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Abstract

Quantum Monte Carlo (QMC) methods are useful for studies of strongly correlated materials

because they are many-body in nature and use the physical Hamiltonian. Typical calculations

assume as a starting point a wave function constructed from single particle orbitals (SPOs) obtained

from one-body methods e.g. density functional theory. However, mean-field-derived wave functions

can sometimes lead to systematic QMC biases if the mean-field result poorly describes the true

ground state. Here, we study the accuracy and flexibility of QMC trial wave functions using

variational and fixed-node diffusion QMC estimates of the total spin density and lattice distortion

of antiferromagnetic iron oxide (FeO) in the ground state B1 crystal structure. We found that

for relatively simple wave functions the predicted lattice distortion was controlled by the choice

of single particle orbitals used to construct the wave function, rather than by subsequent wave

function optimization techniques within QMC. We then demonstrate starting point independence

of the trial wave function with respect to the energy, spin density, and predicted lattice distortion

by eliminating bias via orbital optimization. The results suggest that orbital optimization is a

promising method for accurate many-body calculations of strongly correlated condensed phases.
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11 INTRODUCTION

12 Iron oxide (FeO) is a prototypical Mott-type insulator which displays a rich phase diagram

13 that includes magnetic, electronic, and structural phase transformations due in part to

14 the open shell configuration of the 3d electrons [1-8]. In the ground state, Fe0 adopts a

15 bulk antiferromagnetic (AFM) structure composed of alternating ferromagnetic planes of

16 Fe atoms perpendicular to [111], which induces, by magnetoelastic coupling, a symmetry

17 lowering distortion of the nominally B1 lattice from cubic to rhombohedral [9, 10]. Previous

18 theoretical studies have investigated structural phase transitions at high pressure and the

19 equilibrium lattice distortion [8, 11-18]. One of the main findings of these studies is that

20 the equilibrium lattice distortion in particular is highly sensitive to the electronic structure.

21 Quantum Monte Carlo (QMC) methods are especially well suited to problems where elec-

22 tronic correlation is important because they use the physical Hamiltonian and are therefore

23 variational [19, 20]. The input for a typical QMC calculation is a trial wave function, the an-

24 tisymmetric portion of which is often generated from a set of single particle orbitals (SPOs)

25 from e.g. Kohn-Sham density functional theory (DFT). In addition to the antisymmet-

26 ric piece, the trial wave function typically includes many adjustable parameters which can

27 be optimized by exploiting the variational principle using, for example, variational Monte

28 Carlo (VMC). Classic examples include the Jastrow factor, backflow transformation of the

29 electronic coordinates, a multi-determinant expansion, or orbital optimization. Each of the

30 above explicitly introduces electron-electron correlation into the wave function and thereby

31 gives improved ground state properties as compared to a Hartree-Fock wave function [21-24].

32 The accuracy of projector-based QMC methods such as diffusion Monte Carlo (DMC)

33 depend on the nodal surface of the wave function, which depends on the SPO set. The

34 challenge for QMC studies of strongly correlated systems, then, lies in constructing a suitably

35 flexible and accurate wave function. Thus new methods for generating accurate QMC trial

36 wave functions with sufficient flexibility are highly desired. Recently, several studies have

37 demonstrated remarkable success in constructing flexible and accurate wave functions in

38 molecular systems[25-27], but until now wave functions for condensed systems tend to be

39 much simpler due to the larger number of electrons and larger basis sets.

40 Here we report variational and diffusion quantum Monte Carlo calculations of AFM Fe0

41 using a variety of trial wave function ansätze including electron-electron backflow transfor-
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42 mations as well as multi-determinant expansions and orbital optimization. In order to test

43 the flexibility of the trial wave function, we constructed sets of SPOs from DFT using PBE

44 and PBE+U functionals generated so as to yield qualitatively different lattice distortions.

45 We then demonstrate starting point independence of DMC estimates of the energy, spin den-

46 sity, and equilibrium lattice distortion with respect to the SPOs in a Slater Jastrow wave

47 function through orbital optimization. The results indicate that orbital optimization is a

48 promising method for constructing very accurate and flexible wave functions for QMC cal-

49 culations on challenging transition metal oxides and highlight the ability of QMC methods

50 to deliver starting point independent estimates of some ground state properties.

51 COMPUTATIONAL APPROACH

52 The immediate goal of this study was to understand how the techniques used to construct

53 QMC trial wave functions affected the estimated ground state properties in a challenging

54 condensed system. With that goal in mind, we restricted calculations to a single four-atom

55 AFM primitive cell [28] with periodic boundary conditions so that advanced wave function

56 ansätze which scale unfavorably with system size could be tested.

57 The building block of all the trial wave functions considered here was the Slater-Jastrow

58 (SJ) type wave function:

111 T (r; e) = Dt(x; e) D4- (x; e)eJ(x;0 (1)

59 where r,x are the sets of electronic and generalized coordinates, respectively, is the set

60 of variational parameters, and ar 4 is a linear combination of one or more Slater determi-

61 nants composed of single particle orbitals (SPOs). The adjustable parameters of the anti-

62 symmetric portion of the wave function include, for example, weights in a multi-determinant

63 expansion, electron-electron backflow transformation, or orbital rotations. Finally, J(x; 0 is

64 the Jastrow function that explicitly introduces dynamic correlation into the wave function

65 and enforces the cusp conditions [21, 29, 30].

66 Projector-based QMC methods like DMC for fermions commonly require that the nodal

67 surface (kliT(r; 0 = 0) of the trial wave function is prescribed in order to mitigate the fermion

68 sign-problem [31]. This fixed-node (FN) approximation introduces a systematic bias in the

69 results, which while variational, may be significant if the nodal surface of the trial wave
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70 function is qualitatively different from that of the exact ground state wave function. As we

71 show here, this bias can result in qualitatively incorrect behavior even after the application

72 of projector-based QMC methods. Crucially, the Jastrow factor does not affect the nodal

73 surface of the trial wave functions we investigated, so the ultimate accuracy of our DMC

74 calculations is set by the anti-symmetric piece of the wave function.

75 Wave function generation

76 In order to test the flexibility of QMC trial wave functions we constructed two sets of SPOs

77 which produced qualitatively different estimates of the spin density and equilibrium lattice

78 distortion. Trial wave functions were constructed from SPOs generated from spin-resolved

79 DFT calculations using the Quantum ESPRESSO code (version 6.4.0), an implementation of

80 plane wave based Kohn-Sham density functional theory with periodic boundary conditions

81 [32]. We used pseudopotentials specifically designed for QMC calculations to describe the

82 iron and oxygen atoms for both the DFT and QMC calculations [33]. The iron pseudopo-

83 tential had a neon core (3s23p63d64s2 valence) and the oxygen pseudopotential had a helium

84 core (2s22p4 valence), for a total of 44 electrons in the primitive cell. All DFT calculations

85 used a 180 Ha plane wave cutoff and a 6 x 6 x 6 k-point grid and were tested to confirm

86 that further increasing those values did not appreciably change the DFT energy or stress.

87 The first SPO set was constructed using the PBE generalized gradient approximation [34],

88 and the second used a PBE+U functional (U = 4.3 eV) in the rotationally invariant scheme

89 following previous work[16, 17] in order to localize the Fe 3d states. The two sets of SPOs

90 are qualitatively distinct. The PBE result predicted a metallic ground state and a posi-

91 tive lattice distortion, while the PBE+U results predicted an insulating ground state and

92 negative lattice distortion.

93 Wave function optimization and Monte Carlo calculations

94 All QMC calculations were performed with the QMCPACK code (version 3.6) [35]. We

95 used the improved adaptive shift algorithm [36] to optimize, in some cases, more than

96 three thousand wave function parameters using variational Monte Carlo (VMC). Common

97 amongst all trial wave functions we considered were species dependent one-, two-, and three-
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98 body Jastrow factors represented as cubic polynomials in the particle separations with a

99 spatial cutoff corresponding to the Wigner-Seitz radius of the cell, about 2.9 bohr. The

100 two-body Jastrow produced the largest energy and variance reduction, but addition of one-

101 and three-body terms was found to further reduce the energy and variance significantly. The

102 use of small core pseudopotentials resulted in a highly oscillatory wave function near the

103 atomic cores which was costly in terms of memory to accurately represent on a rectangular

104 mesh. We therefore chose to divide the representation of the wave function into two parts

105 as suggested by Esler et al. [37] with the regions near the ions stored as radial splines

106 multiplied by spherical harmonics and the interstitial regions represented by 3D b-splines

107 on a rectilinear mesh[38]. This scheme reduced the memory required to represent the wave

108 function by a factor of more than 25 as compared to the standard rectangular mesh with no

109 statistically significant change in the energy or variance.

no With two sets of SPOs in hand, we proceeded to optimize the trial wave functions using

in VMC. While optimization of the Jastrow factor yielded significant energy and variance re-

112 duction, the SPO's themselves are what limit the ultimate accuracy of DMC. We therefore

113 explored three methods of improving the nodal surface of the trial wave function: backflow

114 transformation of the electronic coordinates, multi-determinant expansion, and orbital opti-

115 mization. A backflow (BF) transformation is a transformation of the electronic coordinates

116 r, to quasiparticle coordinates q [39]. For a particular electron this transformation is given

117 by:

ri = ri Eq(lri — (ri — rj)

z#3

(2)

118 with y a spherically symmetric spline function.

119 The second trial wave function type was a multi-determinant (MD) expansion. In this

120 wave function, one builds out of a set of single particle orbitals, {0}, a number of Slater

121 determinants {(13.[0]}, with the former being larger than the number of electrons per spin

122 channel:

D(r, = E [0(r)] (3)

123 The appeal of this ansatz is that with an infinite number of O's and Vs, this wave function is

124 exact. The downside is that it scales exponentially in the number of particles. For that rea-

125 son, we explored the use of modest multi-determinant expansions which were constructed in

126 a two-step procedure. The first step was an optimization of the 924 determinant weights in
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127 an expansion consisting of all possible single excitations within a basis of 64 SPOs. The sec-

128 ond step was an optimization of all possible single and double excitations generated from the

129 highest weighted 32 determinants from the previous step, which totaled 452 determinants.

130 For these wave functions we found that optimization of the weights of the determinants at

131 each twist further reduced the VMC energy by approximately 20 mHa/Fe0 as compared to

132 optimization at a single twist only, due to differences in band ordering.

133 The third trial wave function type included an optimization of the SPOs (00) themselves.

134 With this method, each optimized SPO, -q3., present in the determinant is constructed from

135 a unitary transformation of the original SPOs, cb [24]:

Tz = z3o3 (4)

136 This wave function contained over 3000 optimizable parameters, and was therefore expected

137 to be the most flexible and accurate trial wave function type we considered.

138 The twist-averaged total energies for all optimized trial wave functions is shown in fig. 1.

139 As expected, the VMC energies of the optimized backflow, multi-determinant, and orbital

140 optimization wave functions were lower than their simpler Slater Jastrow wave function

141 counterparts. An unexpected result was that improvements in the multi-determinant trial

142 wave function predicted by VMC did not carry over to DMC in all cases. We attribute

143 this result to the relatively small active space in which that wave function was constructed,

144 and it highlights that our VMC optimization strategy improves the overall shape of the

145 wave function, but not necessarily its nodal surface. Importantly, the DMC energies of the

146 orbital optimized trial wave function were statistically identical regardless of the SPO set in

147 which the optimization occurred. This striking result suggests starting-point independence

148 of the optimized trial wave function with respect to the SPOs and was not achieved with

149 any other wave function. Especially encouraging was that the 00 wave function was much

150 less expensive to evaluate as compared to the MD or BF, which were 2.2x and 1.6x times as

151 expensive to evaluate as compared to the 00 wave function, respectively.

152 After optimization, production DMC calculations were carried out on all optimized trial

153 wave functions on a 3 x 3 x 3 grid of twist vectors and the results were subsequently twist-

154 averaged. DMC results were linearly extrapolated to zero timestep from a series of calcula-

155 tions with finite time steps of T=0.01, 0.005, and 0.0025 Ha-1.
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FIG. 1. (color online) Twist-averaged QMC energies for several optimized trial wave function

types built from either PBE, or PBE-FU SPOs. The DMC energies are linearly extrapolated to

zero timestep.

156 RESULTS

157 The principal goal of this study was to understand how sensitive various ground state

158 properties of a system were to the trial wave function for a realistic and challenging con-

159 densed system. To that end, we calculated a series of physical properties that are typically

160 strongly affected by the electronic structure: the total spin density and the equilibrium

161 lattice distortion.
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162 Spin density

163 The character of the Fe 3d orbitals produced from a DFT+U calculation is very different

164 from those of PBE. As a result, we expected to see a significant difference in the predicted

165 total spin densities depending on the SPOs used in the trial wave function. An open question

166 was the extent to which subsequent optimization of the trial wave function would correct

167 any deficiencies. To illustrate the differences in the optimized trial wave functions, we

168 show contours of the difference in the total spin density with respect to a SJ wave function

169 composed of PBE SPOs in fig. 2. While both the backflow and multi-determinant trial

170 wave functions show only small perturbations in the spin density as compared to the SJ

171 PBE reference, the orbital optimized trial wave function yields a significantly different spin

172 density. Evidently, the qualitatively distinct character of the spin density between PBE

173 and PBE+U SPOs is effectively erased with orbital optimization, in concordance with the

174 comparison of the total energy shown in fig. 1. This suggests that with orbital optimization

175 the QMC trial wave function and its associated observables are independent of the quality

176 of the original underlying SPO set. Further, this gives confidence that observables estimated

177 from such a trial wave function give "right answers for the right reason" .

178 Equilibrium Lattice Distortion

179 In the ground state, the nominally cubic B1 crystal structure of AFM Fe0 is slightly

180 elongated along the [111] direction, thereby simultaneously increasing the inter-planar spac-

181 ing and decreasing the intra-planar spacing of the iron atoms [40, 41]. This phenomenon

182 is observed in many transition metal oxides, and is controlled by interactions between 3d

183 electrons on the iron atoms[42, 43]. For that reason we expected the equilibrium lattice

184 distortion to be very sensitive to the quality of the trial wave function. Fig. 3 shows energy

185 versus lattice distortion at the VMC and DMC levels. The VMC results for each wave func-

186 tion type universally predicted lattice contraction along [111], which is qualitatively wrong

187 as compared to experiment.

188 Considering the more accurate DMC calculations, we see significant improvements in

189 both energy and predicted lattice distortion. DMC correctly shifted the predicted equilib-

190 rium lattice distortion for all trial wave functions to more positive values (extension along
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B1 Fe0

PBE+U SJ - PBE SJ

PBE BF - PBE SJ

PBE+U BF - PBE SJ

PBE MD - PBE SJ

PBE+U MD - PBE SJ

PBE 00 - PBE SJ

PBE+U 00 - PBE SJ

FIG. 2. (Color online) Contours of the difference in the DMC estimated total spin density between

trial wave function types with respect to a single SJ trial wave function composed of PBE SPOs.

Detailed views looking along [111] show a 2x10-9 contour interval and are restricted to a single

Fe06 octahedron for visual clarity. Iron and oxygen atoms are shown as large grey and small black

spheres, respectively. green (purple) surfaces bound regions where PBE total spin density is less

(greater) than that from the other SPO set.

191 [111]), although this shift is insufficient to recover the correct behavior in some cases. There

192 was also a re-ordering of the relative energies of the trial wave functions as compared to

193 VMC. Wave functions constructed from PBE+U orbitals yielded higher DMC energies as

194 compared to those of the PBE wave functions. That the multi-determinant wave func-

195 tions produce a higher energy than their single determinant counterparts at the DMC level

196 is a reflection of the fact that wave function improvements from VMC do not necessarily

197 guarantee a corresponding improvement with DMC. Compared to the multi-determinant

198 expansion, the improvements in the nodal surface due to the backflow transformation and

199 orbital optimization are readily apparent both in terms of lower total energy and lattice

200 distortion. Indeed, the backflow and orbital optimized wave functions yielded significant

201 energies reductions, in some cases reducing the energy by as much as 20 mHa per Fe0 as
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FIG. 3. (color online) Energy versus lattice distortion for VMC (left), and DMC (right) calcula-

tions with trial wave functions constructed from various DFT-based methods. The solid lines are

quadratic polynomial fits to the data, and are included as a guide to the eye.

202 compared to the single SJ trial wave function. Overall, we found that the orbital optimized

203 wave function produced the lowest VMC and DMC total energies, further indicating that it

204 was more accurate.

205 As expected, the predicted equilibrium distortion is quite sensitive to the trial wave

206 function. For example, a SJ trial wave function composed of PBE orbitals predicts an

207 equilibrium distortion of about 1.9%, while the backflow and multideterminant wave func-

208 tions predicted 2.0%, and 2.4%, respectively. By design, we constructed the PBE+U wave

209 function in such a way as to accumulate excess charge between Fe atoms along [111] as com-

210 pared to the other wave functions, which explains why the PBE+U wave function uniquely

211 predicted a negative lattice distortion. Interestingly, estimates of the distortion from trial

212 wave functions composed of PBE+U SPOs show less sensitivity, with standard SJ, back-

213 flow, and multideterminant estimates of -1.8%, -2.0%, and -1.8%, respectively. Finally, the

214 estimated distortion from the orbital optimization wave function was 1.9%. Unfortunately,

215 comparison to experiment is hampered by that fact that natural and synthetic Fe0 is non-

216 stoichiometric. Nevertheless, experimental measurements suggest lattice distortion between

217 about 1-2%[10, 40, 41]. Admittedly, the large uncertainty in the experimental data, likely

218 due in part to stoichiometry, are consistent with several of our QMC estimates. However

219 the low energy and starting point independent quality of the orbital optimization trial wave

220 function suggest that it is the most accurate.
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221 DISCUSSION AND CONCLUSIONS

222 A major goal of this study was to understand how the construction of the QMC trial wave

223 function affected several ground state properties. The results indicate that for AFM Fe0

224 the spin density and lattice distortion were particularly sensitive to the construction of the

225 trial wave function. The most significant result of this investigation was the demonstration

226 of starting point independence of the QMC trial wave function with respect to the energy,

227 spin density, and predicted lattice distortion via orbital optimization. This result suggests

228 that wave functions of this form should provide truly ab-initio estimates of ground state

229 properties of materials in which electronic correlation and many-body effects are important

230 to account for accurately.

231 The results presented here are subject to several limitations. Most importantly, the 44

232 electron, 4 atom primitive cell considered here is too small. Currently, this limitation was

233 necessary in order to explore advanced wave functions which scale unfavorably with system

234 size. Here we have focused on establishing the starting point independence of a QMC trial

235 wave function in a very challenging condensed matter system. This goal is not impeded

236 by the use of a small cell. Future studies that seek to investigate the equation of state or

237 other observables will need to explore the use of supercells. As for the trial wave functions,

238 the multi-determinant expansion was very likely too small. Here we considered only single

239 and double excitations in a small active space. Although this wave function is exponentially

240 scaling, future studies could certainly improve upon this limitation by exploring larger active

241 spaces and alternative methods of generating and selecting excitations [44]. Likewise for the

242 backflow wave function, we were restricted to a single transformation. Recent advances in

243 iterative backflow transformations may provide further improvements [45].

244 In conclusion, we have performed a systematic investigation of some ground state prop-

245 erties of AFM B1 FeO, and in particular we explored several QMC wave function generation

246 techniques. The results suggest that the equilibrium lattice distortion and spin density are

247 exceptionally sensitive to the construction of the trial wave function (viz. the nodal surface).

248 We demonstrated starting point independence of the QMC trial wave function with respect

249 to the energy, spin density, and equilibrium lattice distortion through orbital optimization.

250 Finally, we suggest that advanced and systematically improvable QMC wave functions such

251 as orbital optimization may soon be used more extensively in condensed matter systems for
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252 problems where strong electronic correlation effects are important.
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