

Time-domain boundary conditions in atmospheric acoustics

Vladimir Ostashev

*Physics Department, New Mexico State University
and NOAA/Earth System Research Laboratory*

Sandra Collier

U.S. Army Research Laboratory

Keith Wilson

U.S. Army Cold Regions Research and Engineering Laboratory

David Aldridge and Neill Symons

Sandia National Laboratories

David Marlin

U.S. Army Research Laboratory

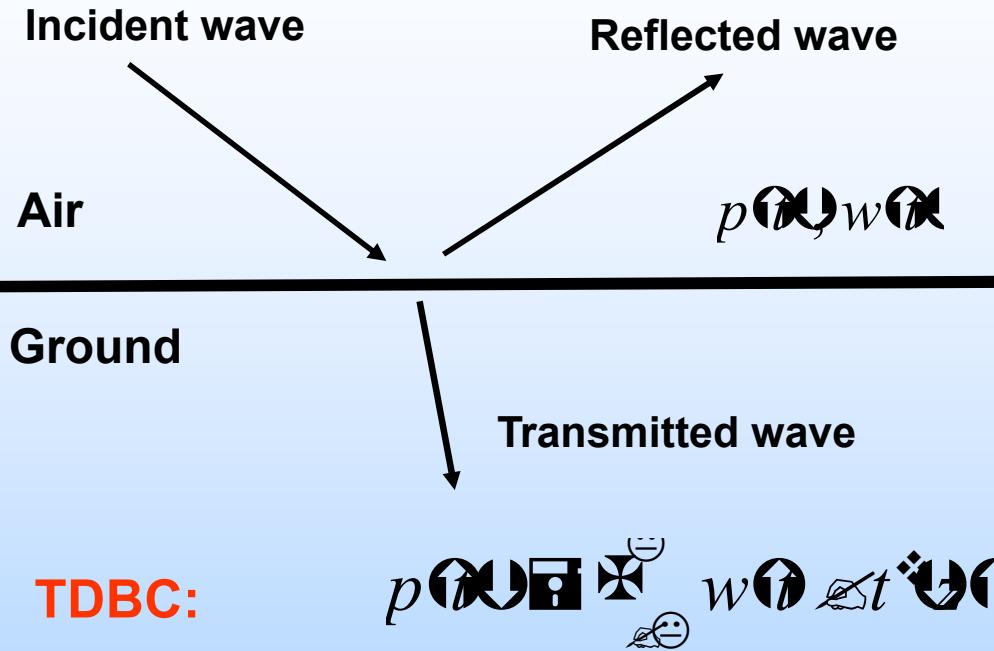
Outline

- 1. Introduction.**
- 2. Time-domain boundary conditions (TDBC)
for the modified Zwikker-Kosten (ZK)
impedance model.**
- 3. Causal TDBC for any impedance model.**
- 4. Conclusions.**

1. Introduction

- **FDTD simulations of outdoor sound propagation is a very promising technique.**
- **A challenging problem in FDTD is formulation of TDBC at the ground surface.**
- **The goal of this paper: Development of numerically efficient and causal TDBC.**

2. TDBC for modified ZK model



BC for a locally reacting surface:

$$P(t, w, \alpha) \otimes Z(t, w, \alpha)$$

Fourier transform:

$$Z(t, w, \alpha) \otimes \frac{1}{2} \gamma \otimes e^{i \gamma_0 t} Z(t, w, \alpha)$$

- Convolution complicates TDBC.
- Some TDBC are noncausal (e.g. Delany and Bazley model).
- The goal of the paper is to make TDBC numerically efficient and causal.

2. TDBC for modified ZK model

ZK impedance model:

$$Z_{\text{ZK}} = Z_{\odot} \sqrt{\frac{1 + \eta_{\odot}}{\eta_{\odot}}}$$

Two parameters: Z_{\odot} and η_{\odot}

Modified ZK impedance model:

$$Z_{\odot} = \frac{q}{\eta_{\odot}}, \quad \eta_{\odot} = \frac{q^2 \phi}{\theta}$$

Here, tortuosity q , porosity ϕ , flow resistivity θ , etc.

The modified ZK impedance model is almost indistinguishable from more realistic models characterized by more parameters. This comes with a price: Inside the ground the modified ZK model does not work.

2. TDBC for modified ZK model

Causal TDBC:

$$p(t) = Z \left[w(t) - \frac{1}{2} \int_0^t w(t') dt' \right]$$

Here, the response function

$$f(t) = \frac{\exp(\Omega t/2)}{2} \int_0^t \int_0^{t'} dt''$$

Slowly decaying function: $f(t) \propto t^{-1/2}$ for $t \gg 1$

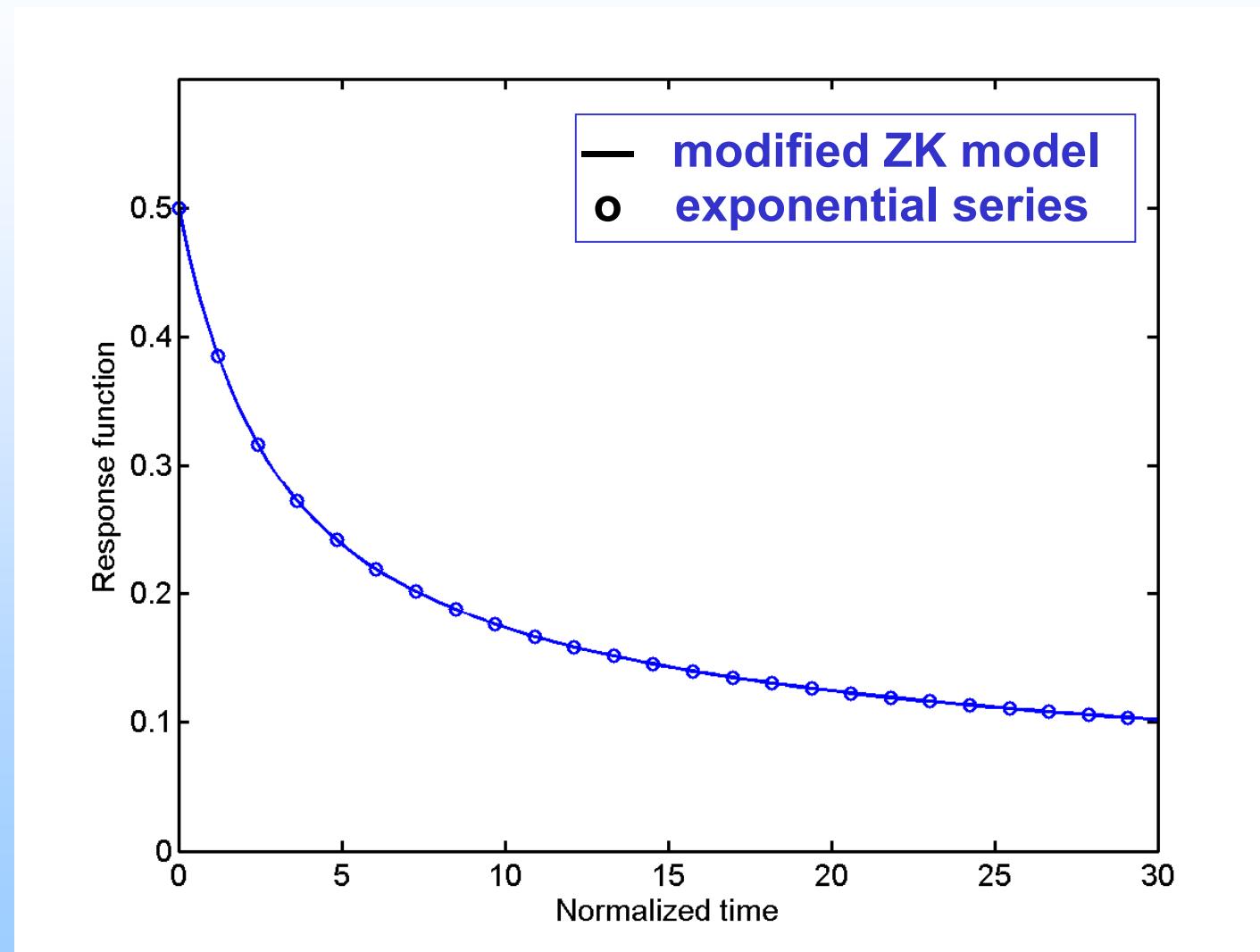
Hundreds of time steps need to be retained.

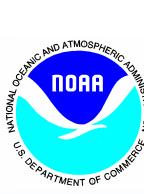
Approximation of $f(t)$ with an exponential series:

$$f(t) \approx \sum_{k=0}^K a_k e^{-\Omega_k t}$$

k	a_k, ZK	Ω_k, ZK
1	0.55590	0.57559
2	0.13751	0.01157
3	0.48279	0.63507
4	0.14898	0.11357
5	0.28696	0.41958
6	0.00037	2.63762

2. TDBC for modified ZK model





2. TDBC for modified ZK model

TDYC:

$$p \otimes Z \otimes \left[w \otimes \begin{matrix} K \\ k \end{matrix} \otimes \begin{matrix} \oplus \\ 0 \end{matrix} w \otimes t \otimes a_k e^{\otimes k t \otimes \partial \frac{dt}{\partial t}} \right]$$

Discrete time steps $t \in t_n \in \mathbb{N} \setminus t, \quad n \in \{1, 2, \dots\}.$

The auxiliary variable \mathfrak{p}_k^n is the value of the integral.

$\mathbf{p}_k \mathbf{n}_k \mathbf{I}_k e^{\mathbf{i} \omega_k \mathbf{v} t / \delta_k} \mathbf{n}_k \mathbf{I}_k \mathbf{a}_k w \mathbf{I}_n \mathbf{v} t / \delta$

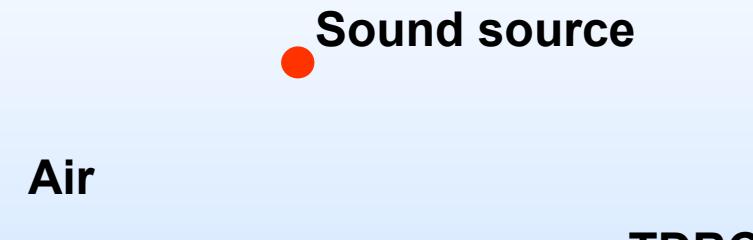
Final TDBC:

$$w \mathbf{1}_{t_n} \mathbf{0} \frac{1}{\frac{1}{\mathbf{1} \otimes \mathbf{1}} \frac{K}{a_k \sqrt{t}} \left[\frac{p \mathbf{1}_{t_n} \mathbf{0}}{Z \otimes} \mathbf{1} \otimes \mathbf{1}^K k \mathbf{0} e^{\mathbf{1} \otimes \mathbf{1} \otimes \sqrt{t} \mathbf{1} \otimes \mathbf{1}^K} \right]}.$$

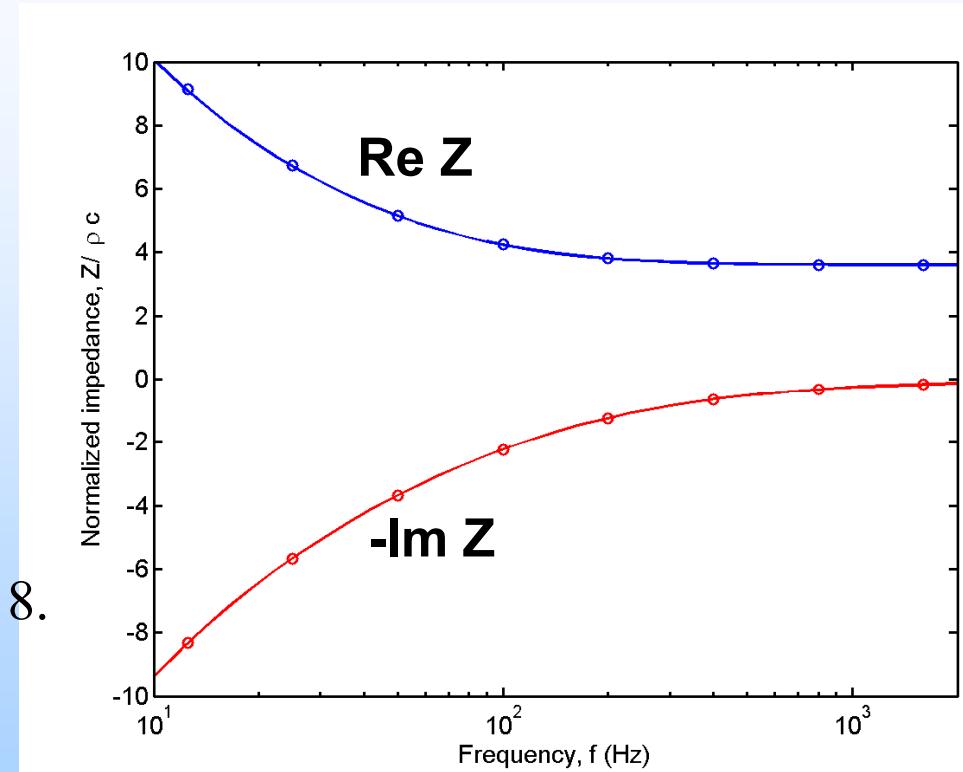
Only one time step need to be retained where 6 values of $\frac{n}{k}$ are updated.

2. TDBC for modified ZK model

Numerical experiment:



The porous material parameters:
 $\rho = 10^4 \text{ Pa s m}^{-2}$, $\beta = 0.5$, $q = 1.8$.
The source frequency:
 $12.5 \text{ Hz} \leq f \leq 8000 \text{ Hz}$.
 $0.086 \leq \eta \leq 11$



— modified ZK model
○ numerical calculations

3. Causal and numerically efficient TDBC for any impedance

The main idea: Using a Pade approximation of the impedance in the frequency domain and fractional derivatives, a causal TDBC is derived.

First example: The modified ZK impedance model.

Let $x = \sqrt{\omega/\omega_0}$. Then using a Pade approximation:

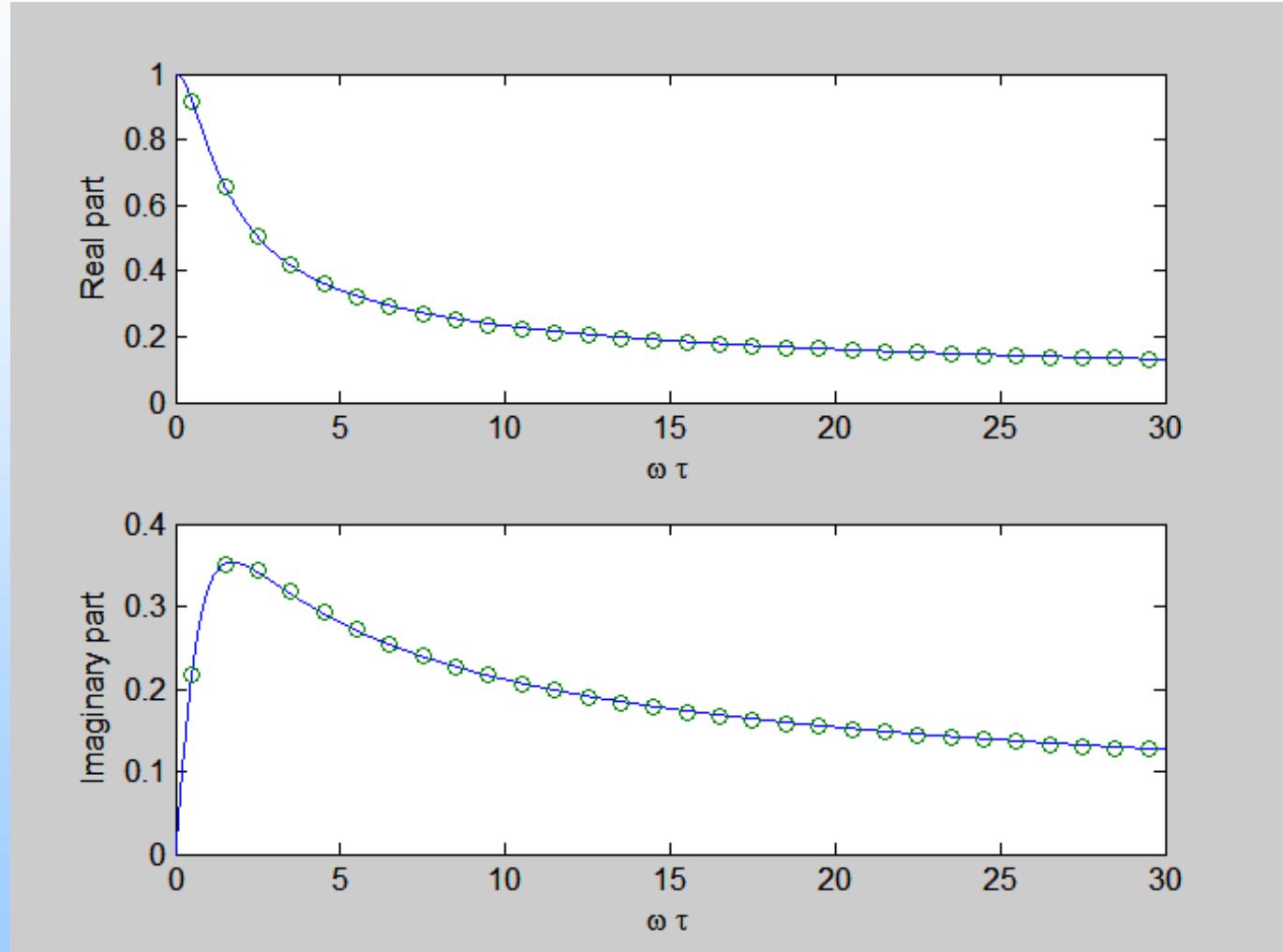
$$\frac{1}{Z} = \frac{x}{Z_0} \frac{1}{\sqrt{1-x^2}} \quad \diamond \quad \frac{x}{Z_0} \frac{1-a_2x-a_3x^2}{1-b_1x-b_2x^2-b_3x^3}.$$

Coefficients:

$$a_2 = b_1 = 0.992, \quad a_3 = b_3 = 0.566, \quad b_2 = 1.066.$$

3. Causal TDBC for any impedance

— $\frac{1}{\sqrt{1 - \frac{1}{\omega^2 \tau^2}}}$
o Pade approximation



3. Causal TDBC for any impedance

BC in frequency domain: $P \propto Z^{-1/2}$

Causal TDBC:

$$\frac{1}{Z} \left[1 - a_3 \frac{d}{dt} - a_2 \frac{d^{1/2}}{dt} D^{1/2} \right] p(t) \\ = \left[b_1 - b_3 \frac{d}{dt} - \left(\frac{d^{1/2}}{dt} - b_2 \frac{d^{1/2}}{dt} \right) D^{1/2} \right] w(t)$$

Fractional derivative: $D^{\alpha} p(t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{p(t-\tau)}{\tau^{\alpha}} d\tau$

Grunwald formula: $D^{\alpha/2} p(t) = \lim_{m \rightarrow 0} \frac{(-1)^{m/2}}{m!} \frac{\Gamma(m+1)}{\Gamma(m+1-\alpha/2)} p(t-m)$

For $m \geq 1$, $\frac{(-1)^{m/2}}{m!} \frac{\Gamma(m+1)}{\Gamma(m+1-\alpha/2)} \propto m^{\alpha/2}$ (parallels to $f(t) \propto m^{\alpha/2}$).

3. Causal TDBC for any impedance

Liebler et al. (2004):

$$\frac{\zeta_m \mathbb{E}^{\pm} / 2 \mathbf{U}}{\zeta_m \mathbb{E}^{\pm} \mathbf{U}} \quad \blacklozenge \bigcirc \sum_{k=1}^K b_k e^{\zeta \mathbf{t}_k m}.$$

Following the same procedure as earlier we define the auxiliary variable:

$$\star_k^n \bigg| \mathbb{E}^{\pm} \bigg| \mathbb{E}^{\pm} \bigg| b_k e^{\zeta \mathbf{t}_k m} w \mathbf{U} \mathbf{t} \mathbf{U} \mathbf{m} \mathbf{t} \mathbf{U} \sqrt{\mathbf{t} / \delta_t}$$

It can be shown that $\star_k^n \bigg| \mathbb{E}^{\pm} b_k w \mathbf{U} \mathbf{t} \mathbf{U} \sqrt{\mathbf{t} / \delta_t} \mathbf{U} \mathbf{t} \mathbf{U} e^{\zeta \mathbf{t}_k} \star_k^n \bigg| \mathbb{E}^{\pm}$.

TDBC: $w \mathbf{U} \mathbf{t}_n \mathbf{U} \mathbf{t} \mathbf{U} F \leftarrow \mathbf{U} \mathbf{t}_n \mathbf{U} \mathbf{t} \mathbf{U} \star_k^n \mathbf{U} \mathbf{t} \mathbf{U} \rightarrow$

Thus, only K auxiliary functions \star_k^n must be stored and updated at every time step.

3. Causal TDBC for any impedance

Second example: The Attenborough impedance model.

Let $x = \sqrt{\omega_0}$. Then using a Pade approximation:

Chandler-Wilde, Horoshenkov, JASA (1995):

$$\frac{1}{Z} = \frac{x}{Z_0} \frac{1 - a_2 x - a_3 x^2 - a_4 x^3}{1 - b_1 x - b_2 x^2 - b_3 x^3 - b_4 x^4}$$

Causal TDBC:

$$\frac{1}{Z_0} \left[1 - a_3 \frac{d}{dt} - \left(a_2 \frac{d^2}{dt^2} + a_4 \frac{d^3}{dt^3} \right) D^{1/2} \right] p(t)$$

$$= \left[b_1 - b_3 \frac{d}{dt} - \left(D^{1/2} - b_2 \frac{d}{dt} - b_4 \frac{d^2}{dt^2} \right) D^{1/2} \right] w(t)$$

4. Conclusions

1. For the modified ZK impedance model, a numerically efficient algorithm for implementing TDBC is developed.
2. For any impedance model, using a Pade approximation of the impedance in the frequency domain, a causal TDBC can be derived. An efficient algorithm for numerical implementation of TDBC is then developed.

