.76 -

Break System Power Max 1.17 2.78 8.11 4.85

Power Max Break System 3.16 4.53 22.21 -

Break System Normal 1.58 3.36 10.79 2.20

Power Max (Double-Bluff) Power Max 2.16 3.94 14.71 0.406

Break System (Double-Bluff) Break System 2.05 3.87 13.97 0.003

Table 3. Constraint Manipulation Results (δc ,max = 0.1)

Attacker Action Defender Belief ∆cm ∆cp ∆cr
Power Max Normal 0.301 0.097 0.316

Break System Power Max -0.285 -0.137 -0.316

Power Max Break System 0.301 0.097 0.316

Break System Normal -0.285 -0.137 -0.316

Power Max (Double-Bluff) Power Max 0.419 0.157 0.000

Break System (Double-Bluff) Break System -0.295 -0.113 -0.316

In the case of constraint manipulations, there were also major consequences for wrongly antici-

pating an attack. Anticipating a power maximization attack when there was no attack resulted in

a worse constraint violation than when the attacker was deliberately trying to break the system.

Conversely, anticipating a ‘break system’ attack when the actual attack was a ‘power max’ attack

led to an increase in power consumption of almost 60% compared with the baseline. Note that in

these false anticipations, the attacker is assuming that the defender is just playing normally (i.e.,

the attacker is not taking advantage of the defender’s mistake). The double-bluff strategies did not

provide much benefit to the attacker, though. Table 3 also shows the perturbations used by the

attacker. We can see that the attacker strategies for maximizing power consumption and breaking

the system are almost exactly mirror opposites, which makes sense.

The double-bluff strategies are not that much different than the regular strategies that they

correspond to, though, so it is not surprising that the double-bluff approach is not very effective.
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Switching attack modes would be a better option if the defender is anticipating an attack, and

though we did not calculate this here, it would be possible to calculate an optimal attack for one

mode given that the defender is expecting the other mode. Given how the two modes produce

almost exactly opposite attacker strategies, the attacker strategy would likely be quite similar to the

same attack mode employed against an unsuspecting defender. In general, changes in constraint

parameters may result in larger objective function changes than changes in objective function

parameters for two reasons. Firstly, the changes in constraints will be multiplied by the dual

variables (Lagrange or Kuhn-Tucker) associated with those constraints to produce a final change

in the objective function. Secondly, changing constraint values may result in the active set at the

optimum also changing, and that could produce large, nonlinear changes in the objective function.

All in all, this likely makes constraint manipulation a much more attractive target for a would-be

attacker than objective function manipulation.

5.2 Single-Zone HVAC Control

Fig. 2. Baseline temperature results.

In the baseline case, and for all of the adversarial perturbations,mt
and dt were both at their

lower bounds for the entire optimization. Fig. 2 shows the defender strategy in more detail for

different optimization horizon lengths. There, we see that the defender essentially allows the zone

to evolve without manipulation until the last time step. Because T t
0
> T t

n , this means that the zone

warms over time, but because γ is very small, this happens slowly. At the last time step, the defender

then chills the zone back to the initial temperature. We can see this in the sudden drop in T t
s at the

end of each time horizon; note that the optimization producesT t
s = T

t
s ,n for each optimization. This

general behaviour is seen when the attacker manipulates defender perceptions, too. The longer the

optimization time horizon, the larger the drop in T t
s at the last time step. If the length of the time

horizon were increased sufficiently, eventually the system would require multiple steps of cooling,

because T t
s would hit its lower bound. T t

n never hit its upper bound, but if it did, this would also

require additional cooling prior to the end of the optimization horizon.

Table 4 shows that manipulating the defender’s perception of β and γ resulted in small power

increases, relative to the baseline, and small discrepancies between the actual and perceived power

use. The perturbations themselves also change slightly as the length of the time horizon changes;
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Table 4. Static Parameter Manipulation Results (δmax = 0.1)

5-step 10-step 20-step

Baseline Power 14.76 29.48 58.77

Actual Power 15.08 30.27 60.95

Defender Perceived Power 15.00 29.97 59.80

∆β -1.81e-3 -1.84e-3 -1.94e-3

∆γ 1.64e-5 1.52e-5 9.74e-6

λmean 367 370 383

there is a greater emphasis on ∆β as the time horizon gets longer. In this model, β essentially

measures how hard it is to change the zone temperature with the HVAC system. Setting ∆β < 0

makes the defender think that the zone is harder to adjust than it actually is. The γ parameter then

captures the heat transfer between the zone and the outside environment. Setting ∆γ > 0 makes

the defender think that there is more heat transfer than there actually is. All of this combines to

increase the amount of cooling that the defender thinks is necessary at the end. The ∆T plots in

Figs. 3a and 3b show this kind of behaviour: the defender thinks that the temperatures are higher

than they actually are and therefore overcompensates at the end. This overcompensation leads to

an increase in power use and a final T t
n value that is actually slightly lower than it should be.

Next, we can look at the λmean values given in Table 4. λmean is the average of the Lagrange

multipliers associated with (141) and therefore provides a measure of how the ∆β and ∆γ perturba-

tions get multiplied. This value increases as the time horizon lengthens, which makes sense: as the

time horizon lengthens, the importance of the thermal evolution process increases. An attacker

perturbing β and γ would want this value to be as large (positive or negative) as possible.

(a) Static attack. (b) Dynamic attack.

Fig. 3. Temperature deviations, ∆T =
(
Ttrue −Tperceived

)
.

Table 5 shows that manipulating T t
0
provided a much larger increase in power consumption as

well as a larger difference between the perceived and actual power consumption. λmean is also

much smaller, and these phenomena are related. The static parameters could only affect the power

consumption indirectly through the temperature evolution equation. T t
0
, however, shows up in
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Table 5. Dynamic Attack Results (∆Tmax = 0.1n for n-step problem)

5-step 10-step 20-step

Baseline Power 14.76 29.48 58.77

Actual Power 16.35 32.85 65.68

Defender Perceived Power 15.58 31.20 62.27

λmean 219 218 216

Fig. 4. Dynamic parameter manipulation temperature perturbations.

Table 6. Power Consumption Comparisons relative to Baseline (%)

5-step 10-step 20-step

Static Attack (Perceived) 1.6 1.7 1.8

Static Attack (Actual) 2.2 2.7 3.7

Dynamic Attack (Perceived) 5.6 5.8 6.0

Dynamic Attack (Actual) 10.1 11.4 11.8

the objective function and another constraint in addition to the temperature evolution equation,

so increasing λmean becomes less important. In this case, misperceptions of T t
i and T t

n become

smaller (see Figs. 3a and 3b) and less important to the attacker. Instead, the attacker uses ∆T t
0
> 0

to get the defender to increase T t
i , and thus the defender ends up engaging the heater (because

T t
i − dtT t

0
−
(
1 − dt

)
T t
n > 0 even though T̂ t

i − dtT̂ t
0
−
(
1 − dt

)
T̂ t
n = 0) as well as the chiller. The

perturbations themselves follow a clear pattern, as shown in Fig. 4. They increase very slightly over

time until the last time step, at which point they drop to nearly zero. The last step is less valuable

to the attacker because there are no more thermal evolution steps left in the optimization at that

point. Table 6 provides an overall summary of the power consumption results. Generally speaking,

the relative payoff for the attacker increases with the length of the time horizon. The actual power

consumed in the static attack scenario, relative to the baseline, is roughly proportional to the length

of the time horizon, but the other three cases in Table 6 all seem to plateau.
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6 DISCUSSION
6.1 Stuxnet-like Attacks and Hypergames
In this paper, we showed how an attacker with system access and knowledge could manipulate

the optimization processes of that system. These problems were relatively small but showed how

the analysis works. Hypergames are about strategic interactions when there are misperceptions

and/or information asymmetries. In this case, we were able to show how those asymmetries or

misperceptions could affect system performance. For example, getting the defender to respond to a

non-existent threat could actually prove to be a very effective attacker strategy. Conversely, it is

possible for the defender system to have a natural robustness to perturbations (though that was

not the case in these test problems). We could consider more complex interactions, and we intend

to do so in future work, but that future work will need to build upon the basics outlined here.

When we look at Stuxnet as a motivating example for this work, we can see that there are many

similarities as well as some key differences between Stuxnet and the cases considered here. In

both Stuxnet and our case studies, the attacker employed limited deviations to avoid detection; we

modelled this using the concept of an attacker budget. Both also involved fake sensor signals (∆T t
0
)

and manipulated calibration values (∆θ , ∆c, ∆β , ∆γ ). Our examples each had two different kinds

of attack modes, and for the fan optimization, there were two different attack objectives for one

of the modes, but these all involved negatively impacting the defender’s control system in some

way. Finally, Stuxnet and the attacks considered in this paper all utilized deep knowledge of an

automated decision-making system to determine how to perform the attack.

There are two primary sets of differences between this paper’s case studies and Stuxnet. Firstly,

to the best of our knowledge, Stuxnet was not optimization-based, and the centrifuge control

systems did not employ optimal control, so the decision-making processes for both the attacker

and the defender were different than in our paper. Secondly, Stuxnet actually overrode the control

signals and software to manipulate the centrifuges [5], whereas our attacks only altered sensor and

calibration data. If we were trying to model the Stuxnet attack itself, these discrepancies would

be problematic. Given the more general nature of our investigation here, though, this is less of an

issue, and the key similarities identified above are ones we believe to be relevant to a wide range of

control systems that might be threatened by cyber attacks in general and APTs in particular.

6.2 Scalability Considerations
A big question in applying these techniques to real-world problems is scalability. These problems

were relatively small; even the 20-step HVAC problem had only 120 variables (six per time step) in

the baseline problem. How easy would it be to propagate the optimality conditions and solve the

resulting MPECs for larger systems? The answer has two parts. Firstly, if the optimality conditions

are necessary but not sufficient, as in general continuous NLP problems, propagating the optimality

conditions to turn the multi-level optimization into an MPEC may run into difficulties; multiple

optima would be one example of this. That being said, the single-zone HVAC system presented here

was a nonconvex problem, and it had no such problems. If there are more than two levels to the

optimization, that can also cause difficulties, as the lower level optimality conditions compound.

This then leads into the question of tractability. Adding the dual variables of lower level opti-

mizations to the problem description in order to solve the system as an MPEC can greatly increase

the number of variables involved; having multiple levels may exacerbate the issue. However, it is

sometimes possible to simplify the optimality conditions and thereby remove some of the dual

variables (as was done for the fan optimization problem). The NLP sequential relaxation of the

MPEC also scales well and handles the complementarity constraints efficiently. On the whole,

the scalability of this approach will depend on the problem in question and how many levels of
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(mis)perception are of interest. Hypergames where the individual players’ games are differentiable,

convex optimization problems are likely to have the greatest amount of success with this approach.

Problems with known or constant active constraint sets will also generally be more amenable to

the multi-level optimizations than problems with varying active sets.

6.3 Future Work
Some authors writing on Stuxnet suggest the use of heuristics to identify attacks [2, 14]. One area

of future work would be to take existing research on learning in repeated hypergames [6, 32]

and apply it to this context. For this, we would consider the defender’s ability to detect attacks

as well as the attacker’s behaviour when the non-detection constraint is endogenous rather than

exogenous; the attacker budget imposed here would be an example of an exogenous detection

constraint. Another area of interest would be the defender’s decision-making more generally. Given

the possibility of attack and the potential consequences (as calculated in this paper), how should a

defender respond if an attack is undetectable beforehand? Hypergame results here should enable

us to to evaluate and prescribe control policies more broadly. Finally, we intend to extend this work

to larger, real-world systems. Working on such systems may then also involve more complicated

attacker manipulations, but we anticipate being able to use the same techniques demonstrated here.

7 CONCLUSIONS
In this paper, we showed how hypergames can be extended to situations with continuous and time-

varying variables. That extension allowed us to consider the effects of adversarial perturbations in

an optimal control context, which can give us insights into the control aspects of a Stuxnet-like

attack. Manipulating constraints can be amore effective attacker strategy than directly manipulating

objective function parameters; our analytical results showed why we would expect this to be true

more generally. Moreover, the attacker need not change the underlying system in any way to attack

successfully – it may be sufficient to deceive the defender controlling the system. It is possible to

scale our approach up to larger systems, but the ability to do so will depend on the characteristics

of the system in question, and we identified several characteristics that will make larger systems

amenable to hypergame analysis.
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A STATIC FAN OPTIMIZATION CALCULATIONS
A.1 Baseline Problem
The baseline defender optimization is

min

m,p
θ1m + θ2m

2 + θ3p (142)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
≤ 0 (143)

Note that we include the 1/2 factor in the constraint to cancel out factors of 2 that appear when

taking the derivative of that constraint. The objective function and inequality constraint are both

convex functions, so the optimization is a convex problem and the KKT conditions are necessary

and sufficient to define problem optima. If we define the Lagrangian as L and use λ as the dual

variable associated with the inequality constraint, we get the following optimality conditions:

∂L

∂m
= θ1 + 2θ2m + (m − cm) λ = 0 (144)

∂L

∂p
= θ3 +

(
p − cp

)
λ = 0 (145)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
λ = 0 (146)

For these equations to be satisfied, λ , 0. Since λ ≥ 0, this ensures that p < cp . Moreover, if cr is
sufficiently small,m > 0, and thusm < cm . We can then get rid of λ by substitution, and we are left

with

(
p − cp

)
(θ1 + 2θ2m) − (m − cm)θ3 = 0 (147)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
= 0 (148)

A.2 Objective Function Manipulation
A.2.1 Attacker Manipulates True/Physical Properties and Defender Knows. The min-max problem is

min

m,p
max

∆θi
(θ1 + ∆θ1)m + (θ2 + ∆θ2)m

2 + (θ3 + ∆θ3)p (149)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
≤ 0 (150)

1

2

∑
i

∆θ 2i ≤ δθ ,max (151)

We can use the attacker’s KKT conditions to transform the min-max problem into a pure

optimization problem. Define L as the Lagrangian and σ as the dual variable associated with the

attacker budget constraint. Then
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∂L

∂∆θ1
=m − σ∆θ1 = 0 ⇒ ∆θ1 =

1

σ
m (152)

∂L

∂∆θ2
=m2 − σ∆θ2 = 0 ⇒ ∆θ2 =

1

σ
m2

(153)

∂L

∂∆θ3
= p − σ∆θ3 = 0 ⇒ ∆θ1 =

1

σ
p (154)

For finite ∆θi , we require σ , 0. Since we know, by definition, that σ ≥ 0, then σ > 0. We can

therefore parameterize the attacker’s decisions in terms of τ = 1/σ :

min

m,p
max

τ
(θ1 +mτ )m +

(
θ2 +m

2τ
)
m2 + (θ3 + pτ )p (155)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
≤ 0 (156)

1

2

τ 2
(
m2 +m4 + p2

)
≤ δθ ,max (157)

Given that the last constraint will always be active (σ , 0), we can solve for τ :

τ =

[
2δθ ,max

m2 +m4 + p2

] 1

2

(158)

We are then left with the following defender optimization:

min

m,p
θ1m + θ2m

2 + θ3p +
[
2δθ ,max

(
m2 +m4 + p2

) ] 1

2

(159)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
≤ 0 (160)

A.2.2 Attacker Manipulates Defender Perceptions, Defender Unaware. The attacker is solving the
problem

max

∆θi
θ1m + θ2m

2 + θ3p (161)

1

2

∑
i

∆θ 2i ≤ δθ ,max (162)

subject to the defender optimization

min

m,p
(θ1 + ∆θ1)m + (θ2 + ∆θ2)m

2 + (θ3 + ∆θ3)p (163)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
≤ 0 (164)

The optimality conditions of the defender problem are the same as in the baseline case except

that we replace θi with ˆθi = θi + ∆θi :
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(
p − cp

) (
ˆθ1 + 2 ˆθ2m

)
− (m − cm) ˆθ3 = 0 (165)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
= 0 (166)

This then results in the optimization problem for the attacker:

max

∆θi ,m,p
θ1m + θ2m

2 + θ3p (167)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
= 0 (ρ) (168)

1

2

∑
i

∆θ 2i ≤ δθ ,max (µ) (169)(
p − cp

) (
ˆθ1 + 2 ˆθ2m

)
− (m − cm) ˆθ3 = 0 (λ) (170)

where the dual variable for each constraint is shown in brackets next to that constraint. We can

solve this directly as an optimization, but we can also use the optimality conditions to calculate

∆θi . Define L as the optimization’s Lagrangian. Then

∂L

∂∆θ1
= −µ∆θ1 +

(
p − cp

)
λ = 0 (171)

∂L

∂∆θ2
= −µ∆θ2 + 2

(
p − cp

)
mλ = 0 (172)

∂L

∂∆θ3
= −µ∆θ3 − (m − cm) λ = 0 (173)

If we use τ = λ/µ, we get

∆θ1 = τ
(
p − cp

)
(174)

∆θ2 = 2τ
(
p − cp

)
m (175)

∆θ3 = −τ (m − cm) (176)

τ =

[
2δθ ,max(

p − cp
)
2

+
(
2

(
p − cp

)
m
)
2

+ (m − cm)
2

] 1

2

=

[
2δθ ,max

4

(
p − cp

)
2

m2 + c2r

] 1

2

(177)

We know that µ > 0, but in principle λ could be positive or negative. When we solve the

optimization directly (using the parameter values specified in the main body of the paper), we

find that λ > 0. Given that p − cp < 0 andm − cm < 0, this means that the attacker decreases the

defender-perceived values of θ1 and θ2 while raising the defender-perceived value of θ3. This in
turn results in an increased value ofm and a decreased value of p (relative to the unperturbed case).

The case where λ < 0 would correspond to the opposite behaviour.

Both options produce local maxima, for the attacker, but in general, we would expect the λ > 0

option to produce a higher payoff: the objective is linear in p but quadratic inm, so increasingm
would often provide a greater payoff than increasing p. We do not have a proof delineating when

this is the case, but we would expect this not to be the case only for small values of θ1 and θ2
(relative to θ3). For the cm , cp , cr , and δθ ,max values considered in this paper, we can empirically
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verify that for θ1 ∈ [0.5, 3.5], θ2 ∈ [0.5, 3.5], and θ3 ∈ [0.5, 3.5], the λ > 0 option provides a larger

attacker payoff. This domain encompasses all of the true θi values that an attacker could manipulate

to produce the
ˆθi values observed by the defender. Since the defender knows the attacker budget, if

the defender believes that the attacker is attempting to perturb θi , the defender can know that the

attacker is employing the attack where τ > 0.

A.2.3 Attacker Manipulates Defender Perceptions, Defender is Aware. Using the results from the

previous section, the defender can reverse engineer the true θi values from the perceived values

ˆθi if the defender is aware of an attack. The defender believes that
ˆθi has been calculated by an

attacker solving the problem in Appendix A.2.2. Therefore the defender’s optimization is

min

m,p

(
ˆθ1 − ∆θ1

)
m +

(
ˆθ2 − ∆θ2

)
m2 +

(
ˆθ3 − ∆θ3

)
p (178)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
≤ 0 (179)

∆θ1 = τ
(
p̂ − cp

)
(180)

∆θ2 = 2τ
(
p̂ − cp

)
m̂ (181)

∆θ3 = −τ (m̂ − cm) (182)

τ =

[
2δθ ,max

4

(
p̂ − cp

)
2

m̂2 + c2r

] 1

2

(183)

1

2

[
(m̂ − cm)

2 +
(
p̂ − cp

)
2

− c2r

]
= 0 (184)(

p̂ − cp
) (

ˆθ1 + 2 ˆθ2m̂
)
− (m̂ − cm) ˆθ3 = 0 (185)

where m̂ and p̂ are the decision variable values that the defender thinks that the attacker expects

the defender to employ. Note that it is possible to solve

1

2

[
(m̂ − cm)

2 +
(
p̂ − cp

)
2

− c2r

]
= 0 (186)(

p̂ − cp
) (

ˆθ1 + 2 ˆθ2m̂
)
− (m̂ − cm) ˆθ3 = 0 (187)

once with the known
ˆθi values and then use those to calculate ∆θi – these do not depend onm

or p. Once this calculation has been performed, we are left with the original convex defender

optimization problem.

A.2.4 Attacker Manipulates Defender Perceptions, Defender is Aware, Attacker Knows that Defender
is Aware. This problem leads us to a multi-level optimization problem. At level 1, we have the

attacker optimization

max

∆θi
θ1m + θ2m

2 + θ3p (188)

1

2

∑
i

∆θi ≤ δθ ,max (189)

ˆθi = θi + ∆θi (190)
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At the next level (level 2), we have the defender optimization. The defender performs his op-

timization based on the belief that the values he perceives,
ˆθi has been perturbed by an attacker

solving the problem in Appendix A.2.2. Therefore the defender’s optimization is

min

m,p

(
ˆθ1 − ∆ ˆθ1

)
m +

(
ˆθ2 − ∆ ˆθ2

)
m2 +

(
ˆθ3 − ∆ ˆθ3

)
p (191)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
≤ 0 (192)

∆θ1 = τ
(
p̂ − cp

)
(193)

∆θ2 = 2τ
(
p̂ − cp

)
m̂ (194)

∆θ3 = −τ (m̂ − cm) (195)

τ =

[
2δθ ,max

4

(
p̂ − cp

)
2

m̂2 + c2r

] 1

2

(196)

1

2

[
(m̂ − cm)

2 +
(
p̂ − cp

)
2

− c2r

]
= 0 (197)(

p̂ − cp
) (

ˆθ1 + 2 ˆθ2m̂
)
− (m̂ − cm) ˆθ3 = 0 (198)

The defender’s optimality conditions (level 2) are then:

1

2

[
(m̂ − cm)

2 +
(
p̂ − cp

)
2

− c2r

]
= 0 (199)(

p̂ − cp
)
[(θ1 + ∆θ1) + 2 (θ2 + ∆θ2)m̂] − (m̂ − cm) (θ3 + ∆θ3) = 0 (200)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
= 0 (201)(

p − cp
) [ (

θ1 + ∆θ1 − τ
(
p̂ − cp

) )
+ 2

(
θ2 + ∆θ2 − 2

(
p̂ − cp

)
m̂τ

)
m
]

− (m − cm) (θ3 + ∆θ3 + τ (m̂ − cm)) = 0 (202)

τ =

[
2δθ ,max

4

(
p̂ − cp

)
2

m̂2 + c2r

] 1

2

(203)

The attacker’s optimization (level 1) is then

max

∆θi
θ1m + θ2m

2 + θ3p (204)

1

2

∑
i

∆θi ≤ δθ ,max (205)

1

2

[
(m̂ − cm)

2 +
(
p̂ − cp

)
2

− c2r

]
= 0 (206)(

p̂ − cp
)
[(θ1 + ∆θ1) + 2 (θ2 + ∆θ2)m̂] − (m̂ − cm) (θ3 + ∆θ3) = 0 (207)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
= 0 (208)
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(
p − cp

) [ (
θ1 + ∆θ1 − τ

(
p̂ − cp

) )
+ 2

(
θ2 + ∆θ2 − 2

(
p̂ − cp

)
m̂τ

)
m
]

− (m − cm) (θ3 + ∆θ3 + τ (m̂ − cm)) = 0 (209)

τ =

[
2δθ ,max

4

(
p̂ − cp

)
2

m̂2 + c2r

] 1

2

(210)

The attacker optimization may not be convex, but each ∆θi value corresponds to a single

(m̂, p̂,m,p) tuple. We can show by via a sequential analysis. The equations

1

2

[
(m̂ − cm)

2 +
(
p̂ − cp

)
2

− c2r

]
= 0 (211)(

p̂ − cp
)
[(θ1 + ∆θ1) + 2 (θ2 + ∆θ2)m̂] − (m̂ − cm) (θ3 + ∆θ3) = 0 (212)

define a unique solution (m̂, p̂) to an instance of the unaware defender optimization. By the logic

employed in the previous section, we can calculate ∆ ˆθi values from that, which then in turn defines

m and p as the unique solution to

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
= 0 (213)(

p − cp
) [ (

θ1 + ∆θ1 − τ
(
p̂ − cp

) )
+ 2

(
θ2 + ∆θ2 − 2

(
p̂ − cp

)
m̂τ

)
m
]

− (m − cm) (θ3 + ∆θ3 + τ (m̂ − cm)) = 0 (214)

τ =

[
2δθ ,max

4

(
p̂ − cp

)
2

m̂2 + c2r

] 1

2

(215)

A.3 Constraint Manipulation
In this section, for the sake of simplicity, we assume that the attacker is only manipulating the

constraint parameters (not the objective function parameters). These constraint manipulations take

the form of

ĉm = cm + ∆cm (216)

ĉp = cp + ∆cp (217)

ĉr = cr − ∆cr (218)

The attacker is also subject to an attack budget of

1

2

(
∆c2m + ∆c

2

p + ∆c
2

r

)
=

1

2

∑
i

∆c2i ≤ δc ,max (219)

A.3.1 Attacker Manipulates Defender Perceptions, Defender Unaware. The attacker’s optimization

is

max

∆ci
θ1m + θ2m

2 + θ3p (220)

1

2

∑
i

∆c2i ≤ δc ,max (221)
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subject to the defender optimization

min

m,p
θ1m + θ2m

2 + θ3p (222)

1

2

[
(m − cm − ∆cm)

2 +
(
p − cp − ∆cp

)
2

− (cr − ∆cr )
2

]
≤ 0 (223)

The defender optimality conditions are

(
p − cp − ∆cp

)
(θ1 + 2θ2m) − (m − cm − ∆cm)θ3 = 0 (224)

1

2

[
(m − cm − ∆cm)

2 +
(
p − cp − ∆cp

)
2

− (cr − ∆cr )
2

]
= 0 (225)

and we are left with the attacker optimization

max

δi
θ1m + θ2m

2 + θ3p (226)

1

2

∑
i

∆c2i ≤ δc ,max (227)(
p − cp − ∆cp

)
(θ1 + 2θ2m) − (m − cm − ∆cm)θ3 = 0 (228)

1

2

[
(m − cm − ∆cm)

2 +
(
p − cp − ∆cp

)
2

− (cr − ∆cr )
2

]
= 0 (229)

A.3.2 Attacker Manipulates Defender Perceptions, Defender is Aware. The defender’s optimization

is

min

m,p
θ1m + θ2m

2 + θ3p (230)

1

2

[
(m − ĉm + ∆cm)

2 +
(
p − ĉp + ∆cp

)
2

− (ĉr + ∆cr )
2

]
≤ 0 (231)

where ĉm , ĉp , and ĉr are the quantities that the defender perceives (which the defender believes

to have been manipulated by the attacker). The true parameter values are unknown, but the ∆ci
values are calculated by solving the attacker problem from the previous section:

max

m̂,p̂,∆ci
θ1m̂ + θ2m̂

2 + θ3p̂ (232)

1

2

∑
i

∆c2i ≤ δc ,max (µ) (233)(
p̂ − cp − ∆cp

)
(θ1 + 2θ2m̂) − (m̂ − cm − ∆cm)θ3 = 0 (σ ) (234)

1

2

[
(m̂ − cm − ∆cm)

2 +
(
p̂ − cp − ∆cp

)
2

− (cr − ∆cr )
2

]
= 0 (ρ) (235)

where the dual variables for each constraint are shown in brackets beside the equation Define L as

the Lagrangian for this problem. The optimality conditions are then
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∂L

∂m̂
= θ1 + 2θ2m̂ − σ

(
2

(
p̂ − cp − ∆cp

)
θ2 − θ3

)
− ρ (m̂ − cm − ∆cm) = 0 (236)

∂L

∂p̂
= θ3 − σ (θ1 + 2θ2m̂) − ρ

(
p̂ − cp − ∆cp

)
= 0 (237)

∂L

∂∆cm
= −µ∆cm − σθ3 + ρ (m̂ − cm − ∆cm) = 0 (238)

∂L

∂∆cp
= −µ∆cp + σ (θ1 + 2θ2m̂) + ρ

(
p̂ − cp − ∆cp

)
= 0 (239)

∂L

∂∆cr
= −µ∆cr − ρ (cr − ∆cr ) = 0 (240)

If we take the first two equations and simplify using ĉi , we get

θ1 + 2θ2m̂ − σ
(
2

(
p̂ − ĉp

)
θ2 − θ3

)
− ρ (m̂ − ĉm) = 0 (241)

θ3 − σ (θ1 + 2θ2m̂) − ρ
(
p̂ − ĉp

)
= 0 (242)

We can set this up to solve for σ and ρ:

[
2

(
p̂ − ĉp

)
θ2 − θ3 m̂ − ĉm

θ1 + 2θ2m̂ p̂ − ĉp

] {
σ
ρ

}
=

{
θ1 + 2θ2m̂

θ3

}
(243)

We can get closed-form expressions for σ and ρ by solving this 2x2 system analytically, and we

can then use these expressions to calculate our ∆ci values in terms of τ = 1/µ:

∆cp = τθ3 (244)

∆cm = τ [ρ (m̂ − ĉm) − σθ3] (245)

∆cr = −τ ρĉr (246)

The constraint on the sum of squared ∆ci values then lets us calculate a value for τ :

τ 2
[
θ 2
3
+ (ρ (m̂ − ĉm) − σθ3)

2 + ρ2ĉ2r
]
= 2δc ,max (247)

τ =

[
2δc ,max

θ 2
3
+ [ρ (m̂ − ĉm) − σθ3]

2 + ρ2ĉ2r

] 1

2

(248)

and thus we have closed-form expressions for the ∆ci values that can then be plugged back into the

original defender optimization without needing to know the true ci values. Note that the defender
can perform these calculations without knowing the true ci ahead of time – it is sufficient to know

ĉi .

A.3.3 Attacker Manipulates Defender Perceptions, Defender is Aware, Attacker Knows that Defender
is Aware. The attacker’s optimization is
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max

∆ci
θ1m + θ2m

2 + θ3p (249)

1

2

∑
i

∆c2i ≤ δc ,max (250)

ĉm = cm + ∆cm (251)

ĉp = cp + ∆cp (252)

ĉr = cr − ∆cr (253)

subject to the defender optimization from the previous section. The optimality conditions for the

defender’s optimization are

(
p − ĉp + ∆ĉp

)
(θ1 + 2θ2m) − (m − ĉm + ∆ĉm)θ3 = 0 (254)

1

2

[
(m − ĉm + ∆ĉm)

2 +
(
p − ĉp + ∆ĉp

)
2

− (ĉr + ∆ĉr )
2

]
= 0 (255)

where

∆ĉp = τθ3 (256)

∆ĉm = τ [ρ (m̂ − ĉm) − σθ3] (257)

∆ĉr = −τ ρĉr (258)

τ =

[
2δc ,max

θ 2
3
+ [ρ (m̂ − ĉm) − σθ3]

2 + ρ2ĉ2r

] 1

2

(259)[
2

(
p̂ − ĉp

)
θ2 − θ3 m̂ − ĉm

θ1 + 2θ2m̂ p̂ − ĉp

] {
σ
ρ

}
=

{
θ1 + 2θ2m̂

θ3

}
(260)(

p̂ − ĉp
)
(θ1 + 2θ2m̂) − (m̂ − ĉm)θ3 = 0 (261)

1

2

[
(m̂ − ĉm)

2 +
(
p̂ − ĉp

)
2

− ĉ2r

]
= 0 (262)

A.3.4 AttackerManipulates Defender to Break System, Defender is Unaware. In this case, the attacker

wants to cause the defender to deviatemaximally from the constraint
1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
≤

0 in the interest of causing a catastrophic failure. The attacker’s optimization is

max

∆ci

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
(263)

1

2

∑
i

∆c2i ≤ δc ,max (264)(
p − cp − ∆cp

)
(θ1 + 2θ2m) − (m − cm − ∆cm)θ3 = 0 (265)

1

2

[
(m − cm − ∆cm)

2 +
(
p − cp − ∆cp

)
2

− (cr − ∆cr )
2

]
= 0 (266)
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A.3.5 AttackerManipulates Defender to Break System, Defender Knows. The defender’s optimization

is

minθ1m + θ2m
2 + θ3p (267)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
≤ 0 (268)

where the defender only observes ĉi and needs to calculate ∆ci . The defender knows that the

attacker is solving the problem

max

∆ci

1

2

[
(m̂ − cm)

2 +
(
p̂ − cp

)
2

− c2r

]
(269)

1

2

∑
i

∆c2i ≤ δc ,max (µ) (270)(
p̂ − cp − ∆cp

)
(θ1 + 2θ2m̂) − (m̂ − cm − ∆cm)θ3 = 0 (σ ) (271)

1

2

[
(m̂ − cm − ∆cm)

2 +
(
p̂ − cp − ∆cp

)
2

− (cr − ∆cr )
2

]
= 0 (ρ) (272)

where the dual variables for each constraint are shown in brackets beside their respective equations.

If we define L as the Lagrangian for that problem, the optimality conditions for this problem are

∂L

∂m̂
= m̂ − cm + σ

(
2θ2

(
p̂ − ĉp

)
+ θ3

)
− ρ (m̂ − ĉm) = 0 (273)

∂L

∂p̂
= p̂ − cp − σ (θ1 + 2θ2m̂) − ρ

(
p̂ − ĉp

)
= 0 (274)

∂L

∂∆cm
= −µ∆cm − σθ3 + ρ (m̂ − ĉm) = 0 (275)

∂L

∂∆cp
= −µ∆cp + σ (θ1 + 2θ2m̂) + ρ

(
p̂ − ĉp

)
= 0 (276)

∂L

∂∆cr
= −µ∆cr − ρĉr = 0 (277)

We can solve for σ , ρ, and τ = 1/µ to get expressions for ∆ci .

∆cm = τ
(
m̂ − cm + 2θ2σ

(
p̂ − ĉp

) )
(278)

∆cp = τ
(
p̂ − cp

)
(279)

∆cr = −τ ρĉr (280){
σ
ρ

}
=

1

−θ3
(
p̂ − ĉp

)
− (m̂ − ĉm) (θ1 + 2θ2m̂)

[
−
(
p̂ − ĉp

)
m̂ − ĉm

θ1 + 2θ2m̂ θ3

] {
m̂ − cm
p̂ − cp

}
(281)

τ =

[
2δc ,max(

m̂ − cm + 2θ2σ
(
p̂ − ĉp

) )
2

+
(
p̂ − cp

)
2

+ ρ2ĉ2r

] 1

2

(282)

Unlike the result in the power maximization case, solving for ∆ci requires knowing ci , not just
ĉi . The defender then has to solve
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minθ1m + θ2m
2 + θ3p (283)

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
≤ 0 (284)

ĉm = cm + τ
(
m̂ − cm + 2θ2σ

(
p̂ − ĉp

) )
(285)

ĉp = cp + τ
(
p̂ − cp

)
(286)

ĉr = cr + τ ρĉr (287){
σ
ρ

}
=

1

−θ3
(
p̂ − ĉp

)
− (m̂ − ĉm) (θ1 + 2θ2m̂)

[
−
(
p̂ − ĉp

)
m̂ − ĉm

θ1 + 2θ2m̂ θ3

] {
m̂ − cm
p̂ − cp

}
(288)

τ =

[
2δc ,max(

m̂ − cm + 2θ2σ
(
p̂ − ĉp

) )
2

+
(
p̂ − cp

)
2

+ ρ2ĉ2r

] 1

2

(289)

(θ1 + 2θ2m̂)
(
p̂ − ĉp

)
− (m̂ − ĉm)θ3 = 0 (290)

1

2

[
(m̂ − ĉm)

2 +
(
p̂ − ĉp

)
2

− ĉ2r

]
= 0 (291)

where ĉi is known. This is actually less complicated than it appears, though. We can calculate m̂
and p̂ only knowing θi and ĉi (which are fixed) and using

(θ1 + 2θ2m̂)
(
p̂ − ĉp

)
− (m̂ − ĉm)θ3 = 0 (292)

1

2

[
(m̂ − ĉm)

2 +
(
p̂ − ĉp

)
2

− ĉ2r

]
= 0 (293)

With m̂ and p̂ known, σ and ρ are just linear functions of ci , and we have another closed-form

expression for τ . We are then left with three equations in three unknowns: solving (285)-(287) for

ci . These unknowns, moreover, do not depend onm or p.

A.4 Attacker Manipulates Defender to Break System, Defender Knows, Attacker
Knows that Defender is Aware

The attacker optimization is

max

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
(294)

1

2

∑
i

∆c2i ≤ δc ,max (295)

ĉm = cm + ∆cm (296)

ĉp = cp + ∆cp (297)

ĉr = cr − ∆cr (298)

subject to the defender optimization

minθ1m + θ2m
2 + θ3p (299)

1

2

[
(m − c̃m)

2 +
(
p − c̃p

)
2

− c̃2r

]
≤ 0 (300)

where
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ĉm = c̃m + τ
(
m̂ − c̃m + 2θ2σ

(
p̂ − ĉp

) )
(301)

ĉp = c̃p + τ
(
p̂ − c̃p

)
(302)

ĉr = c̃r + τ ρĉr (303){
σ
ρ

}
=

1

−θ3
(
p̂ − ĉp

)
− (m̂ − ĉm) (θ1 + 2θ2m̂)

[
−
(
p̂ − ĉp

)
m̂ − ĉm

θ1 + 2θ2m̂ θ3

] {
m̂ − cm
p̂ − cp

}
(304)

τ =

[
2δc ,max(

m̂ − cm + 2θ2σ
(
p̂ − ĉp

) )
2

+
(
p̂ − cp

)
2

+ ρ2ĉ2r

] 1

2

(305)

(θ1 + 2θ2m̂)
(
p̂ − ĉp

)
− (m̂ − ĉm)θ3 = 0 (306)

1

2

[
(m̂ − ĉm)

2 +
(
p̂ − ĉp

)
2

− ĉ2r

]
= 0 (307)

The quantities with tildes on them indicate that these values are what the defender believes to be
the true values. Given that (301)-(307) not depend onm or p, the defender optimality conditions are

(θ1 + 2θ2m)
(
p − c̃p

)
− (m − c̃m)θ3 = 0 (308)

1

2

[
(m − c̃m)

2 +
(
p − c̃p

)
2

− c̃2r

]
= 0 (309)

The full attacker optimization is then

max

1

2

[
(m − cm)

2 +
(
p − cp

)
2

− c2r

]
(310)

1

2

∑
i

∆c2i ≤ δc ,max (311)

ĉm = cm + ∆cm (312)

ĉp = cp + ∆cp (313)

ĉr = cr − ∆cr (314)

ĉm = c̃m + τ
(
m̂ − c̃m + 2θ2σ

(
p̂ − ĉp

) )
(315)

ĉp = c̃p + τ
(
p̂ − c̃p

)
(316)

ĉr = c̃r + τ ρĉr (317){
σ
ρ

}
=

1

−θ3
(
p̂ − ĉp

)
− (m̂ − ĉm) (θ1 + 2θ2m̂)

[
−
(
p̂ − ĉp

)
m̂ − ĉm

θ1 + 2θ2m̂ θ3

] {
m̂ − cm
p̂ − cp

}
(318)

τ =

[
2δc ,max(

m̂ − cm + 2θ2σ
(
p̂ − ĉp

) )
2

+
(
p̂ − cp

)
2

+ ρ2ĉ2r

] 1

2

(319)

(θ1 + 2θ2m̂)
(
p̂ − ĉp

)
− (m̂ − ĉm)θ3 = 0 (320)

1

2

[
(m̂ − ĉm)

2 +
(
p̂ − ĉp

)
2

− ĉ2r

]
= 0 (321)
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B SINGLE-ZONE HVAC CONTROL CALCULATIONS
B.1 Baseline Problem
The baseline problem is a power minimization problem for a heater, chiller, and fan together

affecting a single zone of interest:

min

τ∑
t=1

[
θ1m

t + θ2
(
mt )2 + νhcpmt (T t

i − dtT t
0
−
(
1 − dt

)
T t
n
)

+cpνnm
t (T t

s ,n −T t
s
)
+ νccpm

t (T t
i −T t

s
) ]

(322)

−T t
n + (1 − γ )T t−1

n + βmt (T t
s ,n −T t

n
)
+ γT t

0
+Qt

n = 0

(
λt
)

(323)

T τ
n −T 0

n = 0 (µτ ) (324)

mt −ml ≥ 0

(
σ t
m,l

)
(325)

mu −mt ≥ 0

(
σ t
m,u

)
(326)

T t
s ,n −T t

s ≥ 0

(
σ t
s
)

(327)

T t
n −T l

n ≥ 0

(
σ t
l
)

(328)

Tu
n −T t

n ≥
(
σ t
u
)

(329)

dt − dl ≥ 0

(
σ t
d ,l

)
(330)

du − dt ≥ 0

(
σ t
d ,u

)
(331)

T t
s ,n −T l

s ,n ≥ 0

(
σ t
snl

)
(332)

Tu
s ,n −T t

s ,n ≥ 0

(
σ t
snu

)
(333)

T t
i − dtT t

0
−
(
1 − dt

)
T t
n ≥ 0

(
σ t
in
)

(334)

T t
i −T t

s ≥ 0

(
σ t
is
)

(335)

where the quantities in brackets after each equation are the dual variables corresponding to those

equations. Descriptions of the model variables and the model parameters are given in Tables 7

and 8, respectively. This is a single-zone version of a multi-zone HVAC model. The goal of the

system is to manage the temperature in that single zone. To do this, it takes in a mixture of air

from the zone and from the environment, heats that air (if necessary) at a central heating unit,

cools the air (if necessary) with a chiller, and uses a fan to send the air through HVAC ducting. In a

multi-zone model, there would be a local heater for each zone to provide any zone-specific heating;

for our single-zone model, we retain the local heater in the interest of maintaining the same model

structure.

All of the other parameters with l or u in them correspond to lower or upper bounds on their

respective variables.

At each time step t , the fan consumes power θ1m
t + θ2

(
mt )2

to move air through the sys-

tem, the chiller consumes power νccpm
t (T t

i −T t
s
)
, and the central heating unit consumes power

νhcpm
t (T t

i − dtT t
0
−
(
1 − dt

)
T t
n
)
and the zonal heater consumes power cpνnm

t (T t
s ,n −T t

s
)
. Most

of the constraints are variable upper and lower bounds or physical constraints on the system (e.g.,

the temperature evolution of the room, the heater outputting air that is at least as warm as the air

it takes in). However, there is an endpoint constraintT τ
n = T

0

n that is essentially a design constraint:

at the end of the optimization horizon, the zone needs to be at the same temperature it was at
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Table 7. HVAC Control Variables

Quantity Description

mt
Mass flow rate

T t
i Temperature of air put out by central heating unit

dt Fraction of HVAC input air coming from environment

T t
n Zone temperature

T t
s ,n Temperature of air supplied to zone

T t
s Output air temperature of chiller

Table 8. HVAC Model Parameters

Quantity Value Description

θ1 0.1 Fan power consumption parameter

θ2 0.1 Fan power consumption parameter

νh ,νn ,νc 0.99 Heater and chiller efficiencies

cp 1 Specific heat of air

T t
0

25 Environment air temperature at time t
β 0.0045 Parameter describing temperature evolution

γ 8.4e-6 Parameter describing temperature evolution

Qt
n 0 Thermal load at time t
τ varies Length of optimization horizon

dl ,du 0.2, 0.5 Lower and upper bounds on dt

ml ,mu 3.93, 13.1 Lower and upper bounds onmt

T l
n ,T

u
n 21.1, 23.9 Lower and upper bounds on T t

n
T l
s ,n ,T

u
s ,n 12.7, 35 Lower and upper bounds on T t

s ,n

the beginning of the horizon. If we define the Lagrangian for this problem as L, the optimality

conditions for this problem are

∂L

∂mt = θ1 + 2θ2m
t + νhcp

(
T t
i − dtT t

0
−
(
1 − dt

)
T t
n
)
+ cpνn

(
T t
s ,n −T t

s
)
+ νccp

(
T t
i −T t

s
)

+λt β
(
T t
s ,n −T t

n
)
+ σ t

m,u − σ t
m,l = 0 (336)

∂L

∂dt
= νhcpm

t (T t
n −T t

0

)
+ σ t

d ,u − σ t
d ,l − σ t

in
(
T t
n −T t

0

)
= 0 (337)

∂L

∂T t
n
= νhcpm

t (dt − 1

)
+ λt

(
−1 − βmt ) − δtτ µτ

+ (1 − γ ) λt+1 − σ t
in

(
dt − 1

)
− σ t

l + σ
t
u = 0 (338)

∂L

∂T t
s ,n
= cpνnm

t + λt βmt − σ t
s − σ t

snl + σ
t
snu = 0 (339)

∂L

∂T t
s
= −cpνnm

t − νccpm
t + σ t

s + σ
t
is = 0 (340)

∂L

∂T t
i
= νhcpm

t + νccpm
t − σ t

in − σ t
is = 0 (341)
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plus the optimization problem constraints listed above; note that δtτ , is a Kronecker delta, so it is 1

if t = τ and 0 otherwise. These derivative conditions can simplify down to

0 ≤ θ1 + 2θ2m
t + νhcp

(
T t
i − dtT t

0
−
(
1 − dt

)
T t
n
)
+ cpνn

(
T t
s ,n −T t

s
)
+ νccp

(
T t
i −T t

s
)

+λt β
(
T t
s ,n −T t

n
)
+ σ t

m,u ⊥mt −ml ≥ 0 (342)

0 ≤ σ t
m,u ⊥mu −mt ≥ 0 (343)

0 ≤ dt − dl ⊥
(
σis − νccpm

t ) (T t
n −T t

0

)
+ σ t

d ,u ≥ 0 (344)

0 ≤ σ t
d ,u ⊥ du − dt ≥ 0 (345)

0 ≤
(
σis − νccpm

t ) (dt − 1

)
− λt

(
1 + βmt ) − δtτ µτ + (1 − γ ) λt+1 + σ t

u ⊥ T t
n −T l

n ≥ 0 (346)

0 ≤ σ t
u ⊥ Tu

n −T t
n ≥ 0 (347)

0 ≤ λt βmt + σis − νccpm
t + σ t

snu ⊥ T t
s ,n −T l

s ,n ≥ 0 (348)

0 ≤ σ t
snu ⊥ Tu

s ,n −T t
s ,n ≥ 0 (349)

0 ≤ νhcpm
t −

(
σis − νccpm

t ) ⊥ T t
i − dtT t

0
−
(
1 − dt

)
T t
n ≥ 0 (350)

0 ≤ νncpm
t −

(
σis − νccpm

t ) ⊥ T t
s ,n −T t

s ≥ 0 (351)

0 ≤ σ t
is ⊥ T t

i −T t
s ≥ 0 (352)

where x ⊥ y indicate the complementarity constraint xy = 0. In general, this problem is nonconvex.

However, the parameter values specified above result inmt =ml and d
t = dl for all t . If we take

these variables as constants, then the objective function and constraints are all linear in the model

variables, so the optimization is a linear program, and the optimality conditions are then necessary

and sufficient. More generally, as long as the fan consumes most of the power (as it does in this case),

it will be advantageous to keepmt
as small as possible, and as long as the environment temperature

differs from the zone temperature, the controller will always be incentivized to minimize the amount

of outside air brought in (air that will have to be heated or cooled to reach the zone temperature).

B.2 Attacker Manipulates Defender Perceptions of Static Parameters
The attacker can manipulate the defender’s perception of β and γ to maximize power consumption

over the entire time horizon:

max

τ∑
t=1

[
θ1m

t + 2θ2
(
mt )2 + νhcpmt (T t

i − dtT t
0
−
(
1 − dt

)
T t
n
)

+cpνnm
t (T t

s ,n −T t
s
)
+ νccpm

t (T t
i −T t

s
) ]

(353)

T t
n = (1 − γ )T t−1

n + βmt (T t
s ,n −T t

n
)
+ γT t

0
+Qt

n (354)

ˆβ = β + ∆β (355)

γ̂ = γ + ∆γ (356)

1

2

[(
∆β

β

)
2

+

(
∆γ

γ

)
2

]
− δmax ≤ 0 (357)

0 ≤ T t
i −T t

s ⊥ T t
i − dtT t

0
−
(
1 − dt

)
T t
n ≥ 0 (358)

subject to the defender optimality conditions
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0 ≤ θ1 + 2θ2m
t + νhcp

(
T̂ t
i − dtT t

0
−
(
1 − dt

)
T̂ t
n

)
+ cpνn

(
T t
s ,n −T t

s
)
+ νccp

(
T̂ t
i −T t

s

)
+λt ˆβ

(
T t
s ,n − T̂ t

n

)
+ σ t

m,u ⊥mt −ml ≥ 0 (359)

0 ≤ σ t
m,u ⊥mu −mt ≥ 0 (360)

0 ≤ dt − dl ⊥
(
σis − νccpm

t ) (T̂ t
n −T t

0

)
+ σ t

d ,u ≥ 0 (361)

0 ≤ σ t
d ,u ⊥ du − dt ≥ 0 (362)

0 ≤
(
σis − νccpm

t ) (dt − 1

)
− λt

(
1 + ˆβmt

)
− δtτ µτ + (1 − γ̂ ) λt+1 + σ t

u ⊥ T̂ t
n −T l

n ≥ 0 (363)

0 ≤ σ t
u ⊥ Tu

n − T̂ t
n ≥ 0 (364)

0 ≤ λt ˆβmt + σis − νccpm
t + σ t

snu ⊥ T t
s ,n −T l

s ,n ≥ 0 (365)

0 ≤ σ t
snu ⊥ Tu

s ,n −T t
s ,n ≥ 0 (366)

0 ≤ νhcpm
t −

(
σis − νccpm

t ) ⊥ T̂ t
i − dtT t

0
−
(
1 − dt

)
T̂ t
n ≥ 0 (367)

0 ≤ νncpm
t −

(
σis − νccpm

t ) ⊥ T t
s ,n −T t

s ≥ 0 (368)

0 ≤ σ t
is ⊥ T̂ t

i −T t
s ≥ 0 (369)

−T̂ t
n + (1 − γ̂ ) T̂ t−1

n + ˆβmt
(
T t
s ,n − T̂ t

n

)
+ γ̂T t

0
+Qt

n = 0 (370)

T̂T
n −T 0

n = 0 (371)

Note that the defender conditions are with respect to perceived/perturbed values, not real values

(hence theˆon certain quantities). The defender directly controls most of the variables (e.g.,mt
,

T t
s ) but does not directly control T t

i or T t
n . These variables are essentially functions of processes

governed by other variables. As such, T̂ t
i and T̂ t

n are the defender’s perceived values for these

variables. The true equations governing the evolution of T t
n and T t

i are, respectively,

T t
n = (1 − γ )T t−1

n + βmt (T t
s ,n −T t

n
)
+ γT t

0
+Qt

n (372)

0 ≤ T t
i −T t

s ⊥ T t
i − dtT t

0
−
(
1 − dt

)
T t
n (373)

The complementarity constraint ensures that T t
i is the minimum of T t

s and dtT t
0
+
(
1 − dt

)
T t
n . If

T t
i > T t

s , the defender spends energy to cool the air and if T t
i > dtT t

0
+
(
1 − dt

)
T t
n , the defender

spends energy to heat the air.

B.3 Attacker Manipulates Defender Perceptions of Time-Varying Parameters
The attacker can also manipulate the defender’s perception of T t

0
to maximize power consumption

over the entire time horizon:
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max

∆T t
0

∑
t

[
θ1m

t + θ2
(
mt )2 + νhcpmt (T t

i − dtT t
0
−
(
1 − dt

)
T t
n
)

+cpνnm
t (T t

s ,n −T t
s
)
+ νccpm

t (T t
i −T t

s
) ]

(374)

1

2

∑
t

(
∆T t

0

)
2

≤ ∆Tmax (375)

T̂ t
0
= T t

0
+ ∆T t

0
(376)

−T t
n + (1 − γ )T t−1

n + βmt (T t
s ,n −T t

n
)
+ γT t

0
+Qt

n = 0 (377)

0 ≤ T t
i −T t

s ⊥ T t
i − dtT t

0
−
(
1 − dt

)
T t
n ≥ 0 (378)

subject to the defender optimality conditions

T̂T
n −T 0

n = 0 (379)

0 ≤ θ1 + 2θ2m
t + νhcp

(
T̂ t
i − dtT̂ t

0
−
(
1 − dt

)
T̂ t
n

)
+ cpνn

(
T t
s ,n −T t

s
)
+ νccp

(
T̂ t
i −T t

s

)
+λt β

(
T t
s ,n − T̂ t

n

)
+ σ t

m,u ⊥mt −ml ≥ 0 (380)

0 ≤ σ t
m,u ⊥mu −mt ≥ 0 (381)

0 ≤ dt − dl ⊥
(
σis − νccpm

t ) (T̂ t
n − T̂ t

0

)
+ σ t

d ,u ≥ 0 (382)

0 ≤ σ t
d ,u ⊥ du − dt ≥ 0 (383)

0 ≤
(
σis − νccpm

t ) (dt − 1

)
− λt

(
1 + βmt ) − δtτ µτ + (1 − γ ) λt+1 + σ t

u ⊥ T̂ t
n −T l

n ≥ 0 (384)

0 ≤ σ t
u ⊥ Tu

n − T̂ t
n ≥ 0 (385)

0 ≤ λt βmt + σis − νccpm
t + σ t

snu ⊥ T t
s ,n −T l

s ,n ≥ 0 (386)

0 ≤ σ t
snu ⊥ Tu

s ,n −T t
s ,n ≥ 0 (387)

0 ≤ νhcpm
t −

(
σis − νccpm

t ) ⊥ T̂ t
i − dtT̂ t

0
−
(
1 − dt

)
T̂ t
n ≥ 0 (388)

0 ≤ νncpm
t −

(
σis − νccpm

t ) ⊥ T t
s ,n −T t

s ≥ 0 (389)

0 ≤ σ t
is ⊥ T̂ t

i −T t
s ≥ 0 (390)

−T̂ t
n + (1 − γ ) T̂ t−1

n + βmt
(
T t
s ,n − T̂ t

n

)
+ γT̂ t

0
+Qt

n = 0 (391)

T̂T
n −T 0

n = 0 (392)
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