Friction Models for MicroelectremechanicalfSystemsiVIENS

Goals ASyaritEse:la Finite Elzmant Contast Simulations
- Determine how MEMS-scale friction differs from friction on the macro-scale. ¢ Anadfiesion model hias beenimplemented inteiSandiastireesdimensional] Thin Coztineg Corjzie
transient.dynamics finite elementicode -
- Develop a capability to perform finite element simulations of MEMS VEecHancs = 1cCv
components that accurately predicts response in the presence of adhesion
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Motivated by need for a contact
mechanics applicable to PolySilicon
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« Verified analytic results by performing
finite element simulations using Presto’s

e Atomic Force Microscope images suggest that a few summit height new adhesion model.

outliers may dominate response.

* Use AFM to also measure friction on a single asperity --- the AFM tip is
the asperity (Professor Carpick, U of Wisc).

Mesh and adhesion mede!| used) im PRESTO calculation

Simulatiom Results

. Adhesiomnenergy, hassastrong influence.onthe.calculated
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cotactiradius-and pressure. Teem

) DMT-like limit

*. TheARNisingle-asperity, friction daiaalse, shows that X / ’ - JKR-like limit
frictional force.cam occur.under atensile.lpadiand that there g i + FEA
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Inchworm MEMS Friction Tester

Single asperity

+ Actuation plate and two frictional clamps MR V212006 and IMR accepted 2007

e Step sizeis only 40 nm
» Operates at up to 80,000 cycles per second

* 100s of times more force than more
common comb drives

Multi-Asperity Contact

« Used Thin Coatiing Contact Mechanics to
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Attlow, 1eads; = =005 2 ; p_erform_ discrete asperity contact
adhesion is W0z " simulations of the response of coated
impeytant 0 » o ° e PolySilicon nano-positioning device.
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« Performiing dynamic finite element
Variatiom of caleulptedicontact Arwm singlesasperity, friction data simulations of multi-asperity contact of

Discoyvered radius; With, aghesiom energy PolySilicon in Presto.
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multi-asperity contact

SAM coating has a drastic effect on ~ Finite element meshed created
calculating contact radius and pressure  directly from an AFM image
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Thermal Phenomena in Microelectromec!
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Experiment

e Mlcromachmmq at Sandia

http://mems.sandia.gov

Thermal Properties of MEMS
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Thermomechanical Coupling in
Experiment - \fjcrosystems Anchor

Micromirror Array
300 um by 300 um
polysilicon mirrors
coated with Ti/Au
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Predicted Temperatures in a Bond Pad

Showing Heating During Thermal
Conductivity Measurement

Simulation

Laser-Heated Shutter for
Optical Switching
Initial Investigation of Temperature
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Contours of Predicted
Deformation on a Laser Heated
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T = 27 deg. C after temp. cycle
peak to valley ~1 um

Noncontact Surface Thermometry for
Experlment Micracystems Simulation

Ambient air, Joule-heated beam
Substrate and far-field gas at room temperature

Noncontinuum
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Beam Temperature Predictions
Continuum = 750 K, Noncontinuum = 900 K
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Digital Image Correlation (D
Metrology Spanning from:

DIC Provides to Sandia: DIC Goals at Sandia: DIC Research Connections:
1. Full-field shape, displacement, 1. Use DIC to conduct high-fidelity model 1. UQ at University of South Carolina
velocity, rotation, and pose; validation experiments 2. Work with Correlated Solutions, Inc.
2. Scales from meters to nanometers; 2. LEMUR—Integrating full-field 3. Intra-lab DIC users-support group
3. Rates from static to MHz; experimental results with model 4. 1 International presentation
4. Full-field experimental results for results 5. 9 Conference proceedings
full-field model validation. . Cutting edge experiments using DIC 6. 2 Journal Articles

3
4. Advance DIC state-of-the-art

DIC Stress-strain
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< Future work:
& Nanoscale
| Measurement DIC

- using AFM Imaging
Displacement Y .
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Nanoparticle Suspension;|
Randall Schunk, Gary

Motivation |
e A promising aspect of nanotechnology is to distribute nanaparticles:i

« An efficient method of accomplishing this is fluidization in a carrier liquid followed by traditional processing techniques (coating, casting,
spinning), which allows control of nano building blocks at the macroscale

e To facilitate design and analysis of such processes, a mesoscale modeling and simulation capability for dense suspensions of arbitrary
shaped nanoparticles is necessary in order to build system understanding and control

. . . . . Technical Challenges: Rich Physical Phenomena
Technical Horizon: Suspension-based Nanocomposite Manufacturing
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- Polymer functionalization

Manufacture g characterization N
. . Distribution

- Microscopy...
Fluidization/Processing -

e.g. coating, casting...
- Rheology, Microstructure,
self-assembly

ustruct

ISUVEESBIEUSIESS Product properties
- Thermophysical, mechanical
characterization/prediction

- Drying, curing, sintering

(other means of processing

\ h Ag-Silica
into product do exist)

[ s ] nanocomposite

Technical Approach: Integrated Capablllty
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Goal: Predictive Manufacturing Capability
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Production Design and Analysis
(proven prototype in operational environment)

tential Experimental Validation —
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AREC O _ _ c — ‘Pmbe Optical Tweezers, GSAXS, j o System Integration & Validation
Coupled particle-fluid Interfacial Force Microscopy, : APPS (novel materials applications and processing)
; e el Al Acoustic Spectroscopy, J
_ Invention & Characterization
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X Constitutive CRADAI/SNL Applications Fundamental
Relations Experimental Knowledge Base * (includes numerical methods and some
Micro-structure Tools at smaller scales basic science directed to rheology,

dispersion stability, surface self-assembly

Academic Research ;
of dense nano-suspensions)

(Materials/Numerical methods)

seconds

Cornerstone: multiscale integration/V&V

Engineering Scale



