
Workshop: Analyzing the Data You Already Have – An Introduction to Model Fitting

Don Lifke
Corporate Lean / Six Sigma Black Belt

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Objectives

- Learn new ways to look at existing data
- Understand limitations with typical data analysis
- Understand what modeling is and why it is useful
- Learn to use statistical software and understand why Excel is not the best choice for efficient statistical analysis

Define “Statistics”

Define “statistics” in two words:

Exercise

You want to sell your house. It has the following features:

- 2000 square feet
- 0.2 acre lot
- 2 years old
- 3 bedrooms
- 3 full bathrooms

What should your asking price be?

Open House Data for Summit Tutorial.xls

What type of analyses would you do on this data?

-
-
-

Spend 5 minutes determining what you'd list your house for, using the Excel data.

Exercise Time

5 minutes

List Class Prices

- Listing Prices:

- \$
- \$
- \$
- \$
- \$
- \$
- \$

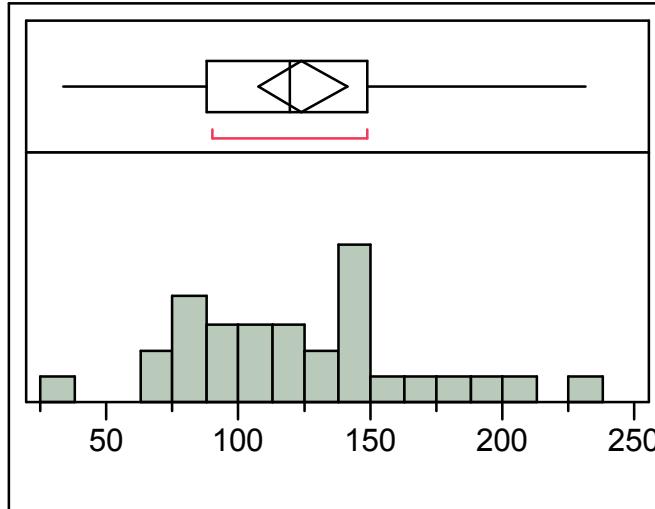
Open House Data for Summit Tutorial.jmp Data File

JMP (SANDIA NATIONAL LABORATORIES) - [House Data for Summit Tutorial.JMP] - [House Data for Summit Tutorial]

File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help

House Data for Summit

	SF	Lot	Age	BR	Bath	Price	Price/sf
1	1373	0.13	7	4	3	204962.96	149.281107
2	1377	0.2	1	2	3	279461.24	202.949339
3	2696	0.21	1	2	3.75	432115.58	160.28026
4	2743	0.2	11	3	2.75	291085.68	106.11946
5	1128	0.19	14	5	3.25	163331.78	144.797677
6	3721	0.16	5	3	2	417458.93	112.189984
7	3372	0.05	19	4	2.5	291889.4	86.5626928
8	1342	0.1	20	4	4	91196.94	67.9559911
9	1317	0.23	17	3	3	118951.58	90.3201063
10	2370	0.25	19	3	2.5	186523.51	78.701903
11	1645	0.18	9	5	4	277864.81	168.914778
12	2306	0.08	0	4	2.75	339135.6	147.066609
13	1356	0.23	1	2	3.25	254317.26	187.549602
14	2421	0.08	20	3	3.75	176160.96	72.7637175
15	1801	0.17	11	4	3.75	245049.51	136.063026
16	2195	0.19	17	2	3.5	195129.12	88.8970934
17	2172	0.15	13	4	4	253373.93	116.654664
18	2002	0.17	1	4	2.75	360202.51	179.921334
19	1851	0.2	11	4	3.5	261394.12	141.217785
20	2520	0.1	13	3	4	259948.18	103.15404
21	2102	0.05	14	2	3.75	177637.02	84.5085728
22	2533	0.08	11	3	3.25	285993.76	112.90713
23	2983	0.11	0	4	2	442720.07	148.414371
24	3249	0.23	2	5	3	468637.93	144.240668
25	1585	0.2	19	2	3.75	135501.42	85.4898549
26	1560	0.24	0	5	3	360846.46	231.311833
27	3319	0.14	2	2	2.75	442828.35	133.422221
28	3691	0.21	10	3	3.25	450724.35	122.114427
29	1484	0.1	20	2	2	49746.35	33.5217992
30	3619	0.11	17	5	2	338789.82	93.6142083


Exercise: What Will Your Listing Price Be?

Analyze the distribution of Price/sf

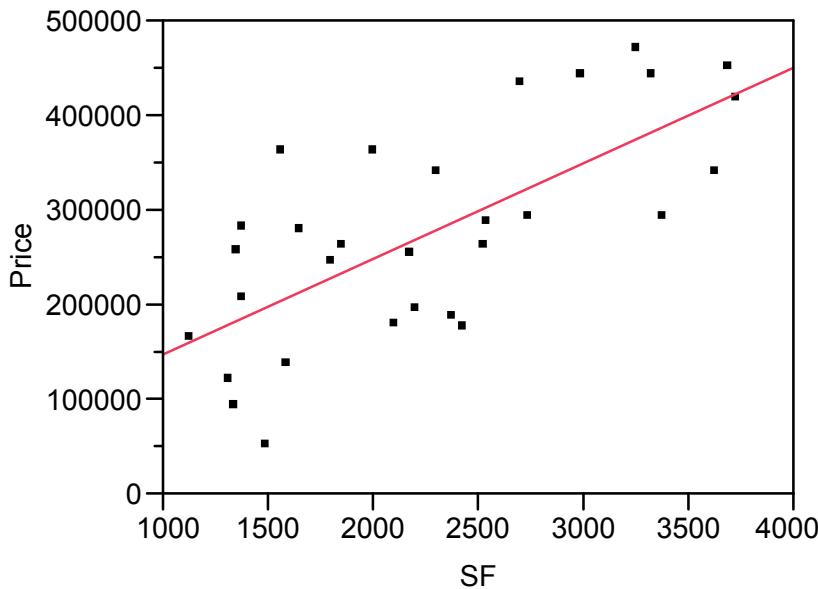
Average = \$124.36 per SF

Distributions

Price/sf

Quantiles

100.0%	maximum	231.31	Mean	124.36354
99.5%		231.31	Std Dev	44.020787
97.5%		231.31	Std Err Mean	8.0370594
90.0%		186.79	upper 95% Mean	140.80117
75.0%	quartile	148.63	lower 95% Mean	107.92591
50.0%	median	119.38	N	30
25.0%	quartile	88.31		
10.0%		73.36		
2.5%		33.52		
0.5%		33.52		
0.0%	minimum	33.52		


Exercise:

What Will Your Listing Price Be?

- Perform a Fit Y by X for Price vs. SF
- Add a Line Fit

$$\text{Price} = \$45,962 + \$101.34 \times \text{SF}$$

Bivariate Fit of Price By SF

— Linear Fit

Analysis of Variance

Source	DF	Sum of		
		Squares	Mean Square	F Ratio
Model	1	1.8791e+11	1.879e+11	28.1954
Error	28	1.8661e+11	6.6647e+9	Prob > F
C. Total	29	3.7452e+11		<.0001*

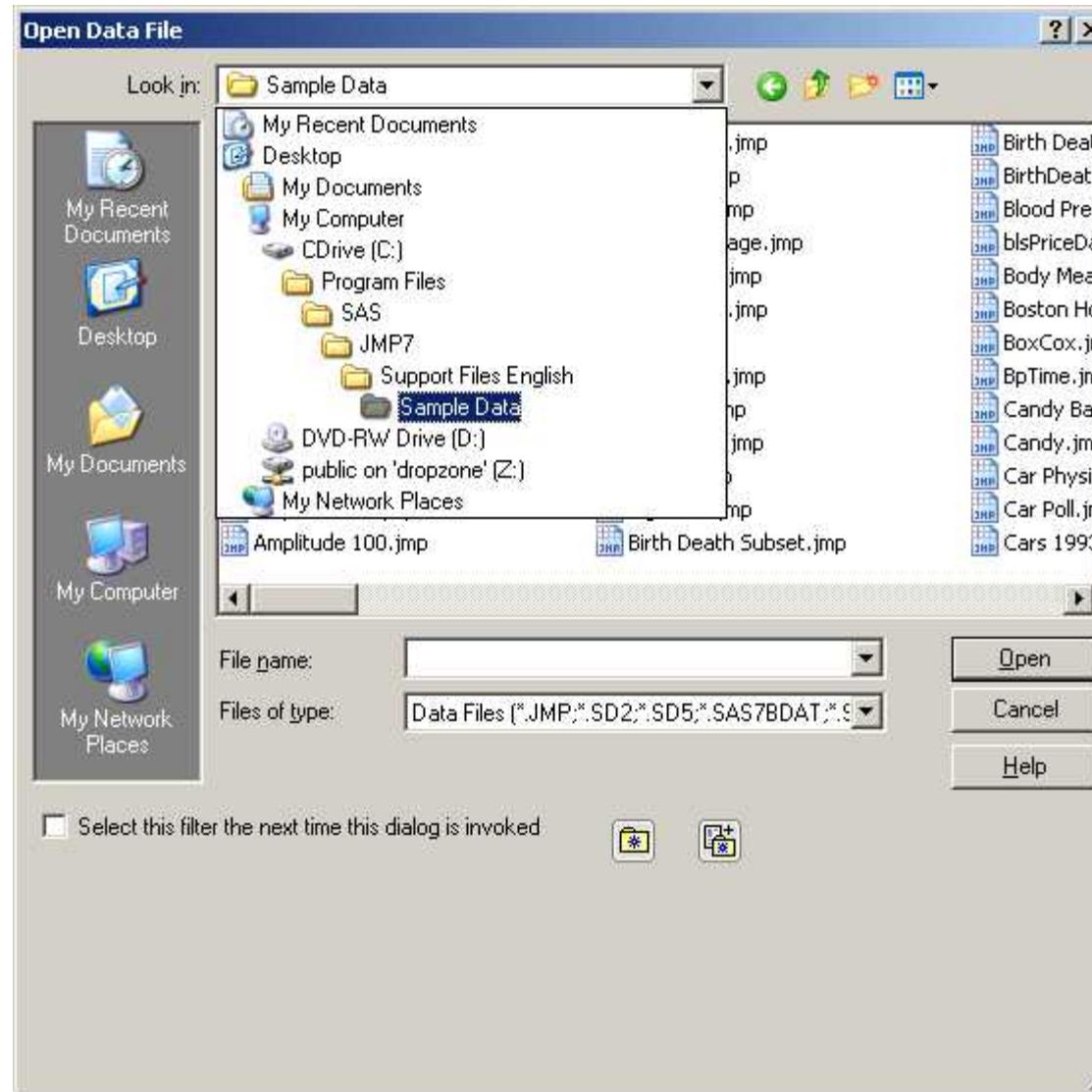
Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	45962.927	45654	1.01	0.3227
SF	101.33845	19.0847	5.31	<.0001*

Exercise Time

Using this new information, Spend 5 minutes determining what you'd list your house for, using the JMP data.

5 minutes


Exercise: What Will Your Listing Price Be?

- Write Student's Listing Prices on the Board
- Put These in JMP for Future Reference
- We'll Return to this Problem Later

Analyzing the Data You Have: Open Cereal File

Windows

- JMP Starter
- Cereal

Columns (18/0)

- Name
- Manufacturer
- Mfr
- Hot/Cold
- Calories
- Protein
- Fat
- Sodium
- Fiber
- Complex Carbos
- Tot Carbo
- Sugars
- Calories fr Fat
- Potassium
- Enriched
- Wt/serving
- cups/serv
- Fiber Gr

Rows

All rows	76
Selected	0
Excluded	0
Hidden	0
Labelled	2

Cereal

		Name	Manufacturer	Mfr	Hot/Cold	Calories	Protein	Fat	Sodium
1	100% Bran	Nabisco	N	C		80	4	0.5	120
2	100% Nat. Bran Oats & Honey	Quaker Oats	Q	C		230	5	9.0	20
3	100% Nat. Low Fat Granola w/ raisins	Quaker Oats	Q	C		210	5	3.0	140
4	All-Bran	Kellogg's	K	C		80	4	1.0	65
5	All-Bran with Extra Fiber	Kellogg's	K	C		50	3	0.5	110
6	Almond Crunch w/ Raisins	Kellogg's	K	C		210	5	2.0	300
7	Apple Cinnamon Cheerios	General Mills	G	C		120	2	2.0	160
8	Apple Jacks	Kellogg's	K	C		120	2	0.0	150
9	Banana Nut Crunch	Post	P	C		250	5	6.0	240
10	Basic 4	General Mills	G	C		200	4	3.0	320
11	Bran Buds	Kellogg's	K	C		80	3	0.5	210
12	Bran Flakes	Post	P	C		100	3	0.5	220
13	Cap'n'Crunch	Quaker Oats	Q	C		110	1	1.5	200
14	Cheerios	General Mills	G	C		110	3	2.0	280
15	Cinnamon Toast Crunch	General Mills	G	C		130	1	3.5	210
16	Cocoa Puffs	General Mills	G	C		120	1	1.0	190
17	Complete Oat Bran	Kellogg's	K	C		110	4	1.0	270
18	Complete Wheat Bran	Kellogg's	K	C		90	3	0.5	230
19	Corn Chex	General Mills	G	C		110	2	0.0	300
20	Corn Flakes	Kellogg's	K	C		100	2	0.0	300
21	Corn Pops	Kellogg's	K	C		120	1	0.0	120
22	Cracklin' Oat Bran	Kellogg's	K	C		190	4	6.0	170
23	Cream of Wheat (Instant)	Nabisco	N	H		100	3	0.0	170
24	Crispix	Kellogg's	K	C		110	2	0.0	210
25	Fiber One	General Mills	G	C		60	2	1.0	140
26	Franken Berry	General Mills	G	C		120	1	1.0	210
27	French Toast Crisp	General Mills	G	C		120	1	1.0	170
28	Froot Loops	Kellogg's	K	C		120	2	1.0	150
29	Frosted Alphabits	Post	P	C		130	3	1.5	210
30	Frosted Cheerios	General Mills	G	C		120	2	1.0	210
31	Frosted Flakes	Kellogg's	K	C		120	1	0.0	200
32	Frosted Mini-Wheats	Kellogg's	K	C		200	6	2.0	5
33	Fruit & Fibre Dates, Walnuts, and Oats	Post	P	C		210	4	3.0	250
34	Golden Crisp	Post	P	C		110	1	0.0	40
35	Golden Grahams	General Mills	G	C		120	1	1.0	280

Before We Proceed

- Rows → Clear Row States
- File → Preferences
 - Click Reports
 - Change Graph Marker Size to medium.
 - Click Platforms
 - Select Distribution. Under Options, select Stack.
 - Click OK.

Does Calorie Content Depend on the Manufacturer? Analyze → Fit Y by X

Y by X - Contextual

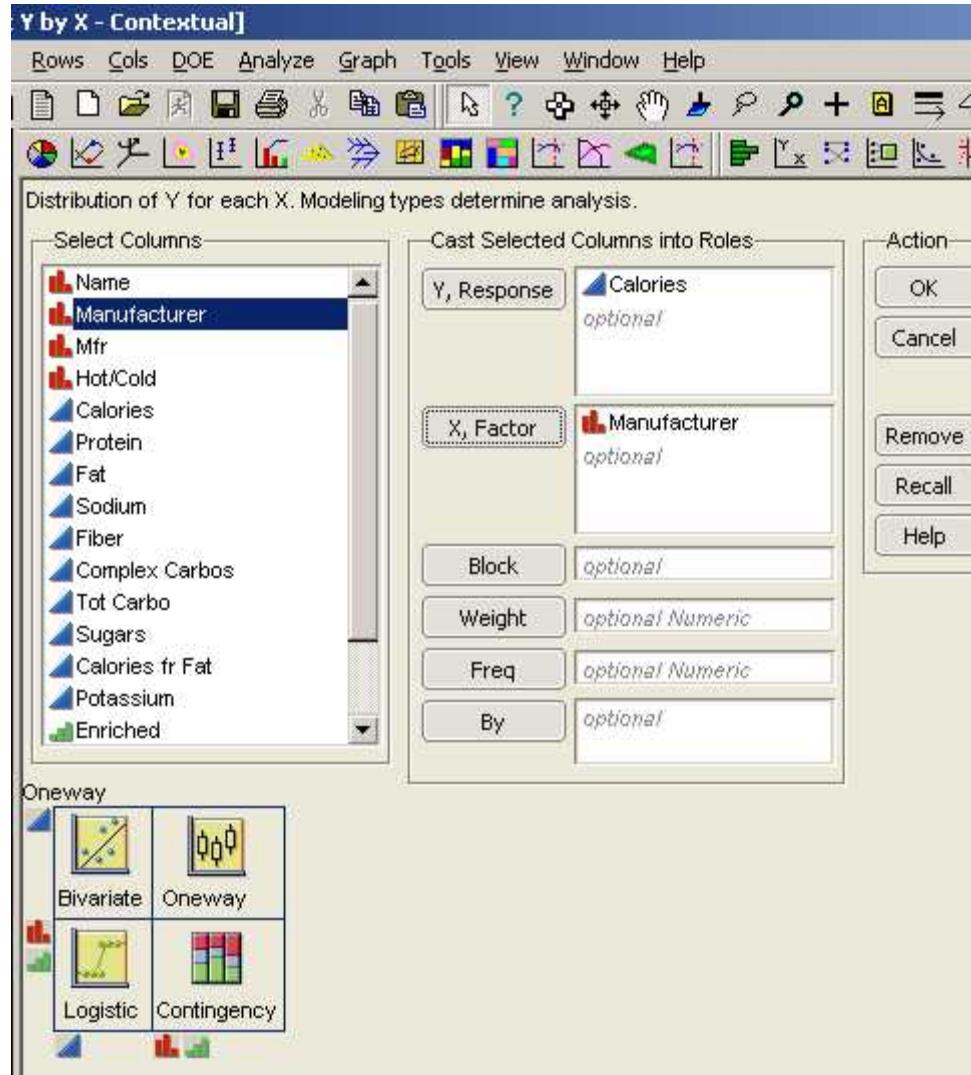
Rows Cols DOE Analyze Graph Tools View Window Help

Distribution of Y for each X. Modeling types determine analysis.

Select Columns

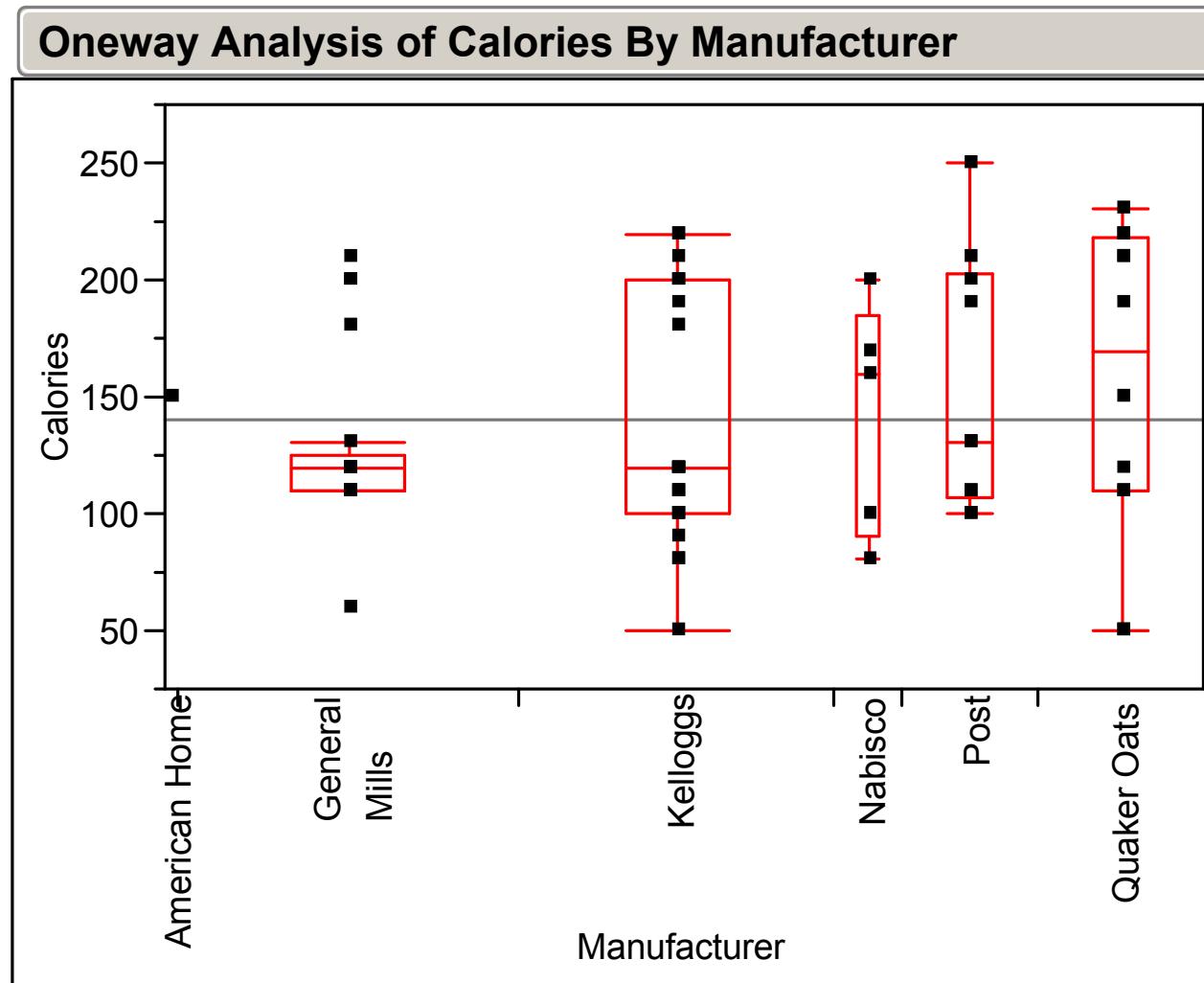
- Name
- Manufacturer**
- Mfr
- Hot/Cold
- Calories
- Protein
- Fat
- Sodium
- Fiber
- Complex Carbos
- Tot Carbo
- Sugars
- Calories fr Fat
- Potassium
- Enriched

Cast Selected Columns into Roles


- Y, Response: Calories (optional)
- X, Factor: Manufacturer (optional)
- Block: optional
- Weight: optional Numeric
- Freq: optional Numeric
- By: optional

Action

- OK
- Cancel
- Remove
- Recall
- Help


Oneway

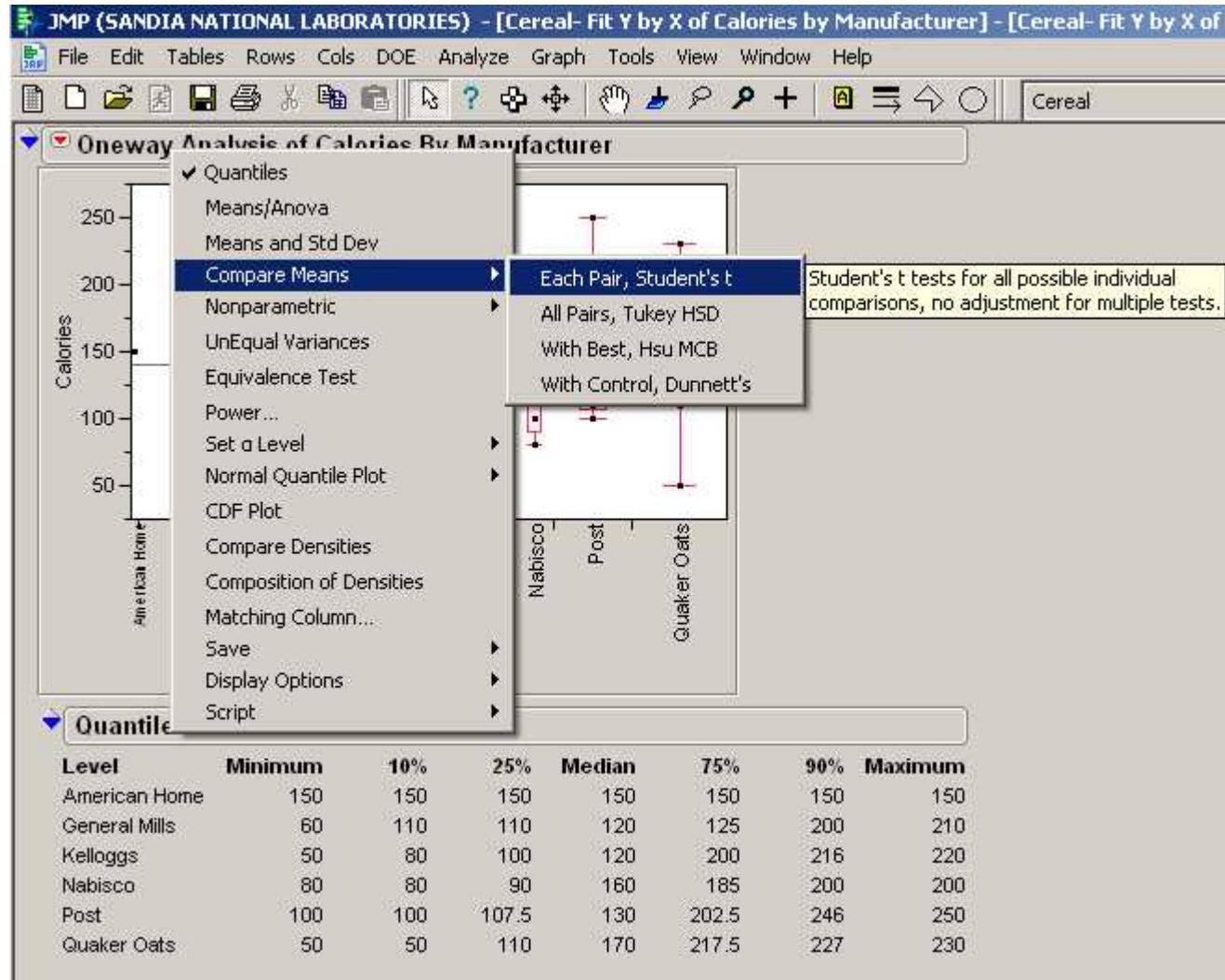
Bivariate	Oneway
Logistic	Contingency

Right-click Title Bar and Select Quantiles

Student's t-test

Background:

This test has evolved over the years.


- The original test was called a z-test, which uses a normal distribution as a reference distribution. However, the z-test requires knowing the true population variances - not usually the case.
- A statistician who called himself 'Student' improved the test by basing it on the t distribution, which uses variance estimates from samples. Thus the name Student's t-test.
- The Student's t-test was adapted to work if variances in the two sample groups were different. Sometimes this approach is called the Aspin-Welch Student t-test.
- Then, F.E. Satterthwaite developed a better approximation for degrees of freedom.

Thus the full name of this improved test is the:

Aspin-Welch-Satterthwaite-Student's t-test.

(commonly called the t-test for short).

Compare Means → Each Pair, Student's t

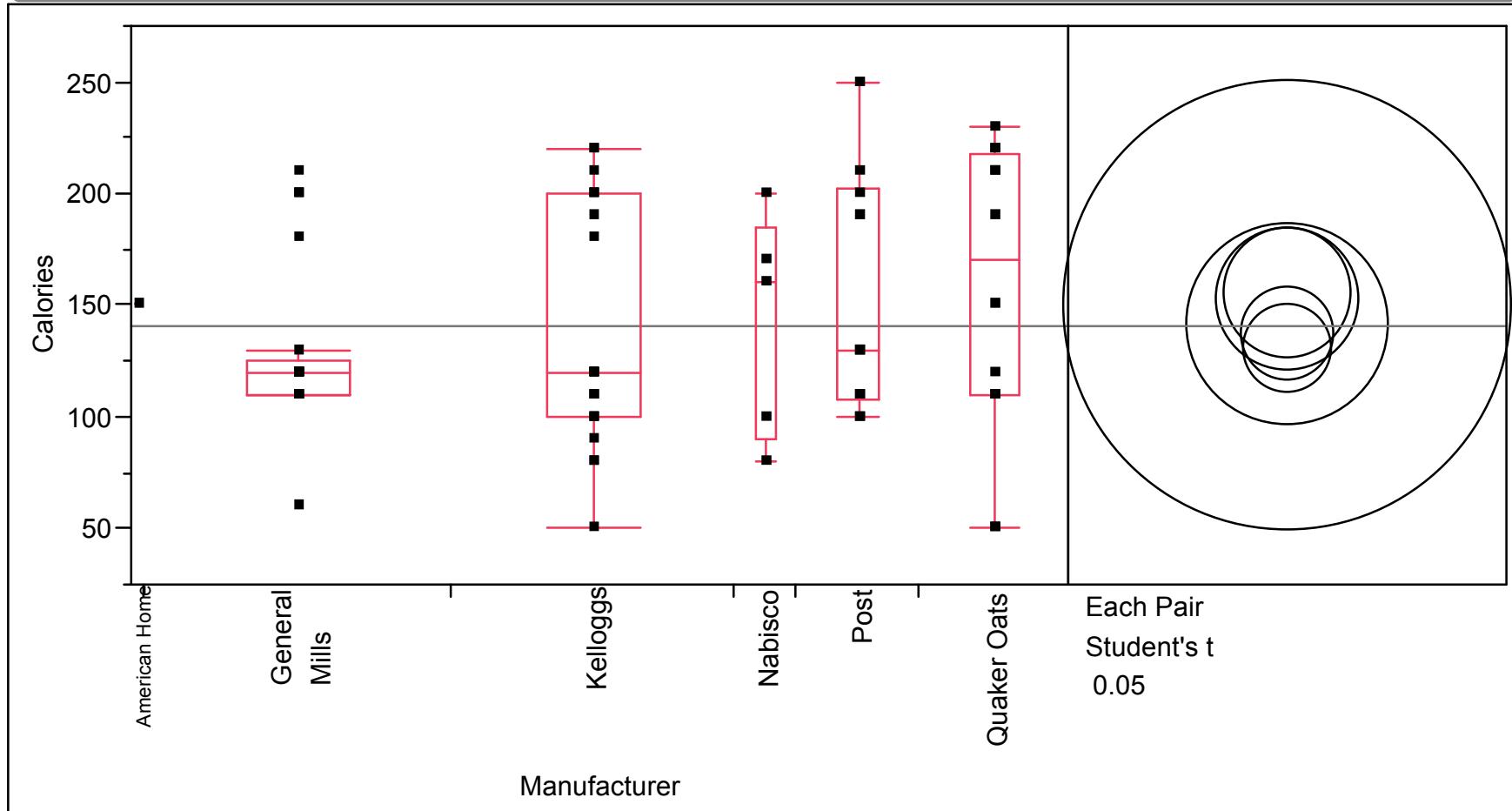
JMP (SANDIA NATIONAL LABORATORIES) - [Cereal- Fit Y by X of Calories by Manufacturer] - [Cereal- Fit Y by X of C

File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help

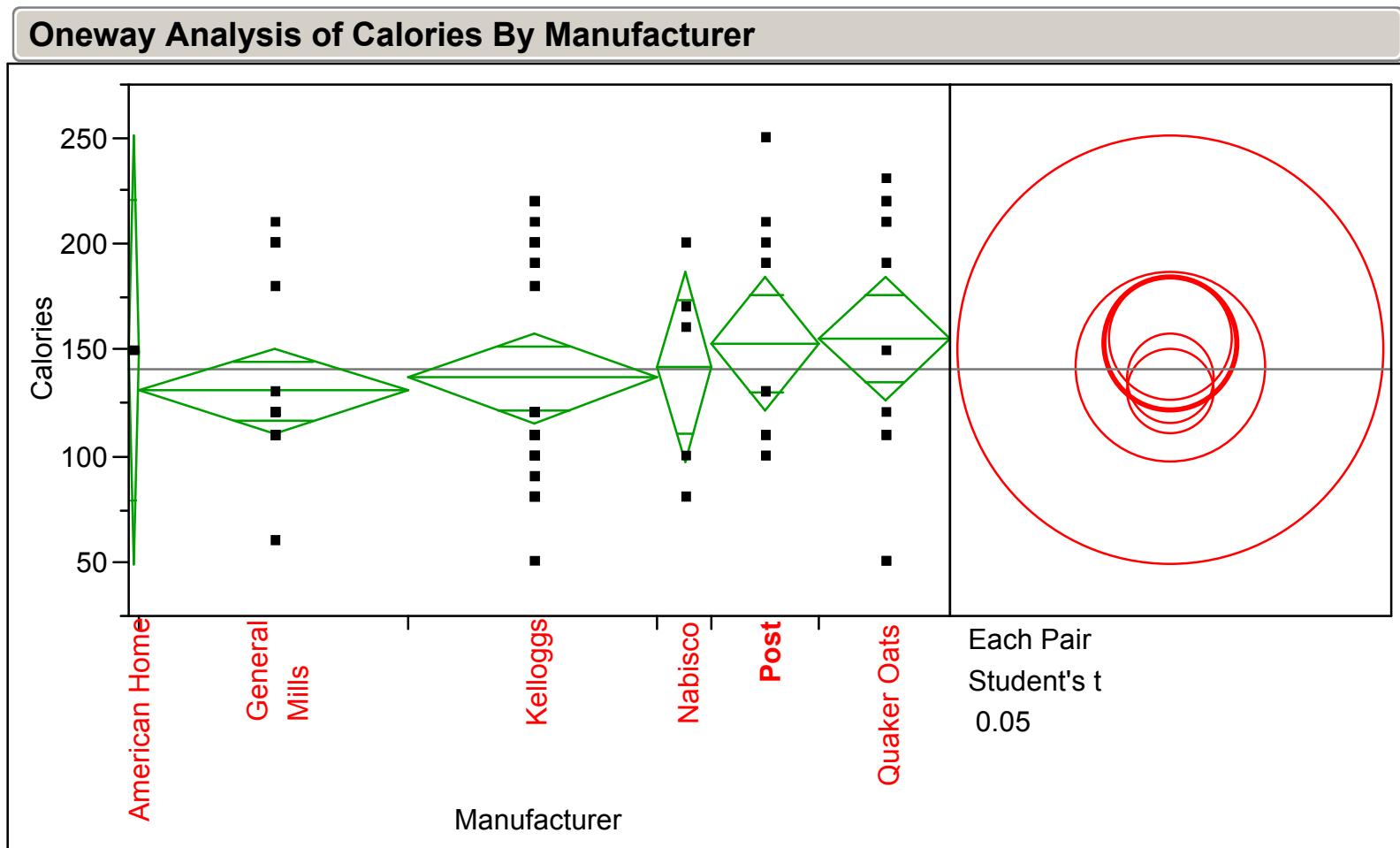
Quantiles

Calories

250
200
150
100
50


Nabisco Post Quaker Oats

Level Minimum 10% 25% Median 75% 90% Maximum


Level	Minimum	10%	25%	Median	75%	90%	Maximum
American Home	150	150	150	150	150	150	150
General Mills	60	110	110	120	125	200	210
Kellogg's	50	80	100	120	200	216	220
Nabisco	80	80	90	160	185	200	200
Post	100	100	107.5	130	202.5	246	250
Quaker Oats	50	50	110	170	217.5	227	230

Click Any Circle – All Others Turn Red

Oneway Analysis of Calories By Manufacturer

Right-click Title Bar – Click Means/ANOVA, Uncheck Quantiles

None of these are different, statistically

What Else Affects Calories?

Analyze → Fit Y by X

Select Calories for Y, those below for X

JMP (SANDIA NATIONAL LABORATORIES) - [Fit Y by X - Contextual] - [Fit Y by X - Contextual]

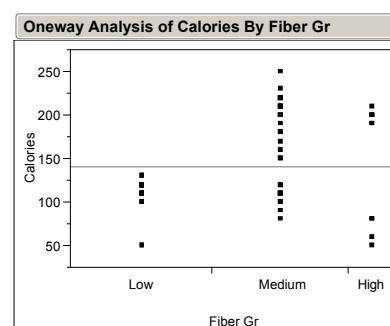
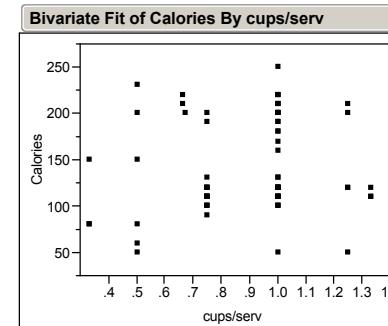
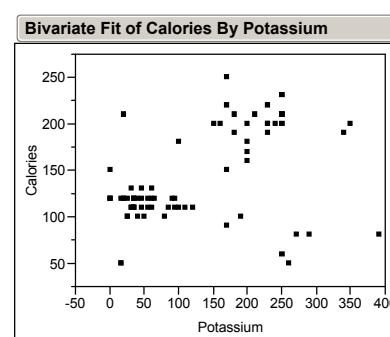
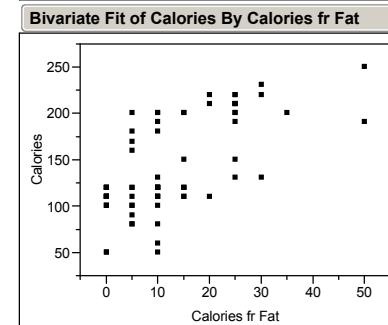
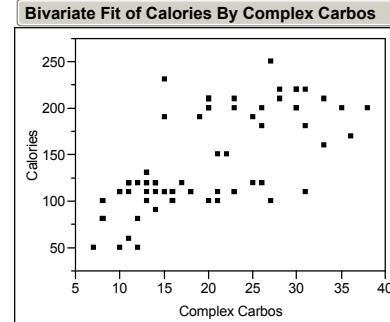
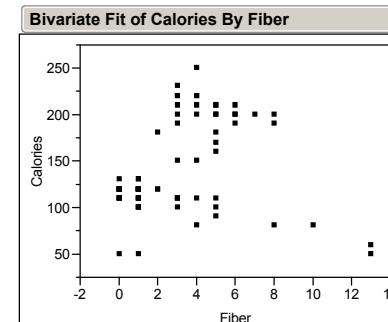
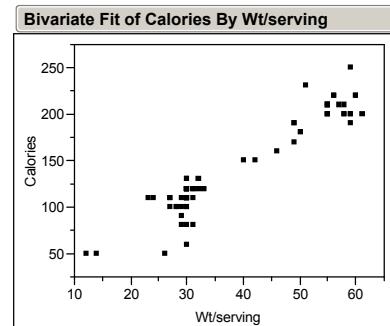
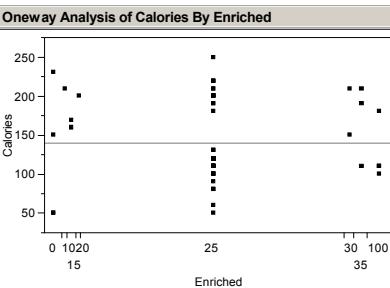
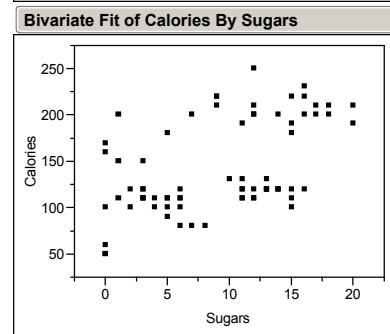
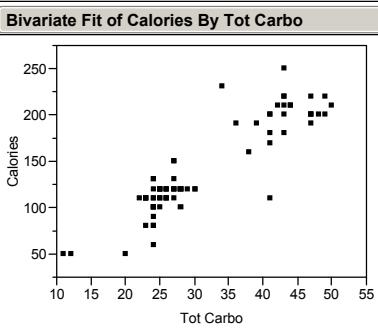
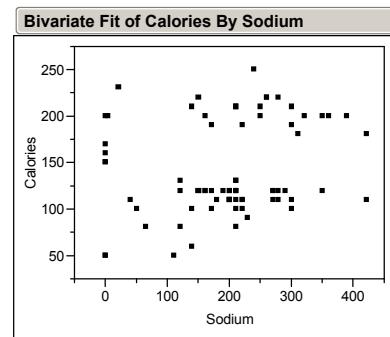
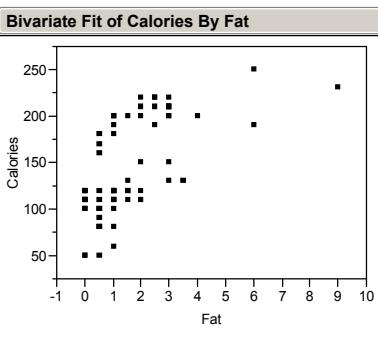
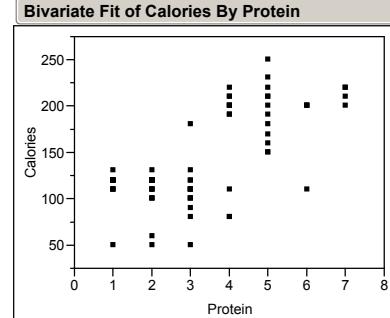
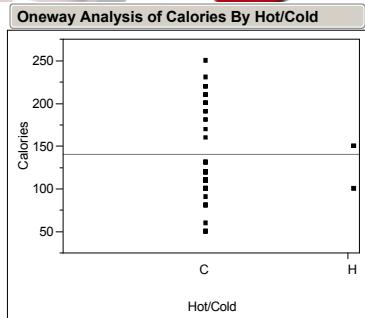
File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help

Distribution of Y for each X. Modeling types determine analysis.

Select Columns

- Name
- Manufacturer
- Mfr
- Hot/Cold
- Calories
- Protein
- Fat
- Sodium
- Fiber
- Complex Carbos
- Tot Carbo
- Sugars
- Calories fr Fat
- Potassium
- Enriched
- Wt/serving
- cups/serv
- Fiber Gr

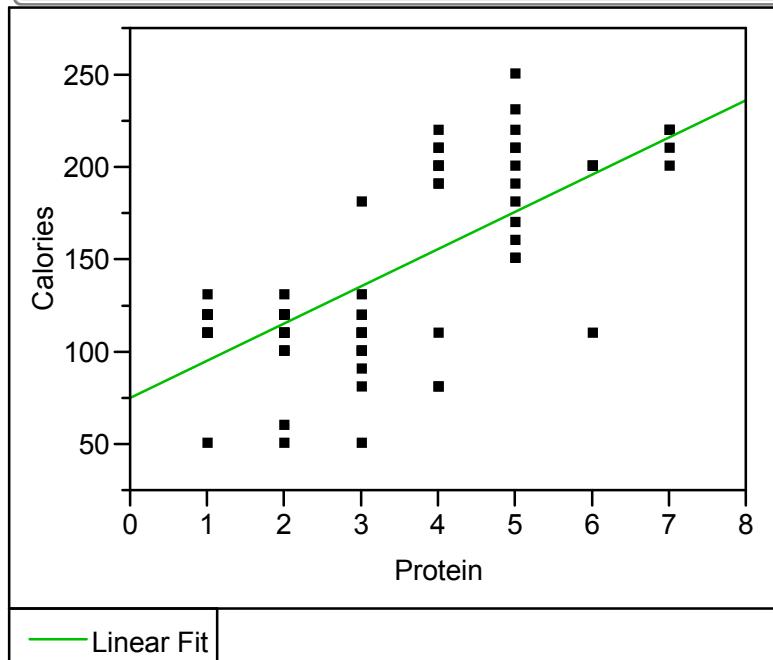
Cast Selected Columns into Roles















Y, Response: Calories (optional)

X, Factor: Hot/Cold, Protein, Fat, Sodium

Action

- OK
- Cancel
- Remove
- Recall
- Help


Fit Y by X Plots

Look Closer at Protein

Right-click title bar – Fit Line

Bivariate Fit of Calories By Protein

Linear Fit

$$\text{Calories} = 74.874142 + 20.200669 \text{ Protein}$$

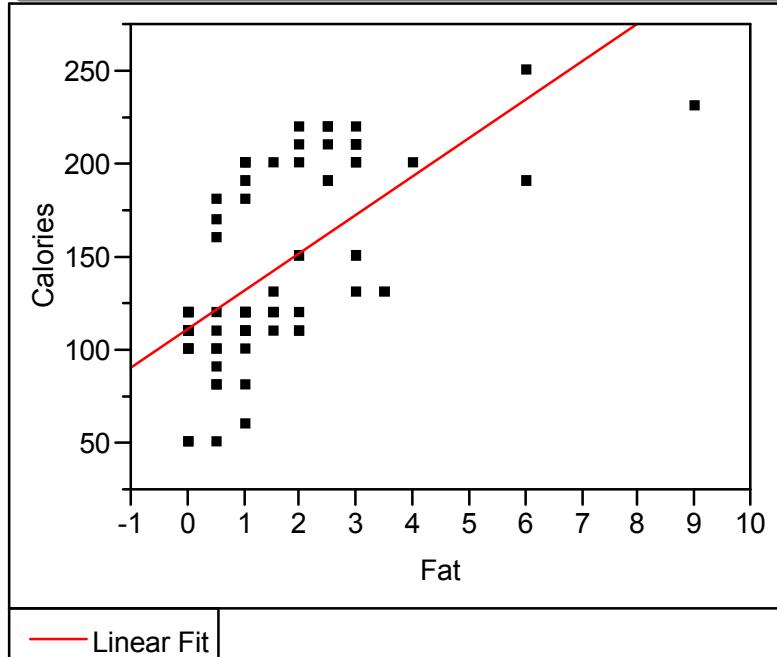
It appears that each g of protein adds 20.2 calories

Summary of Fit

RSquare	0.495772
RSquare Adj	0.488958
Root Mean Square Error	35.46409
Mean of Response	140.5263
Observations (or Sum Wgts)	76

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	91509.03	91509.0	72.7589
Error	74	93069.92	1257.7	Prob > F
C. Total	75	184578.95		<.0001*


Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	74.874142	8.705646	8.60	<.0001*
Protein	20.200669	2.368223	8.53	<.0001*

Look Closer at Fat

Right-click title bar – Fit Line

Bivariate Fit of Calories By Fat

Summary of Fit

RSquare	0.4173
RSquare Adj	0.409425
Root Mean Square Error	38.12395
Mean of Response	140.5263
Observations (or Sum Wgts)	76

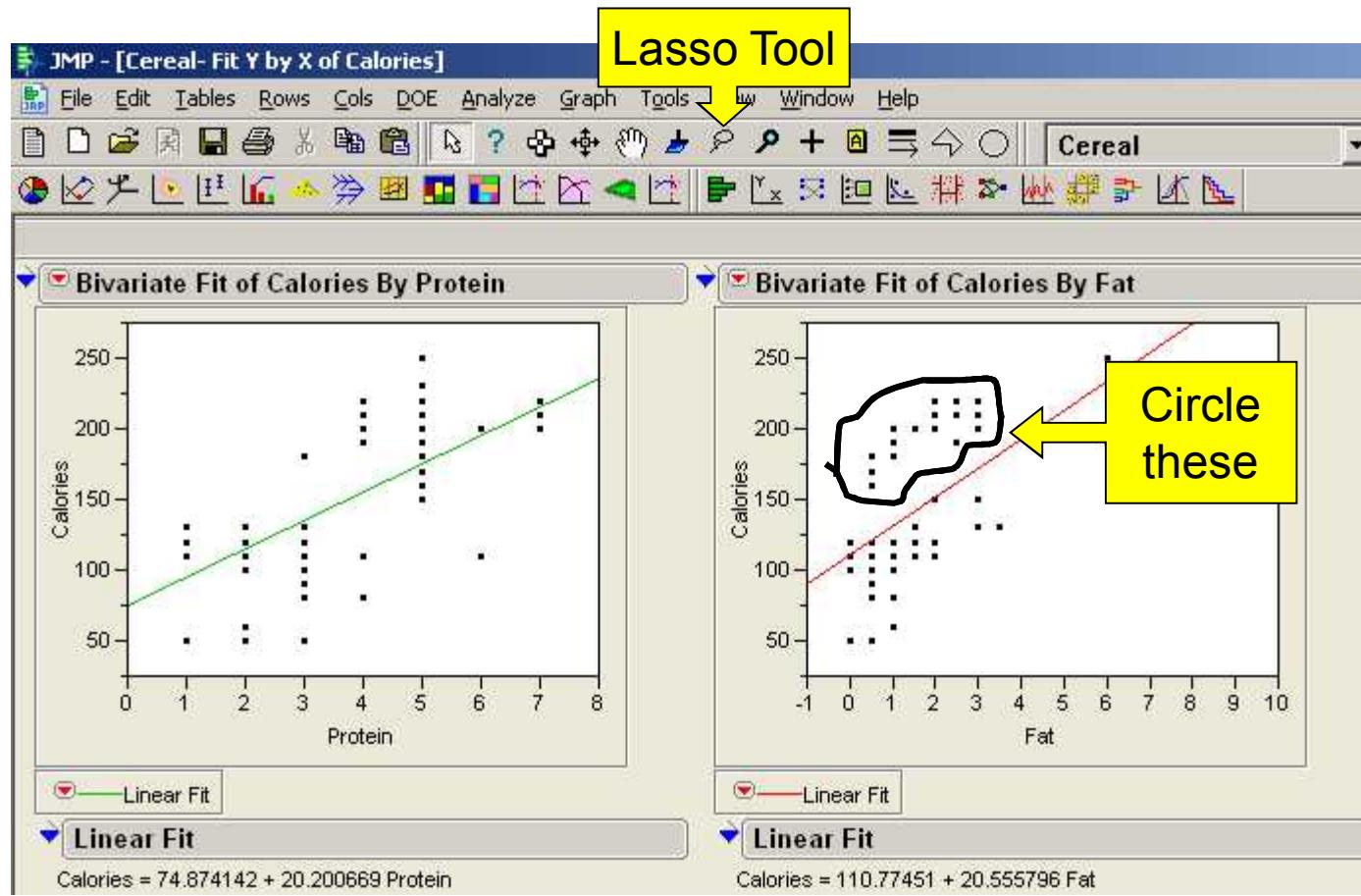
Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	1	77024.73	77024.7	52.9949
Error	74	107554.22	1453.4	Prob > F
C. Total	75	184578.95		<.0001*

Parameter Estimates

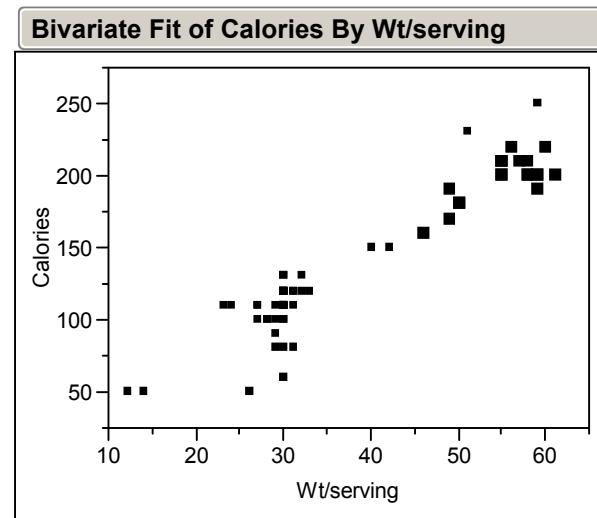
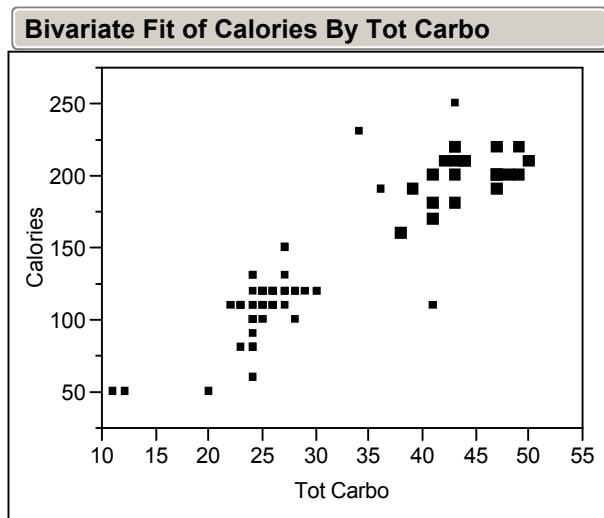
Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	110.77451	5.985571	18.51	<.0001*
Fat	20.555796	2.82369	7.28	<.0001*

Linear Fit


$$\text{Calories} = 110.77451 + 20.555796 \text{ Fat}$$

It appears that each g of
fat adds 20.6 calories

Fat Looks Bimodal



Let's investigate a little further.
Click the Lasso tool and circle the points shown.

Now Look at the Fit Y by X Plots

What do you observe?

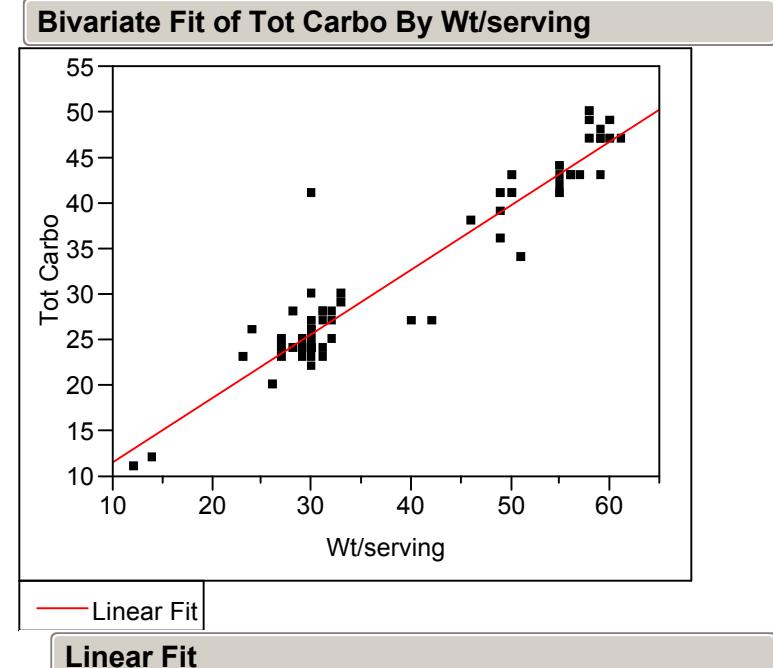
It appears these are the cereals with higher Total Carbs or higher Wt/serving.

Let's Take a Closer Look

Analyze → Fit Y by X

Distribution of Y for each X. Modeling types determine analysis.

Select Columns


- Hot/Cold
- Calories
- Protein
- Fat
- Sodium
- Fiber
- Complex Carbos
- Tot Carbo
- Sugars
- Calories fr Fat
- Potassium
- Enriched
- Wt/serving
- cups/serv
- Fiber Gr

Cast Selected Columns into Roles

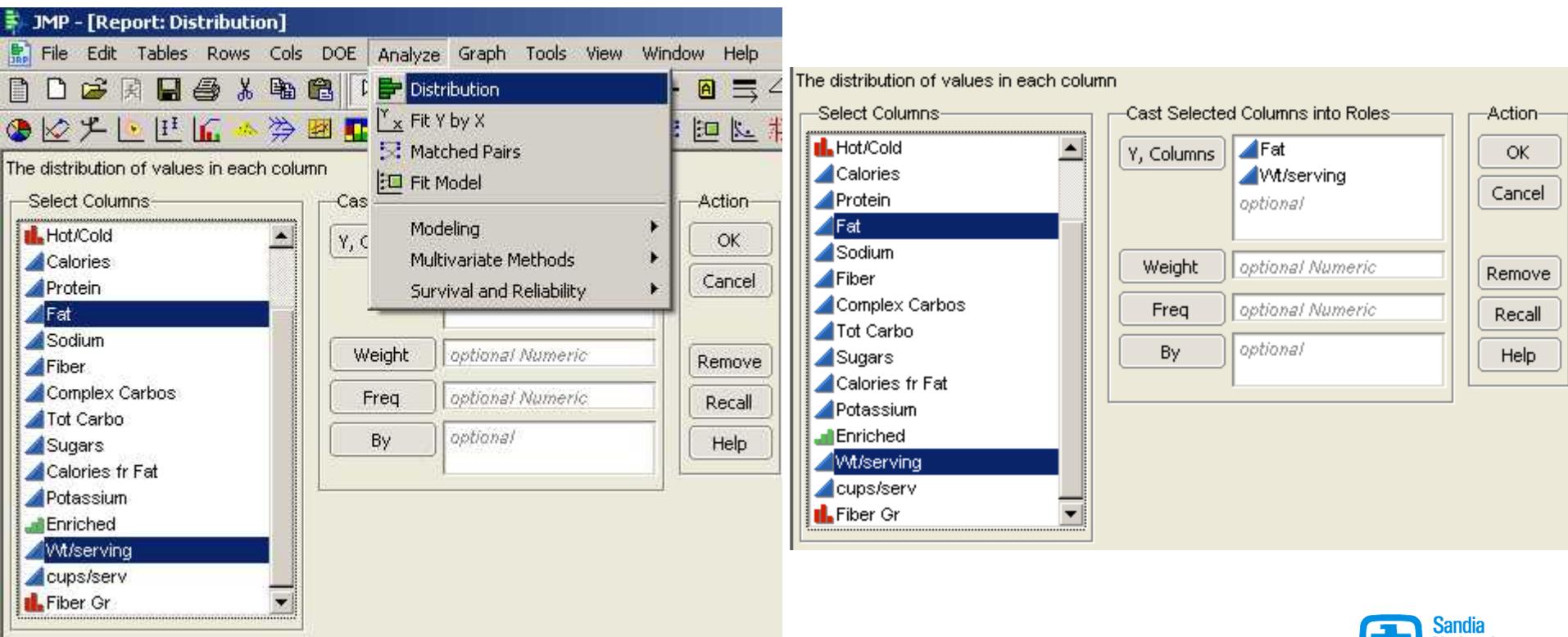
Y, Response	Tot Carbo optional
X, Factor	Wt/serving optional
Block	optional
Weight	optional Numeric
Freq	optional Numeric
By	optional

Action

- OK
- Cancel
- Remove
- Recall
- Help

Summary of Fit

$$\begin{array}{ll} \text{RSquare} & 0.909686 \\ \text{RSquare Adj} & 0.908449 \\ \text{Root Mean Square Error} & 2.937065 \\ \text{Mean of Response} & 31.45333 \\ \text{Observations (or Sum Wgts)} & 75 \end{array}$$


Total Carbs and Wt/serving are closely correlated

Let's Look at the Distributions of Fat and Wt/serving

Analyze → Distribution

Click Fat, Hold [Ctrl] and click Wt/serving (you may need to scroll down)

Click [Y, Columns], then [OK]

JMP - [Report: Distribution]

File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help

Distribution

Y x Fit Y by X
Matched Pairs
Fit Model

Modeling
Multivariate Methods
Survival and Reliability

Action

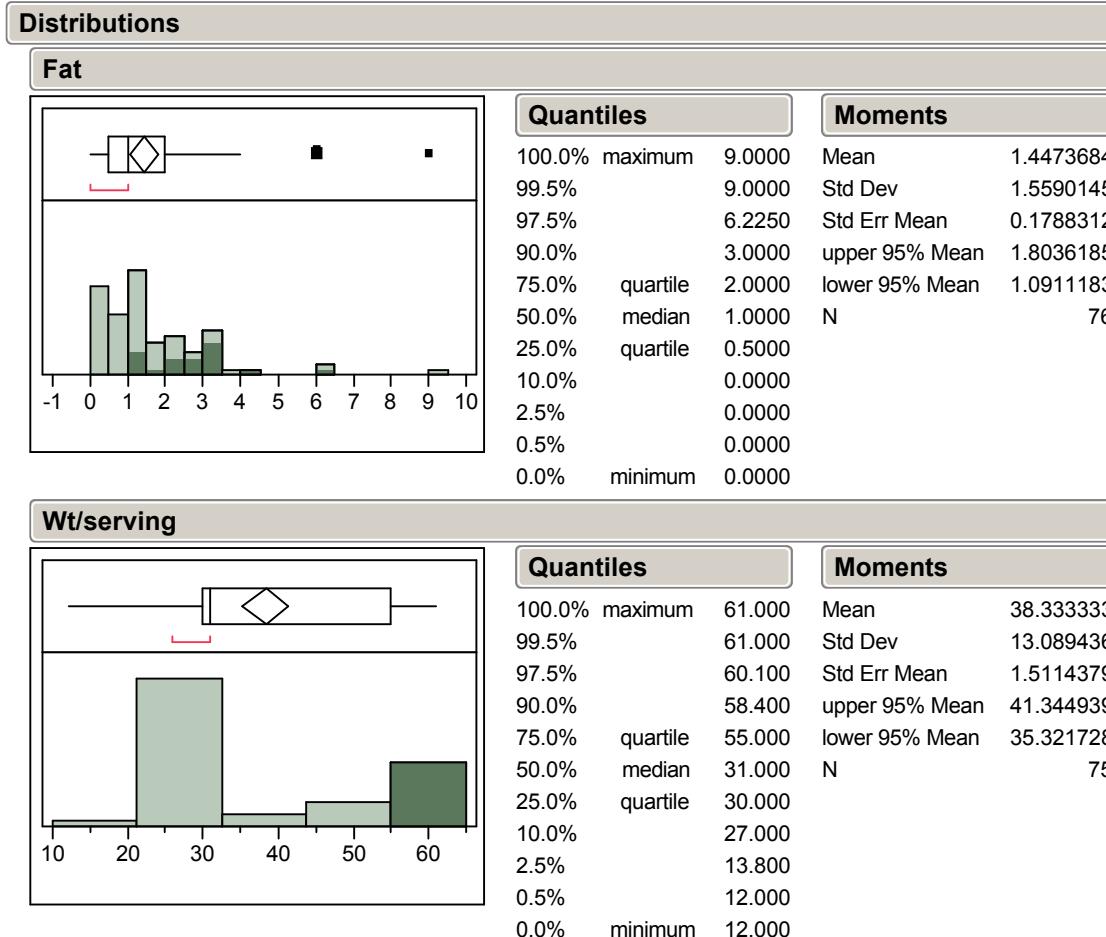
OK Cancel Remove Recall Help

The distribution of values in each column

Select Columns

- Hot/Cold
- Calories
- Protein
- Fat
- Sodium
- Fiber
- Complex Carbos
- Tot Carbo
- Sugars
- Calories fr Fat
- Potassium
- Enriched
- Wt/serving
- cups/serv
- Fiber Gr

Cast Selected Columns into Roles


- Y, Columns: Fat (optional)
- Weight: optional Numeric
- Freq: optional Numeric
- By: optional

Action

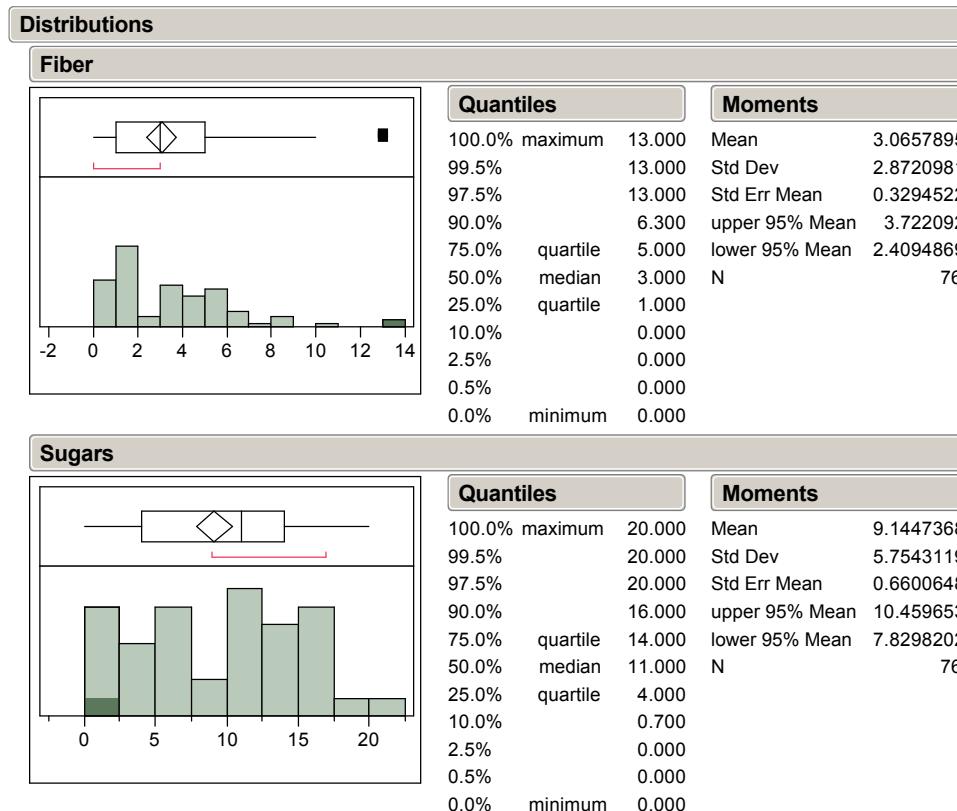
OK Cancel Remove Recall Help

Distributions

- Click the Grabber (hand) and grab the top of a bar and drag it downward.
- Click the Arrow and then click the right bar on the Wt/serving histogram. Look at the Fat histogram.

Exercise

Your doctor has told you that your triglycerides are high, and that you need to eat foods high in fiber and low in sugar. Which cereal should you choose?


Hint: Start by looking at the distributions.
(It's probably not Cocoa Puffs.)

5 minutes

Exercise – One Possible Solution

- Click Analyze → Distribution
 - Choose Fiber and Sugars.
 - Click on bars until you find a good choice. The obvious choice is the highest fiber bar. Those happen to appear in the low sugar bar.

Exercise – One Possible Solution

Go back to the data (Window → Cereal) to see that you have two choices:

- All-Bran with Extra Fiber
- Fiber One

Both have 13g fiber and 0g sugar

Third option:

Eat the box. 48g fiber, 0g sugar

The screenshot shows the JMP software interface with a data table titled "Cereal". The table has a column for "Name" and a column for "Mfr". The "Name" column lists various cereal brands, and the "Mfr" column shows their manufacturer. The data table is sorted by "Name".

	Name	Mfr
1	100% Bran	Nat
2	100% Nat. Bran Oats & Honey	Qu
3	100% Nat. Low Fat Granola w/ raisins	Qu
4	All-Bran	Kel
5	All-Bran with Extra Fiber	Kel
6	Almond Crunch w/ Raisins	Kel
7	Apple Cinnamon Cheerios	Gen
8	Apple Jacks	Kel
9	Banana Nut Crunch	Pos
10	Basic 4	Gen
11	Bran Buds	Kel
12	Bran Flakes	Pos
13	Cap'n'Crunch	Qu
14	Cheerios	Gen
15	Cinnamon Toast Crunch	Gen
16	Cocoa Puffs	Gen
17	Complete Oat Bran	Kel
18	Complete Wheat Bran	Kel
19	Corn Chex	Gen
20	Corn Flakes	Kel
21	Corn Pops	Kel
22	Cracklin' Oat Bran	Kel
23	Cream of Wheat (Instant)	Nat
24	Crispix	Kel
25	Fiber One	Gen
26	Franken Berry	Gen
27	French Toast Crisp	Gen

On the left side of the interface, there are several panels: "Cereal" (selected), "Columns (18/1)" (expanded, showing columns: Name, Manufacturer, Mfr, Hot/Cold, Calories, Protein, Fat, Sodium, Fiber, Complex Carbos, Sugars, Calories fr Fat, Potassium, Enriched, Wt/serving, cups/serv, Fiber Gr), and "Rows" (All rows, 76).

Which Would Be Your Worst Choice?

- Clear Row States
- Go back to distributions
- Select the lowest Fiber bar in the histogram
- Hold [Ctrl] and click the sugar bars less than 15.
- Go back to the Data and see that your worst choice is ...
- Golden Crisp (0g fiber, 15g sugar)

Analyze → Fit Model

Calories in Y, all below that in X

JMP - [Fit Model]

File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help

Windows

JMP Starter Cereal Fit Model

Model Specification

Select Columns

- Name
- Manufacturer
- Mfr
- Hot/Cold
- Calories
- Protein
- Fat
- Sodium
- Fiber
- Complex Carbos
- Tot Carbo
- Sugars
- Calories fr Fat
- Potassium
- Enriched
- Wt/serving
- cups/serv
- Fiber Gr

Pick Role Variables

Personality: Stepwise

Y Calories

Weight optional Numeric

Freq optional Numeric

By optional

Help Run Model Remove

Construct Model Effects

Add Protein

Cross Fat

Nest Sodium

Macros Fiber

Degree 2

Attributes

Transform

No Intercept

Cereal

Select Personality → Stepwise, Run Model Change Direction to Mixed

Stepwise] Rows Cols DOE Analyze Graph Tools View Window Help

File Edit View Insert Tools Window Help

Stepwise Fit

Response: Calories

Stepwise Regression Control

Prob to Enter: 0.250 Enter All

Prob to Leave: 0.100 Remove All

Direction: **Mixed** Forward Backward

Rules: **None**

Go Stop Save Model

1 rows not used due to excluded rows or missing values.

Current Estimates

SSE	DFE	MSE	RSquare	RSquare Adj	Cp	AIC
184152	74	2488.5405	0.0000	0.0000	5920.3953	587.4522

Lock Entered	Parameter	Estimate	nDF	SS	"F Ratio"	"Prob>F"
<input checked="" type="checkbox"/>	Intercept	140.8	1	0	0.000	1.0000
<input type="checkbox"/>	Protein	0	1	91104.86	71.476	0.0000
<input type="checkbox"/>	Fat	0	1	77629.82	53.200	0.0000
<input type="checkbox"/>	Sodium	0	1	7229.601	2.983	0.0884
<input type="checkbox"/>	Fiber	0	1	6803.278	2.800	0.0985
<input type="checkbox"/>	Complex Carbos	0	1	82335.46	59.033	0.0000
<input type="checkbox"/>	Tot Carbo	0	1	151698.7	341.229	0.0000
<input type="checkbox"/>	Sugars	0	1	48260.7	25.925	0.0000
<input type="checkbox"/>	Calories fr Fat	0	1	83468.88	60.519	0.0000
<input type="checkbox"/>	Potassium	0	1	36211.09	17.868	0.0001
<input type="checkbox"/>	Enriched{0&10&15&20&25&30&35-100}	0	1	1893.429	0.758	0.3867
<input type="checkbox"/>	Enriched{0&10&15&20&25-30&35}	0	2	7358.154	1.498	0.2304
<input type="checkbox"/>	Enriched{0-10&15&20&25}	0	3	9011.016	1.218	0.3097
<input type="checkbox"/>	Enriched{10&15&20-25}	0	4	17304.63	1.815	0.1356
<input type="checkbox"/>	Enriched{10-15&20}	0	5	18137.96	1.508	0.1988
<input type="checkbox"/>	Enriched{15-20}	0	6	18954.63	1.300	0.2689
<input type="checkbox"/>	Enriched{30-35}	0	3	7478.154	1.002	0.3972
<input type="checkbox"/>	Wt/serving	0	1	166749.4	699.477	0.0000
<input type="checkbox"/>	cups/serv	0	1	2503.25	1.006	0.3192
<input type="checkbox"/>	Fiber Gr{ Low-High& Medium}	0	1	48736.88	26.273	0.0000
<input type="checkbox"/>	Fiber Gr{High- Medium}	0	2	50823.59	13.723	0.0000

Step History

Stepwise Regression Control Panel

The Stepwise Regression Control Panel (Control Panel for short) has editable areas, buttons and a popup menu. You use these dialog features to limit regressor effect probabilities, determine the method of selecting effects, begin or stop the selection process, and create a model.

You use the Control Panel as follows:

Prob to Enter

is the significance probability that must be attributed to a regressor term for it to be considered as a forward step and entered into the model. Click the field to enter a value.

Prob to Leave

is the significance probability that must be attributed to a regressor term in order for it to be considered as a backward step and removed from the model. Click the field to enter a value.

Direction

accesses the popup menu shown here, which lets you choose how you want variables to enter the regression equation.

Stepwise Regression Control Panel

Forward brings in the regressor that most improves the fit, given that term is significant at the level specified by **Prob to Enter**.

Backward removes the regressor that affects the fit the least, given that term is not significant at the level specified in **Prob to Leave**.

Mixed alternates the forward and backward steps. It includes the most significant term that satisfies **Prob to Enter** and removes the least significant term satisfying **Prob to Leave**. It continues removing terms until the remaining terms are significant and then it changes to the forward direction.

Stepwise Regression Control Panel

Buttons on the controls panel let you control the stepwise processing:

Go

starts the selection process. The process continues to run in the background until the model is finished.

Stop

stops the background selection process.

Step

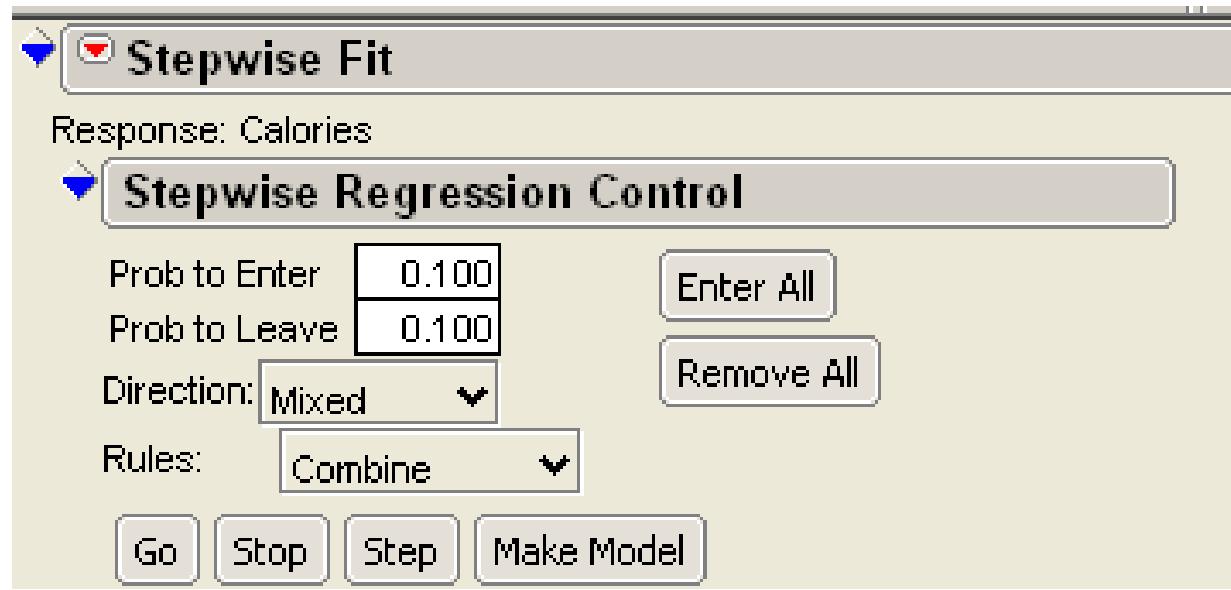
stops after each step of the stepwise process

Enter All

enters all unlocked terms into the model.

Remove All

removes all terms from the model.


Make Model

forms a model for the Model Specification Dialog from the model currently showing in the Current Estimates table. In cases where there are nominal or ordinal terms, Make Model can create new data table columns to contain terms that are needed for the model.

A Few Changes First

- You already changed direction to Mixed.
- Change “Prob to Enter” and “Prob to Leave” to 0.100

Click Step and Watch Factors Get Added to the Model

JMP - [Cereal- Fit Stepwise]

File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help

Windows

JMP Starter
Cereal
Fit Model
Cereal- Fit

Stepwise Fit

Response: Calories

Stepwise Regression Control

Prob to Enter: 0.050
Prob to Leave: 0.050
Direction: Mixed
Rules: Combine

Enter All Remove All Go Stop Step Make Model

1 rows not used due to excluded rows or missing values.

Current Estimates

	SSE	DFE	MSE	RSquare	RSquare Adj	Cp	AIC
	2361.5019	69	34.224666	0.9872	0.9862	13.857241	270.7174

Lock Entered Parameter Estimate nDF SS "F Ratio" "Prob>F"

	Lock	Entered	Parameter	Estimate	nDF	SS	"F Ratio"	"Prob>F"
1	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	Intercept	-5.2762836	1	0	0.000	1.0000
2	<input type="checkbox"/>	<input type="checkbox"/>	Protein	0	1	108.0134	3.259	0.0754
3	<input type="checkbox"/>	<input checked="" type="checkbox"/>	Fat	7.29376175	1	5262.903	153.775	0.0000
4	<input type="checkbox"/>	<input type="checkbox"/>	Sodium	0	1	7.077795	0.204	0.6526
5	<input type="checkbox"/>	<input checked="" type="checkbox"/>	Fiber	-3.6657725	1	5463.813	159.645	0.0000
6	<input type="checkbox"/>	<input type="checkbox"/>	Complex Carbos	0	1	0.061301	0.002	0.9666
7	<input type="checkbox"/>	<input checked="" type="checkbox"/>	Tot Carbo	0.69015019	1	211.2171	6.171	0.0154
8	<input type="checkbox"/>	<input type="checkbox"/>	Sugars	0	1	0.061301	0.002	0.9666
9	<input type="checkbox"/>	<input type="checkbox"/>	Calories fr Fat	0	1	47.93983	1.409	0.2393
10	<input type="checkbox"/>	<input type="checkbox"/>	Potassium	0	1	44.55929	1.308	0.2568
11	<input type="checkbox"/>	<input type="checkbox"/>	Enriched(0&10&15&20&25&30&35-100)	0	1	47.83582	1.406	0.2399
12	<input type="checkbox"/>	<input type="checkbox"/>	Enriched(0&10&15&20&25-30&35)	0	2	48.87546	0.708	0.4963
13	<input type="checkbox"/>	<input type="checkbox"/>	Enriched(0-10&15&20&25)	0	3	53.50218	0.510	0.6768
14	<input type="checkbox"/>	<input type="checkbox"/>	Enriched(10&15&20-25)	0	4	97.28987	0.698	0.5959
15	<input type="checkbox"/>	<input type="checkbox"/>	Enriched(10-15&20)	0	5	102.9973	0.584	0.7123
16	<input type="checkbox"/>	<input type="checkbox"/>	Enriched(15-20)	0	6	103.0703	0.479	0.8213
17	<input type="checkbox"/>	<input type="checkbox"/>	Enriched(30-35)	0	3	107.5512	1.050	0.3765
18	<input type="checkbox"/>	<input checked="" type="checkbox"/>	WT/serving	3.00809054	1	6234.103	182.152	0.0000
19	<input type="checkbox"/>	<input checked="" type="checkbox"/>	cups/serv	11.0815235	1	335.1154	9.792	0.0026
20	<input type="checkbox"/>	<input type="checkbox"/>	Fiber Gr(Low-High & Medium)	0	1	6.129258	0.177	0.6753
21	<input type="checkbox"/>	<input type="checkbox"/>	Fiber Gr(High- Medium)	0	2	164.2459	2.504	0.0894

Step History

Click Make Model

odel]

Rows Cols DOE Analyze Graph Tools View Window Help

File Edit View Insert Tools Window Help

Cereal

Model Specification

Select Columns

- Name
- Manufacturer
- Mfr
- Hot/Cold
- Calories
- Protein
- Fat
- Sodium
- Fiber
- Complex Carbos
- Tot Carbo
- Sugars
- Calories fr Fat
- Potassium
- Enriched
- Wt/serving
- cups/serv
- Fiber Gr

Pick Role Variables

Y Calories optional

Weight optional Numeric

Freq optional Numeric

By optional

Personality: Standard Least Squares

Emphasis: Effect Leverage

Help Run Model Remove

Construct Model Effects

Add Fat

Cross Fiber

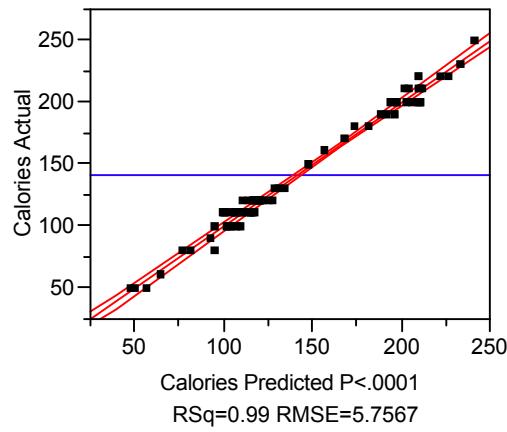
Nest Tot Carbo

Macros Wt/serving

Degree 2 cups/serv

Attributes

Transform


No Intercept

Click Run Model

Whole Model

Actual by Predicted Plot

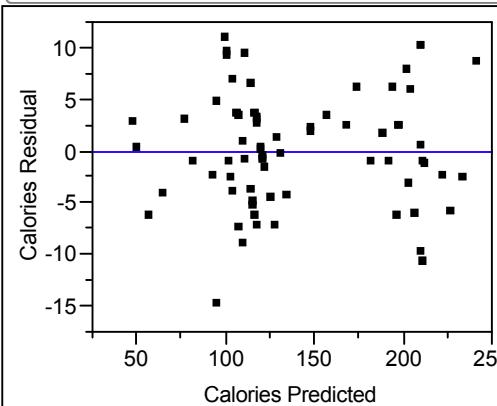
Summary of Fit

RSquare	0.987763
RSquare Adj	0.986683
Root Mean Square Error	5.756695
Mean of Response	140.8
Observations (or Sum Wgts)	75

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Ratio
Model	6	181898.51	30316.4	914.8112
Error	68	2253.49	33.1	Prob > F
C. Total	74	184152.00		<.0001*

Lack Of Fit

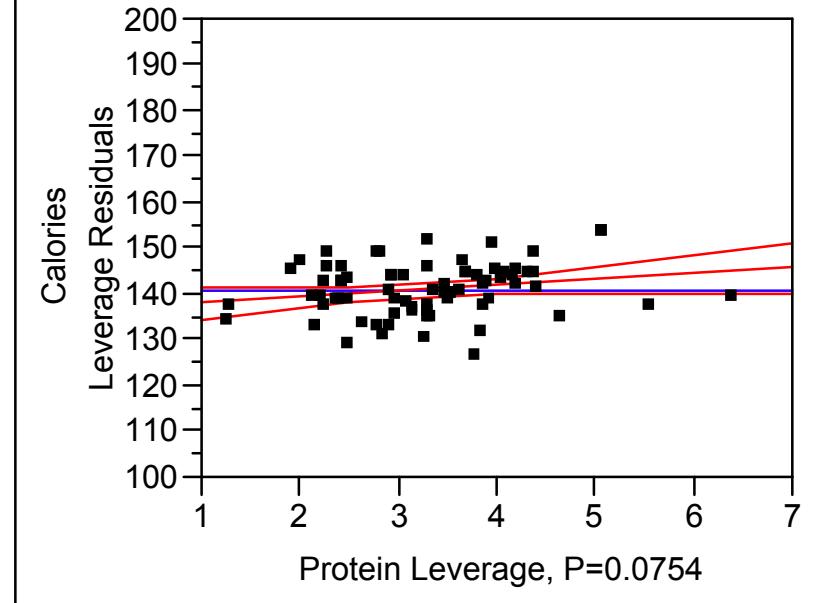

Source	DF	Sum of Squares	Mean Square	F Ratio
Lack Of Fit	65	2253.4886	34.6691	
Pure Error	3	0.0000	0.0000	Prob > F
Total Error	68	2253.4886		

Max RSq
1.0000

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-4.230658	3.478264	-1.22	0.2281
Protein	1.3019557	0.721158	1.81	0.0754
Fat	7.414865	0.582652	12.73	<.0001*
Fiber	-3.874463	0.308004	-12.58	<.0001*
Tot Carbo	0.8724868	0.291431	2.99	0.0038*
Wt/serving	2.755463	0.260157	10.59	<.0001*
cups/serv	10.097625	3.527139	2.86	0.0056*

Residual by Predicted Plot


What is the Effect of Protein Now?

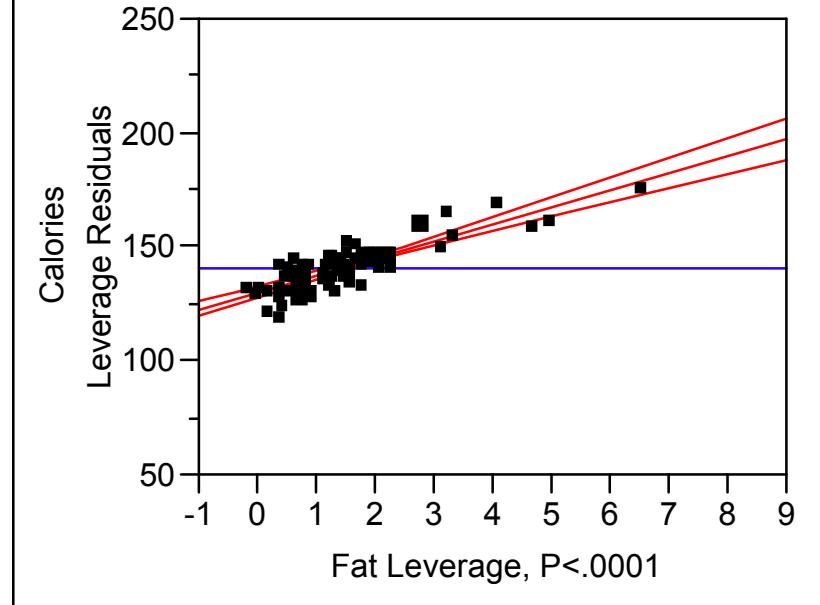
Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-4.230658	3.478264	-1.22	0.2281
Protein	1.3019557	0.721158	1.81	0.0754
Fat	7.414865	0.582652	12.73	<.0001*
Fiber	-3.874463	0.308004	-12.58	<.0001*
Tot Carbo	0.8724868	0.291431	2.99	0.0038*
Wt/serving	2.755463	0.260157	10.59	<.0001*
cups/serv	10.097625	3.527139	2.86	0.0056*

Protein

Leverage Plot

Recall that it was **20.2 calories per g** when we just looked at calories vs. protein. Nutritionists tell us that the real number is 4 calories per g of fat.


What is the Effect of Fat Now?

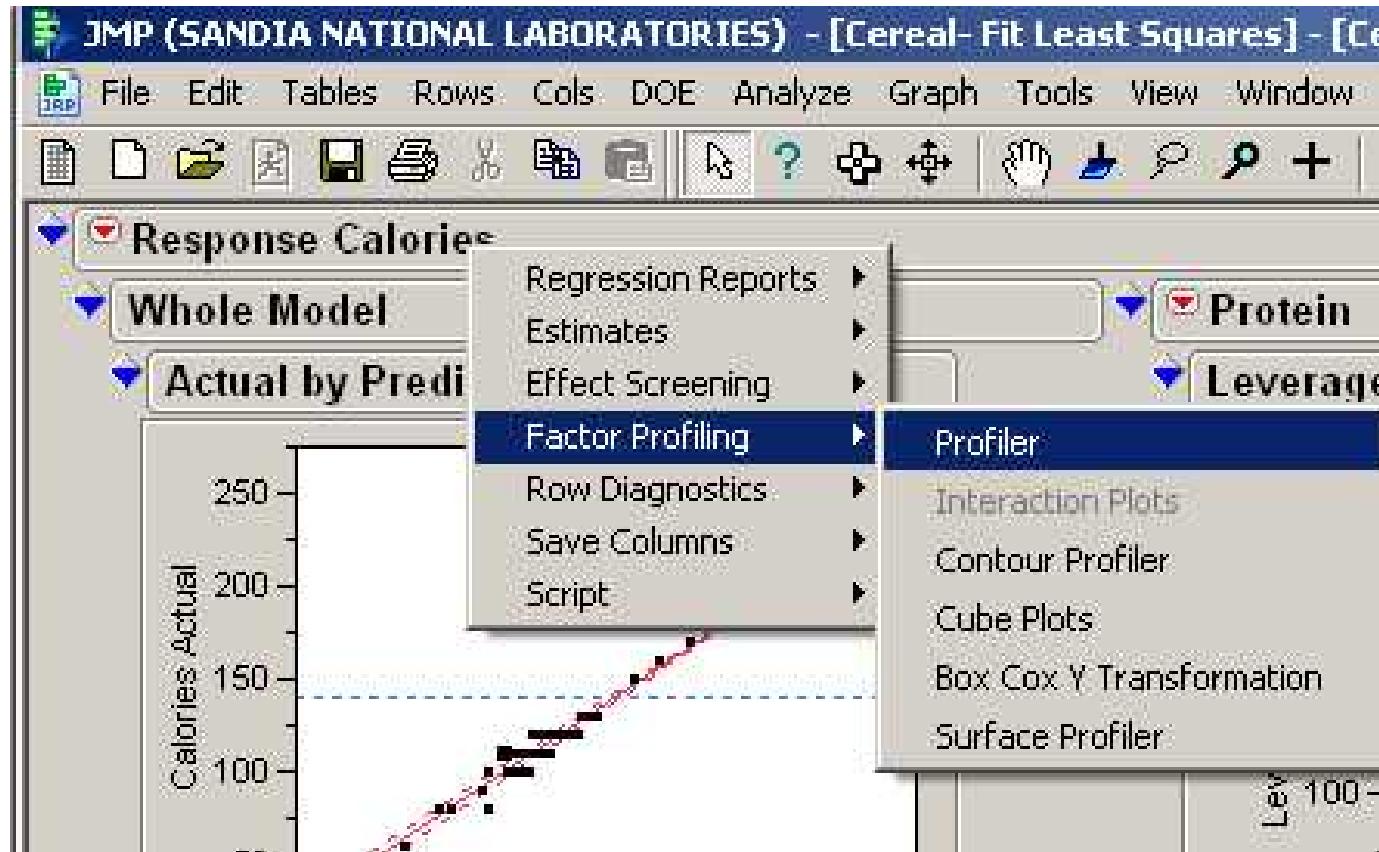
Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-4.230658	3.478264	-1.22	0.2281
Protein	1.3019557	0.721158	1.81	0.0754
Fat	7.414865	0.582652	12.73	<.0001*
Fiber	-3.874463	0.308004	-12.58	<.0001*
Tot Carbo	0.8724868	0.291431	2.99	0.0038*
Wt/serving	2.755463	0.260157	10.59	<.0001*
cups/serv	10.097625	3.527139	2.86	0.0056*

Fat

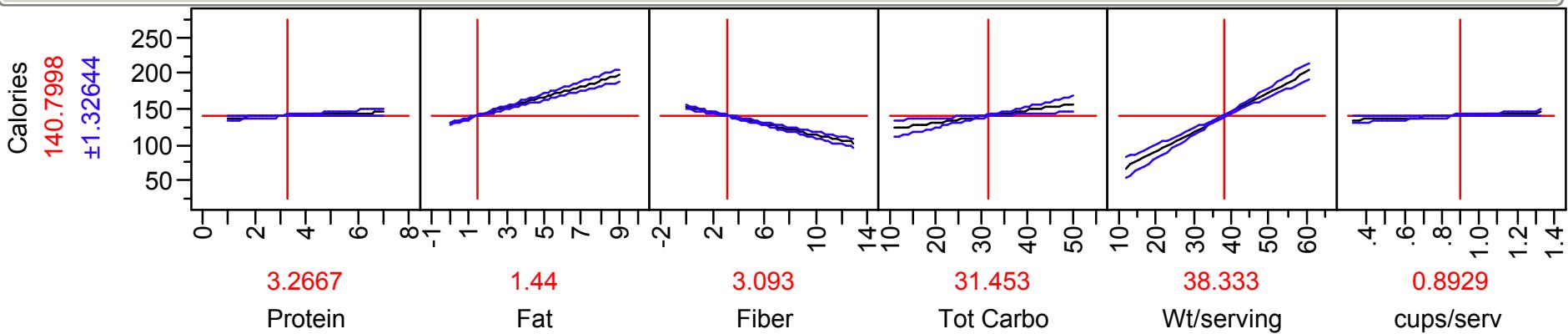
Leverage Plot

Recall that it was **20.6 calories per g** when we just looked at calories vs. fat. Nutritionists tell us that the real number is 9 calories per g of fat.


You Need to Look at the Model!

- When we just looked at calories vs. protein, we concluded that each gram of protein adds 20.2 calories.
- When we looked at the entire model, we discovered that each gram of protein really only adds 1.3 calories!
- When we just looked at calories vs. protein, we concluded that each gram of fat adds 20.6 calories.
- When we looked at the entire model, we discovered that each gram of fat really only adds 7.4 calories!
- Looking at the entire model captured all contributing factors, and gave us coefficients closer to what we've been told by nutritionists.

Right-click Response Calories title bar Select Factor Profiling → Profiler



Scroll Down to Prediction Profiler

Try moving the vertical lines.

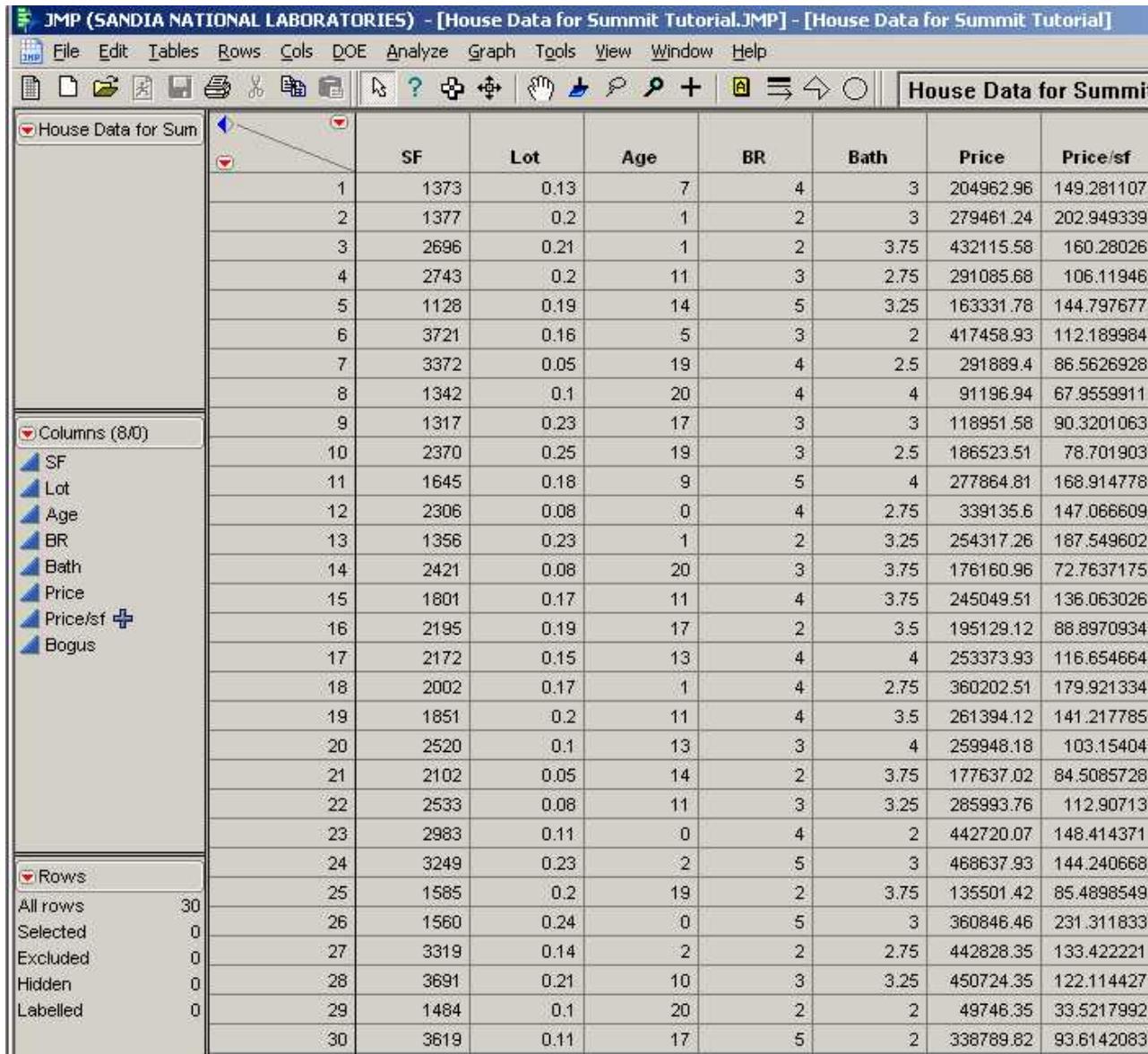
Which factors could you change in order to reduce calories?

Prediction Profiler

Back to the Exercise

You want to sell your house. It has the following features:

- 2000 square feet
- 0.2 acre lot
- 2 years old
- 3 bedrooms
- 3 full bathrooms



Load House Data for Summit Tutorial.jmp Data File

JMP (SANDIA NATIONAL LABORATORIES) - [House Data for Summit Tutorial.jmp] - [House Data for Summit Tutorial]

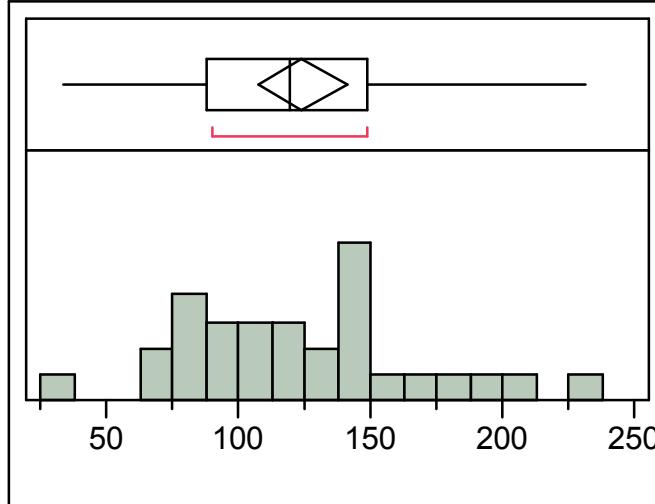
File Edit Tables Rows Cols DOE Analyze Graph Tools View Window Help

House Data for Summit

	SF	Lot	Age	BR	Bath	Price	Price/sf
1	1373	0.13	7	4	3	204962.96	149.281107
2	1377	0.2	1	2	3	279461.24	202.949339
3	2696	0.21	1	2	3.75	432115.58	160.28026
4	2743	0.2	11	3	2.75	291085.68	106.11946
5	1128	0.19	14	5	3.25	163331.78	144.797677
6	3721	0.16	5	3	2	417458.93	112.189984
7	3372	0.05	19	4	2.5	291889.4	86.5626928
8	1342	0.1	20	4	4	91196.94	67.9559911
9	1317	0.23	17	3	3	118951.58	90.3201063
10	2370	0.25	19	3	2.5	186523.51	78.701903
11	1645	0.18	9	5	4	277864.81	168.914778
12	2306	0.08	0	4	2.75	339135.6	147.066609
13	1356	0.23	1	2	3.25	254317.26	187.549602
14	2421	0.08	20	3	3.75	176160.96	72.7637175
15	1801	0.17	11	4	3.75	245049.51	136.063026
16	2195	0.19	17	2	3.5	195129.12	88.8970934
17	2172	0.15	13	4	4	253373.93	116.654664
18	2002	0.17	1	4	2.75	360202.51	179.921334
19	1851	0.2	11	4	3.5	261394.12	141.217785
20	2520	0.1	13	3	4	259948.18	103.15404
21	2102	0.05	14	2	3.75	177637.02	84.5085728
22	2533	0.08	11	3	3.25	285993.76	112.90713
23	2983	0.11	0	4	2	442720.07	148.414371
24	3249	0.23	2	5	3	468637.93	144.240668
25	1585	0.2	19	2	3.75	135501.42	85.4898549
26	1560	0.24	0	5	3	360846.46	231.311833
27	3319	0.14	2	2	2.75	442828.35	133.422221
28	3691	0.21	10	3	3.25	450724.35	122.114427
29	1484	0.1	20	2	2	49746.35	33.5217992
30	3619	0.11	17	5	2	338789.82	93.6142083

Exercise:

What Will Your Listing Price Be?


You Analyzed the distribution of Price/sf

Average = \$124.36 per SF

Therefore, $\$124.36 / \text{sf} \times 2,000 \text{ sf} = \$248,720$

Distributions

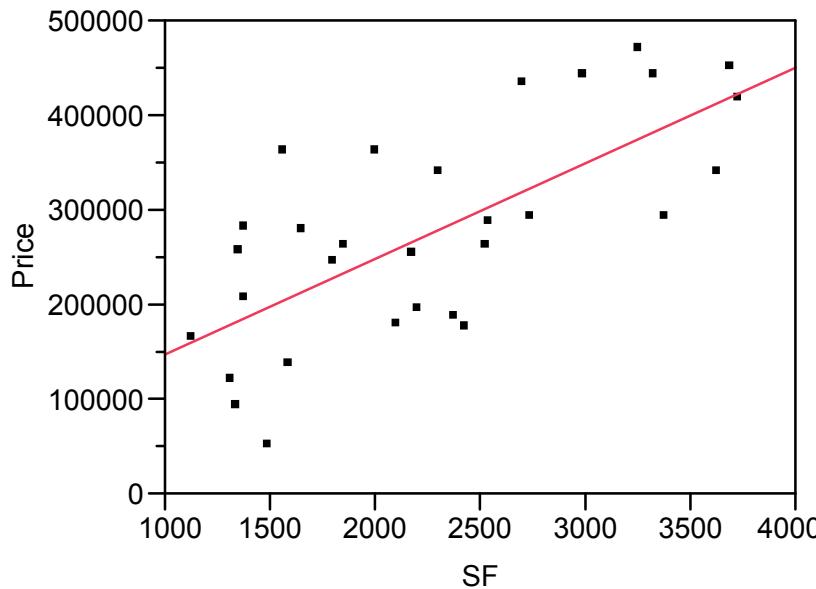
Price/sf

Quantiles

100.0%	maximum	231.31	Mean	124.36354
99.5%		231.31	Std Dev	44.020787
97.5%		231.31	Std Err Mean	8.0370594
90.0%		186.79	upper 95% Mean	140.80117
75.0%	quartile	148.63	lower 95% Mean	107.92591
50.0%	median	119.38	N	30
25.0%	quartile	88.31		
10.0%		73.36		
2.5%		33.52		
0.5%		33.52		
0.0%	minimum	33.52		

Exercise:

What Will Your Listing Price Be?


You performed a Fit Y by X for Price vs. SF

You also added a Line Fit

$$\text{Price} = \$45,962 + \$101.34 \times \text{SF}$$

$$\text{Therefore, Price} = \$248,642$$

Bivariate Fit of Price By SF

Linear Fit

Analysis of Variance

Source	DF	Sum of		F Ratio
		Squares	Mean Square	
Model	1	1.8791e+11	1.879e+11	28.1954
Error	28	1.8661e+11	6.6647e+9	Prob > F
C. Total	29	3.7452e+11		<.0001*

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	45962.927	45654	1.01	0.3227
SF	101.33845	19.0847	5.31	<.0001*

Exercise: What Will Your Listing Price Be?

- Review Student's Listing Prices previously captured on the Board

You Want to Sell Your House

- Your realtor pulls up the set of data for recent home sales in your zip code, and tells you the average selling price was \$124.36 per square foot. (Data file provided.)
- Your realtor breaks out the calculator and tells you your home is worth $\$124.36/\text{ft}^2 \times 2,000 \text{ ft}^2 = \$248,720$.
- Your realtor tells you to list your house for \$260,000. “That leaves a little room for negotiating,” they explain.
- You’re just about to sign the listing paperwork, but you remember the Workshop from the Black Belt Summit.

Should You Listen to Your Realtor?

Exercise

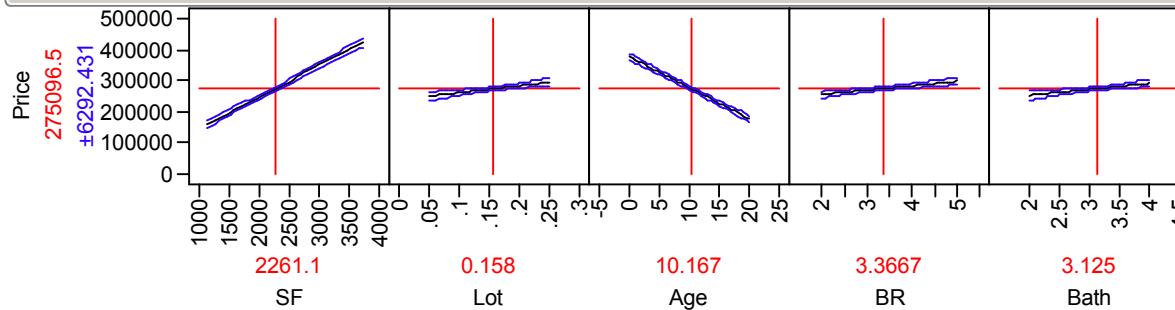
- Create a model for home price, including only significant factors.
- Determine the value of your home based on the model.
- Capture the students' listing prices on the board.
- Are these much different than what your Realtor recommended?

Exercise Time

15 minutes

Solutions

Create a model for home price, including only significant factors.


Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	3242.1849	28037.38	0.12	0.9089
SF	100.26837	4.377378	22.91	<.0001*
Lot	228519.2	55577.05	4.11	0.0004*
Age	-9954.605	456.565	-21.80	<.0001*
BR	14362.019	2925.965	4.91	<.0001*
Bath	19803.935	5364.676	3.69	0.0011*

Prediction Expression

+14362.0191583007*BR
+19803.93483500972*Bath

Prediction Profiler

Solutions

Determine the value of your home based on the model.

$$3242.18 + 100.27 * (2000) + 228519.20 * (0.2) - 9954.60 * (2) + 14362.02 * (3) + 19803.93 * (3) =$$

\$332,075

Should you listen to your Realtor and list your house for \$260,000?

What Does the Model Tell You?

- Which factors are statistically significant?
- What are the coefficients for these factors?
- In particular, what is the coefficient for \$/square foot?

A Word of Caution

- Three types of variables
 - Continuous
 - Time
 - Distance
 - Ordinal
 - Character data with an order (poor, fair, good, better, best)
 - Numerical data with unequal spacing (4 = strongly agree, 3 = agree, 2 = disagree, 1 = strongly disagree)
 - Nominal
 - Character data with no specific order (green, blue, yellow)
 - Numerical data with no specific order (NASCAR car #)
- Should BR and Bath be treated as continuous variables?
- What if we had treated them as Ordinal Variables?

Treating BR and Bath as Ordinal

- If Time Permits, change BR and Bath to Ordinal and redo the analysis

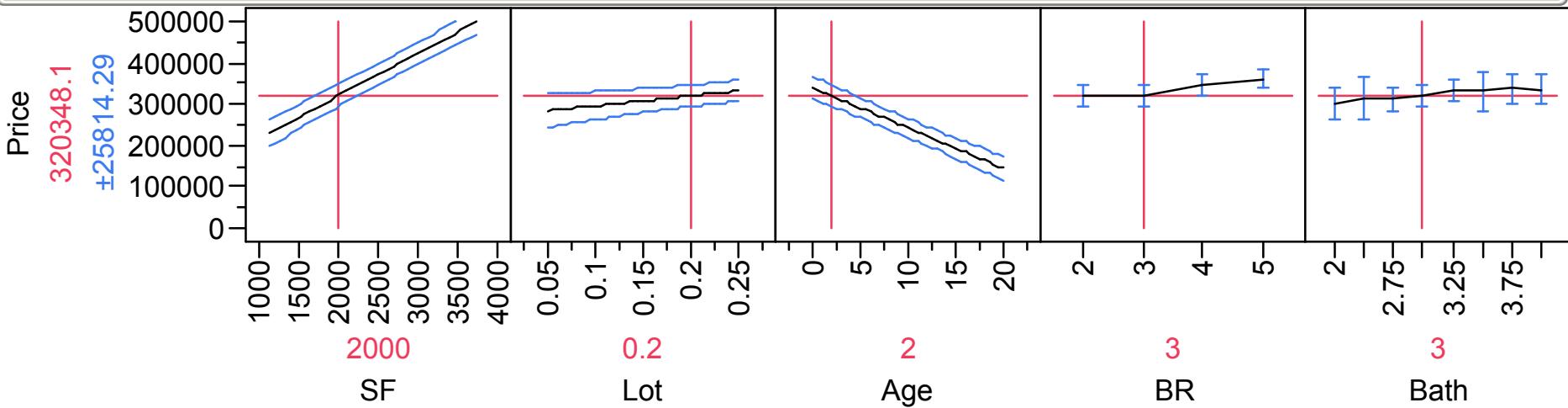
House Data for Sum

	SF	Lot	Age	BR
1	1373	0.13	7	4
2	1377	0.2	1	2
3	2696	0.21	1	2
4	2743	0.2	11	3
5	1128	0.19	14	5
6	3721	0.16	5	3
7	3372	0.05	19	4
8	1342	0.1	20	4
9	1317	0.23	17	3
10	2370	0.25	19	3
11	1645	0.18	9	5
12	2306	0.08	0	4
13	1356	0.23	1	2
14	2421	0.08	20	3
15	1801	0.17	11	4
16	2195	0.19	17	2
17	2472	0.15	10	4

Columns (7/1)

- SF
- Lot
- Age
- BR
- Bath
- Price
- Price/sf

Continuous
Ordinal
Nominal


Columns (7/0)

- SF
- Lot
- Age
- BR
- Bath
- Price
- Price/sf

Use Prediction Profiler

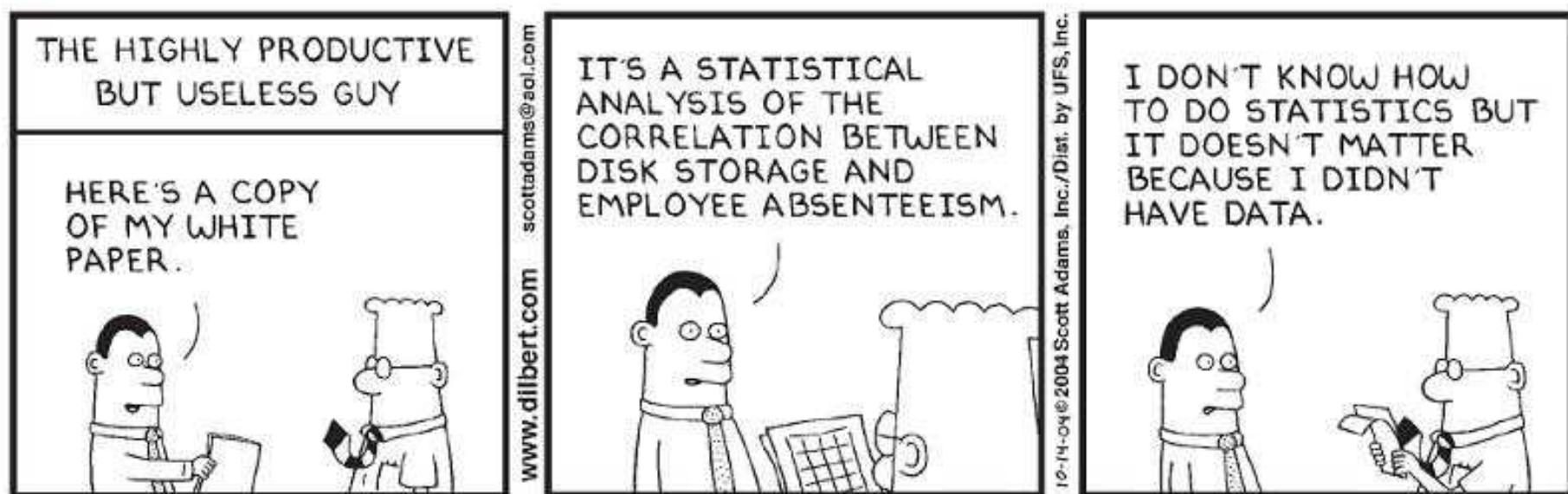
Prediction Profiler



What is the predicted price now?

One Last Tip:

Visually Display your Data!


How many dimensions are shown in this single graph?

Questions?

Dilbert

"... all models are wrong; the practical question is how wrong do they have to be to not be useful ..."

George Box and Norman Draper, Empirical Model Building and Response Surfaces, John Wiley, 1987, pg. 74