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Nanoparticle Knudsen Layer in Gas

Large particles diffusing to wall Small particles diffusing to wall
approach zero concentration approach nonzero concentration

Nanoparticles in gas have a Knudsen layer at wall
— Concentration doesn’t vanish as for larger particles
— Concentration at wall proportional to particle flux

Investigate using theory and simulations
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#Particle-Flux Boundary Condition

Particle-flux boundary condition as wall is approached
— Can be used in advection-diffusion transport analyses
« Analogous to velocity-slip and temperature-jump BCs
— Concentration n extrapolated to wall proportional to flux
* Drift velocity U, diffusivity D, thermal velocity c
— Particle-flux coefficient fis dimensionless, order-unity
» Depends on how particles stick to & reflect from wall @ Santia
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Approximate Theory
aa—];]+a—ax.(uN)+%%.(—vN) :;_;%.(Z_]D, v=u-U N zﬁexp[— Vc'zvﬂnw n, exp{ZU'(cfr_Tv) - UC,}UD
GFP equation exact solution

J- N(-f-u)du= J. [u] N(f-u)du
—f-u>0 n-u>0
approximation at wall

—exo[ -2 ] V207 (1= exp| -0
i 2s{l+erf[lj]1 exll)/Z[AUZ]J S A A 7 2U(1A eXIi[z U,ﬂ) . — -
2 l—exp[—Uf]—exp[—U2]+exp[—(Un—U) }+7z1/2U(erfc[Un—U]+erfc[U])
sticking-fraction process: s cutoff-velocity process: o :l—exp[—U,f], U =U,Jc,U=Ulc

Generalized Fokker-Planck equation yields approximate
particle-flux coefficient f for arbitrary wall interactions

— Use exact solution for steady uniform unbounded space
— Approximation: outgoing equals reflected incoming at wall

Apply to two reflection processes < with drift velocity U
— Sticking fraction: sticking probability s same for all particles
— Cutoff velocity: stick if normal velocity < U, (c is convenient)

— Any reflections are taken to be specular @ o
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*-i Langevin Simulations
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Langevin particle simulations: MP Ermak-Buckholz

— 1D diffusion: wall at x =0, source at x=L =1000 nm

— 20-nm PSL in air, 18-nm stopping distance (NIST, 2005)
Knudsen layer near wall, linear profile away from wall

— Particle-flux coefficient f by extrapolating linear part to wall
— Cutoff ¢ (U,) has larger effect than sticking s @ Sandia
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%i Particle-Flux Coefficient
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Particle-flux coefficient f from approximation & simulations
— Left: vs. sticking s or cutoff o with drift velocity U= 0
— Right: vs. drift velocity Uwiths=c=1
— Approximation and simulations agree reasonably well
 Better for sticking than cutoff: reflected particle distribution
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Semiconductor Application

¢¢¢¢¢¢¢¢¢¢¢

gravity, thermophoresis

nanoparticles n

Assess contamination of reticle by nanoparticles in gas
— Nanoparticles injected upward from below
— Nanoparticles repelled by gravity and thermophoresis

Find probability that injected nanoparticle sticks to reticle
— Advection-diffusion particle-transport analysis
 Particle-flux boundary condition on solid surfaces

— Massively parallel Langevin particle simulations @ %‘iﬂﬁau
oratories



;"b‘ Advection-Diffusion Analysis

%+i-(nU—Da—nj:O H=U,,V=r"Ulc,D=c/2

ot Ox Ox e, =exp|HU/D), e, =exp|LU/D]

advection-diffusion equation i
on\ ncf fz((eH _1)f1 +V)
ﬁ-(nU—D—j:— P = >
ox ) x'? (eL_l)flfzﬂL(eLfﬂsz)V

particle-flux boundary condition deposition probability

Advection-diffusion analysis for deposition probability P
— Particles injected at speed U, “stop” at height Hin gap L
— Particles drift downward at speed U and diffuse with D
— Particles stick with probabilities s, & s, on bottom & top
— Particle-flux coefficients f, & f, on bottom & top
—If H> L, reflect (1-s,), soH — 2L-H, P — s,+(1-s,)P, etc.
Above analysis does not provide deposition profile
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%i Typical Langevin Simulations

70 nm

Particle concentration fields for continuous injection
— Water-like particles in nitrogen at 50 mtorr and 295 K
— Gap height 1 cm, upward injection velocity 10 m/s
— Gravity 0g, temperature gradient 10 K/cm (thermophoresis)
— Sticking fraction s =1 on bottom and top

Diameters 70-200 nm, deposition probabilities 0-1 @ﬁ&"ﬁi‘i’au
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%j Advection-Diffusion and Langevin
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Advection-diffusion and Langevin agree very well

— Left: gravity 0-10g with s =1 (thermophoresis is similar)
- “Bumps” at low diameter, where diffusion exceeds gravity

— Right: sticking fraction s = 0.01, 0.1, 1 with gravity 1g
« “Cusps” occur when penetration exceeds gap: H2 L

— In both cases, large diameter d yields P — s —
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# Conclusions
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Nanoparticles in gas have Knudsen layer at wall

— Particle concentration at wall proportional to flux

— Structure determined by reflection/sticking process
Nanoparticle Knudsen layer investigated

— Generalized Fokker-Planck equation

— MP Langevin particle simulations
Particle-flux boundary condition developed

— For advection-diffusion particle-transport analyses

— Uses particle-flux coefficient f from above @ Sandia
I
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