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Outline

Capture and host-pathogen transcriptomics
Proof of concept: Francisella tularensis
Intracellular Yersinia enterocolitica

In vivo Salmonella Typhimurium
transcriptomics and cell specific host response

Future work and promising applications



Host-Pathogen Interactions using
RNA-Seq
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Brute Force Sequencing is NOT Feasible
for Bacterial Transcriptomes

99.75% Host

100%

90% -

80% -

70% -

60% -

50% -

40% -

30% -

20% -

10% -

0% -

_—"100%
0.25%
90%
Bacterial
80%
Non-Coding
70%
. Intergenic
60%
. Mitochondrial

50%

40%

30%

20%

10%

0%

Modified from Langevin and Bent et al RNA Biol 2013 10(4)

* 0.0075% of total reads
are bacterial CDS

e 12000 reads per HiSeq
lane

e ~83 HiSeq lanes =
1,000,000 reads



Capture-based Bacterial Transcript
Enrichment and rRNA Depletion

Host-Pathogen cDNA

Fragmented rRNA

2 fold excess

Pathogen Probes

100 fold excess
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<50% rRNA

Hybridization Mix
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Pathogen enriched pool

e ~15% of total reads

are now bacterial
CDS

24,000,000 per
HiSeq lane

1/24 of a lane
=1,000,000 read



Francisella tularensis

Gram-negative, zoonotic, facultative
intracellular bacteria

Infects almost anything
— Amoeba, insects, birds, reptiles, mammals

2 forms

— Cutaneous ulceroglandular
— Pneumonic

Aerosol ID, = 10

Developed as as a biological Weapon



Capture Increases F. tularensis Reads
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Bent et al, 2013 Anal. Biochem. 438(1)



Capture Leads to Unbiased Enrichment of

4hrs Captured (log2 FPKM)
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Capture Improves F. tularensis Mapping

igl locus before capture — 2 million reads
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Differential F. tularensis Gene Expression during
Phagosomal Escape and Cytosolic Growth

F. tularensis

macrophages

Infect
4hrs Pl = Phagosomal Escape
\)‘e = i
@Q‘ 8hrs Pl = Cytosolic Growth
Differential
-3 DESeq Analysis =———3 Expressed
Genes

Sequence

SEM Image: NIAID Laboratory of Intracellular Parasites



Differentially Expressed Genes at 4 and
8hrs Post Infection

4 Hours 8 Hours

Regulatory functions
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Bent et al, 2013 PLoS ONE 8(7)



Most Highly Up-Regulated Genes Have
Unknown Function

4 hours Post Infection
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F. tularensis Conclusions

* Phagosomal escape and cytosolic growth have
significantly different gene expression profiles

* Many genes up-regulated during infection
currently have unknown functions

* These proteins, especially the OM proteins,
make promising targets for vaccines or
therapeutic intervention



The Diseases of Yersinia

Plague Gastrointestinal syndromes
Y. pestis Y. pseudotuberculosis
Y. enterocolitica

1. Entry

Rare - aefosol {cattle and birds)
Fraquent — cal and dog bites

[ (extremilies, face)

1. Entry

2. Spread

3. Disease
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3. Disease
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2, Spread
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All Yersinia are typically considered extracellular pathogens



In Vitro Y. enterocolitica Infections
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Y. enterocolitica Remains Viable within MO

Bright Field Hoechst GFP Overlay

Uninfected

Infected

Plate counts show 19% of inoculum is viable after 3 hours within macrophage

Bent et al, PLoS Pathogens, Submitted



Gene Expression during Infection is
Temporally Dynamic

Black: Low expression |
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Bent et al, PLoS Pathogens, Submitted



Differential Expression Analysis
Reveals Clusters of Related Genes

Conditioned RPMI vs Growth Medium

Extracellular vs Conditioned RPMI
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Y. enterocolitica Type Ill Secretion
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The Ysa T3SS and Yts2 T2SS are
Expressed Intracellularly
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A New Model of Y. enterocolitica
Intracellular Infection
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Bent et al, PLoS Pathogens, Submitted
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Y. enterocolitica Conclusions

Despite extracellular classification, Y.
enterocolitica survives within macrophages

Infection is a dynamic process, even in vitro

Differential gene expression analysis reveals
systems that are up or down regulated during
different stages of infection

Ysa T3SS, Yts2 T2SS, and Tad pilus are highly
expressed after internalization



Salmonella Typhimurium

* Gram-negative, facultative intracellular,
gastrointestinal pathogen

 Most common cause of bacterial food-borne iliness
in U.S. < 1million cases =2 19,000 hospitalizations

* Frequent outbreaks in the U.S.
— Most commonly associated with poultry

— Other sources = peanut butter, melons, beef, exotic pets
(frogs, turtles, hedgehogs)



In Vivo S. Typhimurium Infections

— Sv12956
= Liver (4X)
, InfeCt Q’ﬁ <
'J Spleen (5X)
S. Typhimurium 2 weeks

Livers 2.5x10%2 - 5.5x103 CFU/sample

Spleens  1.3x10%-5.3x10° CFU/sample

~0.005% of reads map to S. Typhimurium



In Vivo Enrichment
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Cell Type Specific Host-Pathogen
Interactions

Many bacterial species preferentially infect specific
tissues or host cell types

Understanding these preferences is critical to
understanding pathogenesis

S. Typhimurium chronic infection is associated with
the presence of hemophagocytic macrophages

This cell type may be important in controlling
infection or may be a reservoir of bacteria

Can we use RNA-Seq to understand this interaction?



Hemophagocytic Macrophages

S. Typhimurium infects ~4% of macrophages become
hemophagocytic macrophages hemophagocytes during chronic infection
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Confocal image
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DNA « What are the bacteria doing within this cell type?
Salmonella

Nix et al, 2007 PLoS Pathogens 3(12) McCoy et al, 2012 1&I 81(11)



Host-Pathogen Interactions Using a
Dual Transcriptomics Approach

Monocytes

<« Ssort —>
2N Cells 6N Cells

{ RNaBaracion | Anglysis is underway!
2N RNA 6N RNA

J' cDNA Synthesis J’

ds-cDNA ds-cDNA



In Vivo Conclusions

e Capture is effective at enriching for bacterial
transcripts from infected tissues

— More work necessary to deplete bacterial rRNA

* Host-pathogen transcriptomics in S. Typhimurium
infected hemophagocytic macrophages will lead
to improved understanding of chronic infection



Future Directions

 Complete transcriptomic analysis of pathogen
and host through the course of an infection
— Tissue by tissue analysis from infection to death
e Discover novel bacterial virulence mechanisms

* Improved understanding of host response
* Design better vaccines and therapeutics

 Comparative bacterial transcriptomics

— What are the non-genetic factors that make strains
more pathogenic?

— F. tularensis LVS and SCHU S4



Applications in Virology

 Viral quasi-species and bottlenecking effects

— Dominant viral type changes from vector to host

G

West Nile Virus Transmission Cycle

} :\ PermISSIVe/
' Bird to insect
\ﬁL

Insect to bird
Reservoir Host: \ Insect Vector: \ Restrictive
Birds —

Mosquitoes
Restrictive in most birds
Permissive in crows

Restrictive

Accidental Hosts:
People and Animals



Summary

Capture makes it possible to analyze bacterial
transcriptomes during in vitro and in vivo infections

F. tularensis has dynamically changing gene
expression profiles at 4 and 8 hours post infection

Y. enterocolitica uses the Ysa T3SS, Yts2 T2SS, and Tad
pilus to promote intracellular survival

Dual transcriptomic analysis of S. Typhimurium
infected hemophagocytic macrophages will improve
our understanding of chronic infection

Capture and RNA-Seq are still in their infancy, there
are many diverse and promising applications of the
technology
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RNA-Seq

* Sequencing all RNA transcripts in a sample
— MRNA, miRNA, IncRNA, snoRNA, etc.

* Compared to microarrays

— Better sensitivity, better dynamic range, discovery
of non-coding RNA and splice variants, cheaper

* |nitial drawback of sample preparation
— All RNA must first be converted to cDNA

— First generation kits were biased, time consuming,
and expensive



Creating a New RNA-Seq Library Prep

Unbiased

— Results accurately reflects presence and abundance
Flexible

— Create libraries from any sample and RNA type
Strand-Specific

— Vital to discovery of anti-sense RNAs
Compatible with enrichment techniques

— rRNA removal (DSN/HAC) and capture

Rapid

— Older protocols can take days

Cost-Effective

— Commercial kits can cost >575/sample



Fragmented RNA
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Langevin and Bent et al, 2013 RNA Biol. 10(4)



Peregrine
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Compatibility with Enrichment
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Commercial Adoption

October 2013

SMARTer Stranded RNA-Seq Kit User Manual

The SMARTer Stranded RNA-Seq Kit starts with less than nanogram amounts of RNA. A modified N6 primer (the
SMART Stranded N6 Primer) primes the first-strand synthesis reaction (Figure 2). For added simplicity, the RNA is
chemically fragmented during denaturation.

April 2013

RNABiology 104, 502-515; April 2013;0 2013 Landes Bioscience

NOTE: If your sample is degraded or of low quality, see Appendix A for a fragmentation-free protocol.

When SMARTScribe™ Reverse Transcriptase reaches the 5° end of the RNA fragment, the enzyme’s terminal transferase
activity adds a few additional nucleotides to the 3’ end of the cDNA. The carefully-designed SMARTer Stranded Oligo base-
pairs with the non-template nucleotide stretch, creating an extended template to enable SMARTScribe RT continue replicating

P .
to the end of the oligonucleotide (Chenchik er al., 1998). The resulting full-length, single-stranded (ss) cDNA contains the

Arapid and unbiased method to produce strand-specific , ‘ _
RNA-Seq libraries from small quantities of Starting material | |

XL B NAAAAAAAAAAAAANAAA &

Stanley A. Langevin,* Zachary W. Bent,"* Owen D, Solberg,' Deanna J, Curtis,' Pamela D. Lane,' Kelly P. Williams,
Joseph S. Schoeniger! Anupama Sinha, Todd W. Lane' and Steven S. Branda®*

Systems Biology; Sandia National Laboratories; Livermore, CA USA; Biotechnology and Bioengineering; Sandia National Laboratories; Livermore, CA USA

5 =

SMARTer Stranded
Oligo

A

4

¢== SMART Stranded
N6 Primer

First-strand synthesis
and tailing by RT

-_)OOUQ( 5' WMAAAANANANNNNNNNNNS
5

YRR

Universal Forward

Template switching
and extension by RT

PCR Primer \4
‘::)QQQQK 5" WMAWANANANANANNNNNNNNANN
%' )QQOQ
=X === Reverse PCR
indexing primer
Amplify cDNA by PCR
with lllumina Indexing
Primer Set
\ 4
Read 1 > RNA-Seq library

< Read 2

Figure 2. Flowchart of SMARTer Stranded RNA-Seq library generation.



The Evolution of “The Device”




Meso-fluidic Capture

Blocking Solution

Multiport
valve

* True chromatography
approach

PBS (wash)

Sample load (5-50 ul)

B Less manipulation
ﬂ  Less hands on time
Capture column

10-30 pL

UV detection
(or Conductivity detection)

Fraction collection

C===d
C =71



Version 1 — Syringe Pumps




Version 2 — Spin Columns

Thermo Scientific Pierce
Micro-Spin Columns
(Part No. 89879)

Total column capacity = 0.4mL
(resin bed = 0.1mL; reservoir = 0.3mL) |

13mm

A
A
Total height
with top and 37mm  °
bottom caps 20mm
in place
a 44m 23mm




Version 3 — Vacuum Driven 48-plex Capture

8-Well strips Vacuum manifold holds 6 strips
— /i

2-20LLTS



Rift Valley Fever Virus (RVFV)

Zoonotic, mosquito-borne, 3 segment, -ssRNA virus
— Typically infects livestock

— Bats may act as viral reservoirs

98% of people have mild symptoms

— Fever, headache, general malaise
2% of people develop hemorrhagic fever

Outbreak in Egypt in 1977-78 infected ~200,000
people with ~600 deaths

Potential biological weapon



Percentage of RVFV reads
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RVFV Coverage
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Clustering by Gene
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Bent et al, 2013 PLoS ONE 8(7)



Infection-dependent Differential Gene

Expression

. i old Cha 1000
YE2639 - Sugar Transporter 107.65 [T~
YE4027 - Epi-inositol hydrolase 63.44 [T Sugar transport
YE2638 - Sugar Transport 54.79 w\ Inositol metabolism
YE4025 - Inosose dehydratase 46.21 A
YE4026 idh Myo-inositol 2-dehydrogenase 32.73 < > :
YE0267 fadA Fatty acid oxidation 31.52 .’ . . * s
YEQ447 - Unknown membrane transporter 26.63 10 ’t: & 2 * ¢
YE3198 aglB 6-phospho-a-glucosidase 21.75 e ¢
YEO309 acs acetyl-CoA synthetase 20.38
YE4031 - aldehyde dehydrogenase 18.21
- - 0C LNane 1
YEO553 scrY sucrose porin -24.15
YE3092 - Unknown -18.47
YE3297  xni exonuclease -15.63
YEQ789 - thiol:disulfide interchange -14.42 0.1 ~
YE2667 - Unknown -14.32
YE1740 - Unknown -12.59 X)
YE2772  hisl ATP pyrophosphatase -12.19 / Sucrose transport
YEO552 scrA Sucrose transporter -11.30 0.01 : : :
Flavin mononucleotide 0 1000 2000 3000 4000
YEQ195 yigB phosphatase -9.69 YE gene number




Infection-dependent Differential
Expression by Functional Category

(Genes differentially expressed between RPMI and infection)
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Expression of the Ysa T3SS

ysa

sycB yspN ysrR S
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16S Ribosomal RNA

428bp 106bp

Variable Region Bases Covered Length Identification Level
V4 576 - 682 106 bases Family

V1-V3 69 - 497 428 bases Genus/Species




Creating the V1-V3 Amplicon
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Sequencing V1-V3 Amplicon
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94% Indexed



Typical Burn Wound Progression

Most patients with >15% surface area burn will
develop sepsis at least once

Week 1 = Gram-positive
Week 2 = Gram-negative
Later time points = fungal

All patients are on some type of antimicrobial
— IV/oral/topical

Are there populations of bacteria that lead to
better wound healing?



Burn Wound Metagenomics
An Ecological Approach

Normal Flora
/ |
\ 4

Unburned skin Sterile Wound

Hospital surfaces
Medical professionals l’
Visitors Primary Colonization

Antibiotic Treatment

Secondary Colonization

l

Sepsis



Human Burn Wound Study Design
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Swabs of burn wound

Unburned area
near wound
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Hospital surfaces
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Disease Diagnostics using Metagenomics
and Metatranscriptomics

DNAZol Sample RNAZol

Peregrine
HAC

Double PCR Nextera

|ldentification Strain Information Activity



Mountain Lions and Elephant Seals

£} O

* Mountain lion found visibly ill * Mother and pup found ill
* Tranquilized + antibiotic injection * Tranquilized + antibiotic injection
* Blood sample collected * Blood sample collected
* Swabs collected * Swabs collected
e Oral e Oral
* Nasal * Nasal

e Rectal e Rectal



Diagnosis from 16S V1-V3 Amplicon

Oral Coenonia anatina 6166 95.2

Oral Fusobacterium 98.5
Nasal Bisgaardia Jackl 935 98.8
Nasal Streptobacillus 1511 94.7
moniliformis Rectal I\/choplasma 1571 99.4
mirounga
Rectal = Fusobacterium 1005 99.3
Blood Mycoplasma 1515 99.4
Blood Fusobacterium 1761 99.8 mirounga
Diagnosis: Unknown Fusobacterium Diagnosis: Mycoplasma mirounga
Other possibilities: Other possibilities:
Salmonella Typhimurium Actinomyces marimammalium

Streptobacillus moniliformis Coenonia anatina



Microbial Forensics

Forensic identification using skin bacterial communities
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Conclusions Questions

e Structure of bacterial communities can be * Are microbial populations stable over
used to differentiate objects handled by longer periods of time with normal use?
different people * On people?

* Objects can be matched to individual * On objects?
people based on their hand microbiome * |Is differentiation possible if larger

« Communities on objects remain stable if numbers of people are tested?
untouched for up to 2 weeks * Isit possible to tell if multiple people

have used an object?
*  Which people?




Microbial Forensics Study Design

Smart Phone Swabs

* Front and back
* Every Monday - 10 weeks
* Once a month after

Office Swabs

* Various objects
* Personal
e Communal

People Swabs

* Both hands

* Phone ear

* Phone cheek
* Inner elbow




Metagenomics Conclusions

V1-V3 sequencing approach leads to more
informative MiSeq runs

Microbial succession of burn wounds may lead to
better understanding of healing and non-healing
communities

Combined metagenomic and metatranscriptomic
approach can lead to diagnosis of unknown
diseases

It may be possible to identify the users of objects
using microbial forensics



Y. enterocolitica Type Ill Secretion

Yops

4

Host Cell Membrane

Outer Membrane

Ysps

4

=
A

‘.

Fops

Inner Membrane

Ysc
Yersinia
cytoplasm - °.
=
Y. enterocolitica
Y. pseudotuberculosis

Y. pestis

plasmid

In vitro induction 37° CLow Ca?t

W
=

Y. enterocolitica 1B
Y. aldovae
Y. mollaretii

chromosome

26° C High NaCl

Flagellar

g

Y. enterocolitica
Y. pseudotuberculosis

chromosome

26° C Low NaCl



Y. enterocolitica biovar 1B

ysa

U TS R Q 8§ NK V W C E 6-71J 54 3H12
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YAPI YSA Ystl
pilus T3S System T2S System

phe-tRNA \phe-tRNA

Plasticity Zone

~ 188 kb Y. enterocolitica
Biovar 1B
chromosome



Experimental Conditions

Transcriptional fusion between PyspP and gfp

00O
, c,oad\“o‘\ PyspP::gfp
y
Wotv

Fluorescence can be quantified by microscopy or by flow cytometry



Hela Cell Infections

PyspP:.gfp
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Observations confirmed by gRT-PCR

Bent et al, 2013 MicrobiologyOPEN 2(6)



In Vivo Protocol

PyspP:.gfp
PyspP:: >
yspP-afp Oral Infection
PyspP:.gfp

» Collect Tissues
2-5 Days

Results

Flow Cytometer
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PE-TX-RED-A

1
10

Results by Tissue

Terminal lleum

1.6x10° CFU

1 2
10 10 10 10 10

PE-TX-RED-A

Peyer’ s Patches

PE-TX-RED-A

Mesenteric
Lymph Nodes

-
o
Lol

8.7x10¢ CFU

Bent et al, 2013 MicrobiologyOPEN 2(6)



Y. enterocolitica Conclusions |

* Ysa T3SS is expressed in vitro in a contact
dependent manner

— Physiologically relevant conditions

* Ysa T3SS is expressed through the course of a
murine infection in each tissue examined

* Problem: conclusions based on analysis of
only two genes



