

Nanoparticle Knudsen Layers in Gases

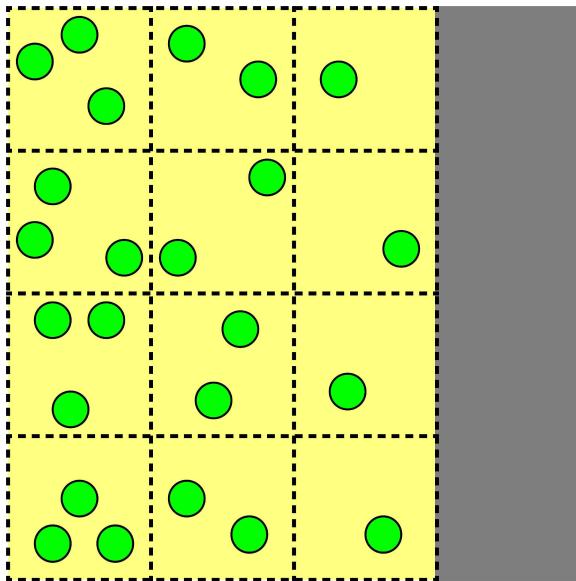
J. R. Torczynski, M. A. Gallis, and D. J. Rader

**Engineering Sciences Center
Sandia National Laboratories
Albuquerque, New Mexico**

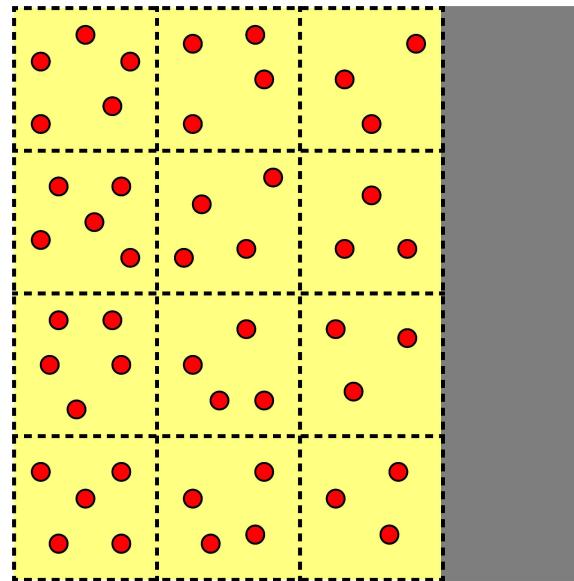
***American Physical Society Division of Fluid Dynamics
60th Annual Meeting
Salt Lake City, UT; November 18-20, 2007***

Financial support provided by Intel Corporation under CRADA SC93/01154.

Nanoparticle Knudsen Layer in Gas



Large particles diffusing to wall
approach **zero** concentration



Small particles diffusing to wall
approach **nonzero** concentration

Nanoparticles in gas have a Knudsen layer at wall

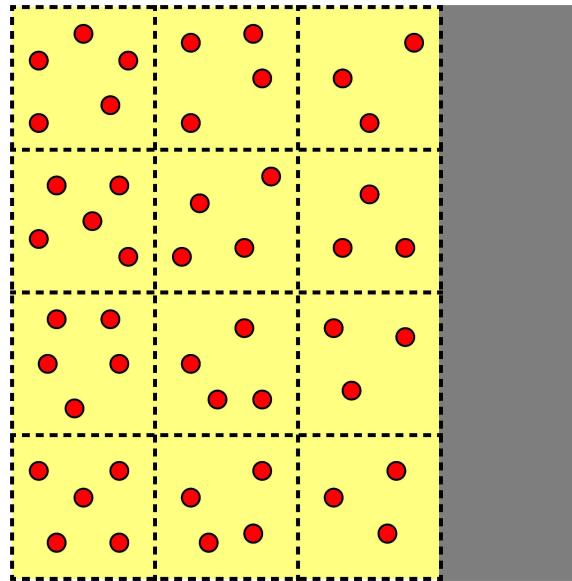
- Concentration doesn't vanish as for larger particles
- Concentration at wall proportional to particle flux

Investigate using theory and simulations

Particle-Flux Boundary Condition

$$\hat{\mathbf{n}} \cdot \left(\mathbf{n} \mathbf{U} - D \frac{\partial \mathbf{n}}{\partial \mathbf{x}} \right) = \frac{n c f}{\pi^{1/2}}$$

Drift + Diffusion \propto Jump



Particle-flux boundary condition as wall is approached

- Can be used in advection-diffusion transport analyses
 - Analogous to velocity-slip and temperature-jump BCs
- Concentration n extrapolated to wall proportional to flux
 - Drift velocity U , diffusivity D , thermal velocity c
- Particle-flux coefficient f is dimensionless, order-unity
 - Depends on how particles stick to & reflect from wall

Approximate Theory

$$\frac{\partial N}{\partial t} + \frac{\partial}{\partial \mathbf{x}} \cdot (\mathbf{u}N) + \frac{1}{\tau} \frac{\partial}{\partial \mathbf{u}} \cdot (-\mathbf{v}N) = \frac{c^2}{2\tau} \frac{\partial}{\partial \mathbf{u}} \cdot \left(\frac{\partial N}{\partial \mathbf{u}} \right), \quad \mathbf{v} = \mathbf{u} - \mathbf{U}$$

GFP equation

$$N = \frac{1}{\pi^{3/2} c^3} \exp \left[-\frac{\mathbf{v} \cdot \mathbf{v}}{c^2} \right] \left(n_\infty + n_1 \exp \left[\frac{2\mathbf{U} \cdot (\mathbf{x} - \tau \mathbf{v})}{c^2 \tau} - \frac{\mathbf{U} \cdot \mathbf{U}}{c^2} \right] \right)$$

exact solution

$$\int_{-\hat{\mathbf{n}} \cdot \mathbf{u} > 0} N(-\hat{\mathbf{n}} \cdot \mathbf{u}) d\mathbf{u} = \int_{\hat{\mathbf{n}} \cdot \mathbf{u} > 0} \mathcal{R}[\mathbf{u}] N(\hat{\mathbf{n}} \cdot \mathbf{u}) d\mathbf{u}$$

approximation at wall

$$\mathcal{f} = \mathcal{s} \left\{ 2 - \mathcal{s} \left(1 + \operatorname{erf} \left[\hat{U} \right] - \frac{1 - \exp \left[-\hat{U}^2 \right]}{\pi^{1/2} \hat{U}} \right) \right\}^{-1}$$

sticking-fraction process: \mathcal{s}

$$\mathcal{f} = \frac{\pi^{1/2} \hat{U} \left(1 - \exp \left[-\hat{U}_n^2 \right] \right)}{1 - \exp \left[-\hat{U}_n^2 \right] - \exp \left[-\hat{U}^2 \right] + \exp \left[-\left(\hat{U}_n - \hat{U} \right)^2 \right] + \pi^{1/2} \hat{U} \left(\operatorname{erfc} \left[\hat{U}_n - \hat{U} \right] + \operatorname{erfc} \left[\hat{U} \right] \right)}$$

cutoff-velocity process: $\sigma = 1 - \exp \left[-\hat{U}_n^2 \right]$, $\hat{U}_n = U_n / c$, $\hat{U} = U / c$

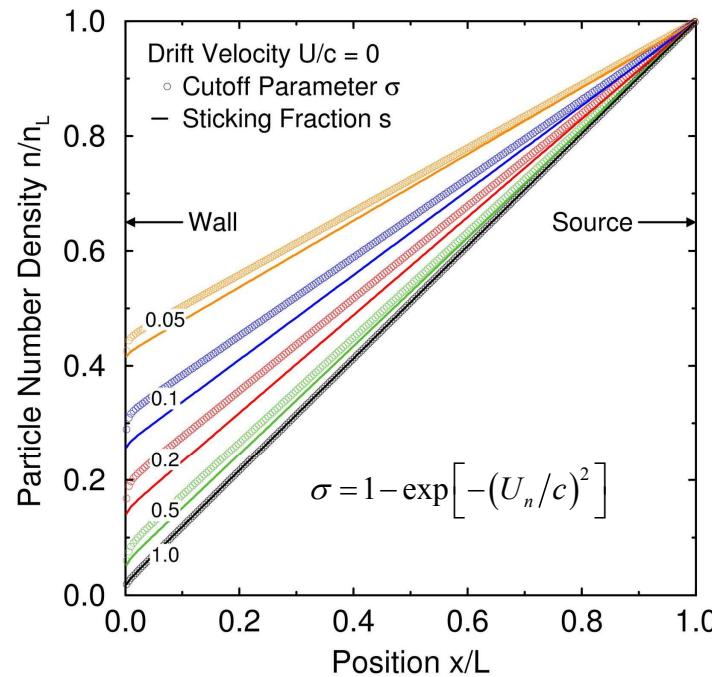
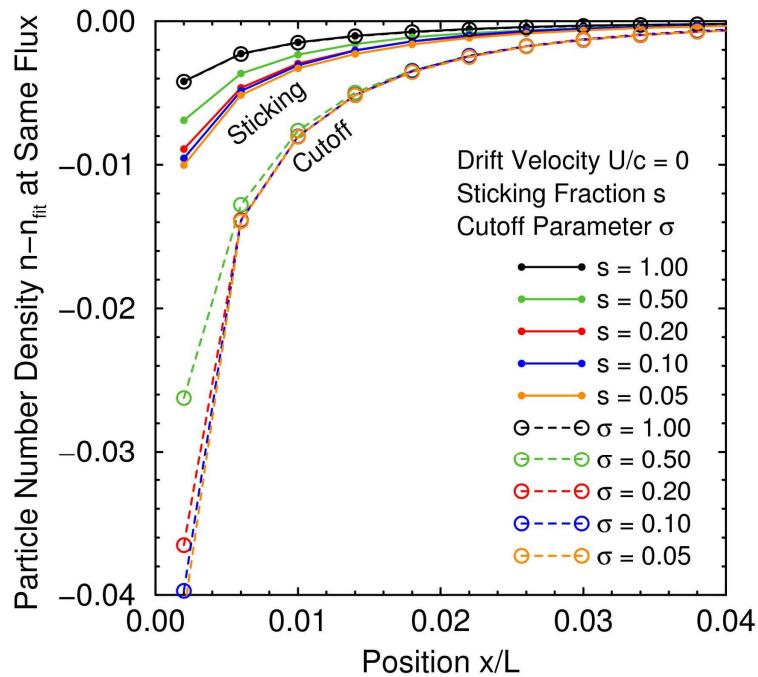
Generalized Fokker-Planck equation yields approximate particle-flux coefficient \mathcal{f} for arbitrary wall interactions

- Use exact solution for steady uniform unbounded space
- Approximation: outgoing equals reflected incoming at wall

Apply to two reflection processes \mathcal{R} with drift velocity \mathbf{U}

- Sticking fraction: sticking probability \mathcal{s} same for all particles
- Cutoff velocity: stick if normal velocity $< \mathcal{U}_n$ (σ is convenient)
- Any reflections are taken to be specular

Langevin Simulations



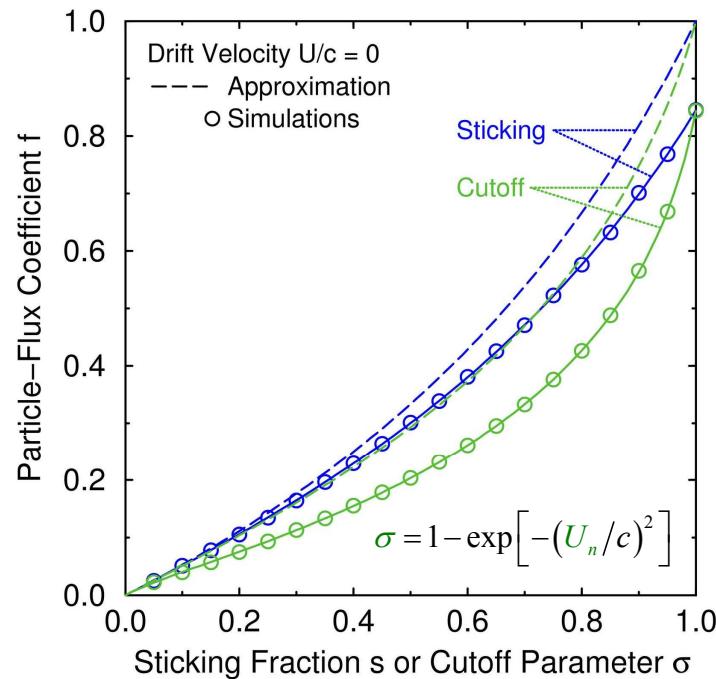
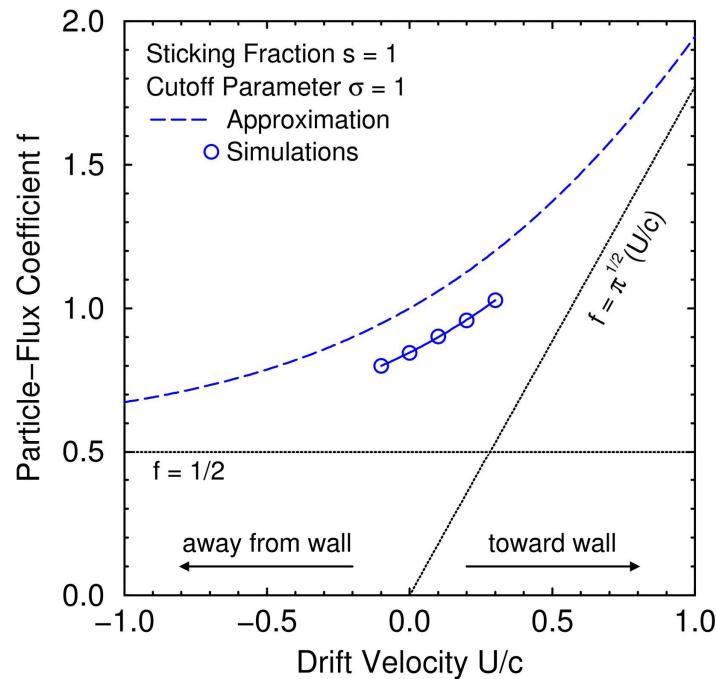
Langevin particle simulations: MP Ermak-Buckholz

- 1D diffusion: wall at $x = 0$, source at $x = L = 1000$ nm
- 20-nm PSL in air, 18-nm stopping distance (NIST, 2005)

Knudsen layer near wall, linear profile away from wall

- Particle-flux coefficient f by extrapolating linear part to wall
- Cutoff σ (U_n) has larger effect than sticking s

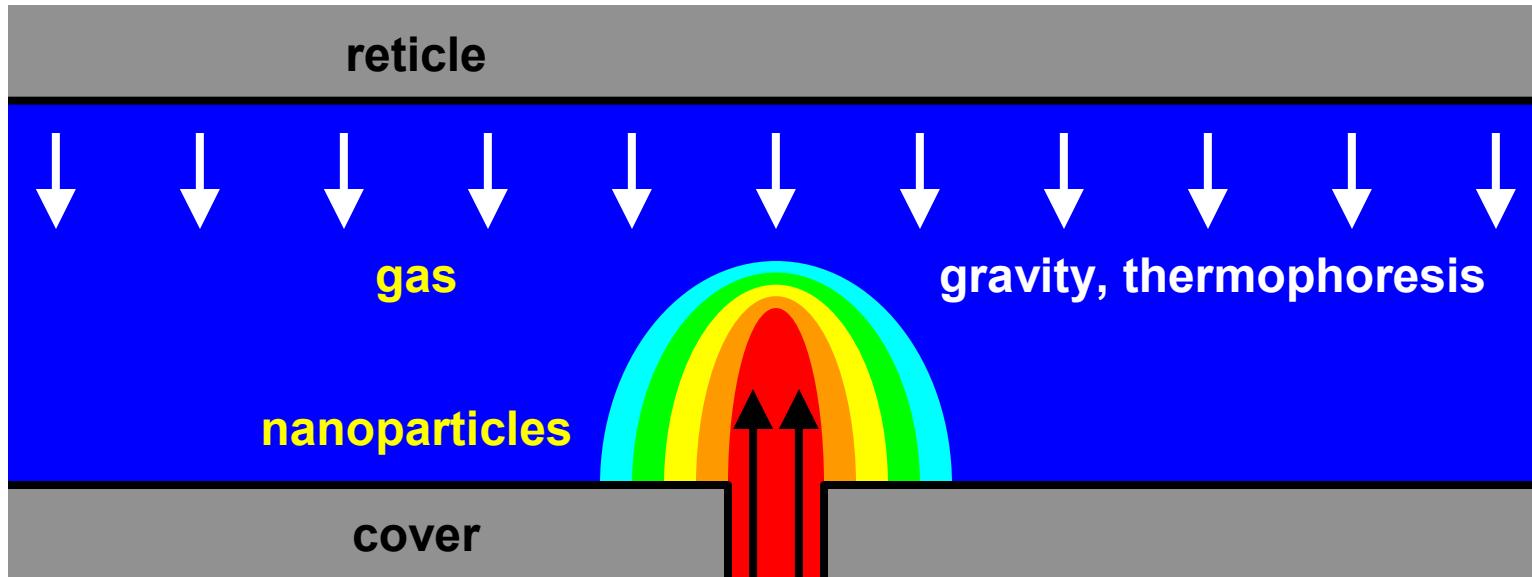
Particle-Flux Coefficient



Particle-flux coefficient f from approximation & simulations

- Left: vs. sticking s or cutoff σ with drift velocity $U = 0$
- Right: vs. drift velocity U with $s = \sigma = 1$
- Approximation and simulations agree reasonably well
 - Better for sticking than cutoff: reflected particle distribution

Semiconductor Application



Assess contamination of reticle by nanoparticles in gas

- Nanoparticles injected upward from below
- Nanoparticles repelled by gravity and thermophoresis

Find probability that injected nanoparticle sticks to reticle

- Advection-diffusion particle-transport analysis
 - Particle-flux boundary condition on solid surfaces
- Massively parallel Langevin particle simulations

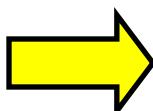
Advection-Diffusion Analysis

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial \mathbf{x}} \cdot \left(n \mathbf{U} - D \frac{\partial n}{\partial \mathbf{x}} \right) = 0$$

advection-diffusion equation

$$\hat{\mathbf{n}} \cdot \left(n \mathbf{U} - D \frac{\partial n}{\partial \mathbf{x}} \right) = \frac{ncf}{\pi^{1/2}}$$

particle-flux boundary condition



$$H = U_I \tau, \hat{V} = \pi^{1/2} U/c, D = c^2 \tau/2$$

$$e_H = \exp[HU/D], e_L = \exp[LU/D]$$

$$P = \frac{f_2 \left((e_H - 1) f_1 + \hat{V} \right)}{(e_L - 1) f_1 f_2 + (e_L f_1 + f_2) \hat{V}}$$

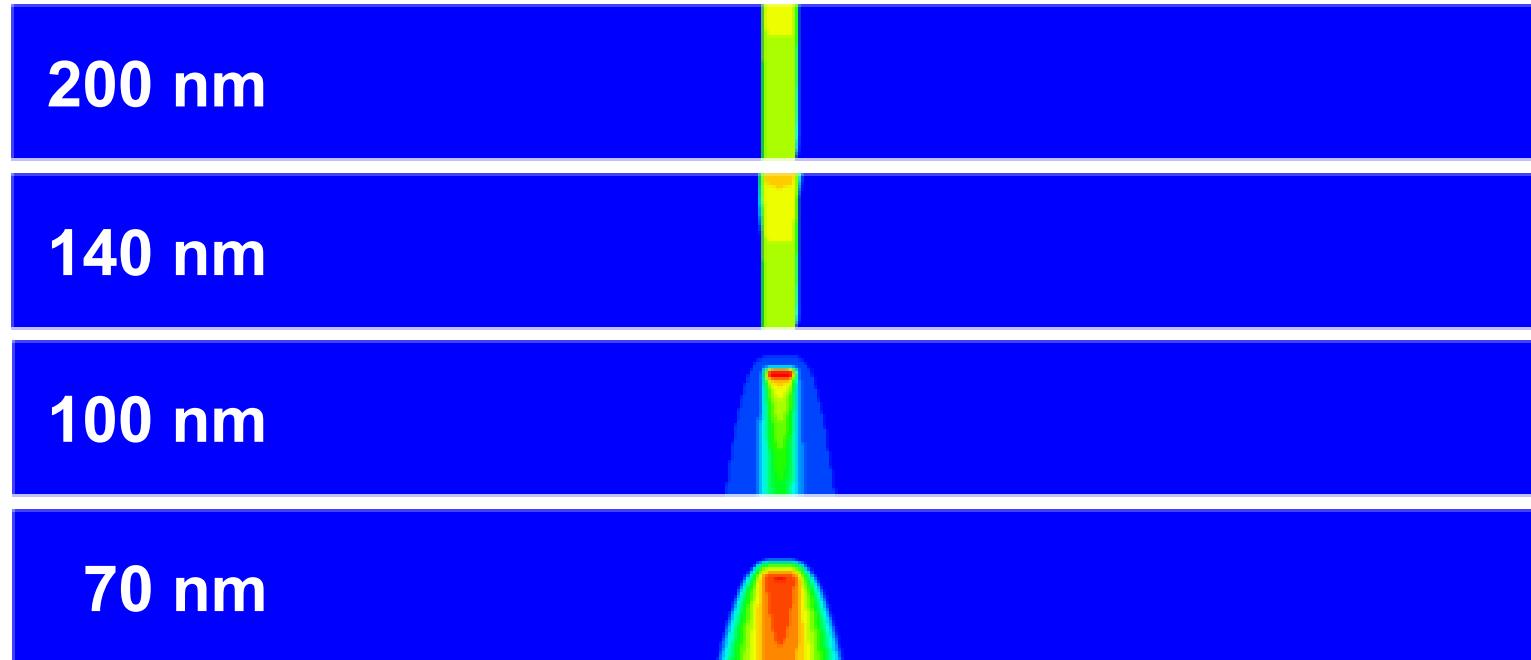
deposition probability

Advection-diffusion analysis for deposition probability P

- Particles injected at speed U , “stop” at height H in gap L
- Particles drift downward at speed U and diffuse with D
- Particles stick with probabilities s_1 & s_2 on bottom & top
- Particle-flux coefficients f_1 & f_2 on bottom & top
- If $H > L$, reflect $(1-s_2)$, so $H \rightarrow 2L-H$, $P \rightarrow s_2 + (1-s_2)P$, etc.

Above analysis does not provide deposition profile

Typical Langevin Simulations

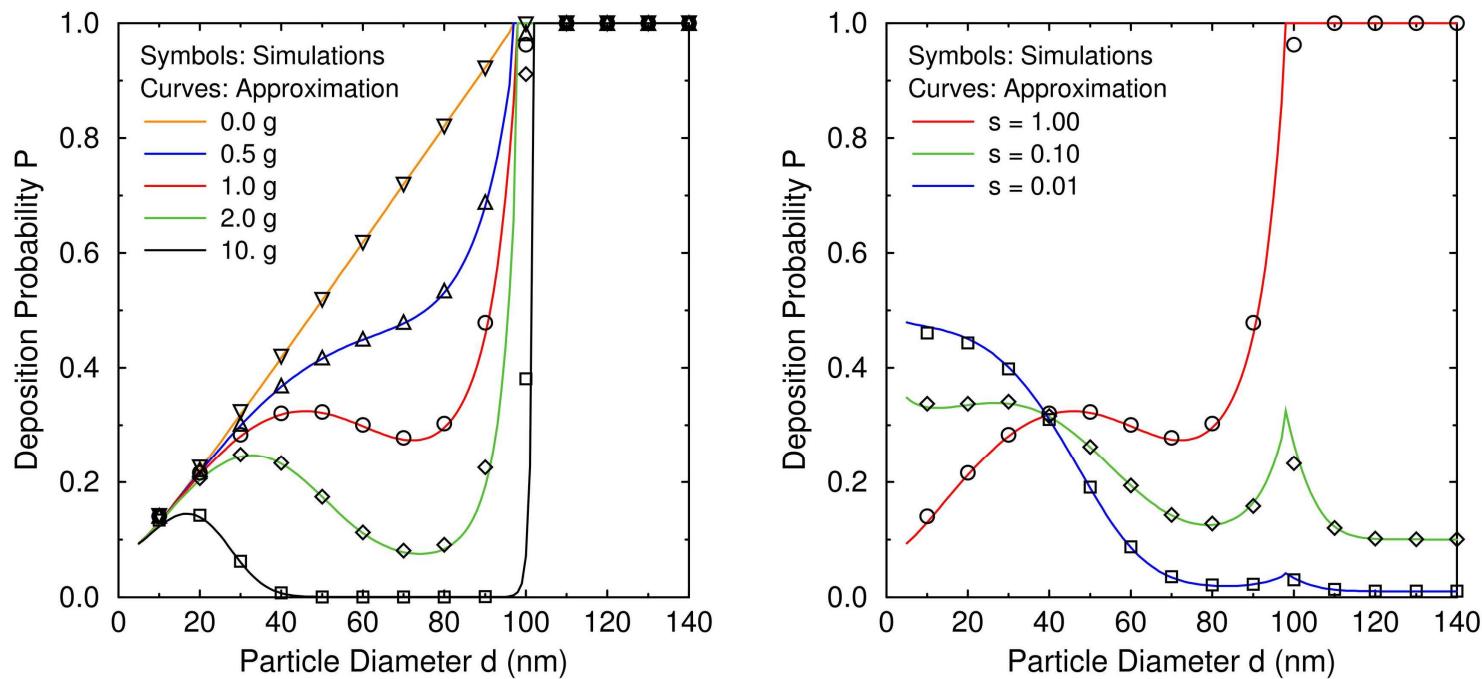


Particle concentration fields for continuous injection

- Water-like particles in nitrogen at 50 mtorr and 295 K
- Gap height 1 cm, upward injection velocity 10 m/s
- Gravity 0g, temperature gradient 10 K/cm (thermophoresis)
- Sticking fraction $s = 1$ on bottom and top

Diameters 70-200 nm, deposition probabilities 0-1

Advection-Diffusion and Langevin



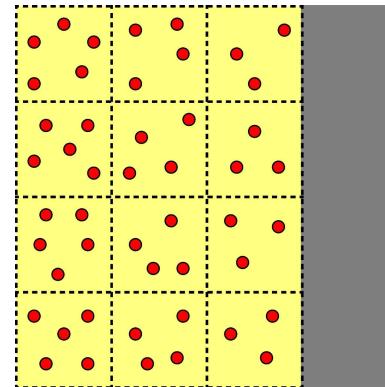
Advection-diffusion and Langevin agree very well

- Left: **gravity 0-10g with $s = 1$ (thermophoresis is similar)**
 - “Bumps” at low diameter, where diffusion exceeds gravity
- Right: **sticking fraction $s = 0.01, 0.1, 1$ with gravity 1g**
 - “Cusps” occur when penetration exceeds gap: $H \geq L$
- In both cases, large diameter d yields $P \rightarrow s$

Conclusions

$$\hat{\mathbf{n}} \cdot \left(n\mathbf{U} - D \frac{\partial n}{\partial \mathbf{x}} \right) = \frac{ncf}{\pi^{1/2}}$$

Drift + Diffusion \propto Jump



Nanoparticles in gas have Knudsen layer at wall

- Particle concentration at wall proportional to flux
- Structure determined by reflection/sticking process

Nanoparticle Knudsen layer investigated

- Generalized Fokker-Planck equation
- MP Langevin particle simulations

Particle-flux boundary condition developed

- For advection-diffusion particle-transport analyses
- Uses particle-flux coefficient f from above

Acknowledgments

Financial support provided by Intel Corporation under CRADA SC93/01154 is gratefully acknowledged

The following individuals are thanked for providing insight into semiconductor particle-transport issues

- Kevin J. Orvek, Intel Corporation contract monitor**
- Long He, SEMATECH**
- David Y.-H. Pui and students, University of Minnesota**
- Christof Asbach and Heinz Fissan, IUTA, Deutschland**