

¹ Starting point independent quantum Monte Carlo calculations of ² iron oxide

³ Joshua P. Townsend,^{1,*} Sergio D. Pineda Flores,² Raymond C. Clay III,¹ Thomas R.
⁴ Mattsson,¹ Eric Neuscamman,² Luning Zhao,³ R. E. Cohen,⁴ and Luke Shulenburger¹

⁵ *High Energy Density Physics Theory,*

⁶ *Sandia National Laboratories, Albuquerque, NM 87185*

⁷ *Department of Chemistry, University of California, Berkeley, CA, 94720*

⁸ *Department of Chemistry, University of Washington, Seattle, WA, 98195*

⁹ *Extreme Materials Initiative, Geophysical Laboratory,*

¹⁰ *Carnegie Institution for Science, Washington, DC 20015-1305, USA*

Abstract

Quantum Monte Carlo (QMC) methods are useful for studies of strongly correlated materials because they are many-body in nature and use the physical Hamiltonian. Typical calculations assume as a starting point a wave function constructed from single particle orbitals (SPOs) obtained from one-body methods e.g. density functional theory. However, mean-field-derived wave functions can sometimes lead to systematic QMC biases if the mean-field result poorly describes the true ground state. Here, we study the accuracy and flexibility of QMC trial wave functions using variational and fixed-node diffusion QMC estimates of the total spin density and lattice distortion of antiferromagnetic iron oxide (FeO) in the ground state B1 crystal structure. We found that for relatively simple wave functions the predicted lattice distortion was controlled by the choice of single particle orbitals used to construct the wave function, rather than by subsequent wave function optimization techniques within QMC. We then demonstrate starting point independence of the trial wave function with respect to the energy, spin density, and predicted lattice distortion by eliminating bias via orbital optimization. The results suggest that orbital optimization is a promising method for accurate many-body calculations of strongly correlated condensed phases.

11 INTRODUCTION

12 Iron oxide (FeO) is a prototypical Mott-type insulator which displays a rich phase diagram
13 that includes magnetic, electronic, and structural phase transformations due in part to
14 the open shell configuration of the $3d$ electrons [1–8]. In the ground state, FeO adopts a
15 bulk antiferromagnetic (AFM) structure composed of alternating ferromagnetic planes of
16 Fe atoms perpendicular to [111], which induces, by magnetoelastic coupling, a symmetry
17 lowering distortion of the nominally B1 lattice from cubic to rhombohedral [9, 10]. Previous
18 theoretical studies have investigated structural phase transitions at high pressure and the
19 equilibrium lattice distortion [8, 11–18]. One of the main findings of these studies is that
20 the equilibrium lattice distortion in particular is highly sensitive to the electronic structure.

21 Quantum Monte Carlo (QMC) methods are especially well suited to problems where elec-
22 tronic correlation is important because they use the physical Hamiltonian and are therefore
23 variational [19, 20]. The input for a typical QMC calculation is a trial wave function, the an-
24 tisymmetric portion of which is often generated from a set of single particle orbitals (SPOs)
25 from e.g. Kohn-Sham density functional theory (DFT). In addition to the antisymmet-
26 ric piece, the trial wave function typically includes many adjustable parameters which can
27 be optimized by exploiting the variational principle using, for example, variational Monte
28 Carlo (VMC). Classic examples include the Jastrow factor, backflow transformation of the
29 electronic coordinates, a multi-determinant expansion, or orbital optimization. Each of the
30 above explicitly introduces electron-electron correlation into the wave function and thereby
31 gives improved ground state properties as compared to a Hartree-Fock wave function [21–24].

32 The accuracy of projector-based QMC methods such as diffusion Monte Carlo (DMC)
33 depend on the nodal surface of the wave function, which depends on the SPO set. The
34 challenge for QMC studies of strongly correlated systems, then, lies in constructing a suitably
35 flexible and accurate wave function. Thus new methods for generating accurate QMC trial
36 wave functions with sufficient flexibility are highly desired. Recently, several studies have
37 demonstrated remarkable success in constructing flexible and accurate wave functions in
38 molecular systems[25–27], but until now wave functions for condensed systems tend to be
39 much simpler due to the larger number of electrons and larger basis sets.

40 Here we report variational and diffusion quantum Monte Carlo calculations of AFM FeO
41 using a variety of trial wave function ansätze including electron-electron backflow transfor-

⁴² mations as well as multi-determinant expansions and orbital optimization. In order to test
⁴³ the flexibility of the trial wave function, we constructed sets of SPOs from DFT using PBE
⁴⁴ and PBE+*U* functionals generated so as to yield qualitatively different lattice distortions.
⁴⁵ We then demonstrate starting point independence of DMC estimates of the energy, spin den-
⁴⁶ sity, and equilibrium lattice distortion with respect to the SPOs in a Slater Jastrow wave
⁴⁷ function through orbital optimization. The results indicate that orbital optimization is a
⁴⁸ promising method for constructing very accurate and flexible wave functions for QMC cal-
⁴⁹ culations on challenging transition metal oxides and highlight the ability of QMC methods
⁵⁰ to deliver starting point independent estimates of some ground state properties.

⁵¹ COMPUTATIONAL APPROACH

⁵² The immediate goal of this study was to understand how the techniques used to construct
⁵³ QMC trial wave functions affected the estimated ground state properties in a challenging
⁵⁴ condensed system. With that goal in mind, we restricted calculations to a single four-atom
⁵⁵ AFM primitive cell [28] with periodic boundary conditions so that advanced wave function
⁵⁶ ansätze which scale unfavorably with system size could be tested.

⁵⁷ The building block of all the trial wave functions considered here was the Slater-Jastrow
⁵⁸ (SJ) type wave function:

$$\Psi_T(\mathbf{r}; \xi) = D^\uparrow(\mathbf{x}; \xi) D^\downarrow(\mathbf{x}; \xi) e^{J(\mathbf{x}; \xi)} \quad (1)$$

⁵⁹ where \mathbf{r}, \mathbf{x} are the sets of electronic and generalized coordinates, respectively, ξ is the set
⁶⁰ of variational parameters, and $D^{\uparrow, \downarrow}$ is a linear combination of one or more Slater determi-
⁶¹ nants composed of single particle orbitals (SPOs). The adjustable parameters of the anti-
⁶² symmetric portion of the wave function include, for example, weights in a multi-determinant
⁶³ expansion, electron-electron backflow transformation, or orbital rotations. Finally, $J(\mathbf{x}; \xi)$ is
⁶⁴ the Jastrow function that explicitly introduces dynamic correlation into the wave function
⁶⁵ and enforces the cusp conditions [21, 29, 30].

⁶⁶ Projector-based QMC methods like DMC for fermions commonly require that the nodal
⁶⁷ surface ($\Psi_T(\mathbf{r}; \xi) = 0$) of the trial wave function is prescribed in order to mitigate the fermion
⁶⁸ sign-problem [31]. This fixed-node (FN) approximation introduces a systematic bias in the
⁶⁹ results, which while variational, may be significant if the nodal surface of the trial wave

70 function is qualitatively different from that of the exact ground state wave function. As we
71 show here, this bias can result in qualitatively incorrect behavior even after the application
72 of projector-based QMC methods. Crucially, the Jastrow factor does not affect the nodal
73 surface of the trial wave functions we investigated, so the ultimate accuracy of our DMC
74 calculations is set by the anti-symmetric piece of the wave function.

75 **Wave function generation**

76 In order to test the flexibility of QMC trial wave functions we constructed two sets of SPOs
77 which produced qualitatively different estimates of the spin density and equilibrium lattice
78 distortion. Trial wave functions were constructed from SPOs generated from spin-resolved
79 DFT calculations using the `Quantum ESPRESSO` code (version 6.4.0), an implementation of
80 plane wave based Kohn-Sham density functional theory with periodic boundary conditions
81 [32]. We used pseudopotentials specifically designed for QMC calculations to describe the
82 iron and oxygen atoms for both the DFT and QMC calculations [33]. The iron pseudopo-
83 tential had a neon core ($3s^23p^63d^64s^2$ valence) and the oxygen pseudopotential had a helium
84 core ($2s^22p^4$ valence), for a total of 44 electrons in the primitive cell. All DFT calculations
85 used a 180 Ha plane wave cutoff and a $6 \times 6 \times 6$ k -point grid and were tested to confirm
86 that further increasing those values did not appreciably change the DFT energy or stress.
87 The first SPO set was constructed using the PBE generalized gradient approximation [34],
88 and the second used a PBE+ U functional ($U = 4.3$ eV) in the rotationally invariant scheme
89 following previous work[16, 17] in order to localize the Fe 3d states. The two sets of SPOs
90 are qualitatively distinct. The PBE result predicted a metallic ground state and a posi-
91 tive lattice distortion, while the PBE+ U results predicted an insulating ground state and
92 negative lattice distortion.

93 **Wave function optimization and Monte Carlo calculations**

94 All QMC calculations were performed with the `QMCPACK` code (version 3.6) [35]. We
95 used the improved adaptive shift algorithm [36] to optimize, in some cases, more than
96 three thousand wave function parameters using variational Monte Carlo (VMC). Common
97 amongst all trial wave functions we considered were species dependent one-, two-, and three-

98 body Jastrow factors represented as cubic polynomials in the particle separations with a
 99 spatial cutoff corresponding to the Wigner-Seitz radius of the cell, about 2.9 bohr. The
 100 two-body Jastrow produced the largest energy and variance reduction, but addition of one-
 101 and three-body terms was found to further reduce the energy and variance significantly. The
 102 use of small core pseudopotentials resulted in a highly oscillatory wave function near the
 103 atomic cores which was costly in terms of memory to accurately represent on a rectangular
 104 mesh. We therefore chose to divide the representation of the wave function into two parts
 105 as suggested by Esler et al. [37] with the regions near the ions stored as radial splines
 106 multiplied by spherical harmonics and the interstitial regions represented by 3D b-splines
 107 on a rectilinear mesh[38]. This scheme reduced the memory required to represent the wave
 108 function by a factor of more than 25 as compared to the standard rectangular mesh with no
 109 statistically significant change in the energy or variance.

110 With two sets of SPOs in hand, we proceeded to optimize the trial wave functions using
 111 VMC. While optimization of the Jastrow factor yielded significant energy and variance re-
 112 duction, the SPO's themselves are what limit the ultimate accuracy of DMC. We therefore
 113 explored three methods of improving the nodal surface of the trial wave function: backflow
 114 transformation of the electronic coordinates, multi-determinant expansion, and orbital opti-
 115 mization. A backflow (BF) transformation is a transformation of the electronic coordinates
 116 \mathbf{r} , to quasiparticle coordinates \mathbf{q} [39]. For a particular electron this transformation is given
 117 by:

$$\mathbf{r}_i \rightarrow \mathbf{q}_i = \mathbf{r}_i + \sum_{i \neq j} \eta(|\mathbf{r}_i - \mathbf{r}_j|; \xi) (\mathbf{r}_i - \mathbf{r}_j) \quad (2)$$

118 with η a spherically symmetric spline function.

119 The second trial wave function type was a multi-determinant (MD) expansion. In this
 120 wave function, one builds out of a set of single particle orbitals, $\{\phi\}$, a number of Slater
 121 determinants $\{\Phi[\phi]\}$, with the former being larger than the number of electrons per spin
 122 channel:

$$D(\mathbf{r}, \xi) = \sum_i \xi_i \Phi_i[\phi(\mathbf{r})] \quad (3)$$

123 The appeal of this ansatz is that with an infinite number of ϕ 's and Φ 's, this wave function is
 124 exact. The downside is that it scales exponentially in the number of particles. For that rea-
 125 son, we explored the use of modest multi-determinant expansions which were constructed in
 126 a two-step procedure. The first step was an optimization of the 924 determinant weights in

127 an expansion consisting of all possible single excitations within a basis of 64 SPOs. The sec-
 128 ond step was an optimization of all possible single and double excitations generated from the
 129 highest weighted 32 determinants from the previous step, which totaled 452 determinants.
 130 For these wave functions we found that optimization of the weights of the determinants at
 131 each twist further reduced the VMC energy by approximately 20 mHa/FeO as compared to
 132 optimization at a single twist only, due to differences in band ordering.

133 The third trial wave function type included an optimization of the SPOs (OO) themselves.
 134 With this method, each optimized SPO, $\tilde{\phi}$, present in the determinant is constructed from
 135 a unitary transformation of the original SPOs, ϕ [24]:

$$\tilde{\phi}_i = \sum_j \xi_{ij} \phi_j \quad (4)$$

136 This wave function contained over 3000 optimizable parameters, and was therefore expected
 137 to be the most flexible and accurate trial wave function type we considered.

138 The twist-averaged total energies for all optimized trial wave functions is shown in fig. 1.
 139 As expected, the VMC energies of the optimized backflow, multi-determinant, and orbital
 140 optimization wave functions were lower than their simpler Slater Jastrow wave function
 141 counterparts. An unexpected result was that improvements in the multi-determinant trial
 142 wave function predicted by VMC did not carry over to DMC in all cases. We attribute
 143 this result to the relatively small active space in which that wave function was constructed,
 144 and it highlights that our VMC optimization strategy improves the overall shape of the
 145 wave function, but not necessarily its nodal surface. Importantly, the DMC energies of the
 146 orbital optimized trial wave function were statistically identical regardless of the SPO set in
 147 which the optimization occurred. This striking result suggests starting-point independence
 148 of the optimized trial wave function with respect to the SPOs and was not achieved with
 149 any other wave function. Especially encouraging was that the OO wave function was much
 150 less expensive to evaluate as compared to the MD or BF, which were 2.2x and 1.6x times as
 151 expensive to evaluate as compared to the OO wave function, respectively.

152 After optimization, production DMC calculations were carried out on all optimized trial
 153 wave functions on a $3 \times 3 \times 3$ grid of twist vectors and the results were subsequently twist-
 154 averaged. DMC results were linearly extrapolated to zero timestep from a series of calcula-
 155 tions with finite time steps of $\tau=0.01$, 0.005 , and 0.0025 Ha^{-1} .

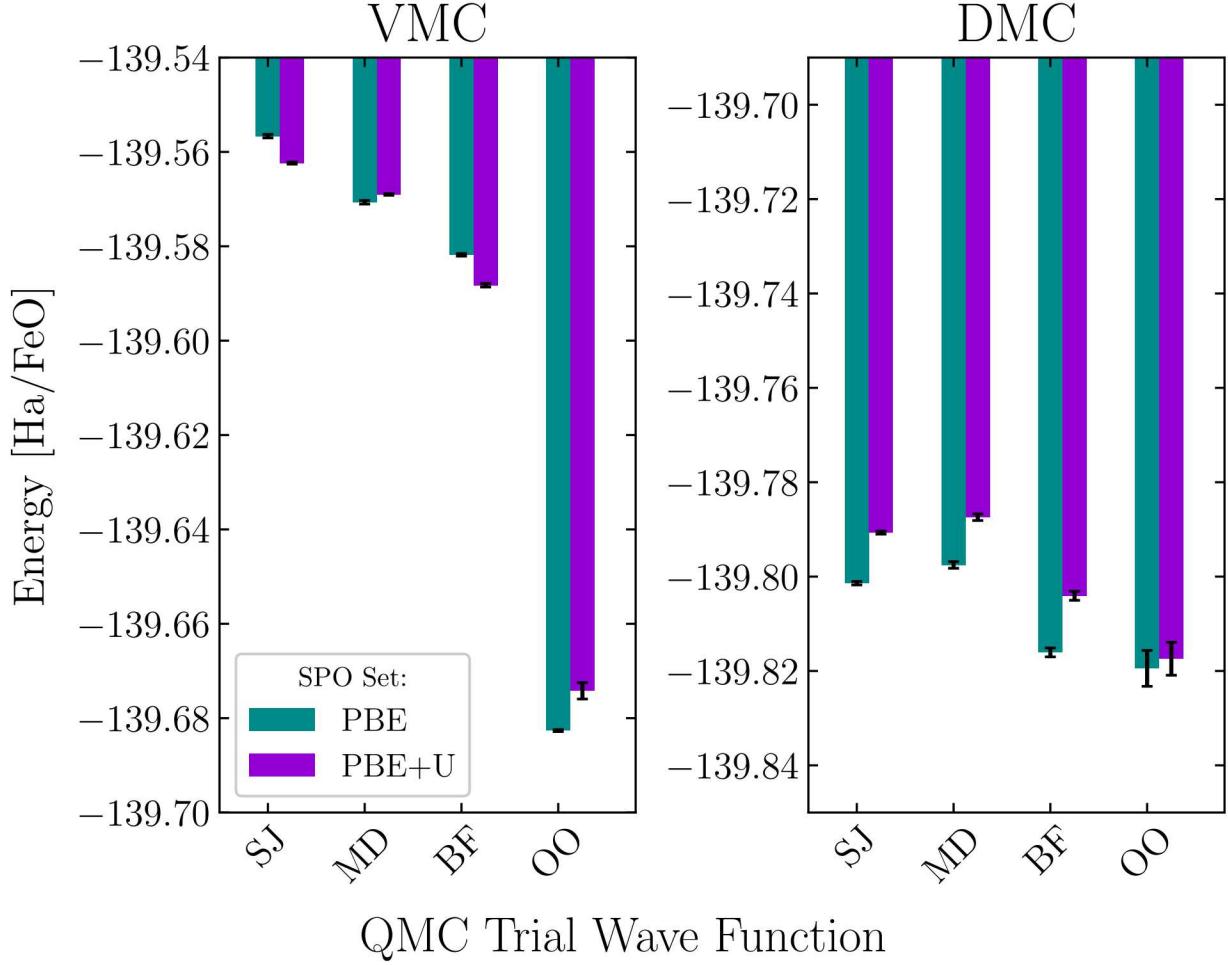


FIG. 1. (color online) Twist-averaged QMC energies for several optimized trial wave function types built from either PBE, or PBE+U SPOs. The DMC energies are linearly extrapolated to zero timestep.

¹⁵⁶ **RESULTS**

¹⁵⁷ The principal goal of this study was to understand how sensitive various ground state
¹⁵⁸ properties of a system were to the trial wave function for a realistic and challenging con-
¹⁵⁹ densed system. To that end, we calculated a series of physical properties that are typically
¹⁶⁰ strongly affected by the electronic structure: the total spin density and the equilibrium
¹⁶¹ lattice distortion.

¹⁶² **Spin density**

¹⁶³ The character of the Fe 3d orbitals produced from a DFT+*U* calculation is very different
¹⁶⁴ from those of PBE. As a result, we expected to see a significant difference in the predicted
¹⁶⁵ total spin densities depending on the SPOs used in the trial wave function. An open question
¹⁶⁶ was the extent to which subsequent optimization of the trial wave function would correct
¹⁶⁷ any deficiencies. To illustrate the differences in the optimized trial wave functions, we
¹⁶⁸ show contours of the difference in the total spin density with respect to a SJ wave function
¹⁶⁹ composed of PBE SPOs in fig. 2. While both the backflow and multi-determinant trial
¹⁷⁰ wave functions show only small perturbations in the spin density as compared to the SJ
¹⁷¹ PBE reference, the orbital optimized trial wave function yields a significantly different spin
¹⁷² density. Evidently, the qualitatively distinct character of the spin density between PBE
¹⁷³ and PBE+*U* SPOs is effectively erased with orbital optimization, in concordance with the
¹⁷⁴ comparison of the total energy shown in fig. 1. This suggests that with orbital optimization
¹⁷⁵ the QMC trial wave function and its associated observables are independent of the quality
¹⁷⁶ of the original underlying SPO set. Further, this gives confidence that observables estimated
¹⁷⁷ from such a trial wave function give “right answers for the right reason”.

¹⁷⁸ **Equilibrium Lattice Distortion**

¹⁷⁹ In the ground state, the nominally cubic B1 crystal structure of AFM FeO is slightly
¹⁸⁰ elongated along the [111] direction, thereby simultaneously increasing the inter-planar spac-
¹⁸¹ ing and decreasing the intra-planar spacing of the iron atoms [40, 41]. This phenomenon
¹⁸² is observed in many transition metal oxides, and is controlled by interactions between 3d
¹⁸³ electrons on the iron atoms[42, 43]. For that reason we expected the equilibrium lattice
¹⁸⁴ distortion to be very sensitive to the quality of the trial wave function. Fig. 3 shows energy
¹⁸⁵ versus lattice distortion at the VMC and DMC levels. The VMC results for each wave func-
¹⁸⁶ tion type universally predicted lattice contraction along [111], which is qualitatively wrong
¹⁸⁷ as compared to experiment.

¹⁸⁸ Considering the more accurate DMC calculations, we see significant improvements in
¹⁸⁹ both energy and predicted lattice distortion. DMC correctly shifted the predicted equilib-
¹⁹⁰ rium lattice distortion for all trial wave functions to more positive values (extension along

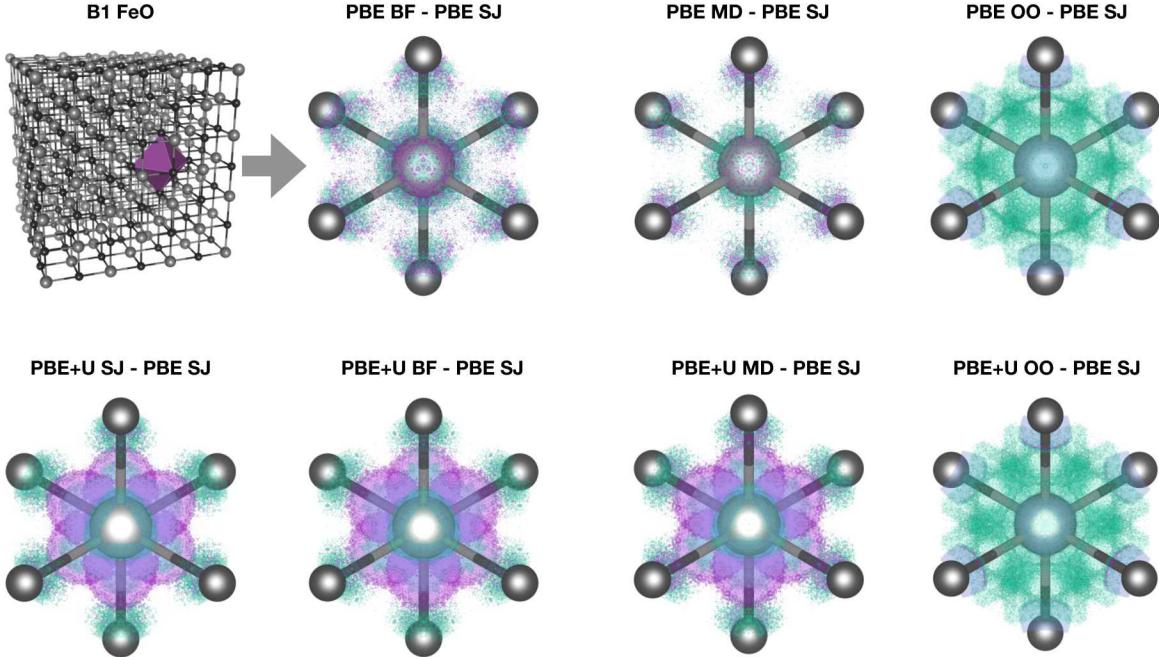


FIG. 2. (Color online) Contours of the difference in the DMC estimated total spin density between trial wave function types with respect to a single SJ trial wave function composed of PBE SPOs. Detailed views looking along [111] show a 2×10^{-9} contour interval and are restricted to a single FeO_6 octahedron for visual clarity. Iron and oxygen atoms are shown as large grey and small black spheres, respectively. green (purple) surfaces bound regions where PBE total spin density is less (greater) than that from the other SPO set.

[111]), although this shift is insufficient to recover the correct behavior in some cases. There was also a re-ordering of the relative energies of the trial wave functions as compared to VMC. Wave functions constructed from PBE+*U* orbitals yielded higher DMC energies as compared to those of the PBE wave functions. That the multi-determinant wave functions produce a higher energy than their single determinant counterparts at the DMC level is a reflection of the fact that wave function improvements from VMC do not necessarily guarantee a corresponding improvement with DMC. Compared to the multi-determinant expansion, the improvements in the nodal surface due to the backflow transformation and orbital optimization are readily apparent both in terms of lower total energy and lattice distortion. Indeed, the backflow and orbital optimized wave functions yielded significant energies reductions, in some cases reducing the energy by as much as 20 mHa per FeO as

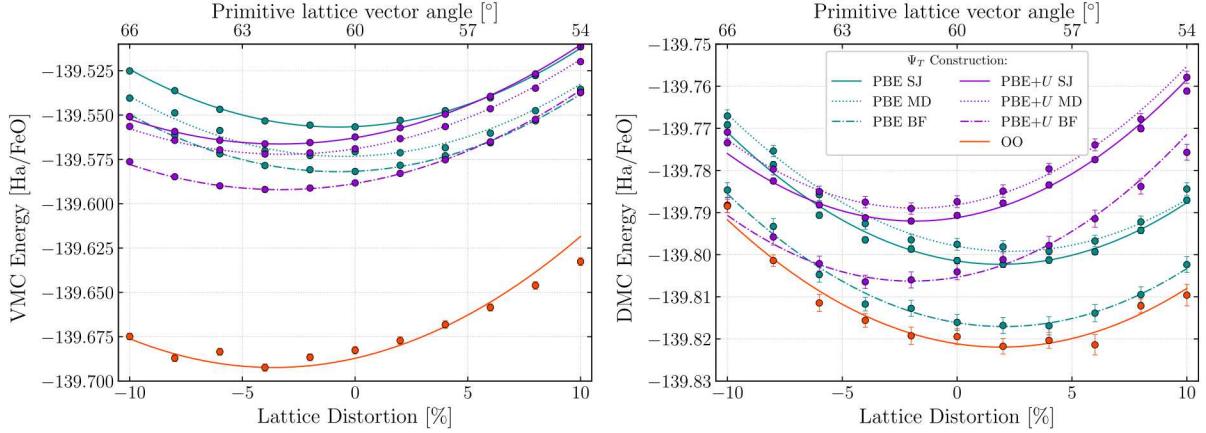


FIG. 3. (color online) Energy versus lattice distortion for VMC (left), and DMC (right) calculations with trial wave functions constructed from various DFT-based methods. The solid lines are quadratic polynomial fits to the data, and are included as a guide to the eye.

202 compared to the single SJ trial wave function. Overall, we found that the orbital optimized
 203 wave function produced the lowest VMC and DMC total energies, further indicating that it
 204 was more accurate.

205 As expected, the predicted equilibrium distortion is quite sensitive to the trial wave
 206 function. For example, a SJ trial wave function composed of PBE orbitals predicts an
 207 equilibrium distortion of about 1.9%, while the backflow and multideterminant wave func-
 208 tions predicted 2.0%, and 2.4%, respectively. By design, we constructed the PBE+U wave
 209 function in such a way as to accumulate excess charge between Fe atoms along [111] as com-
 210 pared to the other wave functions, which explains why the PBE+U wave function uniquely
 211 predicted a negative lattice distortion. Interestingly, estimates of the distortion from trial
 212 wave functions composed of PBE+U SPOs show less sensitivity, with standard SJ, back-
 213 flow, and multideterminant estimates of -1.8%, -2.0%, and -1.8%, respectively. Finally, the
 214 estimated distortion from the orbital optimization wave function was 1.9%. Unfortunately,
 215 comparison to experiment is hampered by that fact that natural and synthetic FeO is non-
 216 stoichiometric. Nevertheless, experimental measurements suggest lattice distortion between
 217 about 1-2%[10, 40, 41]. Admittedly, the large uncertainty in the experimental data, likely
 218 due in part to stoichiometry, are consistent with several of our QMC estimates. However
 219 the low energy and starting point independent quality of the orbital optimization trial wave
 220 function suggest that it is the most accurate.

²²¹ **DISCUSSION AND CONCLUSIONS**

²²² A major goal of this study was to understand how the construction of the QMC trial wave
²²³ function affected several ground state properties. The results indicate that for AFM FeO
²²⁴ the spin density and lattice distortion were particularly sensitive to the construction of the
²²⁵ trial wave function. The most significant result of this investigation was the demonstration
²²⁶ of starting point independence of the QMC trial wave function with respect to the energy,
²²⁷ spin density, and predicted lattice distortion via orbital optimization. This result suggests
²²⁸ that wave functions of this form should provide truly *ab-initio* estimates of ground state
²²⁹ properties of materials in which electronic correlation and many-body effects are important
²³⁰ to account for accurately.

²³¹ The results presented here are subject to several limitations. Most importantly, the 44
²³² electron, 4 atom primitive cell considered here is too small. Currently, this limitation was
²³³ necessary in order to explore advanced wave functions which scale unfavorably with system
²³⁴ size. Here we have focused on establishing the starting point independence of a QMC trial
²³⁵ wave function in a very challenging condensed matter system. This goal is not impeded
²³⁶ by the use of a small cell. Future studies that seek to investigate the equation of state or
²³⁷ other observables will need to explore the use of supercells. As for the trial wave functions,
²³⁸ the multi-determinant expansion was very likely too small. Here we considered only single
²³⁹ and double excitations in a small active space. Although this wave function is exponentially
²⁴⁰ scaling, future studies could certainly improve upon this limitation by exploring larger active
²⁴¹ spaces and alternative methods of generating and selecting excitations [44]. Likewise for the
²⁴² backflow wave function, we were restricted to a single transformation. Recent advances in
²⁴³ iterative backflow transformations may provide further improvements [45].

²⁴⁴ In conclusion, we have performed a systematic investigation of some ground state prop-
²⁴⁵ erties of AFM B1 FeO, and in particular we explored several QMC wave function generation
²⁴⁶ techniques. The results suggest that the equilibrium lattice distortion and spin density are
²⁴⁷ exceptionally sensitive to the construction of the trial wave function (viz. the nodal surface).
²⁴⁸ We demonstrated starting point independence of the QMC trial wave function with respect
²⁴⁹ to the energy, spin density, and equilibrium lattice distortion through orbital optimization.
²⁵⁰ Finally, we suggest that advanced and systematically improvable QMC wave functions such
²⁵¹ as orbital optimization may soon be used more extensively in condensed matter systems for

252 problems where strong electronic correlation effects are important.

253 **ACKNOWLEDGMENTS**

254 JPT, SDP, RCC, TRM, EN, LZ, and LS were supported by the U.S. Department of En-
255 ergy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division,
256 as part of the Computational Materials Sciences Program and Center 263 for Predictive Sim-
257 ulation of Functional Materials. REC was supported by the National Science Foundation
258 through grants TG-MCA07S016, EAR-0738061 and EAR-0530282, and by the European
259 Research Council Advanced Grant ToMCaT and by the Carnegie Institution for Science.
260 Sandia National Laboratories is a multimission laboratory managed and operated by Na-
261 tional Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
262 Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security
263 Administration under contract DE-NA0003525. This paper describes objective technical re-
264 sults and analysis. Any subjective views or opinions that might be expressed in the paper do
265 not necessarily represent the views of the U.S. Department of Energy or the United States
266 Government.

267 * jptowns@sandia.gov

268 [1] D. Adler, Rev. Mod. Phys. **40**, 714 (1968).

269 [2] N. Mott, *Metal-Insulator Transitions* (Taylor & Francis Ltd, 1974).

270 [3] M. P. Pasternak, R. D. Taylor, R. Jeanloz, X. Li, J. H. Nguyen, and C. A. McCammon, Phys.
271 Rev. Lett. **79**, 5046 (1997).

272 [4] J. Badro, V. Struzhkin, J. Shu, R. Hemley, H.-K. Mao, C.-C. Kao, J.-P. Rueff, and G. Shen,
273 Phys. Rev. Lett. **83**, 4101 (1999).

274 [5] S. Ono, Y. Ohishi, and T. Kikegawa, Journal of Physics: Condensed Matter **19**, 036205
275 (2007).

276 [6] A. O. Shorikov, Z. V. Pchelkina, V. I. Anisimov, S. L. Skornyakov, and M. A. Korotin, Phys.
277 Rev. B **82**, 195101 (2010).

278 [7] R. A. Fischer, A. J. Campbell, G. A. Shofner, O. T. Lord, P. Dera, and V. B. Prakapenka,
279 Earth and Planetary Science Letters **304**, 496 (2011).

280 [8] K. Ohta, R. E. Cohen, K. Hirose, K. Haule, K. Shimizu, and Y. Ohishi, Phys. Rev. Lett.
281 **108**, 026403 (2012).

282 [9] C. Shull, W. Strauser, and E. Wollan, Physical Review **83**, 333 (1951).

283 [10] B. T. M. Willis and H. P. Rooksby, Acta Crystallographica **6**, 827 (1953).

284 [11] D. G. Isaak, R. E. Cohen, M. J. Mehl, and D. J. Singh, Phys. Rev. B **47**, 7720 (1993).

285 [12] R. E. Cohen, I. I. Mazin, and D. G. Isaak, Science **275**, 654 (1997).

286 [13] I. I. Mazin, Y. Fei, R. Downs, and R. E. Cohen, American Mineralogist **83**, 451 (1998).

287 [14] Z. Fang, K. Terakura, H. Sawada, T. Miyazaki, and I. Solovyev, Phys. Rev. Lett. **81**, 1027
288 (1998).

289 [15] Z. Fang, I. V. Solovyev, H. Sawada, and K. Terakura, Phys. Rev. B **59**, 762 (1999).

290 [16] S. A. Gramsch, R. E. Cohen, and S. Y. Savrasov, American Mineralogist **88**, 257 (2003).

291 [17] M. Cococcioni and S. de Gironcoli, Phys. Rev. B **71**, 035105 (2005).

292 [18] J. c. v. Kolorenč and L. Mitas, Phys. Rev. Lett. **101**, 185502 (2008).

293 [19] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. **73**, 33 (2001).

294 [20] R. Needs, M. Towler, N. Drummond, and P. L. Ríos, Journal of Physics: Condensed Matter
295 **22**, 023201 (2010).

296 [21] N. D. Drummond, M. D. Towler, and R. J. Needs, Physical Review B **70**, 235119 (2004).

297 [22] P. López Ríos, A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs, Phys. Rev. E **74**,
298 066701 (2006).

299 [23] C. J. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. G. Hennig, Phys. Rev. Lett. **98**,
300 110201 (2007).

301 [24] T. Helgaker, P. Jorgensen, and J. Olsen, *Molecular electronic-structure theory* (John Wiley
302 & Sons, 2014).

303 [25] J. Ludovicy, K. H. Mood, and A. Lüchow, Journal of Chemical Theory and Computation **15**,
304 5221 (2019).

305 [26] J. Hermann, Z. Schätzle, and F. Noé, “Deep neural network solution of the electronic
306 schrödinger equation,” (2019), arXiv:1909.08423 [physics.comp-ph].

307 [27] D. Pfau, J. S. Spencer, A. G. de G. Matthews, and W. M. C. Foulkes, ArXiv **abs/1909.02487**
308 (2019).

309 [28] Input files for both DFT and QMC calculations are provided in the supplementary materials.

310 [29] R. Jastrow, Phys. Rev. **98**, 1479 (1955).

311 [30] T. Kato, Communications on Pure and Applied Mathematics **10**, 151 (1957).

312 [31] M. G. Endres, D. B. Kaplan, J.-W. Lee, and A. N. Nicholson, Phys. Rev. Lett. **107**, 201601
313 (2011).

314 [32] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L.
315 Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi,
316 R. Gebauer, U. Gerstmann, C. Gougaoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos,
317 N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia,
318 S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch,
319 Journal of Physics: Condensed Matter **21**, 395502 (2009).

320 [33] J. T. Krogel, J. A. Santana, and F. A. Reboreda, Physical Review B **93**, 075143 (2016).

321 [34] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. **77**, 3865 (1996).

322 [35] J. Kim, A. Baczeski, T. Beaudet, A. Benali, C. Bennett, M. Berrill, N. Blunt, E. J. L.
323 Borda, M. Casula, D. Ceperley, S. Chiesa, bryan K clark, R. Clay, K. Delaney, M. Dewing,
324 K. Esler, H. Hao, O. Heinonen, P. R. C. Kent, J. T. Krogel, I. Kylianpaa, Y. W. Li, M. G.
325 Lopez, Y. Luo, F. Malone, R. Martin, A. Mathuriya, J. McMinis, C. Melton, L. Mitas, M. A.
326 Morales, E. Neuscammman, W. Parker, S. Flores, N. A. Romero, B. Rubenstein, J. Shea,
327 H. Shin, L. Shulenburger, A. Tillack, J. Townsend, N. Tubman, B. van der Goetz, J. Vincent,
328 D. C. Yang, Y. Yang, S. Zhang, and L. Zhao, Journal of Physics: Condensed Matter (2018).

329 [36] L. Zhao and E. Neuscammman, Journal of Chemical Theory and Computation **13**, 2604 (2017).

330 [37] K. Esler, J. Kim, D. Ceperley, and L. Shulenburger, Computing in Science and Engineering
331 **14**, 40 (2012).

332 [38] Y. Luo, K. P. Esler, P. R. C. Kent, and L. Shulenburger, The Journal of Chemical Physics
333 **149**, 084107 (2018).

334 [39] M. Holzmann, B. Bernu, and D. M. Ceperley, Phys. Rev. B **74**, 104510 (2006).

335 [40] P. Battle and A. Cheetham, Journal of Physics C: Solid State Physics **12**, 337 (1979).

336 [41] H. Fjellvåg, F. Grønvold, S. Stølen, and B. Hauback, Journal of Solid State Chemistry **124**,
337 52 (1996).

338 [42] J. Kanamori, Journal of Applied Physics **31**, S14 (1960).

339 [43] P. W. Anderson, Phys. Rev. **79**, 350 (1950).

³⁴⁰ [44] G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, *Nature* **493**, 365 (2013).

³⁴¹ [45] M. Taddei, M. Ruggeri, S. Moroni, and M. Holzmann, *Phys. Rev. B* **91**, 115106 (2015).