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* Overview of SALINAS

 Vibration analysis capabilities

* Acoustic and structural acoustic capabilities
 Example applications
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i SALINAS Solution Methods

* Eigen
« Complex Eigen

* linear and nonlinear
transient dynamics

 linear and nonlinear statics
« direct frequency response
 Random vibration analysis

 modal based solutions for
transient dynamics, SRS,
frequency response.

» coupled structures (from
presto or adagio)
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i Element Library

» Solid Elements
— Hex8, Hex20, Tet4, Tet10, Wedge6, Wedge15
— Hex8 variations
* Shell Elements
— Tria3, Quad4, (Tria6, Quad8 — not really quadratic)
 Bar/Beam Elements
— Beam2, Truss, Spring, Dashpot
* Point Elements
— conmass
» Specialty Elements
— Ilwan, Hys, Shys, Joint2G, Gap
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# Definition of Scalability

« Solution of an N times bigger problem, on N times
the processors takes about the same amount of
time.

* No change of time step required.
» No change of iteration count.

e No change of start/stop time for the solution.
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SALINAS Scalability Study
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;' i Acoustic Applications at Sandia

« Coupled seismic/acoustics for deeply buried
structures

* Ultrasonics

* Urban acoustic propagation
 Fluid-filled tankers

* MEMS microphones

* Divers in shallow water

» Acoustics of re-entry
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Official Use Only

T ' Salinas Acoustic Capabilities

* Massively parallel
* Hex, wedge, tet acoustic elements

» Acoustic coupling with both 3D and shell (2D) structural
elements

* Linear and nonlinear acoustics

» Allows for mismatched acoustic/solid meshes

» Solvers: FETI-DP, CLIP/CLOP, and FETI-H (for Heimholtz)
» Solution procedures:

— Frequency response (frequency-domain)

— Transient (time-domain)

— Eigenvalue (modal) analysis

— Coupled acoustic-structural eigenvalue analysis
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#mite Element (FE) vs. Time-Domain Finite
| Difference (TDFD) Acoustics Approach

TDEFD FE
- Difficulty representing « Complex geometries conform
complex geometries naturally to element
boundaries

— Spurious grid reflections

 Difficult to couple with finite-
element based structural
dynamics codes

« Difficult to model free
surfaces/surface topography

- Easy integration with finite-
element based structural
dynamics codes

* Free surfaces treated as part
of formulation

— Surface topography
represented as boundaries
of elements

* New technologies
(discontinuous Galerkin,
infinite elements) designed

specifically for FE
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Finite Element Methods for Nonlinear Acoustics

Motivation: Extend simulation capability from
classical linear acoustics to nonlinear acoustics,
for cases involving large-amplitude waves.

* The linear (first-order) acoustic wave equation
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* The nonlinear (second-order) wave equation
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Comparison of Linear and Nonlinear
Acoustic Results

Acoustic Pressure (Pa)

Far-field pressure from a high velocity source
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;' i Mismatched Acoustic/Solid Meshes

QOur approach:

» Add “ghost” acoustic degrees of freedom to solid nodes on wet
interface

« Use conforming coupling operators to couple solid nodes on wet
interface to appended acoustic dof

» Couple acoustic dof on both sides of wet interface with
constraint equations

- For conforming meshes, this method reduces to a
conforming structural acoustics

- Same constraint equations for acoustic-acoustic coupling
and structural-acoustic coupling
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Mismatched Acoustic/Solid Meshes
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Constraint Equations Join
Acoustic Degrees of Freedom
on Both Sides of Wet Interface

' 1 degree of freedom per node
@ 4 degrees of freedom per node (solid dof + ghost acoustic dof)

. 3 degrees of freedom per node @ Sandia
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i Structural Acoustic Equations of Motion

* Time domain formulation

A A A

» Eigenanalysis formulation

R A A

* Frequency-domain formulation

R SN
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i Example Simulations

* Surveillance of deeply buried tunnels

* Acoustic backscatter from diver in shallow water
* 3D urban acoustic propagation
* Inspection of tanker trucks

* Coupling of CTH with acoustics
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Surveillance of Deeply Buried Tunnel

Goal: Model acoustic and seismic radiation from deeply buried
structures with air portals, for intelligence-gathering purposes.

isosurface at 100 psi isosurface at 100 psi

Time histories of acoustic pressure and structural
Von Mises stresses in coupled air tunnel/seismic

half-space Sandia
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Backscatter from Diver in Shallow Water

Goal: Model the backscatter from divers, mines, and other intruders in
shallow coastal waters, for the purpose of designing detection equipment
for protecting US coasts, ports and other
critical infrastructure.
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Acoustic backscatter from diver body Acoustic backscatter from torso
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3D Urban Acoustic Propagation

Goal: Model acoustic propagation in 3D urban environment, using
state-of-the-art finite element meshing tools and nonlinear acoustic modeling

Time 4.46e-01

_Apressure
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2.737e+01
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-2.359+01

3D finite element mesh of urban Acoustic wave propagation analysis
environment
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Inspection of Tanker Trucks

Goal: Model the backscatter from fluid-filled tanker trucks, to assist inspectors
in looking for contraband materials

Bottom (Water)

Freq. 1105.98 Hz.

apressure

1.596e+03
7.972e+02
-1.836e+00
-8.009e+02

-1.600e+03

Acoustic mesh of fluid-filled tanker Acoustic analysis of water-air interface
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CTH-Acoustic Coupling

Goal: Model the transition from hydrodynamic energy to acoustic energy to
structural vibration through air

Linear acoustics

onlinear acoustic

hydrodynamics

Schematic of explosion-acoustic coupling Structural acoustic mesh used to compute
scenario the explosive-induced vibration of a
structure due to nonlinear acou ﬂ ﬁgggﬁal
excitation of air. Laboratories



i Other Possible Applications

* Acoustic sniper detection

— Both military and domestic
* Monitoring tunnels at US border crossings
- Large-scale seismic wave propagation

— Underground nuclear test monitoring
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* Massively parallel finite element capability
designed for large-scale vibration, complex
acoustic and structural acoustic analysis

Conclusions

* Wide range of analysis procedures: transient
(time-domain), eigenanalysis, and frequency
domain

* Applied to a variety of applications
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