
Amesos
Sparse Direct Solver Package

Tim Davis, Mike Heroux, Rob Hoekstra, Marzio
Sala, Ken Stanley, Heidi Thornquist, Jim

Willenbring

Trilinos Users Group
November 6th, 2007

SAND2007-7130P

What’s new in Amesos

• KLU / BTF version update

• Paraklete improvements

• Interface – Timing details

• KLU: Native. Serial unsymmetric [Davis]

• SuperLU: Serial unsymmetric [Li et al.]; v3.0

• UMFPACK: Serial unsymmetric [Davis]; v4.4

• LAPACK: Serial dense unsymmetric [Dongarra et al.]

• Paraklete: Native. Parallel unsymmetric [Davis]

• SuperLUdist: Parallel unsymmetric [Li et al.]; v2.0

• MUMPS: Parallel unsymmetric [Amestoy et al.]; v4.6.2

• ScaLAPACK: Parallel dense unsymmetric [Dongarra et al.]

• DSCPACK: Parallel Symmetric [Ragavan]; v1.0

• TAUCS: Parallel Symmetric [Toledo et al.]; v2.2

Currently Available Solver Interfaces

// Create an Epetra_LinearProblem
Epetra_LinearProblem Problem(Matrix, LHS, RHS);

// Create a solver object.
Teuchos::RCP<Amesos_BaseSolver> Solver;

// Create the solver factory.
Amesos Factory;

// Specifiy the solver. SolverType can be one
// of the following values:
// - “Lapack”
// - “Klu”
// - “Umfpack”
// - “Superlu”
// - “Scalapack”
// - “Superludist”
// - “Mumps”
// - “Taucs”
// - “Dscpack”
std::string SolverType

// Create the solver using the factory.
Solver = Factory.Create(SolverType, Problem);

// Set solver parameters
Teuchos::ParameterList List;
List.set(“ParameterName”, ParameterValue);
Solver->SetParameters(List);

// Perform symbolic factorization
// (only need Matrix graph, not values)
Solver->SymbolicFactorization();

// Perform numeric factorization
// (Matrix values can change here)
Solver->NumericFactorization();

// Perform solve
// (LHS and RHS of Problem can change here)
Solver->Solve();

Current Amesos Factory Interface

// Create an Epetra_LinearProblem
Epetra_LinearProblem Problem(Matrix, LHS, RHS);

// Create a solver object.
Teuchos::RCP<Amesos_BaseSolver> Solver;

// Create the solver factory.
Amesos Factory;

// Create the solver using the factory.
Solver = Factory.Create(“Klu”, Problem);

// Perform symbolic factorization
Solver->SymbolicFactorization();

// Perform numeric factorization
Solver->NumericFactorization();

// Perform solve
Solver->Solve();

KLU / BTF Version Update

• KLU / BTF 1.0 released Spring 2007

– first official release

• Integrated into Amesos for Trilinos 8.0

Paraklete Improvements

• Native distributed memory sparse solver

– Tim Davis

• Memory leak fixed

– Enabled the solution of sequences of linear systems

• Block triangular form (BTF) permutation

– Serial symbolic analysis

– Integration into Amesos soon …

Interface – Timing Details

• Amesos_Time class
– rewritten for more efficiency

– allows same timing output
• ParamList.set(“Print Timing”, true);

– enables timings to be loaded into a Teuchos::ParameterList

--

Amesos_Klu : Time to convert matrix to Klu format = 2.3e-05 (s)

Amesos_Klu : Time to redistribute matrix = 1.6e-05 (s)

Amesos_Klu : Time to redistribute vectors = 4e-06 (s)

Amesos_Klu : Number of symbolic factorizations = 1

Amesos_Klu : Time for sym fact = 0.00015 (s), avg = 0.00015 (s)

Amesos_Klu : Number of numeric factorizations = 1

Amesos_Klu : Time for num fact = 8.8e-05 (s), avg = 8.8e-05 (s)

Amesos_Klu : Number of solve phases = 1

Amesos_Klu : Time for solve = 1.7e-05 (s), avg = 1.7e-05 (s)

Amesos_Klu : Total time spent in Amesos = 0.000255 (s)

Amesos_Klu : Total time spent in the Amesos interface = 7.8e-05 (s)

Amesos_Klu : (the above time does not include KLU time)

Amesos_Klu : Amesos interface time / total time = 0.305882

--

Interface - Timing Details

Teuchos::ParameterList TimingsList;
Solver->GetTiming(TimingsList);

// you can find out how much time was spent in ...
double sfact_time, nfact_time, solve_time;
double mtx_conv_time, mtx_redist_time, vec_redist_time;

// 1) The symbolic factorization
// (parameter doesn't always exist)
sfact_time = TimingsList.get("Total symbolic factorization time", 0.0);

// 2) The numeric factorization
// (always exists if NumericFactorization() is called)
nfact_time = Teuchos::getParameter<double>(TimingsList, "Total numeric factorization time");

// 3) Solving the linear system
// (always exists if Solve() is called)
solve_time = Teuchos::getParameter<double>(TimingsList, "Total solve time");

// 4) Converting the matrix to the accepted format for the solver
// (always exists if SymbolicFactorization() is called)
mtx_conv_time = Teuchos::getParameter<double>(TimingsList, "Total solve time");

// 5) Redistributing the matrix for each solve to the accepted format for the solver
mtx_redist_time = TimingsList.get("Total matrix redistribution time", 0.0);

// 6) Redistributing the vector for each solve to the accepted format for the solver
vec_redist_time = TimingsList.get("Total vector redistribution time", 0.0);

