i [’ i SAND2007- 7130P

Amesos
Sparse Direct Solver Package

Tim Davis, Mike Heroux, Rob Hoekstra, Marzio
Sala, Ken Stanley, Heidi Thornquist, Jim
Willenbring

Trilinos Users Group
November 6t", 2007

Sandia
A National
LOCKHEED MART!N% Laboratories

'}_'

What’s new in Amesos

« KLU / BTF version update
- Paraklete improvements

* Interface — Timing details

Sandia
A National
LOCKHEED MARTIN% Laboratories

Y
#urrently Available Solver Interfaces

* KLU:

* SuperLU:

« UMFPACK:
 LAPACK:

- Paraklete:

* SuperLUdist:

* MUMPS:

« ScaLAPACK:

- DSCPACK:
* TAUCS:

LOCKHEED MART'N%

Native. Serial unsymmetric [Davis]

Serial unsymmetric [Li et al.]; v3.0

Serial unsymmetric [Davis]; v4.4

Serial dense unsymmetric [Dongarra et al.]
Native. Parallel unsymmetric [Davis]
Parallel unsymmetric [Li et al.]; v2.0

Parallel unsymmetric [Amestoy et al.]; v4.6.2
Parallel dense unsymmetric [Dongarra et al.]
Parallel Symmetric [Ragavan]; v1.0

Parallel Symmetric [Toledo et al.]; v2.2

Sandia
National
Laboratories

Current Amesos Factory Interface

// Create an Epetra LinearProblem
Epetra LinearProblem Problem(Matrix, LHS, RHS);

// Create a solver object.
Teuchos: :RCP<Amesos_BaseSolver> Solver;

// Create the solver factory.
Amesos Factory;

// Specifiy the solver. SolverType can be one
// of the following values:

// - “Lapack”

// - “Klu”

// - “Umfpack”

// - “Superlu”

// - “Scalapack”
// - “Superludist”
// — \\Mumps"

// - “Taucs”

// - “Dscpack”
std: :string SolverType

// Create the solver using the factory.
Solver = Factory.Create(SolverType, Problem) ;

// Set solver parameters

Teuchos: :ParameterList List;

List.set (“ParameterName”, ParameterValue) ;
Solver->SetParameters (List) ;

// Perform symbolic factorization
// (only need Matrix graph, not values)
Solver->SymbolicFactorization() ;

// Perform numeric factorization
// (Matrix values can change here)
Solver->NumericFactorization() ;

// Perform solve
// (LHS and RHS of Problem can change here)
Solver->Solve () ;

A
LOCKHEED MARTIN//f/

Sandia
National
Laboratories

A
} KLU / BTF Version Update

« KLU / BTF 1.0 released Spring 2007
— first official release

* Integrated into Amesos for Trilinos 8.0

Sandia
A National
LOCKHEED MARTIN//f/ Laboratories

A
Paraklete Improvements

* Native distributed memory sparse solver

— Tim Davis
 Memory leak fixed

— Enabled the solution of sequences of linear systems
* Block triangular form (BTF) permutation

— Serial symbolic analysis

— Integration into Amesos soon ...

Sandia
A National
LOCKHEED MARTIN% Laboratories

Interface — Timing Details

Amesos_Klu :
Amesos_Klu :
Amesos_Klu :
Amesos_Klu :
Amesos_Klu :
Amesos_Klu :
Amesos_Klu :
Amesos_Klu :
Amesos_Klu :
Amesos_Klu :
Amesos_Klu :
Amesos_Klu :

Amesos_Klu :

— enables timings to be loaded into a Teuchos::ParameterList

LOCKHEED MART!N%

- Amesos_Time class

— rewritten for more efficiency
— allows same timing output

Time to convert matrix to Klu format = 2.3e-05 (s)
Time to redistribute matrix = 1.6e-05 (s)
Time to redistribute vectors = 4e-06 (s)

Number of symbolic factorizations =1

Time for sym fact = 0.00015 (s), avg = 0.00015 (s)
Number of numeric factorizations =1
Time for num fact = 8.8e-05 (s), avg = 8.8e-05 (s)

Number of solve phases =1

Time for solve = 1.7e-05 (s), avg = 1.7e-05 (s)

Total time spent in Amesos = 0.000255 (s)

Total time spent in the Amesos interface = 7.8e-05 (s)
(the above time does not include KLU time)

Amesos interface time / total time = 0.305882

()

Sandia
National
Laboratories

Interface - Timing Details

Teuchos: :ParameterList TimingsList;
Solver->GetTiming(TimingsList) ;

// you can find out how much time was spent in
double sfact time, nfact time, solve_ time;
double mtx_conv_time, mtx redist time, vec_redist time;

// 1) The symbolic factorization
// (parameter doesn't always exist)
sfact_time = TimingsList.get("Total symbolic factorization time", 0.0);

// 2) The numeric factorization
// (always exists if NumericFactorization() is called)

// 3) Solving the linear system
// (always exists if Solve() is called)
solve_time = Teuchos::getParameter<double>(TimingsList, "Total solve time");

// 4) Converting the matrix to the accepted format for the solver
// (always exists if SymbolicFactorization() is called)
mtx_conv_time = Teuchos::getParameter<double>(TimingsList, "Total solve time");

// 5) Redistributing the matrix for each solve to the accepted format for the solver
mtx_redist time = TimingsList.get("Total matrix redistribution time", 0.0);

// 6) Redistributing the vector for each solve to the accepted format for the solver
vec_redist_ time = TimingsList.get("Total vector redistribution time", 0.0);

nfact_time = Teuchos::getParameter<double>(TimingsList, "Total numeric factorization time"

)

A
LOCKHEED MARTIN%

Sandia
National
Laboratories

