

Determining Effective Upgrades

Insider Protection Course

Learning Objectives

- **Identify how to prioritize security system upgrades**
- **Recognize the role of scenario development in identifying system upgrades**
- **Identify methods to present potential upgrades**

Upgrade Process

- Establish risk criteria
 - Prioritize based on risk
 - Determine acceptability of risk levels
- Begin by developing upgrade options for scenarios with:
 - Highest consequences and
 - Lowest system effectiveness
- Evaluate other scenario and consequence combinations as deemed necessary
- Develop multiple upgrade options considering the effect on the total system
 - Not only on the scenarios of most concern
- Consider Cost

Prioritize Scenarios by Risk

Threat/Target	Scenario	Risk
HP Technician Product Vault	Protracted Theft - Diverts material to waste stream, allows material shipment from MAA, recovers from sanitary waste	0.92
HP Technician Chip Vault	Protracted Theft - Diverts material to waste stream, allows material shipment from MAA, recovers from sanitary waste	0.85
Machining Operator Machining Area	Protracted Theft - Takes small amount of scrap while working, shields in lunchbox	0.85
...		

When do you stop upgrading?

Threat/Target	Scenario	Risk
HP Technician/Product Vault	Scenario 1	0.92
HP Technician/Chip Vault	Scenario 2	0.85
Machining Operator/Machining Area	Scenario 3	0.85
Maintenance/Machining Area	Scenario 4	0.80
Shift Supervisor/Machining Area	Scenario 5	0.80
Plant Manager/Machining Area	Scenario 6	0.65
HP Technician/Machining Area	Scenario 7	0.65
Material Handler/Chip Vault	Scenario 8	0.60
...		
QA Manager/X-ray facility	Scenario m	0.45
...		
Measurement Team/Machining Area	Scenario n	0.18

Where do you move from **unacceptable risk** to **acceptable risk**

This is normally established at a policy level

Developing Upgrade Options

- **Systematically review the scenarios for operational or security changes that provide:**
 - **Earlier and better detection possibilities**
 - **Administrative controls**
 - **Technology**
 - **Increased delays at detection location**
 - **Improved operational and security response possibilities**
 - **Denial of capability, opportunity, tools, etc.**

Look at methods or strategies used

Threat/Scenarios	Methods/Strategies used		
	Step 1	Step 2	Step n
HP Tech Scenario 1	Diverts material to waste stream	allows material shipment from MAA	...
HP Tech Scenario 2	Diverts material to waste stream	allows material shipment from MAA	...
...			

- **Look for common methods**
 - **Are they only used by one Insider group?**
 - **Do multiple groups use the same methods?**
 - **Do multiple scenarios utilize the same methods?**

Considerations in Formulating Upgrade Options

- **Strive for upgrades that affect many scenarios**
- **Be careful not to introduce upgrades for one scenario that have a negative effect on other scenarios**
- **Identify if there are unacceptable operational and/or safety impacts**
- **Document improvement options including rationale for selection**
- **Review the MPC&A, operational, and safety aspects associated with the scenarios**
 - **Can something be changed in the operational or safety systems to make scenarios less likely to succeed?**

Upgrade Considerations

- **Operational**
 - Set operational limits on quantities in process
 - Set operational limits on materials outside of storage
- **Detection**
 - Enhance two-person controls
 - Provide duress alarms
- **Delay**
 - Compensatory measures when delay systems or material controls are not in place (e.g. material is accessed)
- **Response**
 - Reduce response force deployment time

System Considerations

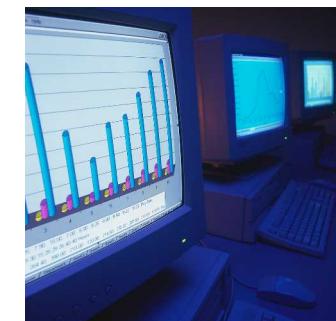
- **Strive for System Balance**
- **Try to achieve Protection-in-Depth**

Re-evaluate Protection System Effectiveness

- Develop each of the upgrade options in enough detail to re-analyze the system effectiveness
- Go through the effectiveness evaluation again with the improvements
- Prepare a chart showing the changes in risk with the options
 - One chart for each upgrade option or combination of upgrade options

Example Risk Summary Chart

Threat Group	Bunker	Product Vault	X-ray Facility	Chip Vault	Machining area
Plant Manager	H	H	M	L	H
Shift Supervisor	H	H	L	M	H
Machining Operator	H	H	VL	L	H
Health Physics Technician	H	H	VL	H	H
Operations Support	M	M	VL	L	L
Maintenance Manager	H	H	M	M	H
Maintenance Personnel	H	M	L	M	H


Example Risk Summary Chart (Baseline vs. Upgrade)

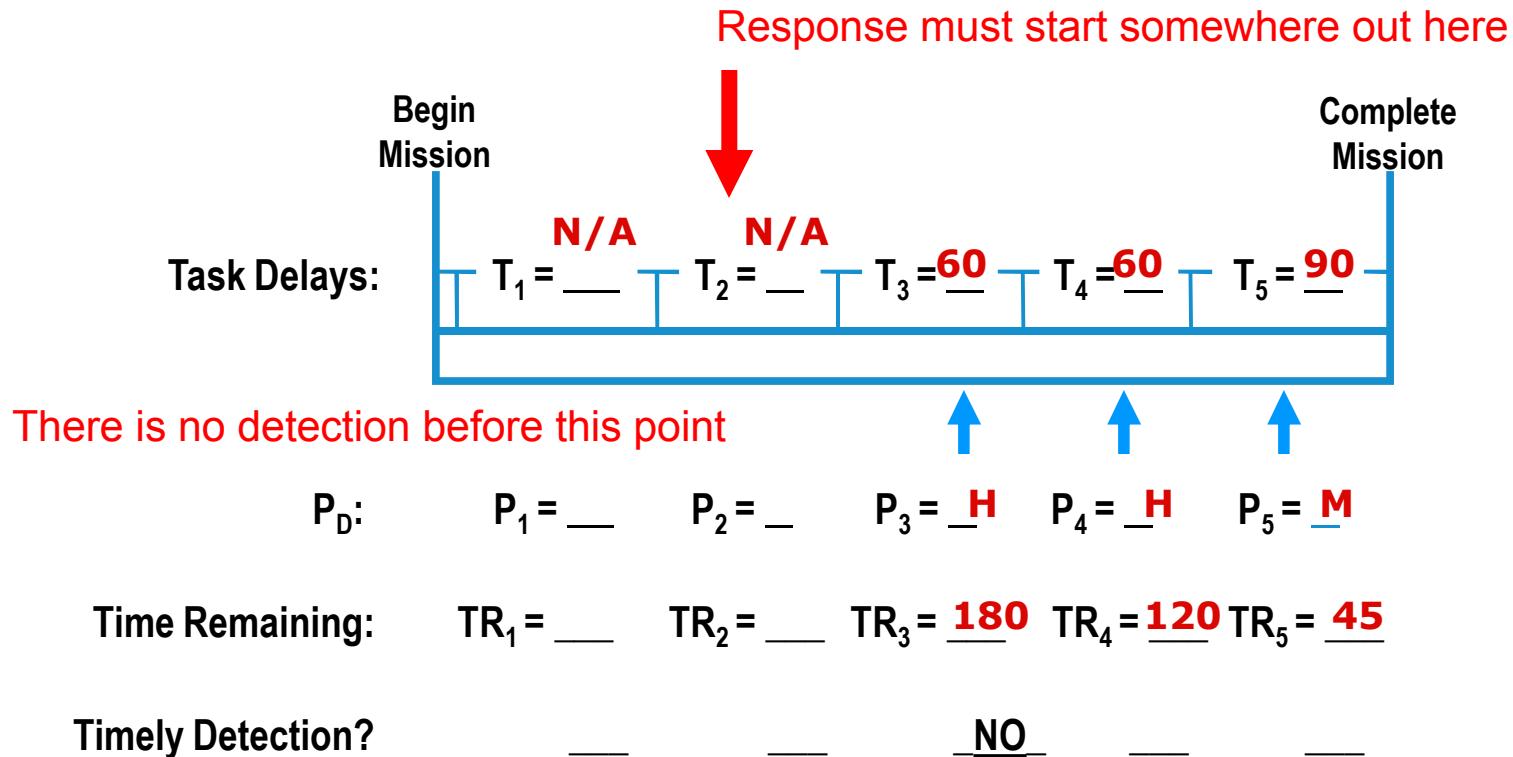
Threat Group	Target			
	Bunker	X-ray Facility	Chip Vault	Machining area
Plant Manager	$H \rightarrow L$			
Shift Supervisor	$H \rightarrow M$			
Machining Operator	$H \rightarrow L$			
Health Physics Technician	$H \rightarrow M$			
Operations Support	$H \rightarrow M$			
Maintenance Manager	$H \rightarrow L$			
Maintenance Personnel	$H \rightarrow M$			

Bunker Example 1: Analysis for Upgrades

- **Review the baseline system effectiveness**
 - Use the path event timeline
- **Discuss methods of improving the system**
- **Select one or more approaches based on expert judgment**
- **Re-analyze to determine the improvement in MPC&A system effectiveness with the upgrades**

Example 1: Possibly the Most Vulnerable Path For HP Tech/Bunker

Step	Action	Likelihood of Detection	Time (Sec)
1	Enter protected area normally	Very Low	N/A
2	Enter bunker normally	Very Low	N/A
3	Take package and hide under coat	High	60
4	Walk out of bunker normally	High	60
5	Walk normally to fence and throw package over and leave area	Medium	90


Example 1: Response Time

Example response time table for an adjacent co-worker/guards – theft from the bunker, HP Tech

Response Action	Time taken (seconds)	
	Min	Max
Co-worker identify malevolent action – Sees material removal – assume detection at this point	0	60
Communicate to guards	60	180
Guard communication time		30
Response prep time		50
Travel	0 to ECPs	30 to Bunker
Intervene	0	60
Total	140	380

Example 1: Path Event Timeline

If Response Force Time is 380 (worst-case) – $P_I = \text{Zero}$

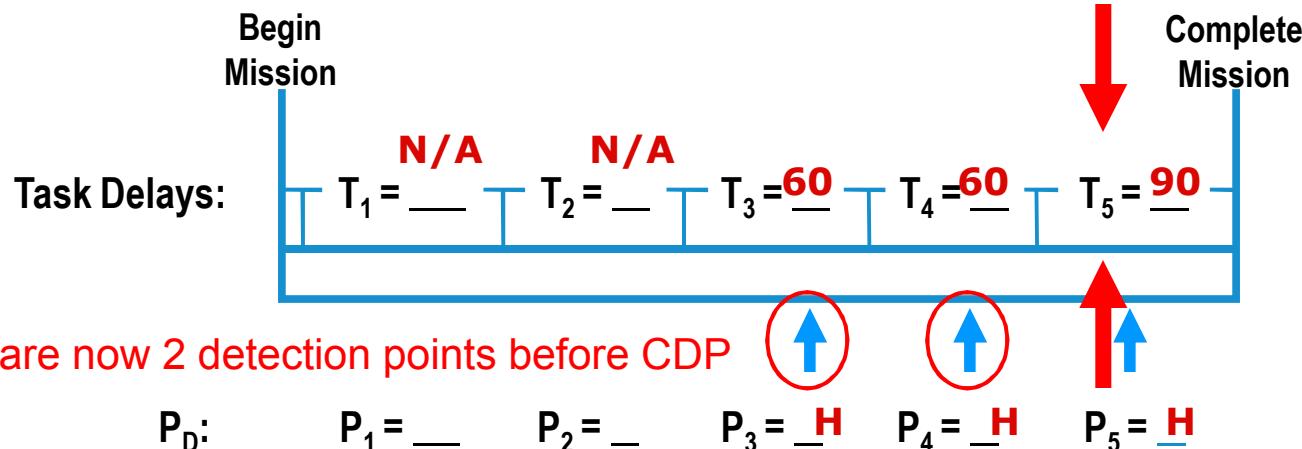
How could we improve this situation? Detection? Delay? Response?

Example 1 Upgrade: Posted Guard outside the Bunker

Possible change in detection and perhaps some delay for adding the guard, but BIG change in Response Time

Step	Action	Likelihood of Detection	Delay (Sec)
1	Enter protected area normally	Very Low	N/A
2	Enter bunker normally	Very Low	N/A
3	Take package and hide under coat	High	60
4	Walk out of bunker normally	High	60
5	Walk normally to fence and throw package over and leave area	Medium	90

Example 1 Upgrade: Response Time with Posted Guard outside the Bunker


Response Action	Time taken (seconds)	
	Min	Max
Co-worker identifies malevolent action – Sees material removal – hits the panic button	0	60
Communicate to guards - siren and flashing light on bunker headwall alert posted guard	0 0	180 0
Guard communication time	30 0	0
Response prep time	50 0	0
Travel	0 to ECPS 0	30 to Bunker 0
Intervene	0	60 0
Total	140 0	380 0 60

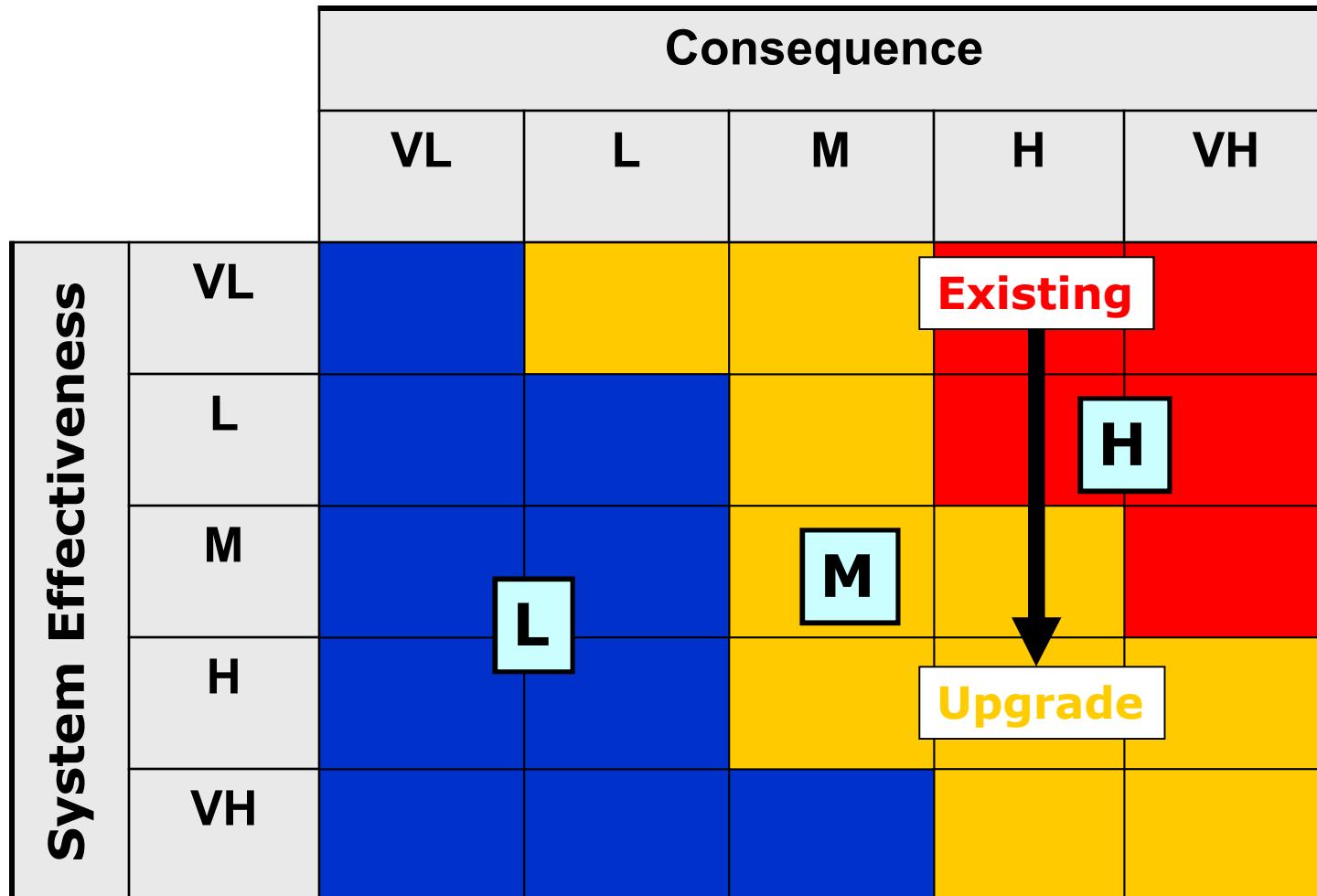
Example 1 Upgrade: Timeline with Posted Guard outside the Bunker

Response Force Time is now 60 sec in the worst-case

$$P_I = (H+H) = VH$$

Response must start by this point

Time Remaining: $TR_1 = \underline{\hspace{2cm}}$ $TR_2 = \underline{\hspace{2cm}}$ $TR_3 = \underline{\hspace{2cm}} 180$ $TR_4 = \underline{\hspace{2cm}} 120$ $TR_5 = \underline{\hspace{2cm}} 45$


Timely Detection?

Example MPC&A System Effectiveness Summary Chart

Threat Group	Bunker C = H	X-ray Facility C = H	Chip Vault C = H	Machining area C = H
Plant Manager	Zero → H			
Shift Supervisor	Zero → H			
Machining Operator	Zero → H			
Health Physics Technician	Zero → H			
Operations Support	Zero → H			
Maintenance Manager	Zero → H			
Maintenance Personnel	Zero → H			

Example Risk Criterion

RED is HIGH RISK, ORANGE MEDIUM and BLUE LOW

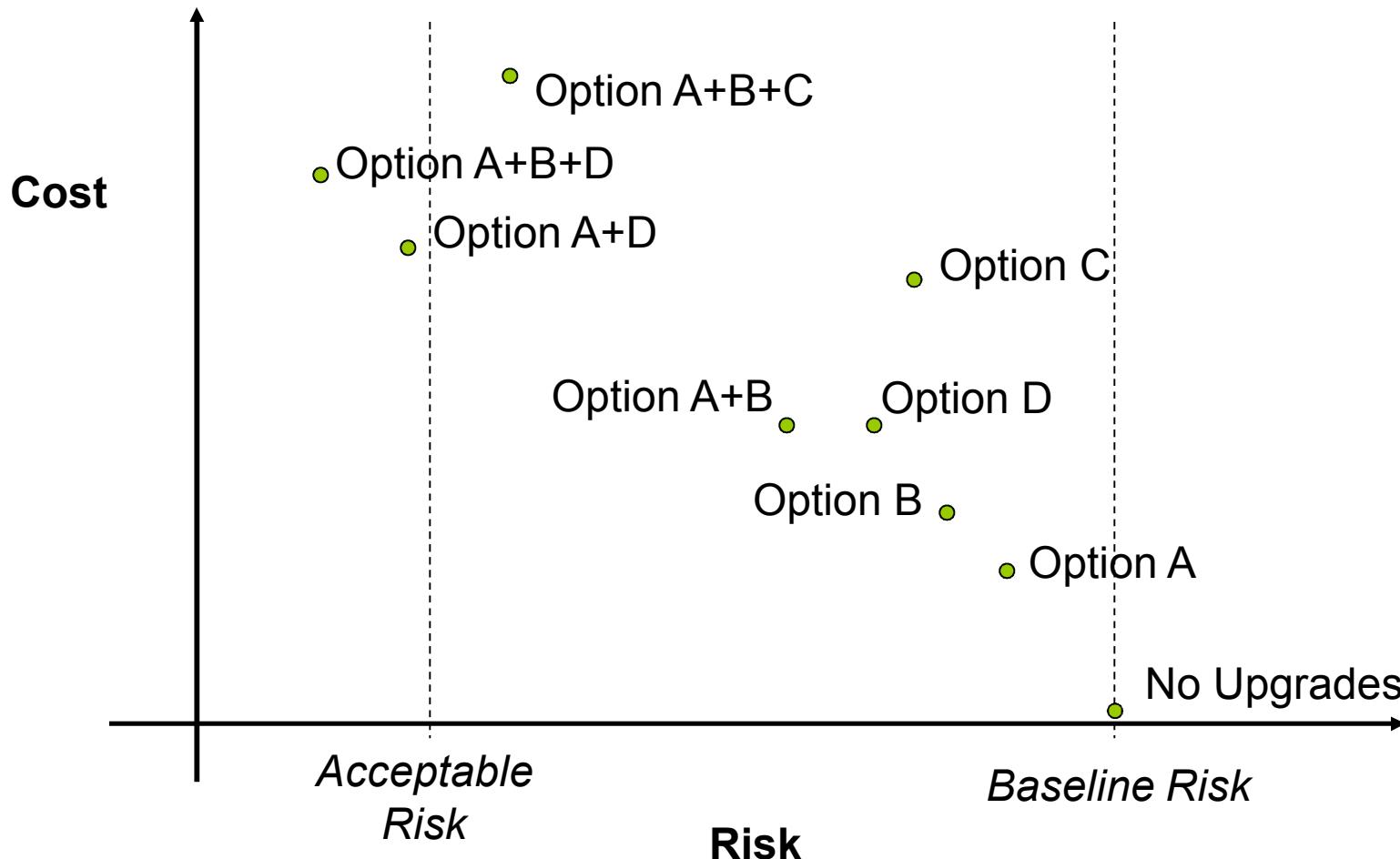
Example Numerical Risk Criterion

		Consequence				
		VL	L	M	H	VH
System Effectiveness	VL	15	10	6	3	1
	L	19	14	9	4	2
	M	22	18	13	7	5
	H	24	21	17	11	8
	VH	25	23	20	16	12

1 is highest priority, 2 next highest and so on

Example Risk Summary Chart for Posted Guard Upgrade

Threat Group	Target			
	Bunker	X-ray Facility	Chip Vault	Machining area
Plant Manager	$H \rightarrow M$			
Shift Supervisor	$H \rightarrow M$			
Machining Operator	$H \rightarrow M$			
Health Physics Technician	$H \rightarrow M$			
Operations Support	$H \rightarrow M$			
Maintenance Manager	$H \rightarrow M$			
Maintenance Personnel	$H \rightarrow M$			


This particular
Upgrade might not
apply to other targets
or other scenarios

Cost Effective Upgrades

- **Identify cost constraints**
- **Develop Upgrade Options**
 - Single upgrades
 - Upgrades packages
- **Identify life-cycle costs for upgrade options**
 - Separate maintenance and operating costs
 - Include safety costs as well

Example Cost Benefit Chart for Upgrade Options

Learning Objectives

- **Identify how to prioritize security system upgrades**
- **Recognize the role of scenario development in identifying system upgrades**
- **Identify methods to present potential upgrades**

Questions or Comments??

Subgroup Exercise 7: Upgrade Analysis

- Review the security system effectiveness and consequences and derive the risk for your specific scenario
- Discuss relevant security and operational options
- Develop an upgrade option for improving the overall system
 - Describe why your team selected that option
- Mark up your original tables to show the changes in P_E and risk for this option
- Present your option to the group with a brief discussion of the other alternatives considered