

Development of an Extruded Plastic Array for Fast Timing

Richard S. Woolf^{a*}, Bernard F. Phlips^a, Stuart A. Baker^b, Anthony L. Hutcheson^a, Rose Perea^c, David D. Schwellenbach^b, Eric A. Wulf^a

^aSpace Science Division, U. S. Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC, 20375, U.S.

^bNevada National Security Site, Transformational Diagnostics and Imaging, Los Alamos, 2900 East Road, Los Alamos, NM, 87544

^cNRC Research Associate resident at the U.S. Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC, 20375, U.S.

*Corresponding Author: richard.woolf@nrl.navy.mil; 202-404-2886

ABSTRACT

This work describes and shows data from a prototype instrument designed to measure fast transient gamma-ray pulses, with potential applications in stockpile stewardship testing. The instrumentation required need to be large, sensitive, low cost, and have the ability to allow for fast transient time sampling at rates of 5 ns, or less. The natural material for an instrument to meet these requirements is an organic scintillator. In order to cover a large area and reduce the overall cost of the detection system (material and electronics), one approach would be to have large pixel elements to build up an array over a few square meters. Unfortunately, this approach will not provide the timing accuracy required for these experiments as large volume scintillation detectors broaden the intrinsic width of the scintillation light pulse due to delays introduced by internal reflections within the scintillator volume. We devised an approach to mitigate these broadening effects from large volume detectors, while remaining at a low cost. Our detectors are a bundle of extruded plastic scintillation bars, readout by wavelength shifting fibers that pipe the scintillation light to a fast light readout device. In this paper we describe the detector unit

27 and assembly procedure, the fast photomultiplier tube (PMT) and readout electronics, as
28 well as data from the laboratory with a radioactive source and cosmic-ray muons.
29 Additionally, we show results from a detector unit tested at the NRL Mercury pulsed power
30 facility. The concluding section discusses the path forward for this instrument and possible
31 improvements for a field-deployable system.

32

33 **KEYWORDS**

34 Extruded plastic; organic scintillator; wavelength shifting fibers; photomultiplier tubes

35

36 **MAIN TEXT**

37 **1. Introduction**

38 In stockpile stewardship testing, there exists a need to accurately measure transient
39 gamma-ray sources [1]. A measurement of this nature is difficult for the following reasons:
40 r^{-2} effects resulting from the required displacement between the source and the
41 instrumentation such that one can time delay, and disentangle, the gamma-ray component
42 from the neutron component; and, the ability of the instrumentation to sample the transient
43 at a high frequency (>200 MHz). To make a statistically significant measurement of the
44 source emission, given the large displacement required, one needs instrumentation with
45 large (on the order of square meters) collection area. An approach to address this would be
46 to construct a 2D array (wall) of detectors composed of large pixel elements. In this
47 approach, a large area is populated with relatively few detectors and electronic readout
48 channels, reducing the overall cost and complexity of the instrument. However, large-
49 volume detectors will not adequately sample the timing properties of these transients. To

50 understand why, we first must consider the type of radiation detector used to make this
51 measurement. For a large-volume, high-efficiency, low-cost detector, one should use an
52 organic scintillator (plastic). Scintillating plastics emit photons in response to stimulation
53 from ionizing radiation, are sensitive ($\epsilon > 50\%$ to gamma rays in the 1 – 10 MeV region),
54 can be cast into large ($>m^3$) volumes, and, in general, are available at a low cost.
55 Additionally, the intrinsic rise time, decay time and pulse width from the scintillation
56 material are extremely fast (on the order of nanoseconds). In terms of fast scintillation
57 detectors, we also note another material that scintillates (via Cherenkov emission) is lead
58 glass. The scintillation mechanisms for this material are extremely fast, on the order of 100
59 ps. However, while this material is fast and sensitive to gamma rays, the main drawback is
60 its intrinsic low light yield, roughly three orders of magnitude lower than that of plastic
61 scintillator.

62 The light from these materials is read out by a sensor, such as a photomultiplier
63 tube (PMT) or a silicon photomultiplier (SiPM). A PMT sensor, for instance, is
64 characterized by its rise time, transit time, and transit time spread in response to stimulation
65 by light from a scintillator. The response of a PMT is directly related to its size as smaller
66 PMTs yield faster response times. The converse is also true. In order to minimize the time
67 response contributed by the PMT, one should use a small (A_{eff} of the photocathode ~ 10
68 mm^2) PMT. Thus, the overall response of the measured signal is a convolution of the
69 intrinsic timing characteristics of the scintillation material and the light readout device.

70

71 **2. Motivation**

72 The work discussed within, motivated by [1], requires sampling the timing profile
73 of the transient events on the order of 5 ns (or less). At first glance, this requirement would
74 appear to be trivial given that many nuclear and particle physics experiments routinely
75 perform timing experiments with sub-nanosecond resolution [2]. However, most
76 experiments are concerned about timing the rise of a pulse and are not affected much by
77 the width of the pulse, as long as the detector recovers before the next event. Because
78 timing a pulse can easily be achieved to 1/10th the rise time of a pulse, sub-nanosecond
79 timing is relatively easy with 5 ns rise time pulses. For this experiment, the transit time and
80 transit time spread are not very important, but the width of the pulse is important.

81 In a previous experimental campaign we investigated how the volume, as well as
82 reflective material and surface treatment, affected the width of a scintillation light pulse.
83 The scintillating materials used in this study were Eljen (EJ) plastics EJ-200, EJ-204, and
84 EJ-228, and Schott lead glass (SF56A). The detector volume ranged from $4.6 \times 10^1 \text{ cm}^3$
85 ($0.75'' \times 0.75'' \times 0.5''$) to $1.7 \times 10^4 \text{ cm}^3$ ($16'' \times 16'' \times 4''$). We additionally investigated how
86 much the pulse width could be reduced by eliminating reflections via the implementation
87 of black cardboard and black spray paint on the surfaces, as opposed to white diffuse
88 reflector.

89 We found that the effect of size and shape on the pulse width is due to multiple
90 reflections of the light before being collected in the PMT. These reflections are typically
91 considered beneficial because they enhance the light collection and provide a more
92 homogeneous response throughout the scintillator. This improves the energy resolution and
93 is the reason most scintillators have surfaces and wrappers designed to maximize
94 reflections. For fast timing experiments, however, these reflections aid in broadening the

95 width of the scintillation pulse. In Figure 1, we summarize our results for the various-sized
96 EJ-200 samples, with different reflective surfaces, EJ-204, EJ-228, and SF56A vs. time
97 response. Under irradiation from cosmic-ray muons, we found that the time response varied
98 between 2.9 ns (4.6×10^1 cm³) and 33 ns (1.7×10^4 cm³). Based on these results we
99 determined that small volume scintillation detectors (less than one liter), with fast readout
100 devices, would be needed to achieve 5 ns (or less) sampling resolution.

101 Thus, in order to cover a large area and achieve a fast time response, many
102 segmented and optically isolated small detector elements, read out by fast devices, are
103 needed. However, using many, small independent devices would lead to prohibitive cost
104 in terms of channel count, materials and readout devices. In the next section we discuss our
105 approach to mitigate the costs of using many small detector elements while achieving the
106 fast time response.

107

108 **3. Instrumentation**

109 3.1 Approach

110 We have designed and preliminarily tested detector units to measure narrow time-
111 width pulses. The detector concept consists of a bundled array of extruded plastic
112 scintillation bars, with wavelength shifting (WLS) fibers inserted into the extruded holes,
113 which then pipe the scintillation light onto a small, fast PMT. Extruded plastic scintillator
114 technology is used in high-energy physics experiments (e.g., MINOS [3] and Minerva [4])
115 that require a large volume of scintillation material at a reduced cost. To extrude plastic
116 scintillator, the process involves properly mixing the raw materials that compose the final
117 scintillator (polystyrene pellets and dopants), feeding the mixed materials through a puller

118 at a specific rate, all at a given temperature and pressure within a vacuum tank. The mixed
119 material is then fed through an extruder, which then passes through a melt pump and a die
120 [5]. The dies can have custom shapes, depending on the needs of the experiment, all of
121 which contain the extruded hole(s). [6] shows examples of extruded plastics that have
122 triangular, hexagonal and rectangular shapes. To improve light collection, and provide
123 optically isolated units, external reflective cladding is applied to the outside of the extruded
124 plastic.

125 A detector unit consists of twenty-five 1 cm × 1 cm × 20 cm extruded plastic
126 scintillation bars, with 1.5-mm-diameter holes in each bar (Figure 2). The material has the
127 following composition: polystyrene + 1% 2,5-Diphenyloxazole (PPO) + 0.03% 1,4-bis(5-
128 phenyloxazol) benzene (POPOP). The scintillator peak emission wavelength is ~420 nm
129 and the scintillation decay time is ~3 ns [7]. See Figure 3 for the emission and transmission
130 properties of this material.

131 A WLS fiber is inserted into the bar to pipe the scintillation light down its length
132 via total internal reflection. The WLS fibers are manufactured by Bicron (BCF-92) [8]. The
133 diameter of each WLS fiber is 1.2 mm. The extruded plastic bars are assembled into a
134 tightly packed 5 × 5 array, and all 25 WLS fibers are ganged together and coupled to a
135 small, fast PMT. Each scintillation bar was extruded with external white cladding (15%
136 TiO₂ in polystyrene [7]) on the four long (1 cm × 20 cm) faces. Within the extruded hole,
137 there is an air gap coupling the WLS fiber to the scintillator. While direct coupling via
138 optical grease or epoxy would yield improved light collection, for the sake of simplicity
139 and reproducibility and because the scintillator light yield is high, we designed the detector
140 unit to have an air gap between the scintillator and the WLS fiber.

141 Additionally, to better understand how the number of fibers in the bundled array
142 affects the overall time response, we constructed two test arrays with only one extruded
143 plastic plus fiber and five extruded plastics plus fibers, readout by a fast PMT.

144

145 3.2 Assembly

146 For housing of the extruded scintillation bars plus fibers, we needed an approach
147 that would: 1) have the entire bundle enclosed in a light tight assembly, 2) have a reflective
148 surface at the interface where the fibers exit the bars, and 3) allow for the fibers to be guided
149 onto the PMT window. We accomplished the first item by encasing the detector
150 components within 3D-printed parts that includes: the 5 cm × 5 cm × 20 cm housing for
151 the extruded bars, a truncated pyramid that interfaces the housing for the bars with the
152 housing for the PMT, and a PMT end cap. For the second item, we placed a layer of
153 VM2000 specular reflector [10] at the interface of the truncated pyramid and the extruded
154 plastic bars to allow for any light generated near the ends of a bar to be reflected, thus
155 improving the overall light collection. To meet the criteria of the third item, inside the
156 truncated pyramid the fibers pass through an intermediate plane halfway up, acting as a
157 guide to the pyramid's apex, where they exit and are bundled prior to interfacing with a
158 PMT.

159 Figures 4–8 shows the process of assembly for a single detector unit. The truncated
160 pyramid has the 25 fibers fed through the bottom end, where they are guided through the
161 intermediate plane and exit through the top of the pyramid. After exiting, the fiber ends are
162 tightly bundled and molded into a tip. The mold is a transparent epoxy, which, after curing,
163 is sanded to yield a smooth surface that can interface with the PMT window. The optical

164 coupling between the molded tip and the PMT window is a 1-mm-thick silicone pad (Eljen
165 560 [11]).

166 On the other end (facing up in Figure 4), the extruded scintillator bars (Figure 5)
167 are placed over the fibers. The bundled bars, with fibers in place, are then loaded into the
168 scintillator bar housing. The truncated pyramid and scintillator bar housing are bolted
169 together through interfacing flanges. Figure 6 shows the near complete configuration with
170 the pyramid separated from the bar housing to show the path of the fibers. Figure 7 shows
171 the same configuration under dark conditions, illuminated by a UV light, clearly
172 demonstrating the light in the WLS fibers being guided to the end where the PMT would
173 be located. The PMT (see section 3.3) is inserted into a recessed holder on top side of the
174 truncated pyramid, then covered with an end cap. The end cap has a small hole on the back
175 side to allow the signal and high-voltage cables to pass through and interface with the data
176 acquisition system and high-voltage power supply. Figure 8 shows a fully assembled
177 detector unit.

178

179 3.3 Readout

180 One aspect of this work was to performance test two very fast PMTs as potential
181 light readout devices. The PMTs we used in this experiment are manufactured by
182 Hamamatsu, model nos. R7600U and R9880U-01. The R7600U has a photocathode with
183 a square geometry and an effective area of 18 mm × 18 mm. The interfacing PMT base is
184 the E5996 and operates the PMT with a negative bias voltage. The maximum bias voltage
185 that can be applied between the anode and cathode is 900V. The R9880U-01 has a circular
186 geometry and an effective area of 8-mm diameter. The interfacing PMT base is the E10679-

187 02 and operates the PMT with a negative bias voltage. The maximum bias voltage that can
188 be applied between the anode and cathode is 1100V. Each PMT type has the following
189 timing properties: a rise time of 1.6 ns (R7600U) and 0.57 ns (R9880U-01); a transit time
190 of 9.6 ns (R7600U) and 2.2 ns (R9880U-01); and a transit time spread of 0.35 ns (R7600U)
191 and 0.2 ns (R9880U-01) [12][13]. Figures 4–8 show the truncated pyramid that accepts the
192 R9880U-01 PMT. There is also a 3D-printed truncated pyramid (and associated end cap)
193 that accepts the R7600U. The extruded plastic and fiber bundle are the same amongst each
194 type. Lastly, the one fiber plus one plastic and five fibers plus five plastics test arrays are
195 readout by the R9880U-01.

196 The PMTs are biased by iseg brand high-voltage modules that can supply up to 1.3
197 mA of current and 2 kV of high voltage [14]. The PMT signals are digitized using flash
198 analog-to-digital converters (fADCs). We tested two types of fADCs, both manufactured
199 by Struck Innovative Systeme (SIS), model nos: 3316 and 3305 [15][16]. The SIS3316 is
200 a 16-channel, VME-based 14-bit, 250 MHz digitizer. Each channel is self-triggered and
201 has the ability to record the raw trace in oscilloscope mode for post-processing and
202 subsequent analysis. To achieve higher sampling rate, we used the SIS3305 units. The
203 SIS3305 is an 8-channel VME-based 10-bit, 1.25 GHz digitizer. Each channel has an input
204 range of ± 1 V and software adjustable trigger threshold for rising or falling edge. The
205 SIS3305 saves a software adjustable number of samples before the trigger and after the
206 trigger to allow the initial baseline and entire pulse to be recorded. The maximum number
207 of samples per trigger—in the selected operated mode—is 3072 (or 2457.6 ns). The module
208 can also run at 2.5 GHz and 5 GHz with either four or two channels enabled, respectively.
209 Multiple modules can be chained together sharing a common clock and common start

210 signals. An external trigger/timing signal can be supplied to the module and a time-to-
211 analog converter will measure the time between the external signal and internal triggers to
212 an accuracy of 27 ps. Both SIS modules are powered by a VME crate with a VME single-
213 board-computer running Ubuntu Linux for data acquisition, data analysis, and streaming
214 the data to disk.

215

216 4. Results

217 4.1 Laboratory Testing

218 We have assembled a 4×4 array of detector units, which include seven (25-fiber),
219 one (one-fiber), and one (five-fiber) units, readout by the R9880U-01 PMT; and seven (25-
220 fiber) units readout by the R7600U PMT. The 16 units are held in an aluminum frame
221 (Figure 9) and readout by two SIS3305 units and a 32-channel iseg brand power supply.
222 We tested each unit in the laboratory by irradiation via a radioactive check source and
223 cosmic-ray muons. Laboratory sources provide known energy deposits in the scintillator
224 that one can use to calibrate a detector unit. The radioactive source used was a set of
225 thoriated welding rods, which primarily emits 2.614 MeV photons, resulting in a Compton
226 edge energy deposit in the plastic scintillator of 2.214 MeV. The rods are typically from
227 1% to 2% thorium oxide, have a diameter of 2.4 mm, length of 15 cm, and contain 0.23
228 grams of thorium [17].

229 Cosmic-ray muons are minimum ionizing particles (MIPs) that deposit their energy
230 proportionally along the path of ionization through the detector volume. The background
231 rate for cosmic-ray muons is, on average, $\sim 1 \text{ cm}^{-2} \text{ minute}^{-1}$. The direction of the maximum
232 flux from muons is towards zenith and falls off as the $\cos^n(\theta)$ where $n \sim 2$ and θ increases

233 towards the horizon. A muon passing through the detector unit will lose energy while
234 traversing matter according to the Bethe-Bloch formula [18], with a dE/dx for a muons of
235 $\sim 1.8 \text{ MeV cm}^2/\text{g}$. Thus, for a muon passing through 1-cm-thick plastic scintillator ($\rho = 1.0$
236 g/cm^3), the energy deposited will be $\sim 1.8 \text{ MeV}$. Muons passing through the entire width of
237 the detector will result in an energy deposit that is, on average, $\sim 10 \text{ MeV}$. For MIPs, as
238 well as other charged particles, these events will produce Landau-distributed spectra when
239 traversing the scintillation material [19].

240 For data acquisition, we typically bias the PMTs between 700 and 900V and collect
241 1×10^4 triggered events for each detector unit with the SIS3305, storing the waveform data
242 for each event. Figure 10 shows a representative PMT pulse from the fiber bundle array,
243 read out by the R9880U-01 PMT, in response to a cosmic-ray muon. We integrate each
244 pulse over a predefined 55 ns window. This integration window encapsulates the full pulse
245 produced by the PMT and accounts for pulses that do not trigger at the same t_0 . The integral
246 value from each waveform is tabulated and used to construct a spectral distribution of
247 events. Figure 11 shows a representative spectral distribution produced by a 25 plastic plus
248 fiber bundle array read out by the R9880U-01 PMT. To determine the time response of the
249 detector unit, we select between a lower and upper bound of the source and fit each pulse
250 with a function of

$$251 \quad f = A \left(\frac{\lambda}{2} e^{\frac{\lambda}{2}(2\mu + \lambda\sigma^2 - 2x)} \operatorname{erfc} \left(\frac{\mu + \lambda\sigma^2 - x}{\sqrt{2}\sigma} \right) \right)$$

252 where erfc is the complementary error function, σ is the standard deviation, μ is the mean,
253 λ is the exponential rate (where $\lambda > 0$ and for $\lambda \gg \sigma$, the distribution approaches a
254 Gaussian) and A is the amplitude. Determining these parameters for each fitted pulse
255 allowed us to assess the timing performance of an individual detector unit. Figure 12 shows

256 the timing distribution from a detector unit readout by a R9880U-01. We assess the
257 performance of each unit in terms of the mean of the distribution, as determined by a
258 Gaussian fit, which represents the peak FWHM of scintillation pulses measured by a given
259 detector unit.

260 Based on the muon data, the 25-fiber bundle readout by the R9880U-01
261 demonstrated a mean in the peak FWHM of 6.5 ± 1.1 , while the 25-fiber bundle readout by
262 the R7600U demonstrated a mean in the peak FWHM of 8.2 ± 1.0 . The one-fiber and five-
263 fiber bundle, both readout by the R9880U-01, demonstrated a mean in the peak FWHM of
264 1.2 ± 0.4 and 5.4 ± 1.5 , respectively.

265 As noted earlier, we performed a series of runs using a radioactive laboratory source
266 (thoriated welding rods). At the nominal bias voltage used for the muon runs we found a
267 peak clearly distinguished from background/noise. For the runs with the thoriated rods, we
268 raised the gain on the PMT to near the maximum allowed based on the specifications in
269 the data sheet. This allowed for the detectors to clearly distinguish the source from the
270 background/noise component. The performance of plastic scintillation detectors in
271 response to gamma rays with energies of >100 keV will not yield a photopeak in the
272 spectrum resulting from full absorption of the gamma ray, as is the case in most inorganic
273 scintillation detectors. Instead the spectrum will show the Compton edge energy and the
274 low-energy continuum below the edge. Assessing where the maximum energy deposited
275 on the Compton edge has been investigated previously finding that it is dependent on the
276 size and shape of the scintillator volume [20]. The method we used to assess the location
277 of the Compton edge, and hence perform the timing analysis for a given detector, involved
278 choosing a location that lies 20% below the Compton edge maximum height and

279 integrating over a fixed region around that location. The runs with the thoriated rods
280 demonstrated an improved timing performance for both the circular and square geometry
281 PMTs. The circular PMTs observed a reduction in the mean of the peak FWHM by, on
282 average, 1.5 ns, while the square PMT observed a reduction of, on average, 0.8 ns.

283

284 4.2 Pulsed Power Facility

285 To test the performance of the prototype detector unit irradiated by a bright, fast
286 transient, we exposed the unit to source of bremsstrahlung X-rays at the NRL Mercury
287 facility. Mercury is a pulsed-power machine that provides a pulse of \sim 150 kA of electrons
288 at up to 6 MV, producing a terawatt of beam power for tens of nanoseconds [21]. While
289 the nature of a Mercury transient impulse event (50 ns, FWHM) is an order of magnitude
290 slower than what is specified for the timing performance of these detector units, testing at
291 this facility provided a fast and bright signal for testing, allowing us to understand the
292 response to a relatively fast transient.

293 We placed the detector unit at a vantage point of 12 m behind the front end of the
294 Mercury machine, the largest standoff achievable at the facility. Previous studies with
295 scintillation detectors at Mercury demonstrated the harsh environment detectors
296 encountered, leading to long periods of PMT dead time. We used the R9880U-01 PMT and
297 applied a negative bias of 475 V, which was the reduced setting we chose after initial tests
298 at higher voltages showed saturation. We read out the unit using the SIS3316 (4 ns
299 sampling rate) fADC. Figure 13 shows the results obtained by the 25-fiber bundle detector
300 unit in response to the pulsed power shot. The width of the measured pulse by the detector
301 unit is the native width of the Mercury pulse. For comparison, the orange curve shows the

302 signal from a 5 cm × 5 cm × 10 cm lead glass detector readout by the R9880U-01,
303 positioned closer to the front of the machine (~9 m away). Because of the fast time response
304 of lead glass (0.1 ns), the width of the measured pulse is representative of the characteristic
305 profile of the Mercury beam. Comparing the two curves, one can see that the 25-fiber
306 bundle detector has the same time width as the fast lead glass detector. Note the slight
307 offset between the curves is an artifact of time aligning when each detector triggers.

308

309 **5. Future Work and Discussion**

310 The results obtained through laboratory tests and at the Mercury pulsed power
311 facility are encouraging. Through these tests we have demonstrated the ability to measure
312 multi-MeV energy deposits in the extruded plastic scintillator with a pulse FWHM of ~6
313 ns for muons (~10 MeV), and <5 ns for the thoriated rods (~2 MeV). For the runs with
314 thoriated rods, we increased the bias voltage on the PMT, compared to the muon runs, to
315 be able to cleanly observe the Compton edge features in the spectral distribution above the
316 lower-energy background/noise components. For specific applications, such as those
317 encountered in the Mercury environment (intense bremsstrahlung beam with ~6 MeV
318 endpoint) or at other facilities, we will investigate how the timing performance is affected
319 as a function of bias voltage in order to optimize the detector timing performance while
320 avoiding saturation and overflow of the PMT and fADC data acquisition, respectively.
321 Additionally, from these tests, we learned that the fiber bundles readout by the circular
322 PMT (R9880U-01) consistently outperformed comparable bundles readout by the square
323 PMT (R7600U). Future instrumentation would likely baseline the R9880U-01 PMT.

324 For an instrument array in an operational scenario, the frontal area required would
325 be 9 m^2 ($3 \text{ m} \times 3 \text{ m}$). Building an instrument based on the detectors outlined in this work
326 would thus require ~ 1850 units and the same number of electronics and high-voltage
327 channels. For such a large array, it would be prudent to have a larger pixel size to reduce
328 the number of channels. For a deployable instrument with more modest channel count,
329 additional future work will investigate the performance of custom extruded plastics with a
330 larger cross section ($4 \text{ cm} \times 4 \text{ cm}$) and with the same diameter (1.5 mm) extruded hole. In
331 this design, one pixel would comprise 25 extruded scintillation bars plus fibers, with a total
332 cross-sectional area of $20 \text{ cm} \times 20 \text{ cm}$. By taking the mounting flange into account, the
333 pitch between adjacent detectors would be $\sim 25 \text{ cm}$. Thus, by using pixels with larger cross-
334 section extruded plastics, a full instrument with 9 m^2 of frontal area would require 144
335 detectors (12×12 array) and associated electronics and high-voltage channels. Our group
336 has a precedence for building [22] and deploying [23][24] large-area detector arrays of this
337 magnitude for gamma-ray and fast neutron detection. Additionally, it would be beneficial
338 to investigate increasing the number of extruded plastics plus fibers comprising one pixel
339 from a 5×5 array to 6×6 array. If we are able to fit all 36 fibers onto the small PMT window
340 and achieve comparable timing performance, then the needed number of channels would
341 be further reduced by 30%.

342

343 **Acknowledgments**

344 This work was sponsored by Office of Naval Research 6.1. We would like to thank
345 the NRL Space Science Division electronics technician, Mary Rambert-Johnson for
346 assembly of the detector units discussed in this work, as well as W. Neil Johnson for his

347 part in developing the analysis routines. We also thank undergraduate students Emily Kong
348 and Mehmet Esat Kilinc for their assistance on this project. Their participation was made
349 possible, in part, via the Naval Research Enterprise Internship Program (NREIP). Lastly,
350 we thank our NRL Plasma Physics collaborators for access to the Mercury Pulsed Power
351 facility. Portions of this work were supported by Mission Support and Test Services, LLC,
352 under Contract No. DE-NA0003624 with the U.S. Department of Energy, National Nuclear
353 Security Administration, NA-10 USDOE NA Office of Defense Programs (NA-10) and by
354 Site-Directed Research and Development Program. DOE/NV/03624—0859.

355

356 **References**

357 [1] E. Hutterer, *1663 – the Los Alamos Science and Technology Magazine* (October 2017) 18.

358 [2] P. H. Regan, *Appl. Rad. Iso.* 70 (2012) 1125.

359 [3] A. Pla-Dalmau, et al., *IX Int. Conf. Cal. Part. Phys.* (2001) 513.

360 [4] A. Pla-Dalmau, et al., *IEEE NSS-MIC Conf. Rec.* (2005) 1298.

361 [5] A. Pla-Dalmau, et al., *IEEE NSS-MIC Conf. Rec.* (2003) 102.

362 [6] D. Beznosko, et al., *IEEE NSS-MIC Conf. Rec.* (2004), 1.

363 [7] A. Pla-Dalmau, in *private communications*, email, 22 June 2020.

364 [8] St. Gobain Crystals, BCF-92, <https://www.crystals.saint-gobain.com/products/scintillating-fiber>

365 [9] Stratasys Direct, <https://www.stratasysdirect.com>

366 [10] 3M Vikuiti Enhanced Specular Reflector (ESR), <https://www.digikey.com/en/pdf/3/3m/3m-vikuiti-enhanced-specular-reflector-esr>.

368 [11] Eljen Technology, EJ-560, <https://eljentechnology.com/products/accessories/ej-560>.

369 [12] Hamamatsu Photonics, R7600U,
<https://www.hamamatsu.com/resources/pdf/etd/R7600U TPMH1317E.pdf>.

371 [13] Hamamatsu Photonics, R9880U-01,
<https://www.hamamatsu.com/resources/pdf/etd/R9880U TPMH1321E.pdf>.

373 [14] ISEG Germany, EDS, https://iseg-hv.com/en/products/index#collapse_EDS.

374 [15] SIS3316, 16 channel, VME digitizer, <https://www.struck.de/sis3316.html>.

375 [16] SIS3305, 8 channel VME digitizer, <https://www.struck.de/sis3305.html>.

376 [17] Thorium Containing Welding Rods (1990s)
<https://www.orau.org/ptp/collection/consumer%20products/weldingrod.htm>

378 [18] C. Amsler, et al., *Review of Particle Physics. Physics Letters B* 667(1-5) (2008) 1-6.

379 [19] L. Landau, *J. Phys. (USSR)* 8 (1944) 201.

380 [20] H. H. Knox, T.G. Miller, *Nucl. Instrum. Methods* 101(3) (1972) 519.

381 [21] R. J. Allen, et al., *Proc. 15th IEEE Int. Pulsed Power Conf. Proc.* (2005) 318.

382 [22] R. Woolf, et al., *Nucl. Instr. Methods Res. A* 784 (2015), 398.

383 [23] L. Mitchell, et al., *IEEE NSS-MIC Conf. Rec.* (2009) 110.

384 [24] A. Hutcheson, et al., *IEEE Conf. Tech. Homeland Sec.* (2013) 360.

385

386

387

388

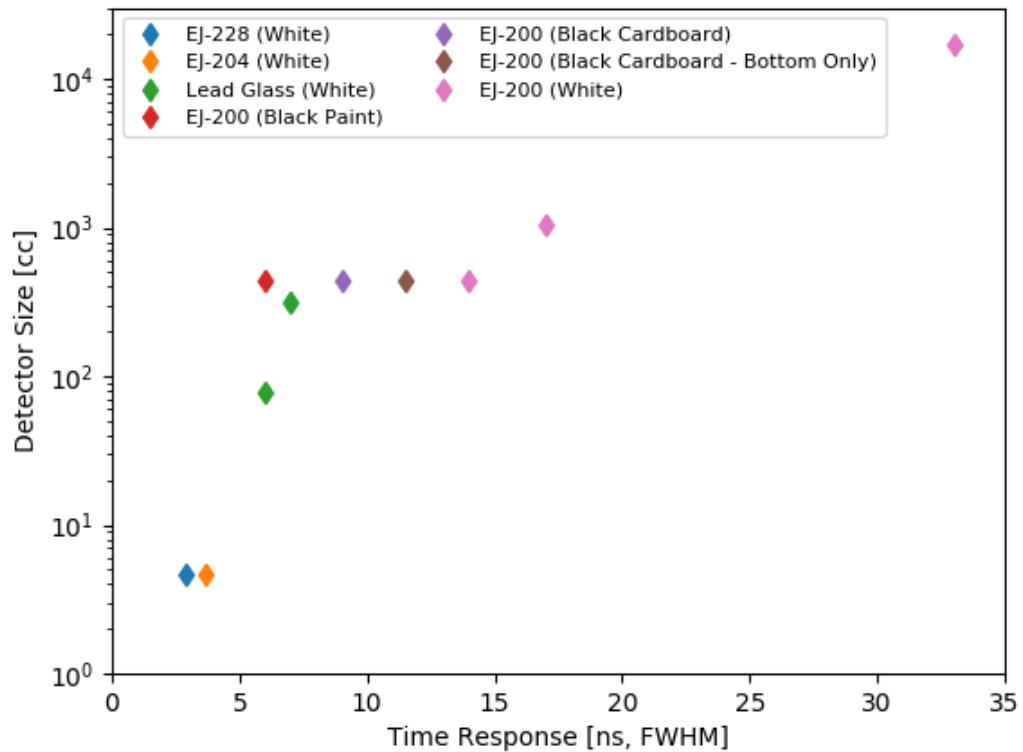
389

390

391

392

393


394

395

396

397

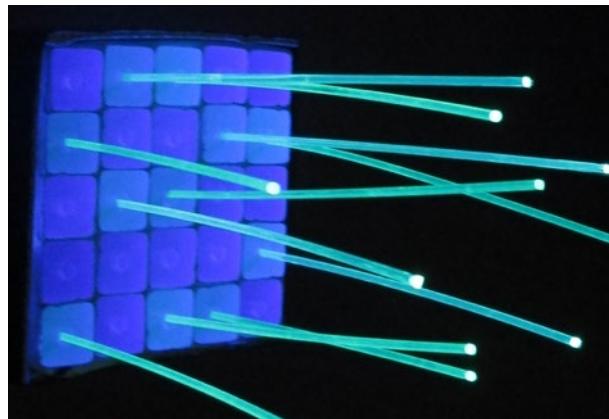
398 **FIGURES**

399

400

Figure 1: Detector size in cubic cm vs. the time response, in ns (FWHM).

401


402

403

404

405

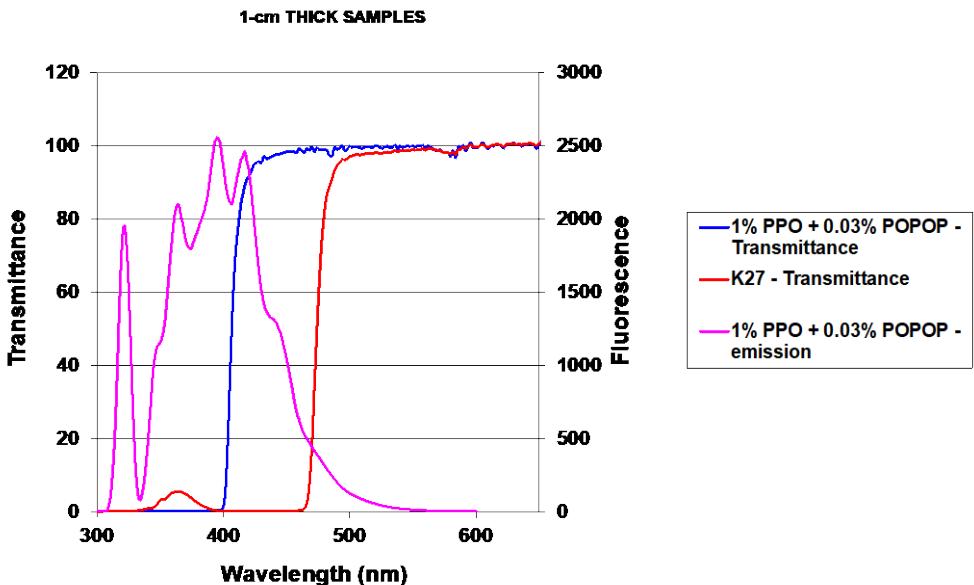
406

407 Figure 2: 5×5 array of $1 \text{ cm} \times 1 \text{ cm}$ cross-section extruded plastic scintillation rods. Exiting a few of the
408 rods are the 1.2-mm diameter WLS fibers. We show the end of the 25-fiber bundle under illumination by a
409 UV light.

410

411

412


413

414

415

416

417

418

419 Figure 3: Spectra of the transmittance vs. wavelength for the 1-cm-thick extruded plastic samples.

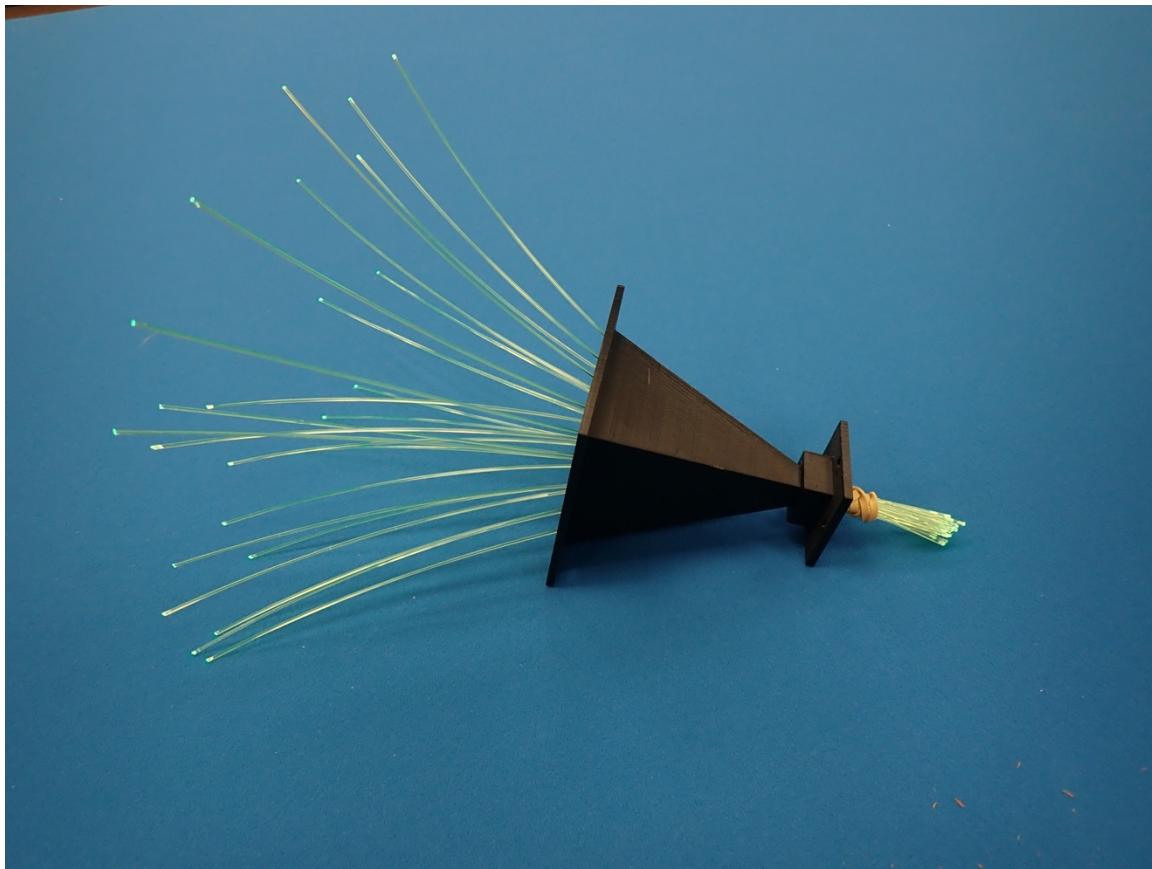
420

421

422

423

424


425

426

427

428

429

430

431 Figure 4: 3D-printed truncated pyramid with 25 equal-length WLS fibers. Inserting the fibers into the
432 pyramid and bundling them with a rubber band on the top side is the first step in the assembly process.

433

434

435

436

437

438

439

440

441

442

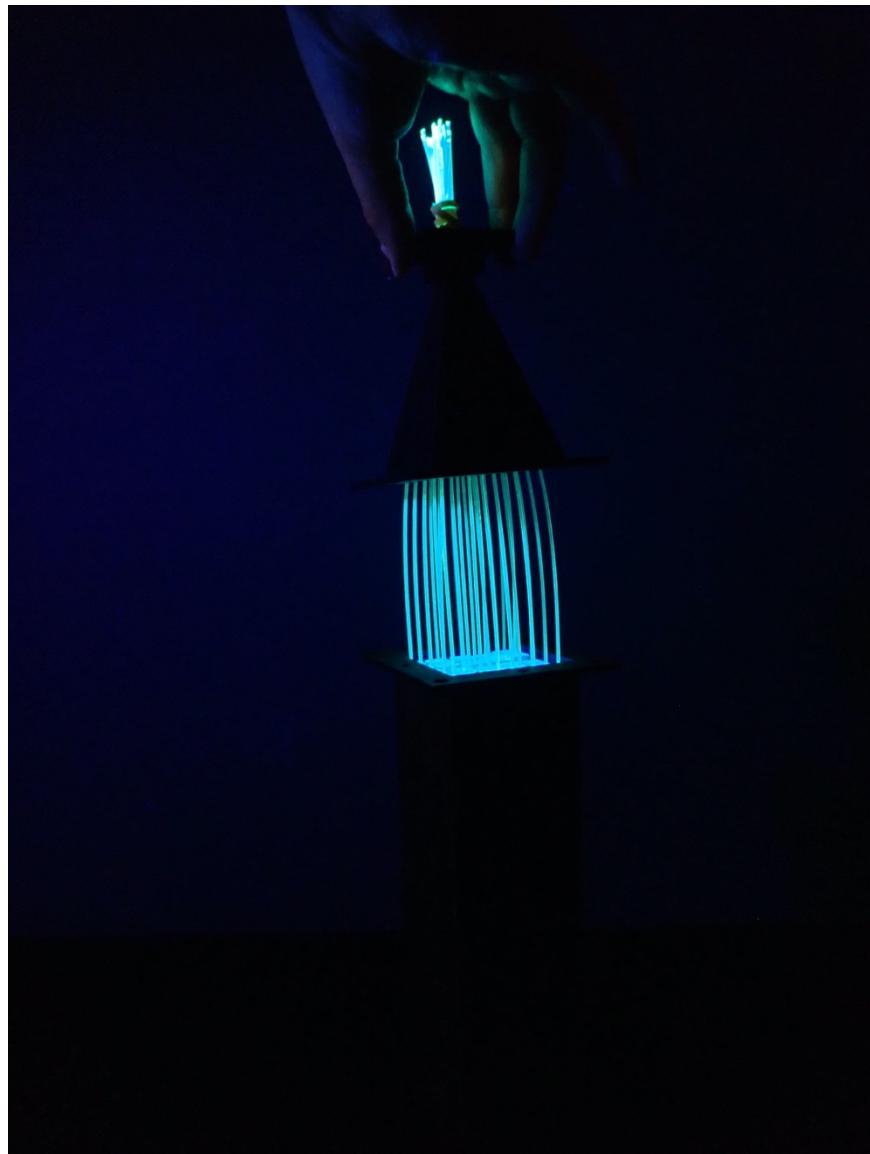


443

444 Figure 5: The next step in the assembly process is to invert the pyramid and place it in a holding fixture.

445 Once in place, the extruded bars are placed on fibers and ganged together as shown here.

446



447

448 Figure 6: The bars, with fibers in place, are inserted into their housing. This figure shows the process of
449 attaching the pyramid to the bar housing.

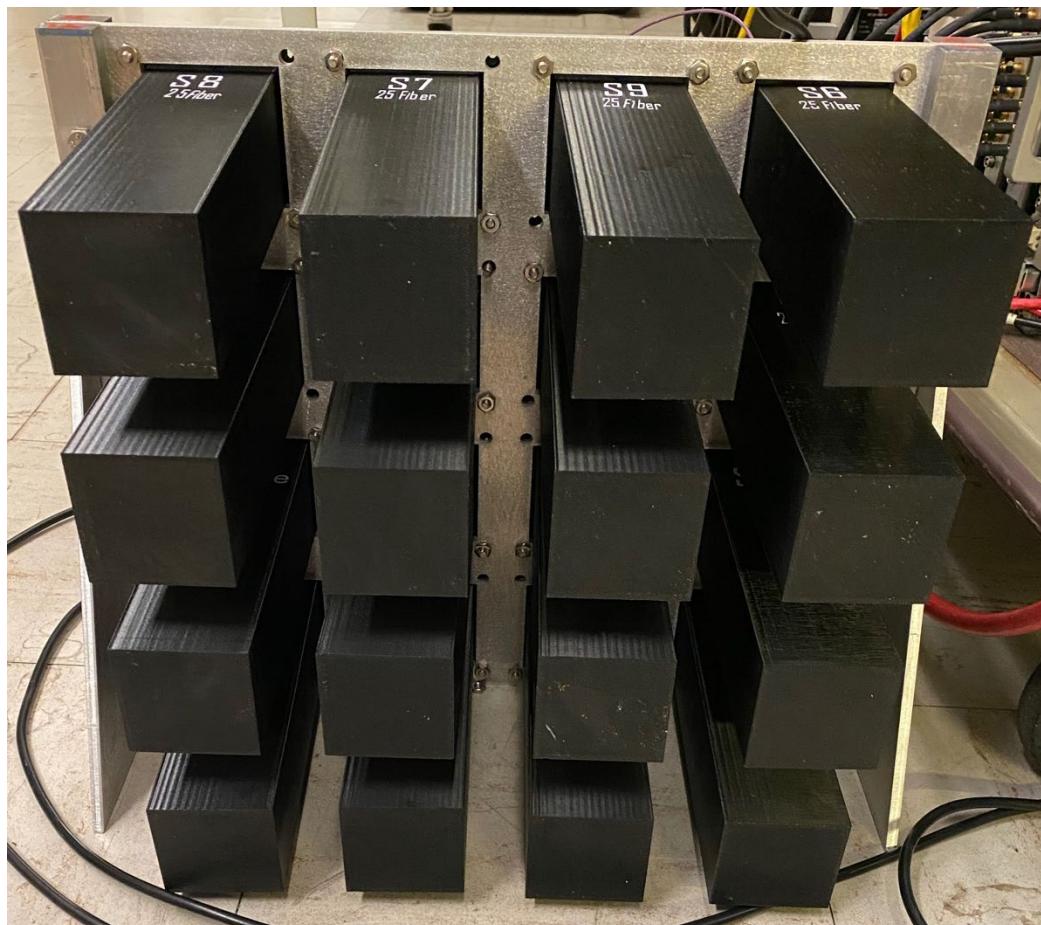
450

451

452 Figure 7: The photo shown here is identical to Figure 6 but under dark conditions and illuminated by a UV

453 light.

454


455

456

Figure 8: Final assembly of one-pixel detector unit.

457

458

459

Figure 9: 4×4 array of detector units held in place by an aluminum frame.

460

461

462

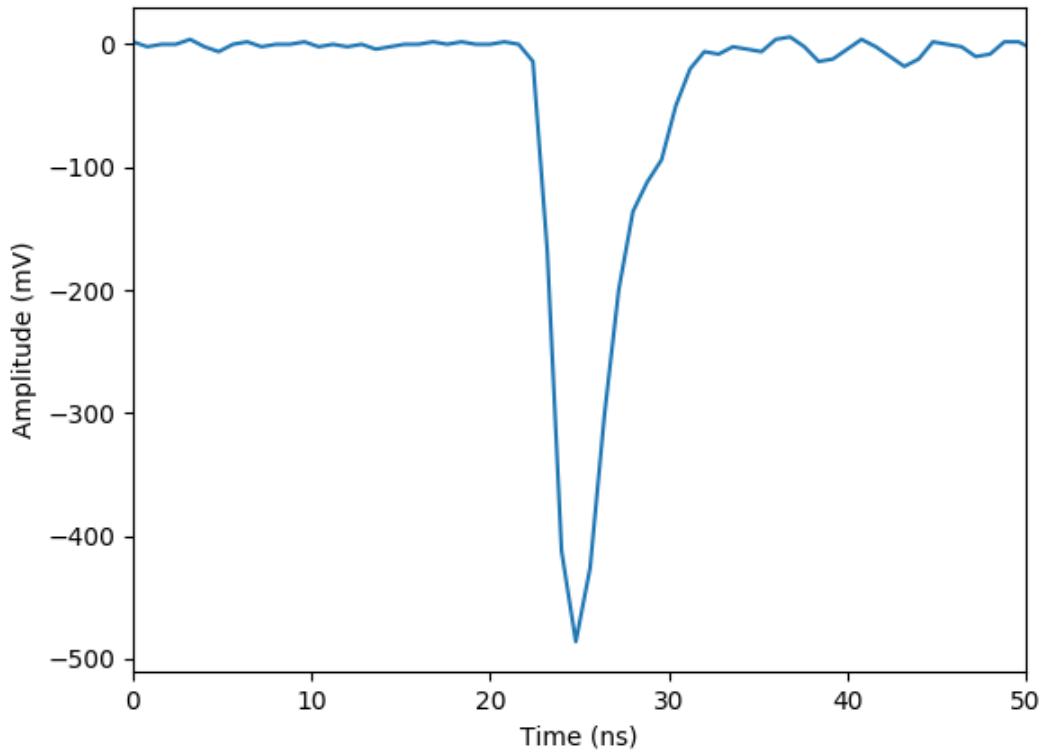
463

464

465

466

467


468

469

470

471

472

473

474 Figure 10: Representative pulse from the 25-fiber bundle array read out by the R9880U-01 PMT in
475 response to a cosmic-ray muon.

476

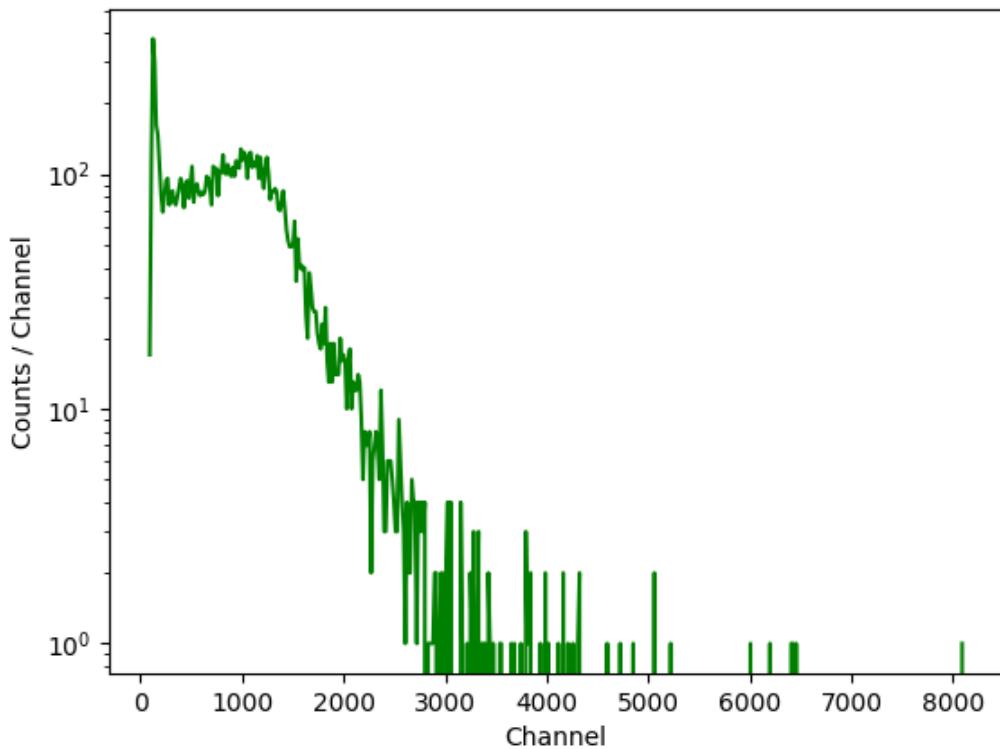
477

478

479

480

481


482

483

484

485

486

487

488 Figure 11: Muon spectrum as measured by a 25-fiber bundle array read out by a R9880U-01 PMT.

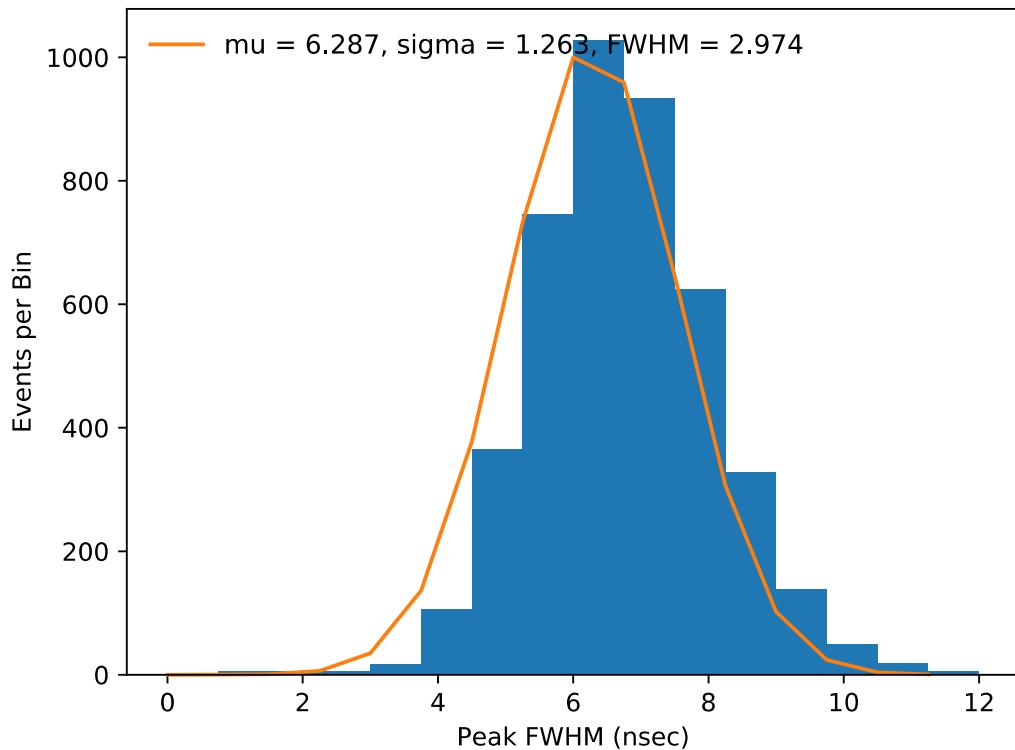
489

490

491

492

493


494

495

496

497

498

499

500 Figure 12: Timing distribution of the peak FWHM of PMT pulses for the cosmic-ray muon peak, achieving
501 a mean of \sim 6 ns.

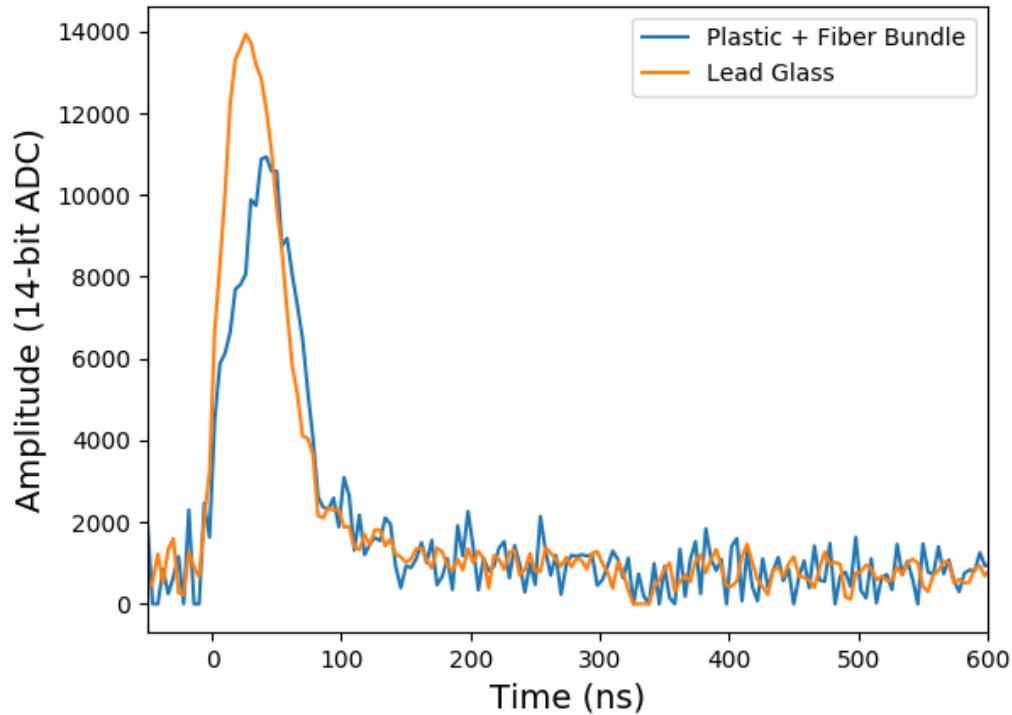
502

503

504

505

506


507

508

509

510

511

512

513 Figure 13: Signal measured by a fiber detector exposed to a pulse from the NRL Mercury pulsed-power
514 facility, along with a signal from a lead-glass detector with known fast response to indicate that the width
515 of the pulse is not due to instrument response time. Both detectors were read out by the SIS3316 fADCs
516 (with 4 ns sampling rate).