
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Eric Phipps and David Gay

Sandia National Laboratories

Software Engineering Seminar Series

November 13, 2007

Automatic Differentiation of C++ Codes With
Sacado

SAND2007-7474P

Outline

• Introduction to automatic differentiation

–Forward mode via tangent propagation

• Sacado Trilinos package

–Operator Overloading

• Differentiating large-scale element-based codes

–Sacado::FEApp example FEM application

• Complications/advanced concepts

–Explicit template instantiation

–Conditionals/non-differentiability

–Expression templates

What is Automatic Differentiation (AD)?

• Technique to compute analytic
derivatives without hand-coding the
derivative computation

• How does it work -- freshman calculus

– Computations are composition of
simple operations (+, *, sin(), etc…)
with known derivatives

– Derivatives computed line-by-line,
combined via chain rule

• Derivatives accurate as original
computation

– No finite-difference truncation
errors

• Provides analytic derivatives without the
time and effort of hand-coding them

2.000 1.000

7.389 7.389

0.301 0.500

0.602 1.301

7.991 8.690

0.991 -1.188

2.000

7.389

0.301

0.602

7.991

0.991

Related Methods

Automatic Differentiation Symbolic Differentiation Finite Differencing

Why is this important?

• We need analytic first & higher derivatives for predictive simulations

–Computational design, optimization and parameter estimation

–Stability analysis

–Uncertainty quantification

–Verification and validation

• Analytic derivatives improve robustness and efficiency

• Infeasible to expect application developers to code analytic
derivatives

–Time consuming, error prone, and difficult to verify

–Thousands of possible parameters in a large code

–Developers must understand what derivatives are needed

• Automatic differentiation solves these problems

Tangent Propagation

• Tangents

• For each intermediate operation

• Tangents map forward through evaluation

Operation Tangent Rule

A Simple Tangent Example

Forward Mode AD via Tangent Propagation

• Choice of space curve is arbitrary

• Tangent depends only on ,

• Given and :

• Propagate vectors simultaneously

• Forward mode AD:

• is called the seed matrix. Setting equal to identity matrix yields full Jacobian

• Computational cost

• Jacobian-vector products, directional derivatives, Jacobians for

Jacobian vector product

Jacobian matrix product

Other AD Modes

• Reverse mode (gradient propagation)

– Gradients of scalar valued functions

– Jacobian-transpose matrix-vector products

– Computational cost (matrix has columns)

• Taylor polynomial mode (univariate truncated Taylor series propagation)
– Extension of tangent propagation to higher degree

– Given coefficients

– Computational cost

• Modes can be combined for various higher derivatives

Software Implementations

• Source transformation

– Preprocessor reads code to be differentiated, uses AD to generate derivative
code, writes-out differentiated code in original source language which is then
compiled using a standard compiler

– Resulting derivative computation is usually very efficient

– Works well for simple languages (FORTRAN, some C)

– ADIFOR, ADIC out of Argonne

– Extremely difficult for C++ (no existing tool)

• Operator overloading

– New data types are created for forward, reverse, Taylor modes, and intrinsic
operations/elementary operations are overloaded to compute derivatives as a
side-effect

– Generally easy to incorporate into C++ codes

– Generally slower than source transformation due to function call overhead

– Requires changing data types from floats/doubles to AD types
• C++ templates greatly help

– ADOL-C (slow), FAD/TFAD (fast)

ADIFOR* Example

*ADIFOR 2.0D

www-unix.mcs.anl.gov/autodiff/ADIFOR/

subroutine func(x, y)
C

double precision x(2), y(2), u, v, w
C

u = exp(x(1))
v = x(1)*x(2)
w = u+v
y(1) = sin(w)

C
u = x(1)**2
v = y(1) + u
y(2) = y(1)/v

C
return
end

subroutine g_func(g_p_, x, g_x, ldg_x, y, g_y, ldg_y)
C
C Initializations removed for clarity
C

d2_v = exp(x(1))
d1_p = d2_v
do g_i_ = 1, g_p_
g_u(g_i_) = d1_p * g_x(g_i_, 1)

enddo
u = d2_v

C--------
do g_i_ = 1, g_p_
g_v(g_i_) = x(1) * g_x(g_i_, 2) + x(2) * g_x(g_i_, 1)

enddo
v = x(1) * x(2)

C--------
do g_i_ = 1, g_p_
g_w(g_i_) = g_v(g_i_) + g_u(g_i_)

enddo
w = u + v

C--------
d2_v = sin(w)
d1_p = cos(w)
do g_i_ = 1, g_p_
g_y(g_i_, 1) = d1_p * g_w(g_i_)

enddo
y(1) = d2_v

C--------
C
C continues
C

Operator Overloading Example
class Tangent {
public:

static const int N = 2;
double val;
double dot[N];

};

Tangent exp(const Tangent& a) {
Tangent c;
c.val = exp(a.val);
for (int i=0; i<Tangent::N; i++)
c.dot[i] = c.val * a.dot[i];

return c;
}

Tangent operator*(const Tangent& a, const Tangent& b) {
Tangent c;
c.val = a.val * b.val;
for (int i=0; i<Tangent::N; i++)
c.dot[i] = a.val * b.dot[i] + a.dot[i]*b.val;

return c;
}

Tangent operator+(const Tangent& a, const Tangent& b) {
Tangent c;
c.val = a.val + b.val;
for (int i=0; i<Tangent::N; i++)
c.dot[i] = a.dot[i] + b.dot[i];

return c;
}

Tangent sin(const Tangent& a) {
Tangent c;
c.val = sin(a.val);
double t = cos(a.val);
for (int i=0; i<Tangent::N; i++)
c.dot[i] = t * a.dot[i];

return c;
}

void func(const double x[], double y[]) {
double u, v, w;
u = exp(x[0]);
v = x[0]*x[1];
w = u+v;
y[0] = sin(w);

u = x[0]*x[0];
v = y[0] + u;
y[1] = y[0]/v;

}

void func(const Tangent x[], Tangent y[]) {
Tangent u, v, w;
u = exp(x[0]);
v = x[0]*x[1];
w = u+v;
y[0] = sin(w);

u = x[0]*x[0];
v = y[0] + u;
y[1] = y[0]/v;

}

template <typename T>
void func(const T x[], T y[]) {

T u, v, w;
u = exp(x[0]);
v = x[0]*x[1];
w = u+v;
y[0] = sin(w);

u = x[0]*x[0];
v = y[0] + u;
y[1] = y[0]/v;

}

Sacado: AD Tools for C++ Codes

• Sacado provides several modes of Automatic Differentiation (AD)
– Forward (Jacobians, Jacobian-vector products, …)

– Reverse (Gradients, Jacobian-transpose-vector products, …)

– Taylor (High-order univariate Taylor series)

• Sacado implements AD via operator overloading and C++ templating

– Expression templates for OO efficiency

– Application code templating for easy incorporation

• Designed for use in large-scale C++ codes

– Apply AD at “element-level”

– Very successful in Charon application code

– Sacado::FEApp example demonstrates approach

• Sacado provides other useful utilities
– Scalar flop counting (Ross Bartlett)

– Scalar parameter library

– Template utilities

The Usual Suspects

• Configure options

--enable-sacado — Enables Sacado at Trilinos top-level

--enable-sacado-tests, --enable-tests — Enables unit, regression, and
performance tests

--with-cppunit-prefix=[path] — Path to CppUnit for unit tests

--with-adolc=[path] — Enables Taylor polynomial unit tests with ADOL-C

--enable-sacado-examples, --enable-examples — Enables examples

nox/examples/epetra/LOCA_Sacado_FEApp— Continuation example using

Sacado::FEApp 1D finite element application

• Mailing lists

Sacado-announce@software.sandia.gov, Sacado-checkins@software.sandia.gov,

Sacado-developers@software.sandia.gov, Sacado-regression@software.sandia.gov,

Sacado-users@software.sandia.gov

• Bugzilla: http://software.sandia.gov/bugzilla

• Bonsai: http://software.sandia.gov/bonsai/cvsqueryform.cgi

• Web: http://software.sandai.gov/Trilinos/packages/sacado (not much there yet)

• Doxygen documentation (not all that useful)

• Examples are best way to learn how to use Sacado

http://software.sandai.gov/Trilinos/packages/sacado
http://software.sandia.gov/bonsai/cvsqueryform.cgi
http://software.sandia.gov/bugzilla
mailto:Sacado-users@software.sandia.gov
mailto:Sacado-users@software.sandia.gov
mailto:Sacado-users@software.sandia.gov
mailto:Sacado-regression@software.sandia.gov
mailto:Sacado-regression@software.sandia.gov
mailto:Sacado-regression@software.sandia.gov
mailto:Sacado-developers@software.sandia.gov
mailto:Sacado-developers@software.sandia.gov
mailto:Sacado-developers@software.sandia.gov
mailto:Sacado-checkins@software.sandia.gov
mailto:Sacado-checkins@software.sandia.gov
mailto:Sacado-checkins@software.sandia.gov
mailto:Sacado-announce@software.sandia.gov
mailto:Sacado-announce@software.sandia.gov
mailto:Sacado-announce@software.sandia.gov

Using Sacado

• As always: #include “Sacado.hpp”

• All relevant classes/functions are templated on the Scalar type:

• Forward AD classes:

– Sacado::Fad::DFad<ScalarT>: Derivative array is allocated
dynamically

– Sacado::Fad::SFad<ScalarT>: Derivative array is allocated statically
and dimension must be known at compile time

– Sacado::Fad::SLFad<ScalarT>: Like SFad except allocated length
may be greater than “used” length

• Reverse mode AD classes:

– Sacado::ADvar<ScalarT> (Sacado_trad.h)

• Taylor polynomial classes:

– Sacado::Taylor::DTaylor<ScalarT>

How to use Sacado

• Template code to be differentiated: double -> ScalarT

• Replace independent/dependent variables with AD variables

• Initialize seed matrix

– Derivative array of i’th independent variable is i’th row of seed matrix

• Evaluate function on AD variables

– Instantiates template classes/functions

• Extract derivatives

– Forward: Derivative components of dependent variables

– Reverse: Derivative components of independent variables

class foo {
public:
foo(double x) : x_(x) {}
double bar(double y) { ... }

private:
double x_;

};

double my_func(double a, double b) { ... }

template <typename ScalarT>
class foo {
public:
foo(const ScalarT& x) : x_(x) {}
ScalarT bar(const ScalarT& y) { ... }

private:
ScalarT x_;

};

template <typename ScalarT>
ScalarT my_func(const ScalarT& a, const ScalarT& b) { ... }

#include "Sacado.hpp"

// The function to differentiate
template <typename ScalarT>
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {

ScalarT r = c*std::log(b+1.)/std::sin(a);

return r;
}

int main(int argc, char **argv) {
double a = std::atan(1.0); // pi/4
double b = 2.0;
double c = 3.0;

// Fad objects
int num_deriv = 2; // Number of independent variables
Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var
Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var
Sacado::Fad::DFad<double> cfad(c); // Passive variable
Sacado::Fad::DFad<double> rfad; // Result

// Compute function
double r = func(a, b, c);

// Compute function and derivative with AD
rfad = func(afad, bfad, cfad);

// Extract value and derivatives
double r_ad = rfad.val(); // r
double drda_ad = rfad.dx(0); // dr/da
double drdb_ad = rfad.dx(1); // dr/db

// The function to differentiate

double func(double a, double b, double c) {
double r = c*std::log(b+1.)/std::sin(a);

return r;
}

int main(int argc, char **argv) {
double a = std::atan(1.0); // pi/4
double b = 2.0;
double c = 3.0;

// Compute function
double r = func(a, b, c);

sacado/example/dfad_example.cpp

Differentiating Element-Based Codes

• Global residual computation (ignoring boundary computations):

• Jacobian computation:

• Jacobian-transpose product computation:

• Hybrid symbolic/AD procedure

– Element-level derivatives computed via AD

– Exactly the same as how you would do this “manually”

– Avoids parallelization issues

Sacado FEApp Example Application

• General 1D finite element application

– Simple enough to be easily understood

– Demonstrate complexity seen in real applications

• Currently implements two “physics”

– Heat equation with nonlinear source

– Brusselator

• Source lives in Sacado

– sacado/example/FEApp

• Drivers live in other package directories, e.g.,

– nox/example/epetra/LOCA_Sacado_FEApp

FEApp::Application
namespace FEApp {

class Application {
public:

//! Constructor
Application(const std::vector<double>& coords, const Teuchos::RCP<const Epetra_Comm>& comm,

const Teuchos::RCP<Teuchos::ParameterList>& params, bool is_transient);

//! Compute global residual
void computeGlobalResidual(const Epetra_Vector* xdot, const Epetra_Vector& x,

const Sacado::ScalarParameterVector* p, Epetra_Vector& f);

//! Compute global Jacobian
void computeGlobalJacobian(double alpha, double beta, const Epetra_Vector* xdot, const Epetra_Vector& x,

const Sacado::ScalarParameterVector* p, Epetra_Vector* f, Epetra_CrsMatrix& jac);

protected:

bool transient; //! Is problem transient
Teuchos::RCP<FEApp::AbstractDiscretization> disc; //! Element discretization
std::vector< Teuchos::RCP<FEApp::NodeBC> > bc; //! Boundary conditions
Teuchos::RCP<const FEApp::AbstractQuadrature> quad; //! Quadrature rule
FEApp::AbstractPDE_TemplateManager<ValidTypes> pdeTM; //! PDE equations
Teuchos::RCP<Epetra_Vector> initial_x; //! Initial solution vector
Teuchos::RCP<Epetra_Import> importer; //! Importer for overlapped data
Teuchos::RCP<Epetra_Export> exporter; //! Exporter for overlapped data
Teuchos::RCP<Epetra_Vector> overlapped_x; //! Overlapped solution vecto
Teuchos::RCP<Epetra_Vector> overlapped_xdot; //! Overlapped time derivative vecto
Teuchos::RCP<Epetra_Vector> overlapped_f; //! Overlapped residual vector
Teuchos::RCP<Epetra_CrsMatrix> overlapped_jac; //! Overlapped Jacobian matrix
Teuchos::RCP<Sacado::ScalarParameterLibrary> paramLib; //! Parameter library

};
}

FEApp::Application::computeGlobalResidual

void FEApp::Application::computeGlobalResidual(const Epetra_Vector* xdot, const Epetra_Vector& x,
const Sacado::ScalarParameterVector* p, Epetra_Vector& f) {

// Scatter x, xdot to the overlapped distrbution
overlapped_x->Import(x, *importer, Insert);
if (transient) overlapped_xdot->Import(*xdot, *importer, Insert);

// Set parameters
if (p != NULL)
for (unsigned int i=0; i<p->size(); ++i)

(*p)[i].family->setRealValueForAllTypes((*p)[i].baseValue);

// Zero out overlapped residual
overlapped_f->PutScalar(0.0);

// Create residual init/post op
Teuchos::RCP<FEApp::ResidualOp> op =
Teuchos::rcp(new FEApp::ResidualOp(overlapped_xdot, overlapped_x, overlapped_f));

// Get template PDE instantiation
Teuchos::RCP< FEApp::AbstractPDE<ResidualOp::fill_type> > pde = pdeTM.getAsObject<ResidualOp::fill_type>();

// Do global fill
FEApp::GlobalFill<ResidualOp::fill_type> globalFill(disc->getMesh(), quad, pde, bc, transient);
globalFill.computeGlobalFill(*op);

// Assemble global residual
f.Export(*overlapped_f, *exporter, Add);

}

FEApp::Application::computeGlobalJacobian
void FEApp::Application::computeGlobalJacobian(double alpha, double beta, const Epetra_Vector* xdot,

const Epetra_Vector& x, const Sacado::ScalarParameterVector* p,
Epetra_Vector* f, Epetra_CrsMatrix& jac) {

// Scatter x, xdot to the overlapped distrbution
overlapped_x->Import(x, *importer, Insert);
if (transient) overlapped_xdot->Import(*xdot, *importer, Insert);

// Set parameters
if (p != NULL)
for (unsigned int i=0; i<p->size(); ++i)

(*p)[i].family->setRealValueForAllTypes((*p)[i].baseValue);

// Zero out overlapped residual, Jacobian
Teuchos::RCP<Epetra_Vector> overlapped_ff;
if (f != NULL) { overlapped_ff = overlapped_f; overlapped_ff->PutScalar(0.0); }
overlapped_jac->PutScalar(0.0);

// Create Jacobian init/post op
Teuchos::RCP<FEApp::JacobianOp> op =
Teuchos::rcp(new FEApp::JacobianOp(alpha, beta, overlapped_xdot, overlapped_x, overlapped_ff,

overlapped_jac));

// Get template PDE instantiation
Teuchos::RCP< FEApp::AbstractPDE<JacobianOp::fill_type> > pde = pdeTM.getAsObject<JacobianOp::fill_type>();

// Do global fill
FEApp::GlobalFill<JacobianOp::fill_type> globalFill(disc->getMesh(), quad, pde, bc, transient);
globalFill.computeGlobalFill(*op);

// Assemble global residual, Jacobian
if (f != NULL) f->Export(*overlapped_f, *exporter, Add);
jac.Export(*overlapped_jac, *exporter, Add);
jac.FillComplete(true);

}

FEApp::GlobalFill
namespace FEApp {
template <typename ScalarT>
class GlobalFill {
public:

//! Constructor
GlobalFill(const Teuchos::RCP<const FEApp::Mesh>& elementMesh,

const Teuchos::RCP<const FEApp::AbstractQuadrature>& quadRule,
const Teuchos::RCP< FEApp::AbstractPDE<ScalarT> >& pdeEquations,
const std::vector< Teuchos::RCP<FEApp::NodeBC> >& nodeBCs,
bool is_transient);

//! Compute global fill
void computeGlobalFill(FEApp::AbstractInitPostOp<ScalarT>& initPostOp);

protected:

Teuchos::RCP<const FEApp::Mesh> mesh; //! Element mesh
Teuchos::RCP<const FEApp::AbstractQuadrature> quad; //! Quadrature rule
Teuchos::RCP< FEApp::AbstractPDE<ScalarT> > pde; //! PDE Equations
std::vector< Teuchos::RCP<FEApp::NodeBC> > bc; //! Node boundary conditions
bool transient; //! Are we transient?
unsigned int nnode; //! Number of nodes per element
unsigned int neqn; //! Number of PDE equations
unsigned int ndof; //! Number of element-level DOF

std::vector<ScalarT> elem_x; //! Element solution variables
std::vector<ScalarT>* elem_xdot; //! Element time derivative variables
std::vector<ScalarT> elem_f; //! Element residual variables
std::vector<ScalarT> node_x; //! Node solution variables
std::vector<ScalarT>* node_xdot; //! Node time derivative variables
std::vector<ScalarT> node_f; //! Node residual variables

};
}

FEApp::GlobalFill::computeGlobalFill
template <typename ScalarT>
void FEApp::GlobalFill<ScalarT>::computeGlobalFill(FEApp::AbstractInitPostOp<ScalarT>& initPostOp)
{
// Loop over elements
Teuchos::RCP<const FEApp::AbstractElement> e;
for (FEApp::Mesh::const_iterator eit=mesh->begin(); eit!=mesh->end(); ++eit) {

e = *eit;

// Zero out element residual
for (unsigned int i=0; i<ndof; i++)

elem_f[i] = 0.0;

initPostOp.elementInit(*e, neqn, elem_xdot, elem_x); // Initialize element solution

pde->evaluateElementResidual(*quad, *e, elem_xdot, elem_x, elem_f); // Compute element residual

initPostOp.elementPost(*e, neqn, elem_f); // Post-process element residual
}

// Loop over boundary conditions
for (std::size_t i=0; i<bc.size(); i++) {
if (bc[i]->isOwned() || bc[i]->isShared()) {
// Zero out node residual
for (unsigned int j=0; j<neqn; j++)

node_f[j] = 0.0;

initPostOp.nodeInit(*bc[i], neqn, node_xdot, node_x); // Initialize node solution

bc[i]->getStrategy<ScalarT>()->evaluateResidual(node_xdot, node_x, node_f); // Compute node residual

initPostOp.nodePost(*bc[i], neqn, node_f); // Post-process node residual
}

}
}

FEApp::JacobianOp
namespace FEApp {

class JacobianOp : public FEApp::AbstractInitPostOp< Sacado::Fad::DFad<double> > {
public:
//! Constructor
JacobianOp(double alpha, double beta, const Teuchos::RCP<const Epetra_Vector>& overlapped_xdot,

const Teuchos::RCP<const Epetra_Vector>& overlapped_x,
const Teuchos::RCP<Epetra_Vector>& overlapped_f,
const Teuchos::RCP<Epetra_CrsMatrix>& overlapped_jac);

//! Evaluate element init operator
virtual void elementInit(const FEApp::AbstractElement& e, unsigned int neqn,

std::vector< Sacado::Fad::DFad<double> >* elem_xdot,
std::vector< Sacado::Fad::DFad<double> >& elem_x);

//! Evaluate element post operator
virtual void elementPost(const FEApp::AbstractElement& e, unsigned int neqn,

std::vector< Sacado::Fad::DFad<double> >& elem_f);

//! Evaulate node init operator
virtual void nodeInit(const FEApp::NodeBC& bc, unsigned int neqn,

std::vector< Sacado::Fad::DFad<double> >* node_xdot,
std::vector< Sacado::Fad::DFad<double> >& node_x);

//! Evaluate node post operator
virtual void nodePost(const FEApp::NodeBC& bc, unsigned int neqn,

std::vector< Sacado::Fad::DFad<double> >& node_f);
protected:
double m_coeff; //! Coefficient of mass matrix
double j_coeff; //! Coefficient of Jacobian matrix
Teuchos::RCP<const Epetra_Vector> xdot; //! Time derivative vector (may be null)
Teuchos::RCP<const Epetra_Vector> x; //! Solution vector
Teuchos::RCP<Epetra_Vector> f; //! Residual vector
Teuchos::RCP<Epetra_CrsMatrix> jac; //! Jacobian matrix

};
}

FEApp::JacobianOp::elementInit

void FEApp::JacobianOp::elementInit(const FEApp::AbstractElement& e, unsigned int neqn,
std::vector< Sacado::Fad::DFad<double> >* elem_xdot,
std::vector< Sacado::Fad::DFad<double> >& elem_x) {

unsigned int node_GID; // Global node ID
unsigned int firstDOF; // Local ID of first DOF
unsigned int nnode = e.numNodes(); // Number of nodes
unsigned int ndof = nnode*neqn; // Number of dof

// Copy element solution
for (unsigned int i=0; i<nnode; i++) {

node_GID = e.nodeGID(i);
firstDOF = x->Map().LID(node_GID*neqn);

for (unsigned int j=0; j<neqn; j++) {

elem_x[neqn*i+j] = Sacado::Fad::DFad<double>(ndof, (*x)[firstDOF+j]);
elem_x[neqn*i+j].fastAccessDx(neqn*i+j) = j_coeff;

if (elem_xdot != NULL) {
(*elem_xdot)[neqn*i+j] = Sacado::Fad::DFad<double>(ndof, (*xdot)[firstDOF+j]);
(*elem_xdot)[neqn*i+j].fastAccessDx(neqn*i+j) = m_coeff;

}

}

}

}

FEApp::HeatNonlinearSourcePDE

namespace FEApp {
template <typename ScalarT>
class HeatNonlinearSourcePDE : public FEApp::AbstractPDE<ScalarT> {
public:

//! Constructor
HeatNonlinearSourcePDE(const Teuchos::RCP< const FEApp::AbstractSourceFunction<ScalarT> >& src_func);

//! Initialize PDE
virtual void init(unsigned int numQuadPoints, unsigned int numNodes);

//! Evaluate discretized PDE element-level residual
virtual void
evaluateElementResidual(const FEApp::AbstractQuadrature& quadRule,

const FEApp::AbstractElement& element,
const std::vector<ScalarT>* dot,
const std::vector<ScalarT>& solution,
std::vector<ScalarT>& residual);

protected:

Teuchos::RCP< const FEApp::AbstractSourceFunction<ScalarT> > source; //! Source function
unsigned int num_qp; //! Number of quad points
unsigned int num_nodes; //! Number of nodes
std::vector< std::vector<double> > phi; //! Shape function values
std::vector< std::vector<double> > dphi; //! Shape function derivative
std::vector<double> jac; //! Element transformation Jacobian
std::vector<ScalarT> u; //! Discretized solution
std::vector<ScalarT> du; //! Discretized solution derivative
std::vector<ScalarT> udot; //! Discretized time derivative
std::vector<ScalarT> f; //! Source function values

};
}

FEApp::HeatNonlinearSourcePDE::
evaluateElementResidual

template <typename ScalarT> void FEApp::HeatNonlinearSourcePDE<ScalarT>::
evaluateElementResidual(const FEApp::AbstractQuadrature& quadRule, const FEApp::AbstractElement& element,

const std::vector<ScalarT>* dot, const std::vector<ScalarT>& solution,
std::vector<ScalarT>& residual) {

const std::vector<double>& xi = quadRule.quadPoints(); // Quadrature points
const std::vector<double>& w = quadRule.weights(); // Weights

element.evaluateShapes(xi, phi); // Evaluate shape function
element.evaluateShapeDerivs(xi, dphi); // Evaluate shape function derivative
element.evaluateJacobian(xi, jac); // Evaluate element Jacobian

// Compute u, du, udot
for (unsigned int qp=0; qp<num_qp; qp++) {

u[qp] = 0.0; du[qp] = 0.0; udot[qp] = 0.0;
for (unsigned int node=0; node<num_nodes; node++) {

u[qp] += solution[node] * phi[qp][node];
du[qp] += solution[node] * dphi[qp][node];
if (dot != NULL) udot[qp] += (*dot)[node] * phi[qp][node];

}
}

source->evaluate(u, f); // Evaluate source function

// Evaluate residual
for (unsigned int node=0; node<num_nodes; node++) {

residual[node] = 0.0;
for (unsigned int qp=0; qp<num_qp; qp++) {

residual[node] += w[qp]*jac[qp]*(-(1.0/(jac[qp]*jac[qp]))*du[qp]*dphi[qp][node] +
phi[qp][node]*(f[qp] - udot[qp]));

}
}

}

FEApp::CubicSourceFunction
namespace FEApp {
template <typename ScalarT>
class CubicSourceFunction : public FEApp::AbstractSourceFunction<ScalarT> {
public:
//! Constructor
CubicSourceFunction(const ScalarT& factor, const Teuchos::RCP<Sacado::ScalarParameterLibrary>& paramLib) :
alpha(factor)

{
// Add nonlinear factor to parameter library
std::string name = "Cubic Source Function Nonlinear Factor";
if (!paramLib->isParameter(name))

paramLib->addParameterFamily(name, true, false);
if (!paramLib->template isParameterForType<ScalarT>(name)) {
Teuchos::RCP< CubicNonlinearFactorParameter<ScalarT> > tmp =
Teuchos::rcp(new CubicNonlinearFactorParameter<ScalarT>(Teuchos::rcp(this,false)));

paramLib->template addEntry<ScalarT>(name, tmp);
}

}

//! Evaluate source function
virtual void evaluate(const std::vector<ScalarT>& solution, std::vector<ScalarT>& value) const {
for (unsigned int i=0; i<solution.size(); i++)
value[i] = alpha*solution[i]*solution[i]*solution[i];

}

//! Set nonlinear factor
void setFactor(const ScalarT& val, bool mark_constant) { alpha = val; }

//! Get nonlinear factor
const ScalarT& getFactor() const { return alpha; }

protected:
ScalarT alpha; //! Factor

};
}

FEApp::JacobianOp::elementPost

void FEApp::JacobianOp::elementPost(const FEApp::AbstractElement& e, unsigned int neqn,
std::vector< Sacado::Fad::DFad<double> >& elem_f) {

unsigned int nnode = e.numNodes(); // Number of nodes

// Loop over nodes in element
for (unsigned int node_row=0; node_row<nnode; node_row++) {

// Loop over equations per node
for (unsigned int eq_row=0; eq_row<neqn; eq_row++) {

unsigned int lrow = neqn*node_row+eq_row // Local row
int row = static_cast<int>(e.nodeGID(node_row)*neqn + eq_row); // Global row

if (f != Teuchos::null) f->SumIntoGlobalValue(row, 0, elem_f[lrow].val()); // Sum residual

// Check derivative array is nonzero
if (elem_f[lrow].hasFastAccess()) {

// Loop over nodes in element
for (unsigned int node_col=0; node_col<nnode; node_col++){

// Loop over equations per node
for (unsigned int eq_col=0; eq_col<neqn; eq_col++) {

unsigned int lcol = neqn*node_col+eq_col; // Local column
int col = static_cast<int>(e.nodeGID(node_col)*neqn + eq_col); // Global column

jac->SumIntoGlobalValues(row, 1, &(elem_f[lrow].fastAccessDx(lcol)), &col); // Sum Jacobian

} // column equation
} // column node

} // has fast access
} // row equation

} // row node
}

FEApp::CubicNonlinearFactorParameter

namespace FEApp {
template <typename ScalarT>
class CubicNonlinearFactorParameter : public Sacado::ScalarParameterEntry<ScalarT> {
public:

//! Constructor
CubicNonlinearFactorParameter(const Teuchos::RCP< CubicSourceFunction<ScalarT> >& s) : srcFunc(s) {}

//! Destructor
virtual ~CubicNonlinearFactorParameter() {}

//! Set real parameter value
virtual void setRealValue(double value) { setValueAsConstant(ScalarT(value)); }

//! Set parameter this object represents to \em value
virtual void setValueAsConstant(const ScalarT& value) { srcFunc->setFactor(value, true); }

//! Set parameter this object represents to \em value
virtual void setValueAsIndependent(const ScalarT& value) { srcFunc->setFactor(value, false); }

//! Get parameter value this object represents
virtual const ScalarT& getValue() const { return srcFunc->getFactor(); }

protected:

Teuchos::RCP< CubicSourceFunction<ScalarT> > srcFunc; //! Pointer to source function

};
}

Derivative Calculations

• This approach makes it easy to add new derivative calculations

–Most of the work is creating new init/post process operators

• Sacado::FEApp has 3:

–Residual, Jacobian, parameter derivatives

• Charon has 10:

–Residual, Jacobian (Fad, FD), Adjoint (Rad, Fad, FD), scalar
parameter derivs, distributed parameter derivs, 2 types of second
derivatives

• Template manager/iterator help insulated code from number of AD
types

Impacts of AD in Charon
(~114k lines of code, significant portion templated)

SRH

Multi-Trap SRH

Dynamical Defects

Mobile Defects

Drift-Diffusion

Oxide Physics

Oxide Defects

PHYSICS

Complications

• Excessive compile times due to application templating

– Application source files move to headers

– Small changes cause long compile times

– Explicit template instantiation (demonstrated in FEApp)

• Interfacing template and non-template code

– Many places where non-template code must call template code

– Difficult to add new AD types

– Sacado template manager/iterator (demonstrated in FEApp)

• Parameter derivatives

– Application codes don’t provide a parameter interface

– Sacado parameter library (demonstrated in FEApp)

• Interfaces to other derivative methods (e.g., source transformation)

– Used in Charon (ADIFOR differentiated CHEMKIN)

– Example coming soon for BLAS/LAPACK

Explicit Template Instantiation

// Include all of our AD types
#include "Sacado_Fad_DFad.hpp"

// Typedef AD types to standard names
typedef double RealType;
typedef Sacado::Fad::DFad<double> FadType;

// Define which types we are using
#define REAL_ACTIVE 1
#define FAD_ACTIVE 1

// Define macro for explicit template instantiation
#if REAL_ACTIVE
#define INSTANTIATE_TEMPLATE_CLASS_REAL(name) template class name<double>;
#else
#define INSTANTIATE_TEMPLATE_CLASS_REAL(name)
#endif

#if FAD_ACTIVE
#define INSTANTIATE_TEMPLATE_CLASS_FAD(name) template class name<FadType>;
#else
#define INSTANTIATE_TEMPLATE_CLASS_FAD(name)
#endif

#define INSTANTIATE_TEMPLATE_CLASS(name) \
INSTANTIATE_TEMPLATE_CLASS_REAL(name) \
INSTANTIATE_TEMPLATE_CLASS_FAD(name)

#include "FEApp_TemplateTypes.hpp"

namespace FEApp {

template <typename ScalarT>
class GlobalFill {
public:

// . . .

};

}

// Include implementation
#ifndef SACADO_ETI
#include "FEApp_GlobalFillImpl.hpp"
#endif

#include "FEApp_TemplateTypes.hpp"

#ifdef SACADO_ETI

#include "FEApp_GlobalFill.hpp"
#include "FEApp_GlobalFillImpl.hpp"

INSTANTIATE_TEMPLATE_CLASS(FEApp::GlobalFill)

#endif

FEApp_TemplateTypes.hpp

FEApp_GlobalFill.cpp

FEApp_GlobalFill.hpp

More Complications

• Branching/conditionals

– For derivative, branch chosen based on value of argument

– Piecewise derivative

– Always obtain correct derivative for branch that was evaluated

• Removing portions of computation for derivative calculation

inline double ADValue(double x) { return x; }
inline double ADValue(const Sacado::Fad::DFad<double>& x) { return x.val(); }

double my_func(double a, double b) {
// ...

}

ScalarT a = ...
ScalarT b = ...

double c = my_func(ADValue(a), ADValue(b)); // This will not be differentiated

ScalarT d = ...

More Complications

• Points of non-differentiability

– Usually signaled by NaN’s in derivative

– First remove unnecessary points of non-differentiability:

– Then use conditionals if necesssary:

– We can try to improve support for this in Sacado

template <typename ScalarT>
ScalarT vec_norm(ScalarT x[]) {

return std::sqrt(x[0]*x[0] + x[1]*x[1] + x[2]*x[2]);
}

ScalarT x[3];

// ...

ScalarT norm_x = vec_norm(x);

ScalarT a = norm_x*norm_x; // Problem when x = 0

ScalarT a = ...

ScalarT b;
if (a = 0.0)

b = 0.0;
else
b = std::sqrt(a);

Implementing Operator Overloading
Efficiently: Expression Templates

• Naïve operator overloading:

– Each operation returns a copy (bad)

– Each operation implements a loop (bad)

• Template meta-programming (Abrahams & Gurtovoy, 2005)

– View templates as a compile-time functional language operating on types and
integral values (bool’s, int’s, etc…)

– Turing complete (any computation can be implemented)

– Computations occur at compile time: No run-time cost

• AD via expression templates:

– Each expression represents a new type with a new derivative rule built at compile
time

– Derivative of expression computed at assignment (at = sign)

Tangent operator*(const Tangent& a, const Tangent& b) {
Tangent c;
c.val = a.val * b.val;
for (int i=0; i<Tangent::N; i++)

c.dot[i] = a.val * b.dot[i] + a.dot[i]*b.val;
return c;

}

Tangent sin(const Tangent& a) {
Tangent c;
c.val = sin(a.val);
double t = cos(a.val);
for (int i=0; i<Tangent::N; i++)

c.dot[i] = t * a.dot[i];
return c;

}

void func(const Tangent x[], Tangent y[]) {
y[0] = sin(exp(x[0]) + x[0]*x[1]);
//…

}

Expr< SinExpr< Expr< PlusExpr<
Expr< ExpExpr<TangentExpr> >,
Expr< MultExpr< Expr<TangentExpr>,

Expr<TangentExpr> > >
> > > >

y[0].val = sin(exp(x[0]) + x[0]*x[1]);
for (int i=0; i<N; i++) {

y[0].dot[i] = cos(exp(x[0]) + x[0]*x[1])*
(exp(x[0])*x[0].dot[i] +
x[0]*x[1].dot[i] + x[1]*x[0].dot[i]);

Expression Template Operator Overloading

Sacado forward AD classes, based on
public domain Fad/TFad package

template <class E1> Expr {};

template <class E1, E2> class PlusExpr {};
template <class E1, E2> class Expr< PlusExpr<E1,E2> > {

double val() const { return e1.val() + e2.val(); }
double dx(int i) const { return e1.dx(i) + e2.dx(i); }
const Expr<E1>& e1;
const Expr<E2>& e2;

};

template<class E1, class E2> Expr< PlusExpr<E1,E2> >
operator+(const Expr<E1>& a, const Expr<E2>& b) {
return Expr< PlusExpr<E1,E2> >(a,b);

}

template <class E1> class SinExpr {};
template <class E1> class Expr< SinExpr<E1> > {

double val() const { return sin(e1.val())] }
double dx(int i) const { return cos(e1.val())*e1.dx(i); }
const Expr<E1>& e1;

};

template<class E1> Expr< SinExpr<E1> > sin(const Expr<E1>& a) {
return Expr< SinExpr<E1> >(a);

}

class TangentExpr {};
class Expr<TangentExpr> : {
public:

double val() const { return val; }
double dx(int i) const { return dot[i]; }
template <class E> Expr<Tangent>& operator=(const Expr<E>& e) {
val = e.val();
for (int i=0; i<N; i++)
dot[i] = e.dx(i);

}
};
class Tangent : public Expr<TangentExpr> {};

Performance

• Implementing this effectively requires a good optimizing compiler

• Tests live in sacado/test/performance

• Not completely indicative of “real-world” performance

fad_expr.exe: 10 derivative components through a simple expression

GCC 4.1.2 -O3 Intel 10.0 -O3 PGI 6.2-5 -O3 -fastsse

Time (s) Slow down Time (s) Slow down Time (s) Slow down

Analytic 1.30e-07 1.00 5.00e-12 1.00 1.02e-07 1.00

SFad 9.50e-07 7.32 1.28e-07 2.57e+04 2.11e-06 20.7

DFad 8.38e-07 6.46 1.57e-07 3.15e+04 2.20e-06 21.6

ELR SFad 1.79e-07 1.38 1.09e-07 2.18e+04 2.38e-06 23.3

ELR DFad 1.96e-07 1.51 1.70e-07 3.40e+04 2.61e-06 25.5

fad_lj_grad.exe: Gradient of Leonard-Jones potential

Analytic 6.83e-09 1.00 1.20e-08 1.00 4.68e-08 1.00

SFad 6.86e-08 10.1 4.67e-08 3.88 1.73e-06 36.9

DFad 4.99e-07 73.1 3.86e-07 32.1 3.07e-06 65.7

ELR SFad 5.20e-08 7.62 9.48e-08 7.88 3.46e-06 74.0

ELR DFad 4.80e-07 70.3 5.01e-07 41.6 4.87e-06 104.0

Complications Introduced by
Expression Templates

• Template functions

– An expression can always be converted to a Fad type, but

– Compilers implement very few automatic conversions for template function arguments

• Understanding compiler errors like these can be difficult

template <typename ScalarT>
class MyClass {
public:
// ...

ScalarT my_func(const ScalarT& a, const ScalarT& b) {
// ...

}
};

template <typename ScalarT>
ScalarT my_func(const ScalarT& a, const ScalarT& b) {
// ...

}

ScalarT a = ... // Initialize a
ScalarT b = ... // Initialize b

MyClass<ScalarT> my_class;
ScalarT c = my_class.my_func(a+b,a); // Will work just fine

ScalarT d = my_func(a+b,a); // Won't compile
ScalarT e = my_func<ScalarT>(a+b,a); // Will work
ScalarT f = my_func(ScalarT(a+b),a); // Will work

How Sacado relates to other packages

• Many Trilinos packages need derivatives
–NOX (nonlinear solves)

–LOCA (stability analysis)

–Rythmos (time integration)

–MOOCHO, Aristos (optimization)

• Sacado does not provide these derivatives directly
–Sacado is not a black-box AD solution

• Sacado provides low level AD capabilities
–Application codes use Sacado to build derivatives these packages

need

Best Practices

• Don’t differentiate your global function with AD

• Only use AD for the hard, nonlinear parts

• Never differentiate iterative solvers with AD…instead use AD for the
derivative of the solution

• Prefer template classes over template functions

–Methods of a template class are not template functions

–Compiler implements very few conversions for template functions

Where Sacado is going in the future

• Documentation

–Website, tutorials, papers, etc…

• Performance improvements

–Expression level reverse-mode (Sacado::ELRFad)

• Leveraging AD technology for intrusive uncertainty quantification

–Polynomial chaos expansions via operator overloading

• Impacting more applications

–Using Sacado is more about software engineering than AD

