



# Domain Decomposition Solvers

**Sandia/JPL Technical Interchange Meeting**  
**November 16, 2007**  
**Albuquerque, New Mexico**

**Clark Dohrmann**



# Overview

---

- **Introduction**
  - why do we need iterative solvers?
  - basic domain decomposition concepts
  - types of domain decomposition preconditioners
- **Challenges**
  - constraint equations
  - very large local or global problems
  - poor convergence
- **Software Libraries**
- **References**



## Why do we need iterative solvers?

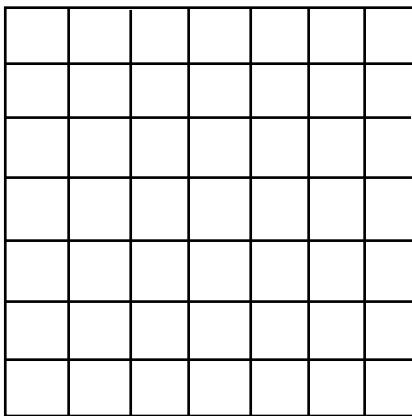
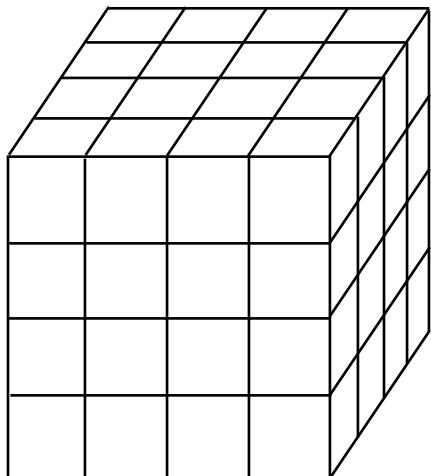
---

- **Direct solvers usually more robust**
  - great for solving many 2D and smaller 3D problems
  - very few, if any, knobs to adjust
  - simple black-box approach
  - requires only coefficient matrix and force vector
- **But, ...**
  - memory and flops grow superlinearly with problem size
  - parallel direct solvers limited by problem size too
  - parallel direct solver speedups only possible with limited number of processors



## Direct solver complexity

- Problem: 2D or 3D finite element model with  $n$  unknowns on square or cube domain



**2D**  
flops:  $n^{3/2}$   
memory:  $n \log n$

**3D**  
flops:  $n^2$   
memory:  $n^{4/3}$

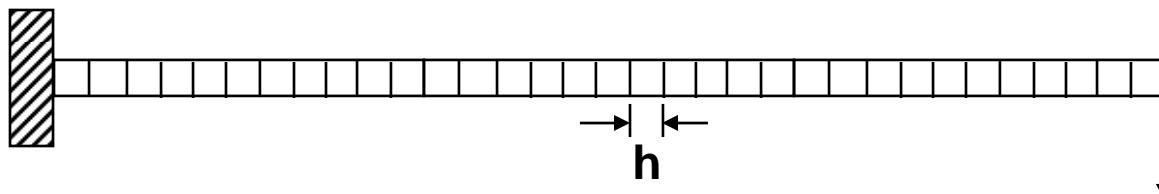
best possible growth



## Direct solver alternatives

---

- **How about conjugate gradients?**
  - flops per iteration proportional to  $n$
  - memory requirements proportional to  $n$
  - woo hoo, things are looking good
- **But, ...**
  - number of iterations grows with problem size
  - Example: cantilevered beam of HEX elements
  - condition number grows as  $1/h^2$  ( $1/h^4$  for shells)





## Direct Solver Alternatives

---

- **How to save conjugate gradients?**

- Instead of solving

$$Ax = b$$

- solve preconditioned system

$$M^{-1}Ax = M^{-1}b$$

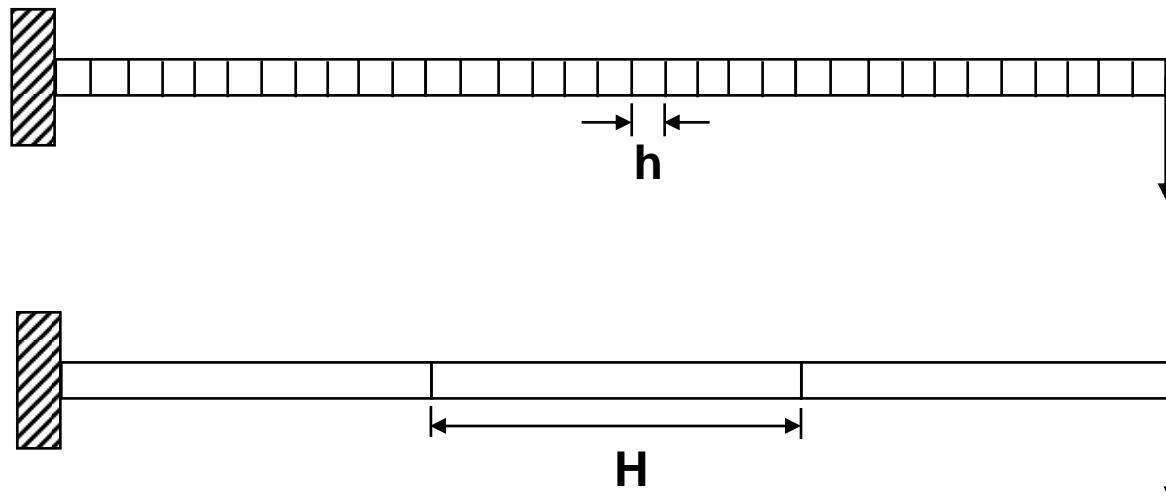
preconditioner

- extreme eigenvalues of  $M^{-1}A$  closer together than those of  $A$  itself
  - conjugate gradients converges faster for the preconditioned system



## Preconditioner Idea

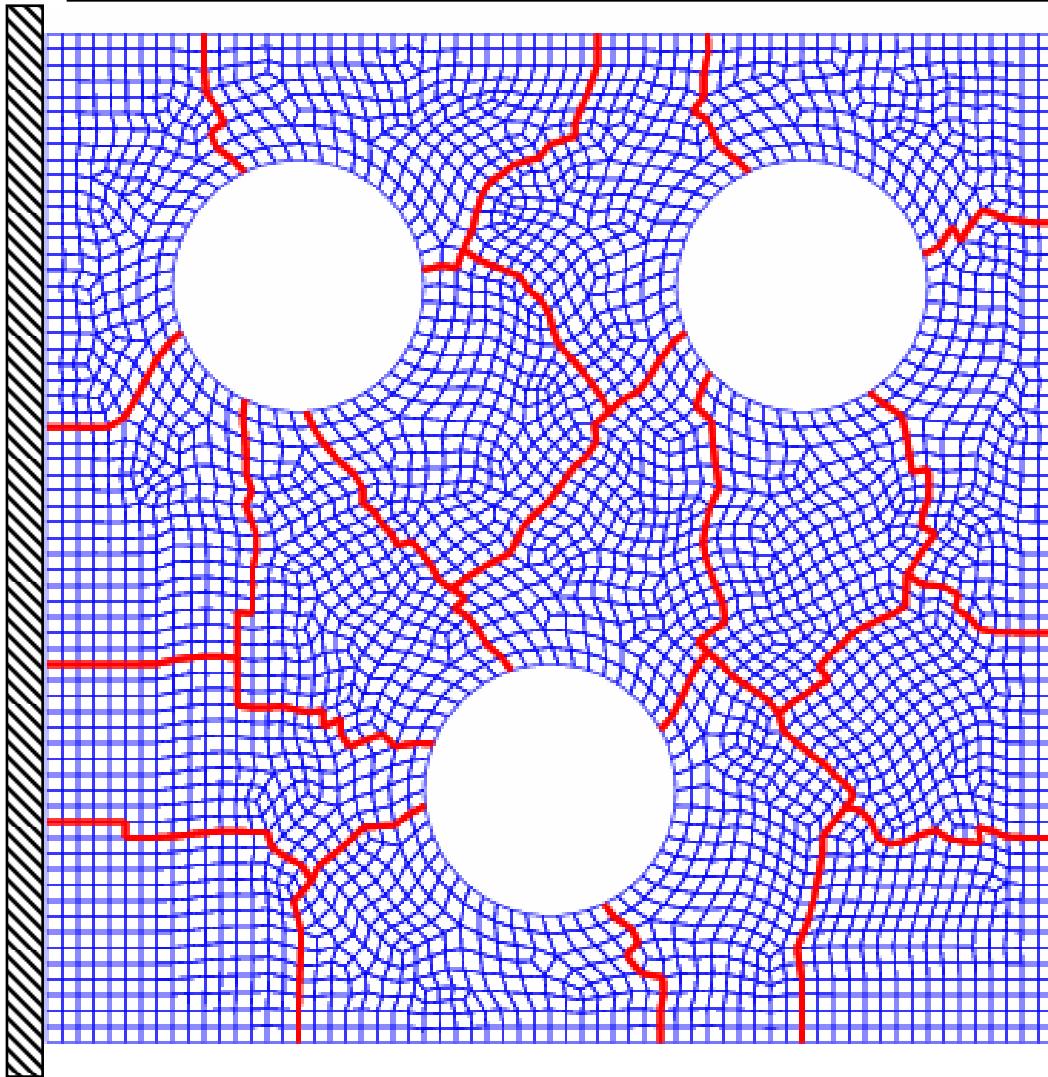
---



- control modes (constraint mesh) idea in Adagio/JAS
- project original problem to coarse mesh, solve, and project back to fine mesh
- how to construct coarse mesh automatically?



# Basic Domain Decomposition Concepts

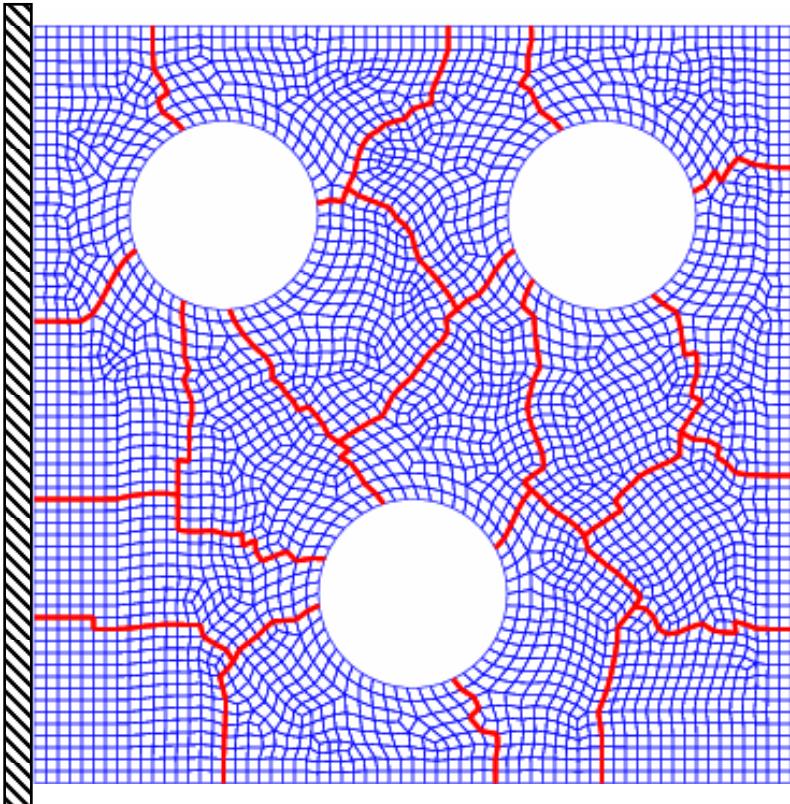


- element decomposition into smaller subdomains
- each subdomain often assigned to one processor
- two-level methods have “local” subdomain solves and “global” coarse solve



# Domain Decomposition Flavors

---



interface shown in red

- **Iterative Substructuring:**
  - restrict problem to interface
  - interface unknowns
    - Lagrange multipliers, FETI
    - displacements, BDD
  - precondition interface problem
    - local “subdomain” solves
    - global “coarse” solve
  - solve using PCG



## Iterative Substructuring

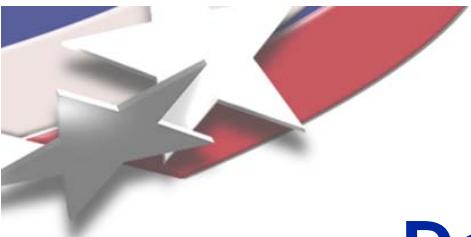
---

- Condition number bounded by

$$\text{cond}(M^{-1}A) \leq C(1 + \log(H/h))^2$$

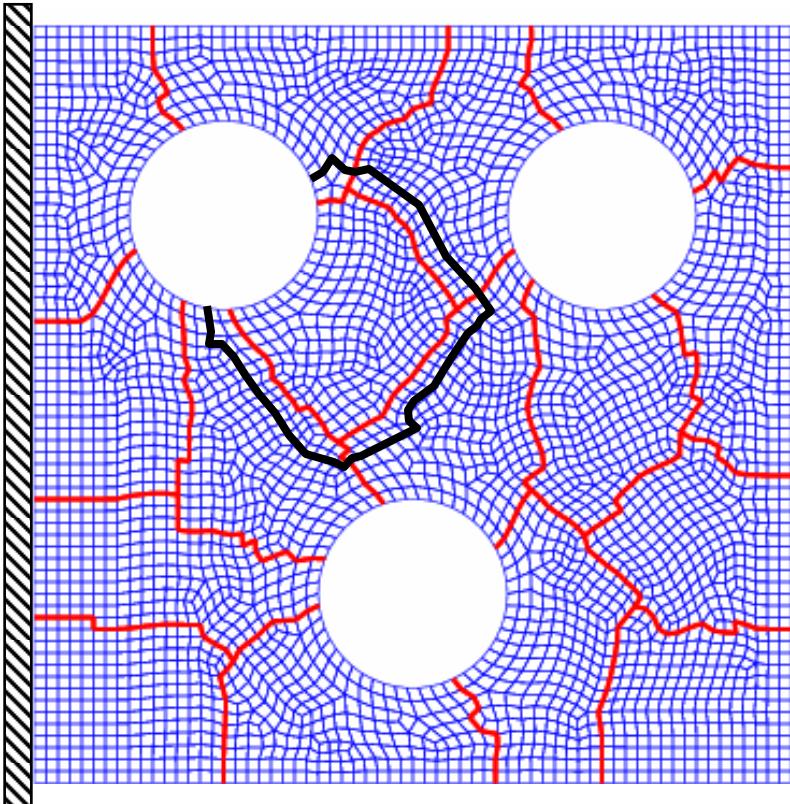
**where the constant C is independent of the number of subdomains and jumps in material properties across subdomain boundaries**

- Theory assumes shape regular elements and constant material properties in each subdomain
- Until recently, theory also required regular-shaped subdomains



# Domain Decomposition Flavors

---



- **Overlapping Schwarz:**
  - extend each subdomain by an integer number of layers of finite elements
  - solve local problems on overlapping subdomains
  - solve a global coarse problem
  - preconditioner combines local and global solutions
  - solve using PCG



## Overlapping Schwarz

---

- **Condition number bounded by**

$$\text{cond}(M^{-1}A) \leq C(1 + H / \delta)^p (1 + \log(H / h))$$

**where the constant C is independent of the number of subdomains and jumps in material properties across subdomain boundaries ( $\delta$  is the overlap)**

- **Theory assumes shape regular elements and constant material properties in each subdomain**
- **Until recently, theory also required regular-shaped subdomains**



## Some Challenges

---

- **Constraint equations:**

$$\begin{bmatrix} A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} b \\ d \end{bmatrix}$$

- **indefinite saddle-point system**
- **positive and negative eigenvalues**
- **constraint elimination approach permits positive definite reformulation**
- **best suited to “local” constraints, e.g. mesh tying**
- **non-local RBE3 type constraints require greater care**



## Some More Challenges

---

- **Very large local or global problems:**
  - local or global problems often solved with direct solver
  - if any problem gets too big, then factorization will not fit into memory
  - theory exists for replacing direct solves with the actions of preconditioners
  - idea combines best features of domain decomposition and multigrid to obtain linear complexity



## Some More Challenges

---

- **Poor convergence:**
  - numbers of iterations may be unacceptably large
  - unanticipated singularities may preclude convergence
  - recent theoretical work will help guide adaptive strategies to ensure acceptable performance



## Recent Advances

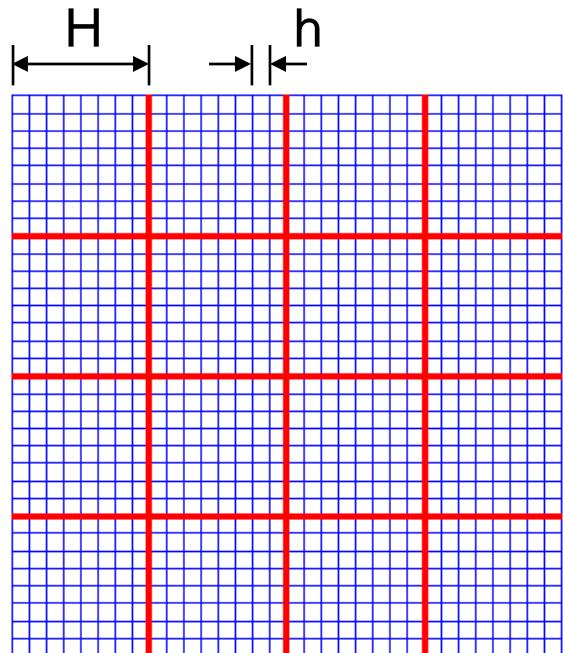
---

- **Theory for approximate solves at local and global levels (see references)**
  - larger problems can be accommodated using same number of processors
  - keeps coarse problem from becoming bottleneck
- **Method and theory for nearly incompressible and incompressible elasticity (Stokes)**
- **Theory for less-regular subdomains (see references and next page)**
- **Alternative approach for non-local constraints**
  - under evaluation in Salinas

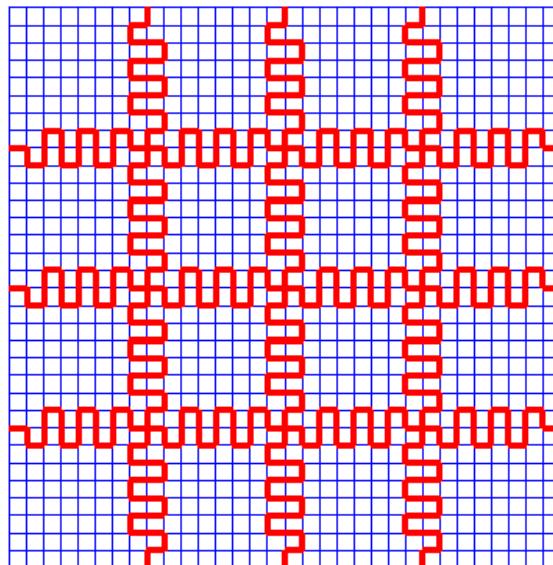


## Less Regular Subdomain Shapes

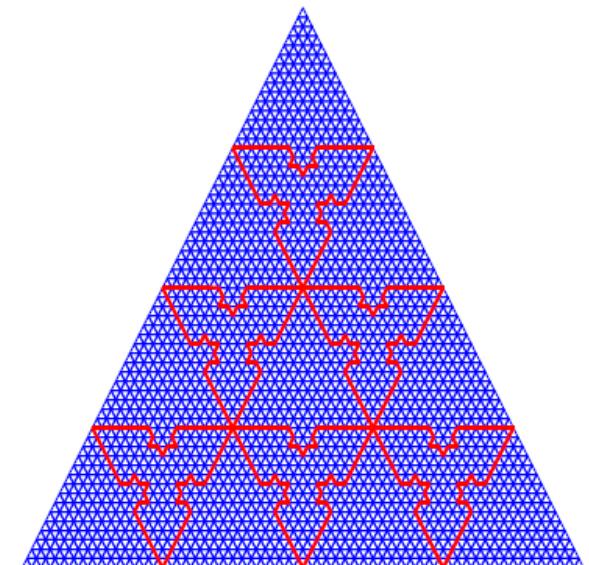
---



Type 1



Type 2



Type 3



## Software Libraries

---

### **CLIP and CLOP:**

- **Interface preconditioner/solver CLIP**
  - implementation of BDDC (a primal counterpart of FETI-DP)
- **Overlapping Schwarz preconditioner/solver CLOP**
  - coarse space based on partition of unity
  - well suited for problems with constraints
- **Both CLIP and CLOP are parts of the CLAPS package in Trilinos and are available in Salinas**
- **Neither CLIP nor CLOP are being actively developed**



## Software Libraries

---

### **GDSW: (Generalized, Dryja, Smith, Widlund)**

- **Replacement for CLIP and CLOP**
  - BDDC interface preconditioner still included
  - coarse space for overlapping Schwarz based on energy-minimizing harmonic extensions
  - includes new methods for accommodating constraints
- **Currently under evaluation**
  - Salinas
  - Aria and Kachina (incompressible fluid codes)
- **Currently stand alone library**
  - may or may not be included in Trilinos



# References

---

## Introductory Texts:

- B. Smith, P. Bjorstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, 1996.
- A. Toselli and O. Widlund, Domain Decomposition Methods: Algorithms and Theory, Springer, 2005.

## Interface Preconditioners (BDDC):

- C. Dohrmann, “A preconditioner for substructuring based on constrained energy minimization,” SIAM Journal on Scientific Computing, 25(1), 2003, pp. 246-258.
- J. Mandel and C. Dohrmann, “Convergence of a balancing domain decomposition by constraints and energy minimization,” Numerical Linear Algebra with Applications, 10(7), 2003, pp. 639-659.
- J. Mandel, C. Dohrmann, and R. Tezaur, “An algebraic theory for primal and dual substructuring methods by constraints,” Applied Numerical Mathematics, 54, 2005, pp. 167-193.



## References

---

### Inexact Solves for BDDC:

- J. Li and O. Widlund, “On the use of inexact subdomain solvers for BDDC algorithms, *Computer Methods in Applied Mechanics and Engineering*, 196, 2007, pp. 1415-1428.
- C. Dohrmann, “An approximate BDDC preconditioner,” *Numerical Linear Algebra with Applications*, 14, 2007, pp. 149-168.
- X. Tu, “Three-level BDDC in two dimensions,” *International Journal for Numerical Methods in Engineering*, 69, 2007, pp. 33-59.
- X. Tu, “Three-level BDDC in three dimensions,” *SIAM Journal on Scientific Computing*, 29(4), 2007, pp. 1759-1780.

### GDSW:

- M. Dryja, B. Smith, and O. Widlund, “Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions,” *SIAM Journal on Numerical Analysis*, 31, 1994, pp. 1662-1694.
- C. Dohrmann, A. Klawonn, and O. Widlund, “A family of energy minimizing coarse spaces for overlapping Schwarz preconditioners, in *Proceedings of the 17<sup>th</sup> International Conference on Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering* no. 60, 2007.



## References

---

- **C. Dohrmann, A. Klawonn, and O. Widlund, “Domain decomposition for less regular subdomains: overlapping Schwarz in two dimensions. Technical Report TR2007-888, Department of Computer Science, Courant Institute of Mathematic Sciences, New York University, March, 2007.**



## Discussion

---