\

SAND2007- 7474P

Automatic Differentiation of C++ Codes With
Sacado

Eric Phipps and David Gay
Sandia National Laboratories

Software Engineering Seminar Series
November 13, 2007

V| VA'DQ%\ for the United States Department of Energy’s National Nuclear Security Administration National

IR B Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, Sandia
— under contract DE-AC04-94AL85000. Laboratories

_ il '
| i Outline

* Introduction to automatic differentiation
—Forward mode via tangent propagation

« Sacado Trilinos package
—Operator Overloading

« Differentiating large-scale element-based codes
—Sacado::FEApp example FEM application

» Complications/advanced concepts
—Explicit template instantiation
— Conditionals/non-differentiability
—Expression templates

@ Sandia
National
Laboratories

What is Automatic Differentiation (AD)?

Technique to compute analytic
derivatives without hand-coding the
derivative computation

How does it work -- freshman calculus
— Computations are composition of
simple operations (+, *, sin(), etc...)
with known derivatives

— Derivatives computed line-by-line,
combined via chain rule

Derivatives accurate as original
computation

— No finite-difference truncation
errors

Provides analytic derivatives without the
time and effort of hand-coding them

y =sin(e® + xlogx), = = 2

u «— logx
vV — TU
w+—t+ov

Y «— sinw

d

€ -

dx
2.000| 1.000
7.389 | 7.389
0.301 | 0.500
0.602 | 1.301
7.991 | 8.690
0.991 | -1.188

@ Sandia
National
Laboratories

Related Methods

y =sin(e” + xlogx), = =2

ﬂutomatic Differentiatiom /ymbollc leferentlatlo\ ﬁ:inite Differencing\

— = cos(e” + xzlog x)-
dx
d
xr «— 2 —m<—1 (" +logz +1)
it v
dx dx dx ~
dt; 1ldax f2 — logz ¢ 7.233 323 187
t2<—logcc EHEE ts «— xto -
dt dx dt t t t
t3 «— xts —3<—t2—+33_2 ol T+3
dx dx dx Yy <« sinty
dt4 dtl dt3
ty g + s - + 81 «+— costy
dx dx dx
dy dt, Sg — t1 + 1
int — cos(ty)—
y e sinty (4)chC S3 «— 8o+ 1
dy
— «— 818
T S183 \ /

d d

Y _ 7.233 340 400 802 3158 %Y _ 7.233 340 400 802 3167 Sandia

dx dx National
Laboratories

'
}!
Why is this important?

* We need analytic first & higher derivatives for predictive simulations
—Computational design, optimization and parameter estimation
— Stability analysis
—Uncertainty quantification
—Verification and validation

 Analytic derivatives improve robustness and efficiency

* Infeasible to expect application developers to code analytic
derivatives

—Time consuming, error prone, and difficult to verify
—Thousands of possible parameters in a large code
—Developers must understand what derivatives are needed

National

» Automatic differentiation solves these problems @ Sandia
Laboratories

Tangent Propagation

y=f(=z), f: R" — R™

e

\\\\\\h"t—‘//
Operation Tangent Rule
« Tangents c=a+b |é=a+b
d) _ ..
y(h) = fla() = j="2| = Tp |emazb|e=azi
dt |y, ox . A
.)] c=ab ¢ =ab-+ ab
» For each intermediate operation —— -
9 90 c=a/b ¢=(a—cb)/b
c:cp(a,b):éz—('od—l——sob) . :
da ob c=a ¢ = c(blog(a) + ab/a)
« Tangents map forward through evaluation c = sin(a) | ¢ = cos(a)a
. . Sandia
c=1log(a) | ¢=a/a l:l National.

A Simple Tangent Example

Y1 = sin(e”™ + xix2)
U1

_y1—|—a3%

. oy1
y gYy2
92 oxq

oY1 .
Oxo L1
0y2

Oxo

Given T, Lo, L1, L2.

81 «— e™1

— L1
«— 81 1+ 82
Y1 < sin(s;)
— agf
S5 «— Y1 + S4

Y2 — Y1/8s5
Return y1, v2, Y1, U2

él «— Slil

82 +— T1L2 + T1T2
83 < 81+ $2

Y1 < cos(s3)S3

<§4 «— 2:131%.1

85 «— Y1 + 84

Y2 — (Y1 — yY285)/85

(&)

Sandia
National
Laboratories

'

i Forward Mode AD via Tangent Propagation

» Choice of space curve x(t)is arbitrary
« Tangent ¥ depends only on Zo, &
» Givenxo and v: 5

y(t) = f(xo+vt) — gy = _fv Jacobian vector product
Owo
 Propagate p vectors vy, ..., v, simultaneously
[U1...9p] = ﬁ [v1...vp) = ﬁv Jacobian matrix product
8330 Owo

 Forward mode AD:

0
@ V)= (), ooV)
ox
» V is called the seed matrix. Setting equal to identity matrix yields full Jacobian

« Computational cost ~ (1 + 1.5p)time(f)

Sandia
. National
» Jacobian-vector products, directional derivatives, Jacobians for m > n @ Laboratories

\

Other AD Modes

» Reverse mode (gradient propagation)

(2, W) — <f<w>, (%)T W)

— Gradients of scalar valued functions
— Jacobian-transpose matrix-vector products
— Computational cost (matrix W has gcolumns) = (1.5 + 2.5q)time(f)

« Taylor polynomial mode (univariate truncated Taylor series propagation)
— Extension of tangent propagation to higher degree
— Given d + 1 coefficients xg, ...,y € R™

d d
z(t) =) @t y(t) = flz(t) =) wt* + 0@

1 d"’y _
Yr = Eﬁ = ykz(iUOa .« o 733k:)

t=0
— Computational cost ~ O(d?)time(f)

Sandia
* Modes can be combined for various higher derivatives @ National
Laboratories

Software Implementations

» Source transformation

— Preprocessor reads code to be differentiated, uses AD to generate derivative
code, writes-out differentiated code in original source language which is then
compiled using a standard compiler

— Resulting derivative computation is usually very efficient
—Works well for simple languages (FORTRAN, some C)
—ADIFOR, ADIC out of Argonne
— Extremely difficult for C++ (no existing tool)

» Operator overloading

— New data types are created for forward, reverse, Taylor modes, and intrinsic
operations/elementary operations are overloaded to compute derivatives as a
side-effect

— Generally easy to incorporate into C++ codes
— Generally slower than source transformation due to function call overhead

— Requires changing data types from floats/doubles to AD types
« C++ templates greatly help

— ADOL-C (slow), FAD/TFAD (fast)

@ Sandia
National
Laboratories

ADIFOR™ Example

func(x, y)
x(2), y(2), u, v, w

u = exp(x(1))
v =x(1)"x(2)
w = utv

y(1) = sin(w)

u = x(1)**2
v=y(1)+u
y(2) = y(1)

ey
\

/

"ADIFOR 2.0D

www-unix.mcs.anl.gov/autodiff/ADIFOR/

/

g_func(g_p_, x, 9_x, Idg_x, y, g_y, Idg_y)

C
C Initializations removed for clarity
C
d2_v| = exp(x(1))
d1_pg= d2_v
| dogli =1,9p_

g_y(g_i)=d1_p*g_x(g_i_, 1)

u=g2_v

li_=1,9.p_

g
g V(9_i_) =x(1) *g_x(g_i_, 2) + x(2) * g_x(g_i_, 1)

V=X *XQ)

d2_\ = sin(w)
N_r = cos(w)
gli_=1,9_p_

\g\g‘i_i_f 1,9.p_ _ _
~W(g_i) =g_v(g_i)+g_u(g_i_)

g_\(g_i_, 1)=d1_p*g_w(g_i_)

y(1)Fd2_v

continues

CEJ Caboratories

Operator Overloading Example

func(
u, v, w;
u = exp(x[0]);
v = X[0]*X[1];
w = utv;
y[0] = sin(w);

u = x[0]*x[0];
v =y[0] + u;
y[11 = y[O]/v;

x[l, y {

func(

Tangent x[], Tange {
Tangent u, v, w;

u = exp(x[0]);

Tangent {
N =2;
val;
dot[N];
%
Tangent exp(Tangent& a) {
Tangent c;

c.val = exp(a.val);
(inti=0; i<Tangent::N; i++)
c.dot]i] = c.val * a.dof]i];
C;

}

u = x[0]*x[0];
v =y[0] + u;
y[11 = y[O]/v;

Tangent *(Tangent& a,
Tangent c;

c.val = a.val * b.val;

Tangent& b) {

(inti=0; i<Tangent::N; i++)
c.dot[i] = t * a.dot[i];
C;

v = X[0]*X[1]; <
W = U+v; (inti=0; i<Tangent::N; i++)
y[0] = sin(w); c.doti] = a.val * b.dot[i] + a.dot[i]*b.val;
C
u = x[0]*x[0]; }
v=y[0] +u;
y[1] = y[Oliv; Tangent +(Tangent& a, Tangent& b) {
} Tangent c;
c.val = a.val + b.val;
B —_ B (inti=0; i<Tangent::N; i++)
= + .
func X0, Tyl { c.dot[(lz]. a.dot[i] + b.dot[i];
Tuv,w, } ’
u = exp(x[0]);
v =x[0]"X[1]; Tangent sin(Tangent& a) {
W= Uty Tangent c;
yl0] = sin(w); c.val = sin(a.val);
N t = cos(a.val);

Sacado: AD Tools for C++ Codes

Sacado provides several modes of Automatic Differentiation (AD)
— Forward (Jacobians, Jacobian-vector products, ...)
— Reverse (Gradients, Jacobian-transpose-vector products, ...)
— Taylor (High-order univariate Taylor series)

Sacado implements AD via operator overloading and C++ templating
— Expression templates for OO efficiency
— Application code templating for easy incorporation

Designed for use in large-scale C++ codes
— Apply AD at “element-level”
— Very successful in Charon application code
— Sacado: : FEApp example demonstrates approach

Sacado provides other useful utilities
— Scalar flop counting (Ross Bartlett)
— Scalar parameter library
— Template utilities

@ Sandia
National
Laboratories

\

The Usual Suspects

» Configure options
--enabTle-sacado — Enables Sacado at Trilinos top-level

--enable-sacado-tests, --enable-tests — Enables unit, regression, and
performance tests

--with-cppunit-prefix=[path] — Path to CppUnit for unit tests
--with-adolc=[path] — Enables Taylor polynomial unit tests with ADOL-C
--enable-sacado-examples, --enable-examples — Enables examples
nox/examples/epetra/LOCA_Sacado_FEApp — Continuation example using
Sacado: : FEApp 1D finite element application
Mailing lists
Sacado-announce@software.sandia.gov, Sacado-checkins@software.sandia.qgov,
Sacado-developers@software.sandia.gov, Sacado-regression@software.sandia.gov,
Sacado-users@software.sandia.gov
Bugzilla: http://software.sandia.gov/bugzilla
Bonsai: http://software.sandia.gov/bonsai/cvsqueryform.cqi
Web: htip://software.sandai.gov/Trilinos/packages/sacado (not much there yet)
Doxygen documentation (not all that useful)
Examples are best way to learn how to use Sacado @

Sandia
National
Laboratories

http://software.sandai.gov/Trilinos/packages/sacado
http://software.sandia.gov/bonsai/cvsqueryform.cgi
http://software.sandia.gov/bugzilla
mailto:Sacado-users@software.sandia.gov
mailto:Sacado-users@software.sandia.gov
mailto:Sacado-users@software.sandia.gov
mailto:Sacado-regression@software.sandia.gov
mailto:Sacado-regression@software.sandia.gov
mailto:Sacado-regression@software.sandia.gov
mailto:Sacado-developers@software.sandia.gov
mailto:Sacado-developers@software.sandia.gov
mailto:Sacado-developers@software.sandia.gov
mailto:Sacado-checkins@software.sandia.gov
mailto:Sacado-checkins@software.sandia.gov
mailto:Sacado-checkins@software.sandia.gov
mailto:Sacado-announce@software.sandia.gov
mailto:Sacado-announce@software.sandia.gov
mailto:Sacado-announce@software.sandia.gov

| ' Using Sacado

* As always: #include “Sacado.hpp”

« All relevant classes/functions are templated on the Scalar type:

 Forward AD classes:

— Sacado: :Fad: :DFad<ScalarT>: Derivative array is allocated
dynamically

— Sacado: :Fad: :SFad<ScalarT>: Derivative array is allocated statically
and dimension must be known at compile time

- Sacado::Fad: :SLFad<ScalarT>: Like SFad except allocated length
may be greater than “used” length

 Reverse mode AD classes:
— Sacado: :ADvar<ScalarT> (Sacado_trad.h)

» Taylor polynomial classes:
- Sacado::Taylor::DTaylor<ScalarT> @ Sandia

National _
Laboratories

\

How to use Sacado

« Template code to be differentiated: double -> ScalarT

< ScalarT>
foo { foo {
foo(x) 1 x_(x) {} foo(. ScalarT& x) : x_(x) {}
_ bar(y){..} ScalarT bar(ScalarT&y){...}
X_; Scala.rT X_;
g %
my_func(a, b){...} < ScalarT>
ScalarT my_func(ScalarT& a, ScalarT&b) { ... }

Replace independent/dependent variables with AD variables

Initialize seed matrix
— Derivative array of i'th independent variable is i'th row of seed matrix

Evaluate function on AD variables
— Instantiates template classes/functions

Extract derivatives
— Forward: Derivative components of dependent variables @ Sandia

— Reverse: Derivative components of independent variables National
Laboratories

sacado/example/dfad _example.cpp

/I The function to differentiate

func(a, b, c){
r = c*std::log(b+1.)/std::sin(a);

r

}
main(int argc, **argv) {
a = std::atan(1.0); I pil4
b=20;
c=3.0;

// Compute function
r = func(a, b, c);

Frd
Differentiating Element-Based Codes

 Global residual computation (ignoring boundary computations):

f(&,z) =) Qfer, (P, Px)
1=1

 Jacobian computation'

of . (dex, aek) . .
"~ . o - Piv iy Lg — P; ’ P;
(’9:13 —I_'B ZQ ox; 'Bﬁwi Lo i Tt

. Jacobian-transpose product computation:

of & Oey,
T-J — T 7
v ox ;(sz) Oxr "

» Hybrid symbolic/AD procedure
— Element-level derivatives computed via AD
— Exactly the same as how you would do this “manually”
— Avoids parallelization issues

@ Sandia
National
Laboratories

\

Sacado FEApp Example Application

» General 1D finite element application

— Simple enough to be easily understood

— Demonstrate complexity seen in real applications
» Currently implements two “physics”

— Heat equation with nonlinear source

2
T =T), f(w) = aw? or f(u) =
u(0,t) = ug, u(l,t) = uy
— Brusselator
ou D 0%u)
i 1@—%04— (B+ Du + vu
@ =D 8—2” + Bu — vu?
ot *9x?

u(0,t) = u(l,t) = «
v(0,t) =v(1,%) = B/«

» Source lives in Sacado
— sacado/example/FEApp
* Drivers live in other package directories, e.g.,
— nox/example/epetra/LOCA_Sacado FEApp

(&)

Sandia
National
Laboratories

FEApp::Application

FEApp {
Application {
Application(std::vector< >& coords, Teuchos::RCP< Epetra_Comm>& comm,
Teuchos::RCP<Teuchos::ParameterList>& params, is_transient);

computeGlobalResidual(Epetra_Vector* xdot, Epetra_Vector& x,
Sacado::ScalarParameterVector* p, Epetra_Vector& f);

computeGlobalJacobian(alpha, beta, Epetra_Vector* xdot, Epetra_Vector& x,
Sacado::ScalarParameterVector* p, Epetra_Vector* f, Epetra_CrsMatrix& jac);

transient;

Teuchos::RCP<FEApp::AbstractDiscretization> disc;
std::vector< Teuchos::RCP<FEApp::NodeBC> > bc;
Teuchos::RCP< FEApp::AbstractQuadrature> quad;
FEApp::AbstractPDE_TemplateManager<ValidTypes> pdeTM;
Teuchos::RCP<Epetra_Vector> initial_x;
Teuchos::RCP<Epetra_Import> importer;
Teuchos::RCP<Epetra_Export> exporter;
Teuchos::RCP<Epetra_Vector> overlapped_x;
Teuchos::RCP<Epetra_Vector> overlapped_xdot;
Teuchos::RCP<Epetra_Vector> overlapped_f;
Teuchos::RCP<Epetra_CrsMatrix> overlapped_jac;
Teuchos::RCP<Sacado::ScalarParameterLibrary> paramLib;

FEApp::Application::computeGlobalResidual

}

FEApp::Application::computeGlobalResidual(Epetra_Vector* xdot, Epetra_Vector& x,
Sacado::ScalarParameterVector® p, Epetra_Vector& f) {

overlapped_x->Import(x, *importer, Insert);
(transient) overlapped_xdot->Import(*xdot, *importer, Insert);

(p!=)
(i=0; i<p->size(); ++i)
(*p)Ii].family->setRealValueForAllTypes((*p)[i].baseValue);

N
y — T . > .
overlapped_f->PutScalar(0.0); f(&,z) = Z Qz er, (P, Pyx)
=1

Teuchos::RCP<FEApp::ResidualOp> op =
Teuchos::rep(FEApp::ResidualOp(overlapped_xdot, overlapped_x, overlapped_f));

Teuchos::RCP< FEApp::AbstractPDE<ResidualOp:fill_type> > pde = pdeTM.getAsObject<ResidualOp:fill_type>();

FEApp::GlobalFill<ResidualOp::fill_type> globalFill(disc->getMesh(), quad, pde, bc, transient);
globalFill.computeGlobalFill(*op);

f.Export(*overlapped_f, *exporter, Add);

(&)

Sandia
National
Laboratories

FEApp::Application::computeGlobalJacobian

FEApp::Application::computeGlobalJacobian(alpha, beta, Epetra_Vector* xdot,
Epetra_Vector& x, Sacado::ScalarParameterVector* p,
Epetra_Vector* f, Epetra_CrsMatrix& jac) {

overlapped_x->Import(x, *importer, Insert);
(transient) overlapped_xdot->Import(*xdot, *importer, Insert);

af of Y den, Oep,
(p!=) a_.+/3_w:Zng(a .k“|‘/6 i

i=0; i<p->size(); ++i) =1
(*p)Ii].family->setRealValueForAllTypes((*p)[i].baseValue);

Teuchos::RCP<Epetra_Vector> overlapped_ff;
(f!=) { overlapped_ff = overlapped_f; overlapped_ff->PutScalar(0.0); }
overlapped_jac->PutScalar(0.0);

Teuchos::RCP<FEApp::JacobianOp> op =
Teuchos::rep(FEApp::JacobianOp(alpha, beta, overlapped_xdot, overlapped_x, overlapped_ff,
overlapped_jac));

Teuchos::RCP< FEApp::AbstractPDE<JacobianOp:fill_type> > pde = pdeTM.getAsObject<JacobianOp:fill_type>();

FEApp::GlobalFill<JacobianOp::fill_type> globalFill(disc->getMesh(), quad, pde, bc, transient);
globalFill.computeGlobalFill(*op);

(f!=) f->Export(*overlapped_f, *exporter, Add);
jac.Export(*overlapped_jac, *exporter, Add);
jac.FillComplete(irue);

FEApp::GlobalFill

FEApp {
< ScalarT>
GlobalFill {

/' Constructor
GlobalFill(Teuchos::RCP< FEApp::Mesh>& elementMesh,
Teuchos::RCP< FEApp::AbstractQuadrature>& quadRule,
Teuchos::RCP< FEApp::AbstractPDE<ScalarT> >& pdeEquations,
std::vector< Teuchos::RCP<FEApp::NodeBC> >& nodeBCs,
is_transient);

//' Compute global fill
computeGlobalFil(FEApp::AbstractinitPostOp<ScalarT>& initPostOp);

Teuchos::RCP< FEApp::Mesh> mesh; /' Element mesh
Teuchos::RCP< FEApp::AbstractQuadrature> quad; /! Quadrature rule
Teuchos::RCP< FEApp::AbstractPDE<ScalarT> > pde; //! PDE Equations
std::vector< Teuchos::RCP<FEApp::NodeBC> > bc; /! Node boundary conditions

transient; /' Are we transient?

nnode; /I Number of nodes per element

neqgn; //' Number of PDE equations

ndof; /[' Number of element-level DOF
std::vector<ScalarT> elem_x; /' Element solution variables
std::vector<ScalarT>* elem_xdot; /' Element time derivative variables
std::vector<ScalarT> elem_f; /' Element residual variables
std::vector<ScalarT> node_x; /I' Node solution variables
std::vector<ScalarT>* node_xdot; /I' Node time derivative variables
std::vector<ScalarT> node_f; /I' Node residual variables

FEApp::GlobalFill::computeGlobalFill

}

< ScalarT>
FEApp::GlobalFill<ScalarT>::computeGlobalFill(FEApp::AbstractInitPostOp<ScalarT>& initPostOp)

Teuchos::RCP< FEApp::AbstractElement> e;
(FEApp::Mesh::const_iterator eit=mesh->begin(); eit'=mesh->end(); ++eit) {
e = "eit;

N
. . T .
(i=0; i<ndof; i++) f(Z,z) = E Q; ex, (P&, Pix)
elem_f[i] = 0.0; i=1
initPostOp.elementlnit(*e, negn, elem_xdot, elem_x);
pde->evaluateElementResidual(*quad, *e, elem_xdot, elem_x, elem_f);
initPostOp.elementPost(*e, neqgn, elem_f);
}
(std::size_t i=0; i<bc.size(); i++) {
(bc[i]->isOwned() || bc[i]->isShared()) {

(j=0; j<neqn; j++)
node_f[j] = 0.0;

initPostOp.nodelnit(*bc[i], neqn, node_xdot, node_x);
bc[i]->getStrategy<ScalarT>()->evaluateResidual(node_xdot, node_x, node_f);
initPostOp.nodePost(*bc[i], negn, node_f);

}
}

FEApp::JacobianOp

FEApp {
JacobianOp : FEApp::AbstractInitPostOp< Sacado::Fad::DFad< >>{

/' Constructor

JacobianOp(alpha, beta, Teuchos::RCP< Epetra_Vector>& overlapped_xdot,
Teuchos::RCP< Epetra_Vector>& overlapped_x,
Teuchos::RCP<Epetra_Vector>& overlapped_f,
Teuchos::RCP<Epetra_CrsMatrix>& overlapped_jac);

/' Evaluate element init operator

elementlinit(FEApp::AbstractElement& e, neqn,
std::vector< Sacado::Fad::DFad< > >* elem_xdot,
std::vector< Sacado::Fad::DFad< > >& elem_x);

/' Evaluate element post operator
elementPost(FEApp::AbstractElement& e, neqgn,
std::vector< Sacado::Fad::DFad< > >& elem_f);

//' Evaulate node init operator

nodelnit(FEApp::NodeBC& bc, neqn,
std::vector< Sacado::Fad::DFad< > >* node_xdot,
std::vector< Sacado::Fad::DFad< > >& node_Xx);

/' Evaluate node post operator

nodePost(FEApp::NodeBC& bc, neqn,
std::vector< Sacado::Fad::DFad< > >& node_f);
m_coeff; /' Coefficient of mass matrix
j_coeff; I Coefficient of Jacobian matrix
Teuchos::RCP< Epetra_Vector> xdot; /! Time derivative vector (may be null)
Teuchos::RCP< Epetra_Vector> x; //! Solution vector
Teuchos::RCP<Epetra_Vector> f; /' Residual vector

Teuchos::RCP<Epetra_CrsMatrix> jac; //! Jacobian matrix

FEApp::JacobianOp::elementinit

FEApp::JacobianOp::elementinit(FEApp::AbstractElement& e, neqn,
std::vector< Sacado::Fad::DFad< > >* elem_xdot,
std::vector< Sacado::Fad::DFad< >>& elem_x){
node_ GID;
firstDOF;

nnode = e.numNodes();
ndof = nnode*neqn;

node_GID = e.nodeGID()): a% + ﬁ% = Z Q;

i=0; i<nnode; i++ N
(A af of , (dey.
(81
firstDOF = x->Map().LID(node_GID*negn); =

(j=0; j<negn; j++) {

elem_x[negn*i+j] = Sacado::Fad::DFad< >(ndof, (*x)[firstDOF+j]);
elem_x[negn*i+j].fastAccessDx(negn*i+j) = j_coeff;

(elem_xdot !=) {
(*elem_xdot)[negn*i+j] = Sacado::Fad::DFad< >(ndof, (*xdot)[firstDOF+j]);
(*elem_xdot)[negn*i+j].fastAccessDx(negn*i+j) = m_coeff;

}

@ Sandia
National
Laboratories

FEApp::HeatNonlinearSourcePDE

FEApp {
< ScalarT>
HeatNonlinearSourcePDE : FEApp::AbstractPDE<ScalarT> {

/' Constructor
HeatNonlinearSourcePDE(Teuchos::RCP< FEApp::AbstractSourceFunction<ScalarT> >& src_func);

/1! Initialize PDE
init(numQuadPoints, numNodes);

/! Evaluate discretized PDE element-level residual

evaluateElementResidual(FEApp::AbstractQuadrature& quadRule,
FEApp::AbstractElement& element,
std::vector<ScalarT>* dot,
std::vector<ScalarT>& solution,
std::vector<ScalarT>& residual);

Teuchos::RCP< FEApp::AbstractSourceFunction<ScalarT> > source; /! Source function
num_qp; //' Number of quad points
num_nodes; /I' Number of nodes
std::vector< std::vector< > > phi; /I' Shape function values
std::vector< std::vector< > > dphi; /' Shape function derivative
std::vector< > jac; /' Element transformation Jacobian
std::vector<ScalarT> u; /' Discretized solution
std::vector<ScalarT> du; /' Discretized solution derivative
std::vector<ScalarT> udot; /' Discretized time derivative
std::vector<ScalarT> f; /' Source function values

FEApp::HeatNonlinearSourcePDE::

evaluateElementResidual

< ScalarT> FEApp::HeatNonlinearSourcePDE<ScalarT>::
FEApp::AbstractElement& element,

evaluateElementResidual(FEApp::AbstractQuadrature& quadRule,
std::vector<ScalarT>* dot,
std::vector<ScalarT>& residual) {

std::vector< >& xi = quadRule.quadPoints();
std::vector< >& w = quadRule.weights();

element.evaluateShapes(xi, phi);
element.evaluateShapeDerivs(xi, dphi);
element.evaluateJacobian(xi, jac);

(qp=0; gp<num_gp; qp++) {
ulgp] = 0.0; du[gp] = 0.0; udot[gp] =
node=0; node<num_nodes; node++) {
u[gp] += solution[node] * phi[gp][node];
du[gp] += solution[node] * dphi[gp][node];

}
}

source->evaluate(u, f);

(dot 1=) udot[gp] += (*dot)[node] * phi[gp][node];

(node=0; node<num_nodes; node++) {
residual[node] =
ap=0; gp<num_gp; gp++) {

std::vector<ScalarT>& solution,

g
®

@ Ou.
ox

Ou,
ot

(
residual[node] += w[gp]*jac[qp]*(-(1.0/(jac[gp]*jac[gp]))*dulgp]*dphi[gp][node] +

phi[gp][node]*(flap] - udot[qp]));

= 2_a(1)¢5(@)

-y a0
= Z ¢ ()
8u dqbe ou’®

+ F(uf) — —-

") do

FEApp::CubicSourceFunction

FEApp {
< ScalarT>
CubicSourceFunction : FEApp::AbstractSourceFunction<ScalarT> {
CubicSourceFunction(ScalarT& factor, Teuchos::RCP<Sacado::ScalarParameterLibrary>& paramLib) :
alpha(factor)

{

std::string name = "Cubic Source Function Nonlinear Factor";
('paramLib->isParameter(name))
paramLib->addParameterFamily(name, ,);
('paramLib-> isParameterForType<ScalarT>(name)) {
Teuchos::RCP< CubicNonlinearFactorParameter<ScalarT> > tmp =
Teuchos::rep(CubicNonlinearFactorParameter<ScalarT>(Teuchos::rcp(this, N);
paramLib-> addEntry<ScalarT>(name, tmp);

}
}

evaluate(std::vector<ScalarT>& solution, std::vector<ScalarT>& value) {
i=0; i<solution.size(); i++)
valueli] = alpha*solution[i]*solution[i]*solution(i];

\ € _ 3
} f(u®) = au’
setFactor(ScalarT& val, mark_constant) { alpha = val; }
ScalarT& getFactor() { alpha; }
ScalarT alpha;

2

FEApp::JacobianOp::elementPost

}

FEApp::JacobianOp::elementPost(FEApp::AbstractElement& e, neqn,
std::vector< Sacado::Fad::DFad< >>& elem_f){
nnode = e.numNodes(); / Number of nodes
N
Il Loop over nodes in element o af + /Baf _ Z QT e aeki
(node_row=0; node_row<nnode; node_row++) { O Ox P) O;
// Loop over equations per node
(eqg_row=0; eq_row<neqn; eq_row++) {
Irow = negn*node_row+eq_row // Local row
row = <int>(e.nodeGID(node_row)*neqn + eq_row); // Global row

(f!= Teuchos::null) f->SumintoGlobalValue(row, 0, elem_f[lrow].val()); / Sum residual

/I Check derivative array is nonzero
(elem_fllrow].hasFastAccess()) {

// Loop over nodes in element
(node_col=0; node_col<nnode; node_col++){

// Loop over equations per node

(eg_col=0; eq_col<neqn; eq_col++) {
Icol = negn*node_col+eq_col; // Local column
col = <int>(e.nodeGID(node_col)*negn + eq_col); // Global column

jac->SumIntoGlobalValues(row, 1, &(elem_f[Irow].fastAccessDx(Icol)), &col); // Sum Jacobian

} // column equation
} /I column node
} // has fast access
} // row equation
} // row node

FEApp::CubicNonlinearFactorParameter

FEApp {
< ScalarT>
CubicNonlinearFactorParameter : Sacado::ScalarParameterEntry<ScalarT> {

/' Constructor
CubicNonlinearFactorParameter(Teuchos::RCP< CubicSourceFunction<ScalarT> >& s) : srcFunc(s) {}

/' Destructor
~CubicNonlinearFactorParameter() {}

/' Set real parameter value
setRealValug(value) { setValueAsConstant(ScalarT(value)); }

/' Set parameter this object represents to \em value
setValueAsConstant(ScalarT& value) { srcFunc->setFactor(value,); }

/' Set parameter this object represents to \em value
setValueAsIndependent(ScalarT& value) { srcFunc->setFactor(value,); }

/' Get parameter value this object represents
ScalarT& getValue() { srcFunc->getFactor(); }

Teuchos::RCP< CubicSourceFunction<ScalarT> > srcFunc; /! Pointer to source function

@ Sandia
National
Laboratories

Y
Derivative Calculations

» This approach makes it easy to add new derivative calculations
—Most of the work is creating new init/post process operators

« Sacado::FEApp has 3:
—Residual, Jacobian, parameter derivatives

 Charon has 10:

—Residual, Jacobian (Fad, FD), Adjoint (Rad, Fad, FD), scalar
parameter derivs, distributed parameter derivs, 2 types of second
derivatives

* Template manager/iterator help insulated code from number of AD
types

@ Sandia
National
Laboratories

Impacts of AD in Charon
(~114k lines of code, significant portion templated)

> time = 0.001
£ oaf T e e T e e
Oxide Defects G 02 1
| Oxide Defects [£ 02 £ T
Dynamical Defects B -0.2f 1
v, § [+ - 1 SIS0 EUIE SRE DESL SLIR Ch i IALE CIAD: SR SO (bt At g g on i
@ 1357 9111315171921232527293133353739
Electric Potential 2> time =0.01
)T W X317 B T Y M Y e e e e e e e e e B L8 B B B AL T
£
‘@ 0.2f }
Jacobian Computation - - B -0.21 i
© 600 acobian Computatio e” +\? - V" —_ Cross section (Parameter 3) x10° 8 _o.al |
E —=—Finite Difference > ' ' o 13 5 7 9111315171921 232527 29 31 333537 39
i —e—Forward AD 22 time = 0.1
g 400 2 5 =0.
& g = V.| = ST Fer e e e e e e e — T
2 1 @ % 02 I
3 3 o -
o«] L i
0 0 200 300 a00 &0 3 -02
DOF Per Element (4*N) s s = = 0 B 0B irecsfonecponsfoonsonssfoen fionsiionsfoosa g eesiens fpncafnejusesfonenpuencene freesiree o
J bian-Tran Product Computation 10° 10° 10” 10~ 10 a 1357 9111315171921 232527 293133353739
@ 10 aco |Ia - sposel oduct Co plu atio h* + PV~ — PV? —— Cross section (Parameter 23) x10° 5 time = 1
i:. ‘? 0.6 T T ;é AP S T PR, SR P R, e e T e S P
< of 102 @ 0.2 1
> =
' 204t S ofwmm
2 8 18 3 -02]
% —e—Reverse AD| | 3 0-2] [VN | SR IO OO [N RS SO IO0 (U [ONF RO TOVD MMM 00 MUY IO TRPR ISR SN O I
c 7 L L © @ 1357 9111315171921 232527 293133353739
0 100 boF E2|oo - 300 400 8 o Parameter
er Element @10 10° 1(;_6 107% g Experi tal Dat
—n— xperimenta ata
o—a [nitial Calibration
1 0_3 | =—= Optimized Fit -
107"
10°° | .
v 1({-!'@-(’)‘9 107° ! '
. T E 0.2 0.3 0.4 0.5 0.6
-1.323e-09
-2.647e-09

Voltage

Complications

» Excessive compile times due to application templating
— Application source files move to headers
— Small changes cause long compile times
— Explicit template instantiation (demonstrated in FEApp)

* Interfacing template and non-template code
— Many places where non-template code must call template code
— Difficult to add new AD types
— Sacado template manager/iterator (demonstrated in FEApp)

« Parameter derivatives
— Application codes don’t provide a parameter interface
— Sacado parameter library (demonstrated in FEApp)

* Interfaces to other derivative methods (e.g., source transformation)
—Used in Charon (ADIFOR differentiated CHEMKIN) o
— Example coming soon for BLAS/LAPACK @ Natonal

Laboratories

Explicit Template Instantiation

FEApp_TemplateTypes.hpp

FEApp_GlobalFill.hpp

/I Include all of our AD types
#include "Sacado_Fad_DFad.hpp"

/I Typedef AD types to standard names
typedef double RealType;
typedef Sacado::Fad::DFad<double> FadType;

/I Define which types we are using
#define REAL_ACTIVE 1
#define FAD_ACTIVE 1

/I Define macro for explicit template instantiation

#if REAL_ACTIVE

#define INSTANTIATE_TEMPLATE_CLASS_REAL(name) template class name<double>;
felse

#define INSTANTIATE_TEMPLATE_CLASS_REAL(name)

#endif

#if FAD_ACTIVE

#define INSTANTIATE_TEMPLATE_CLASS_FAD(name) template class name<FadType>;
#else

#define INSTANTIATE_TEMPLATE_CLASS_FAD(name)

#endif

#define INSTANTIATE_TEMPLATE_CLASS(name) \
INSTANTIATE_TEMPLATE_CLASS_REAL(name) \
INSTANTIATE_TEMPLATE_CLASS_FAD(name)

#include "FEApp_TemplateTypes.hpp"
namespace FEApp {

template <typename ScalarT>

class GlobalFill {

public:

/...

%
}
/I Include implementation
#ifndef SACADO_ETI

#include "FEApp_GlobalFilllmpl.hpp"
#endif

FEApp_GlobalFill.cpp

#include "FEApp_TemplateTypes.hpp"
#ifdef SACADO_ETI

#include "FEApp_GlobalFill.hpp"
#include "FEApp_GlobalFilllmpl.hpp"

INSTANTIATE_TEMPLATE_CLASS(FEApp::GlobalFill)

#endif

\

More Complications

« Branching/conditionals
— For derivative, branch chosen based on value of argument
— Piecewise derivative
— Always obtain correct derivative for branch that was evaluated

« Removing portions of computation for derivative calculation

ADValue(x) { x; }
ADValue(Sacado::Fad::DFad< >& x) { x.val(); }
my_func(a, b) {
...
}
ScalarTa = ...
ScalarT b = ...
c = my_func(ADValue(a), ADValue(b)); // This will not be differentiated

ScalarTd = ...

@ Sandia
National
Laboratories

More Complications

 Points of non-differentiability
— Usually signaled by NaN's in derivative
— First remove unnecessary points of non-differentiability:

< ScalarT>
ScalarT vec_norm(ScalarT x[]) {
std::sqrt(x[0]*x[0] + x[17*x[1] + x[2]*x[2]);
}
ScalarT x[3];
...

ScalarT norm_x = vec_norm(x);

ScalarT a = norm_x*norm_x; // Problem when x =0

— Then use conditionals if necesssary:

ScalarTa= ...

ScalarT b;
(a=0.0)
b=0.0;

b = std::sqrt(a);

— We can try to improve support for this in Sacado

@ Sandia
National
Laboratories

\

Implementing Operator Overloading
Efficiently: Expression Templates

* Naive operator overloading:

Tangent operator*(const Tangent& a, const Tangent& b) {
Tangent c;
c.val = a.val * b.val;
for (int i=0; i<Tangent::N; i++)
c.dof[i] = a.val * b.dot[i] + a.dot[i]*b.val;
return c;

}

— Each operation returns a copy (bad)
— Each operation implements a loop (bad)

Tangent sin(const Tangent& a) {
Tangent c;
c.val = sin(a.val);
double t = cos(a.val);
for (int i=0; i<Tangent::N; i++)
c.dof[i] =t * a.dot[i];
return c;

» Template meta-programming (Abrahams & Gurtovoy, 2005)
— View templates as a compile-time functional language operating on types and

integral values (bool’s, int’s, etc...)

— Turing complete (any computation can be implemented)
— Computations occur at compile time: No run-time cost

« AD via expression templates:

— Each expression represents a new type with a new derivative rule built at compile

time

— Derivative of expression computed at assignment (at = sign)

(&)

Sandia
National
Laboratories

Expression Template Operator Overloading

void func(const Tangent x[], Tangent y[]) {
}//[0] = sin(exp(x[0]) + x[O]"x[1]);
\

Expr< SinExpr< Expr< PlusExpr<
Expr< ExpExpr<TangentExpr> >,
Expr< MultExpr< Expr<TangentExpr>,
Expr<TangentExpr> > >
>>>>

y[0].val = sin(exp(x[0]) + x[O]*x[11);
for (int i=0; i<N; i++) {
y[0].dot[i] = cos(exp(x[0]) + x[O]*x[1])*
(exp(x[0])*x[0].dot[i] +
X[O]*x[1].dot[i] + x[1]*x[0].dot[i]);

Sacado forward AD classes, based on
public domain Fad/TFad package

template <class E1> Expr {};

template <class E1, E2> class PlusExpr {};

template <class E1, E2> class Expr< PlusExpr<E1,E2> > {
double val() const { return e1.val() + e2.val(); }

double dx(int i) const { return e1.dx(i) + e2.dx(i); }

const Expr<E1>& e1;

const Expr<E2>& e2;

2

template<class E1, class E2> Expr< PlusExpr<E1,E2> >

operator+(const Expr<E1>& a, const Expr<E2>& b) {
return Expr< PlusExpr<E1,E2> >(a,b);

}

template <class E1> class SinExpr {};

template <class E1> class Expr< SinExpr<E1> > {
double val() const { return sin(e1.val())] }

double dx(int i) const { return cos(e1.val())*e1.dx(i); }
const Expr<E1>& e1;

2

template<class E1> Expr< SinExpr<E1> > sin(const Expr<E1>& a) {
return Expr< SinExpr<E1> >(a);

}

class TangentExpr {};
class Expr<TangentExpr>: {
public:
double val() const { return val; }
double dx(int i) const { return dot[i]; }
template <class E> Expr<Tangent>& operator=(const Expr<E>& e) {
val = e.val();
for (int i=0; i<N; i++)
dot[i] = e.dx(i);

h

class Tangent : public Expr<TangentExpr> {};

Performance

* Implementing this effectively requires a good optimizing compiler

fad_expr.exe: 10 derivative components through a simple expression
GCC4.1.2-03 Intel 10.0 -O3 PGI 6.2-5 -O3 fastsse

Time (s) Slow down Time (s) Slow down Time (s) Slow down
Analytic 1.30e-07 1.00 5.00e-12 1.00 1.02e-07 1.00
SFad 9.50e-07 7.32 1.28e-07 2.57e+04 2.11e-06 20.7
DFad 8.38e-07 6.46 1.57e-07 3.15e+04 2.20e-06 21.6
ELR SFad 1.79e-07 1.38 1.09e-07 2.18e+04 2.38e-06 23.3
ELR DFad 1.96e-07 1.51 1.70e-07 3.40e+04 2.61e-06 25.5

fad_lj_grad.exe: Gradient of Leonard-Jones potential

Analytic 6.83e-09 1.00 1.20e-08 1.00 4.68e-08 1.00
SFad 6.86e-08 101 4.67e-08 3.88 1.73e-06 36.9
DFad 4.99e-07 73.1 3.86e-07 32.1 3.07e-06 65.7
ELR SFad 5.20e-08 7.62 9.48e-08 7.88 3.46e-06 74.0
ELR DFad 4.80e-07 70.3 5.01e-07 41.6 4.87e-06 104.0

» Tests live in sacado/test/performance

* Not completely indicative of “real-world” performance

(&)

Sandia
National
Laboratories

Complications Introduced by
Expression Templates

» Template functions
— An expression can always be converted to a Fad type, but
— Compilers implement very few automatic conversions for template function arguments

< ScalarT>
MyClass {
...
ScalarT my_func(ScalarT& a, ScalarT& b) {
...
}
X
< ScalarT>
ScalarT my_func(ScalarT& a, ScalarT& b) {
...
}
ScalarTa = ... /I Initialize a
ScalarT b = ... /1 Initialize b
MyClass<ScalarT> my_class;
ScalarT ¢ = my_class.my_func(a+b,a); // Will work just fine
ScalarT d = my_func(a+b,a); /' Won't compile
ScalarT e = my_func<ScalarT>(a+b,a); // Will work
ScalarT f = my_func(ScalarT(a+b),a); // Will work

National

» Understanding compiler errors like these can be difficult @ Sandia
Laboratories

'; v
How Sacado relates to other packages

 Many Trilinos packages need derivatives
—NOX (nonlinear solves)
—LOCA (stability analysis)
—Rythmos (time integration)
—MOOCHO, Aristos (optimization)

« Sacado does not provide these derivatives directly
—Sacado is not a black-box AD solution

« Sacado provides low level AD capabilities

—Application codes use Sacado to build derivatives these packages
need

@ Sandia
National
Laboratories

'; X
Best Practices

» Don't differentiate your global function with AD

* Only use AD for the hard, nonlinear parts

* Never differentiate iterative solvers with AD...instead use AD for the
derivative of the solution

of\ de Of de (9f\"'Of
aw) T w (a—w) ap

— 0 —
f(x,p) — (= + o =

» Prefer template classes over template functions
—Methods of a template class are not template functions
—Compiler implements very few conversions for template functions

@ Sandia
National
Laboratories

';,V
Where Sacado is going in the future

 Documentation
—Website, tutorials, papers, etc...

» Performance improvements
—Expression level reverse-mode (Sacado: : ELRFad)

 Leveraging AD technology for intrusive uncertainty quantification
—Polynomial chaos expansions via operator overloading

* Impacting more applications
—Using Sacado is more about software engineering than AD

@ Sandia
National
Laboratories

