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Introduction



4 Module 6:  The Safety Case

Stratigraphy in WIPP Vicinity
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Castile Formation

Location of WIPP
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Release Pathways
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Conceptual Models
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Rustler Formation in WIPP Vicinity

• Most transmissive unit above repository
• 7.75 meter thick fractured Dolomite
• 4 meter thick transport zone  
• Multiple scales of porosity and permeability
• Tracer tests indicate dual porosity behavior 

Advective transport in fractures
Diffusive transport in rock matrix

Culebra Formation
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2-D Groundwater Flow  
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Groundwater Modeling Domain and 
Boundary Conditions 
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Advective Continuum Governing Equation
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Diffusive Continuum Governing Equation
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Coupling Term
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Initial and Boundary Conditions
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Numerical Implementation
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Steps in Numerical Impementation

• T-Field Calibration

• Mining Modifications

• Flow Calculations

• Transport Calculations
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Culebra Flow and Transport Calculation Flowchart
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T-Field Calibration
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Boundary Conditions 

•Interpolating/extrapolating the 
observed heads to the boundary 
cells
•Estimated heads provide fixed 
head values for boundary cells 
and initial heads for model
•Kriging used to estimate heads 
at all cells
•Use trend removal prior to 
kriging
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2000 Steady-State Head Data

Black rectangle denotes 
flow model domain
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Trend Removal

• Fit bivariate Gaussian surface to observed head 
data

• Calculate residuals as:

– Residual head = (observed head) - (bivariate 
Gaussian surface)

• Calculate and model spatial correlation of 
residuals (variogram)

• Estimate residuals across site (kriging)

• Add residuals to the bivariate Gaussian surface 
to get head estimates
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Head Trend Surfaces

• Bivariate Gaussian 
trend surface is fit 
to the heads

• Can be difficult to 
fit all heads to the 
surface (e.g., H-9b 
and H-10b)
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Head Residuals

Residuals between 
the bivariate Gaussian 
surface and the 
observed heads
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Residual Variograms

Variogram 
models fitted to 
residual 
variograms

Range of spatial 
correlation for the 
residuals is about 
3000 meters
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Initial and Boundary Heads

Estimated heads are 
created as the final result 
of adding the bivariate 
Gaussian trend back to 
the estimated residuals

Color scale shows initial heads 
in meters above sea level

Fixed Head

No Flow
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T-Field Calibration Overview

• Calibration to steady-state and transient heads 
(drawdown) within model domain
– Steady-state heads collected in 2000

– 10 separate pumping tests over 11+ years (October 
1985 to December 1996)

– Nearly infinite number of drawdown observations 
were trimmed to 1332 observations

• Resolving response, but computationally tractable

• 6-104 observations at a single well

• 64-410 observations for a single test

• Use MODFLOW 2000 (v. 1.6) with PEST (v. 5.5)
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T-Field Calibration Process

MODFLOW 
2000

PEST



29 Module 6:  The Safety Case

Conditioning to Multiple Data Types

• Base T fields are not conditioned to T measurements

– They need to honor measured T data

• T fields must reproduce conceptual geologic model

– Geologic boundaries are crisp; pilot points spread 
perturbations smoothly

• T fields must be calibrated to measured heads and 
drawdowns
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Base Fields to Seed Fields

Regression models do not 
honor the measured data 
(“best fit” line, not a 
“perfect fit” line)

Need to modify base transmissivity fields to honor the 
measured T data – use a simulated residual field

What does this mean for Culebra modeling?
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Residual Fields

• Calculate the residual values between the 
measured transmissivity and base transmissivity 
field

– Similar concept to creating initial and boundary 
head fields

– Calculate residual variogram and use geostatistical 
simulation to create initial residual fields

• Fix the residual values at the measurement points

• Use pilot points to update the residual field



32 Module 6:  The Safety Case

Updating Base T Fields
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Kriging is done in residual 
space and then added back 
to base transmissivity field
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Combination of base 
transmissivity field and 
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Updating Seed Field
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Seed T field honors the measurements at the measurement locations 
and has a mean equal to that of the base T field, but does not 
necessarily produce groundwater levels that match observed levels.

Pilot points are used to update the residual field to create a 
calibrated T field that matches the observed heads

Pilot point

Conceptual Cross-Section Through Model Domain
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Maintain Geologic Model

High T zones in base fields are 
created stochastically, 
independently of head data

Calibration to heads must be able 
to overturn stochastic 
classification (H to L; L to H)

Pilot points in center of domain, 
are constrained to +/- 3 orders of 
magnitude in residual space

In low and high T zones, limit is 
+/- order of magnitude
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Maintain Geologic Model (Cont.)

Sharp zone boundaries in 
conceptual model are 
maintained during calibration

Calibration influence of any 
pilot point, and regularization 
calculations, are limited to 
zone in which that pilot point 
is located

Three geologic zones in 
model control how 
head/drawdown data can 
modify T



36 Module 6:  The Safety Case

Pilot Points

Total of 99 
adjustable pilot 
points

Locations are on a 
semi-regular grid 
that is adjusted to 
account for specific 
pumping –
observation well 
combinations
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Pilot Points (Cont.)

• Choose locations in the model domain and 
update their properties to produce better fit 
to measured heads (“calibration points”)

• Spread influence of each point to 
neighboring model cells by using the spatial 
covariance function as a weighting scheme
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Pilot Points (Cont.)

The variogram calculated on the residuals between the base 
transmissivity field and the measured transmissivities (46 points) 
provides the pilot point weight as a function of distance

The actual weight is the 
covariance value that is the 
complement of the variogram

Variogram of base and measured 
transmissivity residuals

Covariance

Variogram

Distance
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Objective Function

• The objective function has two components:

– 1) Minimize weighted SSE between measured and 
modeled heads

– 2) Minimize weighted SSE between pilot points 
(maximally smooth T field)
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Second component of the objective function is the regularization 
piece and is necessary to make the solution numerically stable 
(decreases the effective number of pilot points)
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Calibration Results: Head and T
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Particle Tracks
All Calibrated Fields 100 Accepted Fields
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Travel Times
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Travel Time vs. Calibration

No relationship between level of calibration and 
travel time
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Mining Modifications
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Mining Modification Overview

• Obtain the sampled values for the random 
mining modification factor (100 vectors x 3 
replicates).

• Map potential areas of future potash mining 
onto the groundwater modeling domain for 
both full and partial mining scenarios.

• Apply the mining modification factor to the 100 
stochastically calibrated T-fields. This will 
produce 600 mining-modified T-fields (100 
vectors x 2 mining scenarios x 3 replicates).
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Full Mining Map
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Partial Mining Map
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Flow Calculations
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Flow Calculation Overview

• Perform steady-state flow simulations for each 
mining-modified T-field using MODFLOW 2000 
(MF2K).

• Perform particle tracking using the new mining-
affected flow-fields to determine travel times to 
the LWB.

• Refine the flow field to smaller grid size for use 
in the radionuclide transport calculations.
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Particle Tracking (R1, Full Mining)
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Particle Tracking (R1, Partial Mining)
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Advective Travel Times
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Transport Calculations
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Transport Simulations

• Calculate transport of 241Am,239Pu, 230Th, 234U

• Am present as Am(III)

• Pu present as PU(III) or PU(IV)

• Th present as Th(IV)

• U present as U(IV) or U(VI)

• 10,000 year interval

• Source at center of Waste Panel Area (WPA) injects 1kg 
total of each radionuclide during the interval [0,50 yr]

• Track cumulative releases across WPA and Land 
Withdrawal Boundary (LWB)
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Transport Code (SECOTP2D)

• Three-level implicit temporal discretization

• Staggered finite volume mesh

• TVD advection scheme (advective continuum)

• Centered discretization of dispersion and 
diffusion terms

• Dimensional splitting

• Approximate factorization

• Implicit treatment of coupling term
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Deterministic Transport Parameters

Parameter Units Value

Longitudinal Dispersivity m 0

Transverse Dispersivity m 0

Fracture Tortuosity - 1

Diffusive Tortuosity - .11

Material Grain Density kg/m3 2.82e+3

241Am Half-life s 1.364e+10

Am3+ Diffusion Coefficient m2/s 3.0e-10

239Pu Half-life s 7.594e+11

Pu3+ Diffusion Coefficient m2/s 3.0e-10

Pu4+ Diffusion Coefficient m2/s 1.53e-10

230Th Half-life s 2.43e+12

Th4+ Diffusion Coefficient m2/s 1.53e-10

234U Half-life s 7.716e+12

U4+ Diffusion Coefficient m2/s 1.53e-10

U6+ Diffusion Coefficient m2/s 4.26e-10
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Uncertain Transport Parameters

Parameter Units Distribution Range Median

Advective Porosity - Log uniform [ 1.0e-04, 1.0e-2 ] 1.00e-03

Matrix Porosity - Cumulative [1.0e-01, 2.5e-01 ] 1.60e-01

Matrix Half-block Length m Uniform [ 5.0e-02, 5.0e-01 ] 2.75e-01

Oxidation State Index - Uniform [ 0.0, 1.0 ] 5.00e-01

Climate Index - Cumulative [ 1.0, 2.25 ] 1.17e+00

Am3+ Matrix Kd m3/kg Log uniform [ 2.0e-02, 4.0e-01 ] 9.00e-02

Pu3+ Matrix Kd m3/kg Log uniform [ 2.0e-02, 4.0e-01 ] 9.00e-02

Pu4+ Matrix Kd m3/kg Log uniform [ 7.0e-01, 1.0e+1 ] 2.60e+00

Th4+ Matrix Kd m3/kg Log uniform [7.0e-01, 1.0e+1 ] 2.60e+00

U4+ Matrix Kd m3/kg Log uniform [7.0e-01, 1.0e+1 ] 2.60e+00

U6+ Matrix Kd m3/kg Log uniform [ 3.0e-05, 2.0e-02 ] 7.70e-04
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Sampling

• 600 velocity fields (100 T-fields x 2 mining 
scenarios x 3 replicates)  

• Uncertain geochemical and transport parameters 
selected using Latin Hypercube Sampling (100 
vectors x 3 replicates)

• Each parameter vector matched with a partial 
mining and full mining velocity field

• Total of 600 transport simulations 
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Culebra Releases Compared to Other 
Mechanisms (PABC)
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Transport Conclusions

• Only 234U transported to LWB in considerable amounts in 
10,000 years

• When convolved with probabilistic models for drilling 
intrusion, Salado flow and transport, and fluid movement 
up borehole, the probability of significant release from 
Culebra is negligible.

• Releases to LWB not large enough for meaningful 
sensitivity analysis

• Transport of 234U past WPA boundary is sensitive to 
oxidation state. 

• Kd for U(VI)  is lower than for U(IV), resulting in faster 
transport.  


