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Nanoparticle Knudsen Layer in Gas

Nanoparticles in gas have a Knudsen layer at wall

– Concentration doesn’t vanish as for larger particles

– Concentration at wall proportional to particle flux

Investigate using theory and simulations

Large particles diffusing to wall

approach zero concentration

Small particles diffusing to wall

approach nonzero concentration



Particle-Flux Boundary Condition

Particle-flux boundary condition as wall is approached 

– Can be used in advection-diffusion transport analyses

• Analogous to velocity-slip and temperature-jump BCs

– Concentration n extrapolated to wall proportional to flux

• Drift velocity U, diffusivity D, thermal velocity c

– Particle-flux coefficient f is dimensionless, order-unity

• Depends on how particles stick to & reflect from wall
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Approximate Theory

Generalized Fokker-Planck equation yields approximate 

particle-flux coefficient f for arbitrary wall interactions

– Use exact solution for steady uniform unbounded space

– Approximation: outgoing equals reflected incoming at wall

Apply to two reflection processes R with drift velocity U

– Sticking fraction: sticking probability s same for all particles

– Cutoff velocity: stick if normal velocity < Un (σσσσ is convenient)

– Any reflections are taken to be specular
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Langevin Simulations

Langevin particle simulations: MP Ermak-Buckholz

– 1D diffusion: wall at x = 0, source at x = L = 1000 nm

– 20-nm PSL in air, 18-nm stopping distance (NIST, 2005)

Knudsen layer near wall, linear profile away from wall

– Particle-flux coefficient f by extrapolating linear part to wall

– Cutoff σσσσ (Un) has larger effect than sticking s
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Particle-Flux Coefficient

Particle-flux coefficient f from approximation & simulations

– Left: vs. sticking s or cutoff σσσσ with drift velocity U = 0

– Right: vs. drift velocity U with s = σσσσ = 1

– Approximation and simulations agree reasonably well

• Better for sticking than cutoff: reflected particle distribution
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Semiconductor Application

Assess contamination of reticle by nanoparticles in gas

– Nanoparticles injected upward from below

– Nanoparticles repelled by gravity and thermophoresis

Find probability that injected nanoparticle sticks to reticle

– Advection-diffusion particle-transport analysis

• Particle-flux boundary condition on solid surfaces

– Massively parallel Langevin particle simulations

nanoparticles

reticle

cover

gas gravity, thermophoresis



Advection-Diffusion Analysis

Advection-diffusion analysis for deposition probability P

– Particles injected at speed UI “stop” at height H in gap L

– Particles drift downward at speed U and diffuse with D

– Particles stick with probabilities s1 & s2 on bottom & top

– Particle-flux coefficients f1 & f2 on bottom & top

– If H > L, reflect (1–s2), so H → 2L–H, P → s2+(1–s2)P, etc. 

Above analysis does not provide deposition profile
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Typical Langevin Simulations

Particle concentration fields for continuous injection

– Water-like particles in nitrogen at 50 mtorr and 295 K

– Gap height 1 cm, upward injection velocity 10 m/s

– Gravity 0g, temperature gradient 10 K/cm (thermophoresis)

– Sticking fraction s = 1 on bottom and top

Diameters 70-200 nm, deposition probabilities 0-1

70 nm

100 nm

140 nm

200 nm



Advection-Diffusion and Langevin

Advection-diffusion and Langevin agree very well

– Left: gravity 0-10g with s = 1 (thermophoresis is similar)

• “Bumps” at low diameter, where diffusion exceeds gravity

– Right: sticking fraction s = 0.01, 0.1, 1 with gravity 1g

• “Cusps” occur when penetration exceeds gap: H ≥ L

– In both cases, large diameter d yields P → s



Conclusions

Nanoparticles in gas have Knudsen layer at wall

– Particle concentration at wall proportional to flux

– Structure determined by reflection/sticking process

Nanoparticle Knudsen layer investigated

– Generalized Fokker-Planck equation

– MP Langevin particle simulations

Particle-flux boundary condition developed

– For advection-diffusion particle-transport analyses

– Uses particle-flux coefficient f from above
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