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Non Hermitian Eigenvalue problem
Ap=Bp\ A BeC"" peC”

® Suppose the matrices are large and only
available via matrix vector products

® Only want a small number of eigenvalues
and eigenvectors, say the leftmost

Re(4,) <Re(4,) <--- < Re(4,)

® |et's review standard approaches

NTSH () i
National Nuclear Security Adm inis:r'; tion I.aboratories



Standard approach
(A—-Bo) 'Bp=p(A—o0)!

® Shift-invert spectral transformation (for
eigenvalues near the shift o)

® Inverse subspace iteration (simple but
slow to converge)

® Shift-invert Arnoldi/Lanczos method
(better convergence but not nearly as
simple as inverse subspace iteration)
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Computational bottleneck

® Solving the linear system at each iteration

® Sparse direct solves or preconditioned inner
iterations required

® can we avoid an inner iteration altogether and
just apply a preconditioner (including the
identity)?
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K-eigenvalue problem

® Determine whether there is self-sustaining time-
Independent chain reaction in neutron transport
calculations (criticality problem)

® Smallest eigenvalue is the effective number of
neutrons created; magnitude determines whether
there is a self-sustaining reaction. Eigenvector
represents the asymptotic power distribution

® Six dimensional Boltzman transport leads to huge non
Hermitian eigenvalue problems (30,000,000)

® Krylov Subspace Iterations for Deterministic k-
Eigenvalue Calculations, (J. S. Warsa, T. A.
Warming, J. E. Morel and J. M. McGhee, L.), Nuclear
Science and Engineering 2004
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Some notation

A E Cnx'n,

(P,q) €C
p,q € C"

(p,q) =q"p
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Dynamical system

. __(Ap,p) _
P =P Ap, p(0) =

Ax. =x\, p0) =x
- p=0=p=x,
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Simple iteration

. _(Ap,p) _
P =P Ap, p(0)=po

A P
( p] p.?) -A_)p‘7

Pj+1 = P; + h( (:.D;)
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First integral (or invariant)

. _(Ap,p) B
P=P Ap, p(0) = po
&(p,p) = (p,p) + (P, P)
(pap) — (pOaPO)
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Gradient flows

A = A*
_ (Ap,p)
¢(p) = (p,pP)
p = —{BRVg¢(p)

®Dynamical systems community has
studied gradient flows
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Solutions of the dynamical system

® Apparently, the flow of the dynamical system

must lie on a constant energy surface, or
manifold

® Should the flow of the discrete dynamical
system lie on the manifold? Does it matter?

® |f so, how should we do this?
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Related work

® Others have observed the connection of the
eigenvalue problem with a dynamical system

1.

N

Chu (1988) considered continuous realizations of iterative
process

Symes (1982) and Nanda (1985) drew relationships between
the QR algorithm and differential equations

See survey paper by Absil (2006)
Optimization and Dynamical systems, Helmke and Moore

. The simple iteration forms the basis of gradient based

preconditioned eigensolvers when applied to a symmetric
positive definite eigenvalue problems (Knyazev (1998))

. Car-Parrinello use a second order ODE for computing ground-

states
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Our contribution

® Non-Hermitian eigenvalue problems

® Convergence analysis for the continuous
and discrete dynamical system

® Role of preconditioning

® Exploit the quadratic invariant
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Continuous flow (Nanda 1985)

(Ap.p)
(p.p)

P=7pP Ap, A ¢ R"", p(0) = p,

p(t) = e 'pyw(t)

(1) = (Povpo)
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Convergence rate

Re(A) <Re(;) << Rel’,)

sin Z(p, X1) mlg |lap — x1||, Axi;=X1A;
c

= min ||ozXe"AtX"1p0 —x1/l, AX=XA

acC
A1t
< “e Xe At~ Po—Xlll
y1Po
< HXH llx———lll llp()” Re()\l——-)\z)t

|Y1P0|

Re()\, — A,) determines the convergence rate
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Preconditioned iteration

PN eI )
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Why simple preconditioned iterations?

N = hA

- A P
— A 1pj( p.? p.?)
(pjapj)

Pj+1

®Inverse iteration results when the preconditioner is
selected judiciously

*We’'ll established convergence rates
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Difference in Rayleigh-quotients

Ap = pA
N'AND P\, Np=p
(N"'AND, p) . (Ap,p)
(P, D) (P, P)

® Transforming the eigenvalue problem does not
give the simple Rayleigh quotient.

® Hence we can’t simply used previous analysis
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Stability analysis for the one-sided
preconditioned dynamical system

® We cannot derive a solution operator
(unlike the unpreconditioned iteration)

® Resort to a non-linear stability analysis
on a manifold—Center Manifold theorem

® If the dynamical system is sufficiently
close to a stable steady-state, then the
system converges to the left-most

eigenpailr
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Center Manifold Theorem gives
Ap,p)

Ap

Ax, = x,), p0)=x,
= p=0=p=x
HP( — {xy H — 775 ), 7> 0,6>0

Need only assume that the

Jacobian of the steady-state = N (I — XX )()\ — A)
has a simple zero eigenvalue
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What about the forward Euler (FE)
discretization?

® FE does NOT preserve quadratic invariants
and so we bound the departure

® Determine a critical time step
® Theorem on the global convergence of FE

® Assume real matrix A, Euclidean inner product
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Departure from the manifold

T T
P NI} N } : I 4
s P D0 TR0 (g 4 2y N2yt 1,

0 <
Po NPD \

the upper bound being asymptotic to (j + 1)h?||IN"L||?M as h — 0.

M= inf 4| A —
inf 4|A - s]%
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Critical time step

hWj+15 : |
IN-1VaT

M = int 4||A —
a]ilm | q||1*~J
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FE convergence analysis

: : : 1—1
A:)\l d’ N:n 0!
0 C/| 0 M

v = H(I — X1X1 I+ AN(N\ — H

k(N) = HNHHN H
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Summary of the proof

® Determine a Lipshitz constant so that FE
gets close enough to the flow of the
dynamical system

® Show that once we're close enough, then
the iterates remain close

® Monotonic drift from the quadratic
constraint is essential
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FE convergence analysis: special case

A dtl L n o
A = . CcC"=C'C, N=
0 C 0 1
)\ _
(5:>\2 L 7:1 6<1
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Sample problem

( 2 —1+p 0 \
‘ —iop 2 c RXN
\

mn —
A P LN § A\ N
P
—1+p
0 —1—0p 2 /
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Maniald errors

One-sided FE, h=.1
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One versus two-sided flows

p = pf—Ap, p(0)=po
q — qg — A-*q) q(O) — qO
A
® One sided equations 0 = ((ppi)l)))
are uncoupled ; _ (Ag,q)
(q,q)
(Ap,q)

® Two sided equations z

are coupled via the ~ (P, El) ro
Rayleigh-quotients 0 9 — ‘(1(’1 pI;
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Flows

® Two sided flow has the invariants

(P,a) = (Po,q0)
(q, P) (QO, Po)
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Two-sided flow

pi—Ap _ (Ap,q)
q = qf—-A’q (P;q)

gop
|
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Sample the two-sided flow, n=10,

10°

» O piteration
10 f q iteration ® f
10"} : |
10°}
10°} p and q residual errors

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
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Scaling of the two-sided flow

(p05QO2
(eAtpo,eAr™tqp)

T =

® Experiments reveal that the denominator changes sign.
Hence, the denominator is zero at some intermediate time.

® This finite time blow up of the ODE has the numerical linear
algebra interpretation of incurable breakdown

® Incurable breakdown is, roughly, defined to be that the inner
product of two vectors is zero yet neither vector is the zero
vector. Purely algebraic notion that has (now) and
Interesting interpretation.
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Two-sided Forward Euler (FE)

TA
p = pqupp Ap =f(p,q)
T AT
. P A'q
4 = 4 g A'q=g(p,q)
Pi+1 = DPjy + hfj
qQj+1 = q; +hg;
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Two-sided FE and quadratic invariants

(@j+1)"Pj41 = aipo+h((q;)"f+ (g5) pj) +Rh°(g))"f;
as po + h2(g;)™t;

|(Qj+1)TPj+1 — quol < B2 ||fj|| “ng
la po - q? pol
A la;l llp;ll
< A’ (1+ |JT l’)zl\qjll Ip;l

|qO P0|

Incurable breakdown rears its head
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10"

10°

Secant of the angle
(two-sided flow)

10t Secant of the angle between p and q
107}

1"

10

( GAtpo eA*th )
v/ (Po,q0) v/ (qo,Po)

( eAtpO eA*th )
|leAtpol|” [l qo|
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Two-sided FE, h=.01
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Summary

® The continuous dynamical system represents
an idealization and so useful for algorithm
analysis and design

® One sided iterations are robust and stable

® Two-sided iterations suffer incurable
breakdown

® Role of preconditioning

® Convergence analysis of the one-sided
preconditioned flow
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