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Sandia’s Z machine produces intense x-ray radiation
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Z Refurbishment underway—26 MA capability in 2007
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J x B pinches wire array into a dense, radiating plasma

J
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Radiation Effects Sciences (C7) z-pinch sources
ni ~ 1020 cm-3,  Te ~ 1 keV (non-LTE)

Prad ~ 100 TW,  Yrad ~ 1 MJ,  Yrad,>1keV ~ 100 kJ
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A variety of K-shell sources have been studied at Z for C7

• Factor of 2-4 increases 
in yield expected on ZR

• Al: 40 on 20 mm dia. 
nested wire array

• Ar: L3 1234 nozzle
gas puff Z pinch

• Ti: 50 on 25 mm dia. 
nested wire array

• SS: 55 on 27.5 mm dia. 
nested wire array

• Cu: 60 on 30 mm dia. 
nested wire array

• Pulse widths 5 to 25 ns, 
rise times 2 to 8 ns
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Plasma heating and radiation excitation on ~1 ns time scale

• Magnetic RT implosion instability broadens the radial profile
• Plasma accretes on axis, depositing kinetic energy
• e-i-rad thermalization in dense plasma on axis

– K-shell emission from column where pinch is assembling
– Details of shock heating are a topic of continuing interest

Cu z pinch on Z (C.A. Coverdale); B. Jones et al., APiP 2007 proc.
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Load design provides Te > 1 keV for K-shell excitation

• Time-integrated crystal 
spectrometers fielded on all 
Z shots for K-shell survey

• Plasma conditions inferred 
through non-LTE collisional
radiative modeling (NRL)

• Higher photon energy 
sources require higher Te to 
ionize to the K-shellTime/Space-integrated

K-shell spectrum, 
Stainless steel Z pinch

Time-integrated, Radially-resolved
K-shell spectrum, Al/Mg Z pinch
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Time-resolved x-ray spectra support thermalization studies

• Ni and high order Fe lines light 
up as ne, Te increase near peak 
K-shell x-ray power

• Time-resolved elliptical crystal 
spectrometers provide <1 ns 
resolution with low background
– J. E. Bailey et al., PRL

92, 085002 (2004).

Time-resolved K-shell spectra,
Stainless steel Z pinch
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High ion temperatures are expected in z-pinch plasmas

• M.G. Haines et al., PRL 96, 
075003 (2006): Ti > 100 keV
inferred from Doppler-
broadened line widths on Z

• Results are controversial—
further study is desired

• E. Kroupp et al., PRL 98, 
115001 (2007) also discusses 
> 1 keV ions in a small gas 
puff z pinch

• Ions carry KE; other 
heating proposed

• We have started to 
address ion heating in 
K-shell radiators (e.g. 
stainless steel)
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Optically thin Doppler splitting seen in low-mass Al wire array

• Oval shape—Doppler split seen on axis, 
but not in tangential view of shell

• At early time, red/blue-shifted lines are 
similar magnitude ⇒ optically thin

• Speckle could be azimuthal structure
• At later times, red-shifted line is 

attenuated by shell/trailing mass opacity
• Splitting not so obvious in Al lines—

brighter precursor emission on axis?
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Opacity in cold 
trailing mass

Doppler-shifted absorption seen in high-mass Al wire array

Z1518, Al Ly-α
t = -9.0 ns
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Opacity in cold trailing mass attenuates 
red-shifted Al Ly-α and He-α

CR model with Doppler shifts/broadening is being developed

Z1518, t = -9.0 ns

• Collisional-radiative model, radiation
transport in discrete zones (Y. Maron)

– Hot: 1.5 mm < R < 2 mm
– Cold: 2 mm < R < 9 mm

• Line shape calculations
– Stark broadening (not dominant)
– Doppler broadening/splitting (implemented for first time, δv/v=10%)

• Preliminary results (need to consider satellites):
– Hot: ni = 5 x 1019 cm-3, Te = 700 eV, v = 40 cm/μs
– Cold: ni = 5 x 1019 cm-3, Te = 150 eV, v = 30 cm/μs
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Opacity in cold trailing mass forms 
absorption dip in broad Al Ly-α line

Matching spectral features constrains plasma parameters

Z1518, t = -9.0 ns

• Al Ly-α satellites can be better explained with dense core
• The δv in core may indicate Ti, turbulence, or ∇v
• Study required to determine how well plasma

parameters can be constrained
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Radiation transport is tracked through each plasma region

Z1518, t = -9.0 ns

• Broad Al Ly-α line from hot core backlights the cold halo
• May be able to infer Ti in the core through this analysis
• Al Ly-α satellites originate in the hot core and will

help constrain core density
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Summary

• The Radiation Effects Sciences program at Sandia is 
developing 1-10 keV K-shell radiation sources (wire array and 
gas puff z pinches) on the Z machine

• Physics associated with conversion of ion kinetic energy to 
electron thermal energy, then radiation is important for z 
pinches of all classes

• Z-pinch physics, plasma heating and energetics will continue 
to be investigated via K-shell spectroscopy and other x-ray 
measurements on Z along with numerical and analytical theory
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