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i Motivation

Applications of PDE-Constrained Optimization

» Solution of parameter estimation, optimal design, and inverse problems
arising in the modeling and design of semiconductor devices; collaboration

Doping Profile

with the Charon project at Sandia National Labs.

SOURCE GATE DRAIN
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nt nt

> increase the current flow over a contact by tweaking the doping profile

> determine the doping profile based on a profile measurement and the
corresponding (experimental) current data

Solution of optimal control, shape optimization, and inverse problems in

S
computational fluid dynamics.
- “ = =
> minimize vorticity in a region of incompressible flow via boundary controls
> control temperature in an HVAC system by dynamically directing the flow
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} Motivation
Optimal Control of Drift—Diffusion Semiconductor Equations

Doping Profile
SOURCE GATE DRAIN
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Minimize . = [lJ(2) - v = J(@) - V|21 /0, + Sll(u(@) = 530

subject to

In
Ip
V- Jn

xT
xT

T) = DRIFT-DIFFUSION

(z)
(z)
(=)
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-V (k(w)Vy(w)) = n(w) —p(x) —u(z),
where y is the electrostatic potential, n and p are electron and hole densities, u

is the doping profile, 1, and p, are electron and hole mobilities, k is the
permittivity, and the total current density is given by

J(z) = Jn(z) + Jp(z).
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Motivation

Boundary Control of the Incompressible Navier-Stokes Flow

out

Minimize l/(azly2_812y1)2dx+g/ lu|*dx
2/, 2

e
subject to
—VvAy+ (y-V)y+Vp=f in Q,
V.-y=0 in Q
(vWy —pI)n=0 on Tout,
y=u on I,
y=b on 90\ (TeUTlou),

where y is the velocity field, p denotes the pressure, v is the inverse Reynolds
number, and u are the boundary controls.
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% General Formulation and Solution
PDE—constrained optimization problems fit the mathematical model

min  f(x)

st. z €S,

where the spaces S are subsets of function spaces, defined by PDE and
possibly other (inequality, integer, etc.) constraints.
Two—Step Solution Process

1. the mathematical model is translated into its algebraic form

2. the finite—dimensional algebraic problem is solved numerically

min  f(z) min i (z") 5

h h - min
st. ze8 st. 2'eS
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% General Formulation and Solution
PDE—constrained optimization problems fit the mathematical model

min  f(x)

st. z €S,

where the spaces S are subsets of function spaces, defined by PDE and
possibly other (inequality, integer, etc.) constraints.
Two—Step Solution Process

1. the mathematical model is translated into its algebraic form

2. the finite—dimensional algebraic problem is solved numerically
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% General Formulation and Solution
PDE—constrained optimization problems fit the mathematical model

min  f(x)

st. z €S,

where the spaces S are subsets of function spaces, defined by PDE and
possibly other (inequality, integer, etc.) constraints.
Two—Step Solution Process

1. the mathematical model is translated into its algebraic form

2. the finite—dimensional algebraic problem is solved numerically

min  f(z) min  f(z") L

h h - min
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} General Formulation and Solution

PDE—constrained optimization problems fit the mathematical model

min  f(x)

st. z €S,

where the spaces S are subsets of function spaces, defined by PDE and
possibly other (inequality, integer, etc.) constraints.
Two—Step Solution Process

1. the mathematical model is translated into its algebraic form

2. the finite—dimensional algebraic problem is solved numerically

min  f(x) min  f(z") L

st. €8 st. zhesh min

> both steps can be very challenging (function spaces, problem size)

> a frequently ignored, yet critical challenge, is the handling of the
so—called numerical uncertainty
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Numerical Uncertainty
in PDE—Constrained Optimization

min  f(x) min fh(:nh)
st. ¢z €S - st. 2zt esh
1. Loss of information associated with the reduction of the
infinite—dimensional mathematical model to its algebraic form.
> choice of spatial discretization (FE: Galerkin, Mixed or FV or FD)
> choice of temporal discretization (explicit & type or implicit & type)
> size of discretization (spatial resolution, time step), etc.

min fh(:ch) "

st. z"est
2. Loss of information associated with the use of a particular numerical
algorithm in solving the finite—dimensional algebraic problem.
» classical truncation or round-off error (well-studied)
> for large—scale problems, inexactness in the iterative solution of linear
systems, which are the core component of the algebraic form, and
therefore of critical importance for the behavior of optimization
algorithms (currently ignored in practice)

B N~ D. Ridzal Numerical Uncertainty in PDE-Constrained Optimization 6 @&mﬁa National Laboratories
foar Se

WNational Nuclear Secunity Administration



e ' Motivation Math Model— Algebraic Form Algebraic Form— Numerical Solution

Numerical Uncertainty
in PDE—-Constrained Optimization

min  f(x) min fh(:vh)
st. z€S8 - st. 2t e st
1. Loss of information associated with the reduction of the
infinite—dimensional mathematical model to its algebraic form.
» choice of spatial discretization (FE: Galerkin, Mixed or FV or FD)
> choice of temporal discretization (explicit & type or implicit & type)
> size of discretization (spatial resolution, time step), etc.

min fh(zh) "
—_ .

st. o es”
2. Loss of information associated with the use of a particular numerical
algorithm in solving the finite-dimensional algebraic problem.

» classical truncation or round-off error (well-studied)

» for large—scale problems, inexactness in the iterative solution of linear
systems, which are the core component of the algebraic form, and
therefore of critical importance for the behavior of optimization
algorithms (currently ignored in practice)
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> Part |

Mathematical Model — Algebraic Representation

How does the choice of the spatial discretization affect

the solution of PDE—constrained optimization problems?

» Semiconductor Modeling: Survey of Discretization Techniques
» The Discrete Optimization Problem: Galerkin vs. Mixed Galerkin

» Demonstration of Numerical Failure
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} Optimal Control of the Drift-Diffusion Equations

Doping Profile

SOURCE GATE DRAIN

nt nt

L 1 -~ [ ~
Minimize J = §|‘J($)-V—J(ZB)~I/H2,1/2’FO + §||(u(x)—u(:p)||gg

subject to

DRIFT-DIFFUSION

=V - (k(z)Vy(z)) = n(z) = p(z) - u(z),

where y is the electrostatic potential, n and p are electron and hole densities, u
is the doping profile, u, and p, are electron and hole mobilities, k is the
permittivity, and the total current density is given by

J(z) = Jn(z) + Jp(z).
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Survey
Discretization of the Drift—Diffusion Equations
» primal Galerkin FE schemes with streamline or flux upwinding

(SUPG - Hughes, Brooks; FUPG — Carey, Sharma)

» mixed and hybrid FE methods with exponential fitting
(Brezzi, Marini, Pietra; Holst, Jiingel, Pietra)

» exponentially fitted triangular and tetrahedral FE methods
(Wang, Miller, Angermann)

> finite volume / covolume methods, e.g. the box method with
Scharfetter-Gummel upwinding (McCartin, Bank et al., Mock)

Optimization
> the impact of the spatial discretization on the solution of
PDE—constrained optimization problems is not well-studied

» one example: study of the SUPG method in discretize-then-optimize
vs. optimize-then-discretize (Collis and Heinkenschloss)

» comparative study of Galerkin versus mixed Galerkin discretizations J

a4 D. Ridzal Numerical Uncertainty in PDE-Constrained Optimization 8 @&mﬁa National Laboratories
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Simplified Model Problem

Algebraic Form— Numerical Solution

L. 1 -~ o .
minimize J = §||J(x)~V—J(w)~V|I2_1/z,ro + Sll(u(z) — @) o

2
subject to
In(2) = pn (V) +n(2)Vy(z))
Ip(2) = pp(Vp(2) — p(2)Vy(z))
V- Jo(z)=0
V-Jy(z)=0
=V (k(2)Vy(2)) = n(z) = p(z) —u(z)
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p Simplified Model Problem

L 1 - a .
minimize 7 = 2| Vy(2) v = Vi(z) -vl2y o r, + Sll(u(@) - 8@)]5q
subject to
V- (k(x)Vy(a)) = u(x)
J — Vy
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}. Simplified Model Problem

L 1 - o' .
minimize J = Z||Vy(@) - v = V§(@) vy jor, + Fll(u@) - @()50
subject to
=V - (k(2)Vy(2)) = f(2) + u(x) in Q2
y(z) = yp(x) on T'p
(h(2)Vy(x)) - v = g(a) on T
I'p I'v TIbp
FN 1_‘N
I'n
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Galerkin Discretization

» state and control spaces
Y:{yEHl(Q) ty=yponIp}, U=1L*%)
> test function space
V={veH (Q) :v=00nTp}

» (bi)linear forms
a(y,v) = / kVy - Vv dz, b(u,v) = —/ uv dz,
Q Q

(f,v) =/va de, (g, v)ry =/F gv dx

» Weak form: Find y € Y, u € U, which solve, for allv € V

(%

5 I(u(z) = @@)5 0

1 -
minimize §||Vy(:r) v —Vy(z) - 1/||2_1/27F0 +
subject to
a(y,’l)) + b(uvv) = <f7 U> + <g7v>FN'
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Galerkin Discretization
» state and control spaces

Y={ycHY(Q): y=yponTp}, U=L*Q)

> test function space

V={veH (Q) :v=00nTp}

» (bi)linear forms
a(y,v) = / kVy - Vv dz, b(u,v) = —/ uv dz,
Q Q

(f,v) =/va de, (g, v)ry =/F gv dx

» Weak form: Find y € Y, u € U, which solve, for allv € V

N 1 N o R
minimize 5\|Vy(17)’V*Vy(ﬂﬁ)'VHZ_l/z,ro + 5||(U($)—U($)||3,Q

subject to
a(ya ’U) + b(uv U) = <f7 U> + <g7 v>FN'

NS S D. Ridzal
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% Galerkin Discretization

Flux Term: |Vy(z) - v — Vy(z) - l/||271/2'r0

» Standard approach. Restrict the states to a finite element
subspace Y}, compute terms Vyy, - v directly, and use a weighted
L?-norm to approximate the norm in H~/2(T,):

HVy v—Vy- V||2—1/2,Fo ~ h||V?/h v =V - V”%,I‘o

» Better choice: Variational Flux Approximation (VFA).
Replace flux Vy;, - v by a more accurate, C° approximation My,
obtained by solving the equation

Apop dl = k=1 a(yn,vn) + blup,vr) — (fyon) — EVyn - vy dl
Ty I,

then approximate the flux term as follows:

IVy v = V5 vIZor, = hllAn = Al
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} Galerkin Discretization

Variational Flux Approximation

Mop dl = k7 alyn, vn) + blun, vi) — (f,vp) — ENVyp - vy dl
To T,

» PDEs: Wheeler, Babuska, Brezzi, Hughes, etc.
When used to postprocess a given finite element solution (yn,up,),
the right hand side above involves only known quantities.

» Optimal control (to date): Berggren, et al. (Thanks!)
VFA is used in an already defined optimality system to improve the
accuracy of the solution.

» Our case, NEW use of VFA:
VFA changes the optimization problem, because the discretization

IVy v = VG- viZyor, =kl =Ml r,,

where \j, is given above, is a function of both the unknown states
yr, and the unknown controls up,!

D. Ridzal Numerical Uncertainty in PDE-Constrained Optimization 12 @gamﬁa National Laboratories
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% Mixed Galerkin Discretization

» consider the Poisson equation as a first—order system: -
Given u € L%(Q), f € L*(Q), g € L?>(T'x), and yg € HY(Q)NC(Q),
seek y € L?(Q) and p € [LQ(Q)]Q, with V - p € L%(Q), satisfying

Vept+tu=—f in Q

Elp—Vy=0 in Q
Y =YD on I'p
(kVy)-v=yg on I'y.

» for the weak form, we introduce the spaces
. 2 2 2
H(div, Q) = {q e [L2Q)*:V.qel (Q)},
Ho n(div, Q) = {q € H(div,Q) : ¢-v=0on FN},

Hy n(div, Q) = {q € H(div,Q): (kq)-v=gon I‘N}.

INLTS D. Ridzal Numerical Uncertainty in PDE-Constrained Optimization 13 @smﬂh National Laboratories
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}. Mixed Galerkin Discretization
>

state spaces Y = L2(Q) and P = H, n(div, Q)
> control space U = L2(Q)
> test function spaces V = L2(Q) and Q = Ho, n(div, Q)
» (bi)linear forms

1
apa)= [ poads bdan= [ (aude cwo= [ ws

(f,v):/fvdw, (Ya,q-v)rp :/ yp q-vdzx
Q I'p
» Weak form: Find (y,p) € Y x P, and u € U, which solve, for all
q € Q and all v € V, the problem
S 1., N 9 o 12
minimize 5”7‘3 (p-v—=pv)Zi)or, + 5”“ —ullg.0
subject to

a(p,q) +b(q,y) = (Ya,q- V)p,,
b(pa ’U) + C(U,U) = - <fa ’U> .

D. Ridzal Numerical Uncertainty in PDE-Constrained Optimization 14 @Samh National Laboratories
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: Mixed Galerkin Discretization

Flux Term: ||k~ 2(p-v —D- V)H2—1/2,FO

» Direct approximation. The flux is approximated directly by pj:
k=20 v =5 )21 jor, Rl (pn v = Bn - vIEr, -

» A more natural, “compatible” flux approximation!
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Preliminary Comparison

1 ~
minimize §||J(z) v —J(z)- u||271/27r‘0 +

subject to
=V (k(2)Vy(z)) = f(z)
y(z) = yp(x)
(k(z)Vy(@)) - v = g
GALERKIN
Jr, Vi v Ve vde
i, nodal basis functions VFA

© STD: inaccurate flux computations
© VFA: cumbersome implementation!

a(y,v) + b(u,v) = (f,v) + (9, v)ry
@ less expensive solution of the PDE

NS S D. Ridzal

WA
National Noclear Secuntv Administration
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S (@ — @3 o

(x) in

on FD
on I'y

MIXED GALERKIN

frok72 Vi v vde
14,5 "face” basis functions

@ more natural choice for flux objectives

a(p,q) +b(¢,¥) = (Ya,q-v)p,,

b(p, U) + C(Uﬂ ’U) = <f7 U)
& more expensive solution of the PDE
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Experimental Setup

» Galerkin: first—order nodal elements (P')

o I, Tp > Mixed: lowest-order Raviart-Thomas elements (RTp)

v

32 x 32 x 2 triangular mesh

forcing term f(z) =0, yp =0on I'p

target doping @ = 1, reg. param. o = 6.25-107*

g = 0 on left, right I'n; g(x) = —k(z) on bottom 'y

vV v.v Y

parameter study: (a) diffusivity profile k
(b) target flux Vy - v

D. Ridzal Numerical Uncertainty in PDE—Constrained Optimization 17 @Samia National Laboratories
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}. Experimental Setup ... cont'd

Example 1. The desired flux is V§- v =1 and k(z) = 102 in Q.
Example 2. The desired flux is V7 - v =1 and k(z) = 1072 in Q.
Example 3. The desired flux is V- v =1 and

10 in [—1,—0.25] x [~1,1]
k(z) = 41072 in [-0.25,0.25] x [—1,1]
10 in [0.25,1] x [—1,1],

Example 4. The desired flux is Vi - v = 100 and k(z) is as in Ex. 3.

,wv";‘% D. Ridzal Numerical Uncertainty in PDE—Constrained Optimization 18 @]Samia National Laboratories
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Objective Functional

Algebraic Form— Numerical Solution

Example 1 Example 2
GM Mixed GM-VFA GM Mixed GM-VFA
JTr 1.99e-06 1.88e-06 1.95e-04 6.42e-09 2.51e-09 2.70e-09
Tu 1.10e-08 1.10e-08 3.81e-07 1.12e-03 1.08e-03 1.11e-03
J 2.00e-06 1.89e-06 1.95e-04 1.12e-03 1.08e-03 1.11e-03
Example 3 Example 4
GM Mixed GM-VFA GM Mixed GM-VFA
Jr 6.07e-05 8.10e-10 2.83e-07 1.06e+01 2.56e-07 6.29e-07
Tu 7.17e-05 4.62e-05 4.50e-03 3.63e+00 4.57e-03 7.19e-03
J 1.32e-04 4.62e-05 4.50e-03 1.42e401 4.57e-03 7.19e-03

Table: Jr, Ju and J denote the values of the flux term,

their sum (the total value of the objective functional).

PR

WNational Nuclear Secunity Administration
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) Example 3

Galerkin States Mixed Galerkin States Galerkin VFA States

-1

Galerkin Controls

-1 -1 -1 -1 -1 -1

Figure: Galerkin, mixed Galerkin, and Galerkin VFA optimal states (top row)
and optimal controls (bottom row) for Example 3.

_—
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< Example 4

Galerkin States Mixed Galerkin States Galerkin VFA States

-1 -1 -1 - -1 -1

Galerkin Controls Mixed Galerkin Controls

[ [ [

Figure: Galerkin, mixed Galerkin, and Galerkin VFA optimal states (top row)
and optimal controls (bottom row) for Example 4.
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Summary

» performed study of Galerkin and mixed Galerkin discretizations used for
the numerical solution of PDE—constrained optimization problems with
applications to semiconductor design

» unique problem feature: objective functionals involve flux terms, which
have fundamentally different discrete representations depending on the
type of FE discretization

> for problems with heterogeneous material properties the mixed Galerkin
method offers the most robust performance and the most accurate results

> the worst performer is the standard Galerkin method (not recommended!),
which may yield state and control approximations that are many orders of
magnitude less accurate than those computed by the mixed method

» if, for whatever reason, the use of the mixed method is not feasible, then
the Galerkin discretization of the state equations should be combined with
the VFA approach in order to improve robustness and accuracy

ToH D. Ridzal Numerical Uncertainty in PDE-Constrained Optimization 2 @&mﬁa National Laboratories
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Summary

» performed study of Galerkin and mixed Galerkin discretizations used for
the numerical solution of PDE—constrained optimization problems with
applications to semiconductor design

» unique problem feature: objective functionals involve flux terms, which
have fundamentally different discrete representations depending on the
type of FE discretization

> for problems with heterogeneous material properties the mixed Galerkin
method offers the most robust performance and the most accurate results

> the worst performer is the standard Galerkin method (not recommended!),
which may yield state and control approximations that are many orders of
magnitude less accurate than those computed by the mixed method

» if, for whatever reason, the use of the mixed method is not feasible, then
the Galerkin discretization of the state equations should be combined with
the VFA approach in order to improve robustness and accuracy

» Compatibility of a spatial discretization with respect to a PDE may not be
enough to ensure stable and accurate solution of an optimization problem
governed by that PDE.

Vi S D. Ridzal Numerical Uncertainty in PDE-Constrained Optimization 2 @&mﬁa National Laboratories
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; Part Il

Algebraic Form — Numerical Solution

How does inexactness in the solution of linear systems affect

the development of robust large—scale optimization algorithms?

» PDE-Constrained Optimization and Inexactness
» An Inexact Sequential Quadratic Programming Algorithm

» Numerical Results: Global and Local Convergence, Robustness

NOS D. Ridzal Numerical Uncertainty in PDE—Constrained Optimization 22 @]Saldia National Laboratories
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PDE-Constrained Optimization Problems

> can be solved as constrained, nonconvex nonlinear programming problems
(NLPs) using all-at-once “intrusive” techniques

> due to constraint regularity, fast Newton—type algorithms are often
applicable, e.g. sequential quadratic programming (SQP)

» each iteration in an SQP algorithm requires the solution of several linear
systems involving the linearized constraints

» in large—scale applications, linear systems are solved using iterative solvers

= the optimization algorithm must be responsible for dynamically managing
stopping tolerances for linear solvers!

Inexactness
» unconstrained optimization: Eisenstat, Steihaug, Dennis, Walker, Carter
> reduced—space line-search SQP: Jager et. al (1997), Biros et. al (2002)
» dependence on Lipschitz constants and derivative bounds
> reduced—space TR SQP: Heinkenschloss / Vicente (2001)
> provide generic theoretical framework, but no concrete algorithm

> first usable algorithms: Heinkenschloss / R. 2006 (full-space TR SQP),
Byrd / Curtis / Nocedal 2007 (full-space line-search SQP)

B N~ D. Ridzal Numerical Uncertainty in PDE-Constrained Optimization 23 @&mﬁa National Laboratories
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% Review of Trust-Region SQP

Solve NLP:
min  f(z)
st. c(x)=0
where f: X - R and ¢c: X — C, for some Hilbert spaces X and C, and

f and c are twice continuously Fréchet differentiable.

» define Lagrangian functional £ : X x C — R:
Lz, A) = f(z) + (A clz)e
» if regular point z, is a local solution of the NLP, then there exists a
A« € C satisfying the Ist order necessary optimality conditions:
Vaef(ze) +cp(ze)" A =0
c(xzy) =0

D. Ridzal Numerical Uncertainty in PDE-Constrained Optimization 24 @Samh National Laboratories
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» Newton's method applied to the 1st order optimality conditions:

(Vmﬁ(l’k,)\k) Cw(zk)*> (5"§> __ (fo(xk) + Cac(xk)*Ak)

Ca (k) 0 EA c(zy)

> If Voo L(xk, M) is positive definite on the null space of ¢, (xy), the
above KKT system is necessary and sufficient for the solution of the
quadratic programming problem (QP):

) 1
min 9 (Vmﬁ(xk,/\k)si,sﬂx—i— <vr‘c(xka/\k)’s£>é\.’
s.t. co(rr)sy +c(zp) =0

» To globalize the convergence, we add a trust—region constraint:

. 1
min 5 (HistsEa + (VaLa st x

s.t. cx(xp)sy +c(zr) =0
[sillx < Ag.
Possible incompatibility of constraints: Composite-Step Approach.
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% Composite-Step Approach for the Solution

of the Quadratic Subproblem

» TR SQP step:
S =nk + 1k

> quasi-normal step ng:
moves toward feasibility

ca(zk)s” + c(zg) =0

> tangential step 7:
moves toward optimality
while staying in the null
space of the linearized
constraints

cz(zp)t =0

e.g. Omojokun [1989],

Byrd, Hribar, Nocedal [1997],
Dennis, El-Alem, Maciel [1997],
Dennis, Heinkenschloss, Vicente [1998], Conn, Gould, Toint [2000]
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}. Acceptance of the Step

» Merit function:
$(a, X p) = f(z) + (A c(@))e + plle(@) g = L(z,X) + plle(@)]I2-
» Actual reduction at step k:
ared(sy; pr) = O(Tr, Ak; pr) — G(Tk + Spy Akt1; Pr)
» Predicted reduction at step k:

1
pred(sy; pr) = O(Tr, Ak pr)— | L(@k, M)+ {9k, 3k>X‘|‘§ (Hisg, Sg)x

+ N1 = Aes ca(@r)si + clzn))e + prllea(zr) s + clzw)lI2 |-
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omposite—Step Trust-Region SQP Algorithm

1. Compute quasi—normal step ny.

2. Compute tangential step tx.

3. Compute new Lagrange multiplier estimate Ag1.
4. Update penalty parameter pj.

5. Compute aredy, predy,.

6. Decide whether to accept the new iterate xy1 = x) + ng + tx, and

ared
update Ay from Ay, based on —pred:.
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omposite—Step Trust-Region SQP Algorithm

1. Compute quasi—normal step ny.
— One linear system involving ¢;(x). Control inexactness!

2. Compute tangential step .
3. Compute new Lagrange multiplier estimate Ag1.

— One linear system involving ¢, (x). Control inexactness!
4. Update penalty parameter pj.

5. Compute aredy, predy,.

6. Decide whether to accept the new iterate x;1 = x) + ng + tx, and

aredy
update Ay from Ay, based on oreds
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omposite—Step Trust-Region SQP Algorithm

1. Compute quasi—normal step ny.

— One linear system involving ¢;(x). Control inexactness!
2. Compute tangential step .

— Multiple linear systems involving ¢, (2). Control inexactness!
3. Compute new Lagrange multiplier estimate Ag1.

— One linear system involving ¢, (x). Control inexactness!

4. Update penalty parameter pj.
5. Compute aredy, predy,.

6. Decide whether to accept the new iterate x;1 = x) + ng + tx, and

aredy
update Ay from Ay, based on oreds
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}. Composite-Step Trust—Region SQP Algorithm

1. Compute quasi—normal step ny.
— One linear system involving ¢;(x). Control inexactness!
2. Compute tangential step .
— Multiple linear systems involving ¢, (2). Control inexactness!
3. Compute new Lagrange multiplier estimate Ag1.
— One linear system involving ¢, (x). Control inexactness!
4. Update penalty parameter pj.
— Need to modify penalty parameter update!
5. Compute aredy, predy,.
— Need to modify the definition of pred;!
6. Decide whether to accept the new iterate xy 1 = x) + ng + tx, and

ared
update Ay from Ay, based on —pred:.
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TRSQP Algorithm: Overview of Inexactness

Iterative linear system solves arise in the computation of:
(1) Lagrange multipliers, (2) quasi-normal step, (3) tangential step.

Global convergence theory for TR/SQP methods provides generic
conditions that must be satisfied by (1)—(3).

Our algorithm ties:
generic conditions < inexactness specific to linear system solves

v

v

v

v

The devised stopping criteria for linear system solves

» are dynamically adjusted by the SQP algorithm, based on its current
progress toward a KKT point,

» trade gains in feasibility for gains in optimality and vice versa,

> can be easily implemented and are sufficient to guarantee first—order
global convergence of the algorithm,

> allow for a rigorous integration of preconditioners for KKT systems

> give a mechanism for matching a prescribed local convergence rate
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% Lagrange Multipliers

GLOBAL CONVERGENCE CONDITION
The sequence of Lagrange multiplier estimates {Ax }ren is bounded. J

> 1st—order necessary condition: V. f(zk) + cz(zk)*A = 0.
Least-squares estimate Ay = — (¢ (T )cx (2x)*) ™" ca(zr) Vo f(z1),
computed by solving the augmented system:

(et 67 ) ()= ()

> With inexactness, A\, = A\;—1 + A\, where A\ solves
I cz(zR)* z . —Vaof(zr) — co(xr)  Ap—1 + ei
cx (k) 0 AN )T e

Theorem. Let the sequence {Ar}, oy of multiplier estimates be generated by
Ak = Ag_1 + AN, where |lei||x + |le]lc < e for some € > 0 independent of k.
Then {Ax},cy is bounded.

REMARK: relative stopping tolerance — direct link to [|Vg f(zk) + ca(Tr)* Ap_1|
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}- Quasi—Normal Step

GLOBAL CONVERGENCE CONDITIONS
The quasi—normal step n; must satisfy the boundedness condition

Inkllx < malle(zk)lle,
and the fraction of Cauchy decrease (FCD) condition

lle(zi)lle = lle (k) + c(za) & 2 r2lle(@)lle min {kslle(@x)lle, Ak},

where k1, k2, k3 > 0 are independent of k.

> Let ni approximately solve the problem:

min llca (zr)n + c(an)|3
s.t. [In]|x < (A

> A practical approach: Powell's dogleg method.
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- Quasi—Normal Step

L enlan)s® +e(ar) =0
cp . 2
n, = min Hciﬂ(mk)n'i_c(xk)HC Dogleg Path
a>0
st. n=—acy(vr) c(zK)
N _ . P
ny = minimum norm solution of
. 2
min|[cz (zk)n + c(ak)l|e
The minimum norm solution n can be computed by solving:
I ca(zr)* nyy _ 0
¢z (k) 0 y —c(zk) )
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_ Quasi—Normal Step

C Nen(an)s® +elar) =0
. 2
nzp = anlg HCI (mk)n + c(mk)”C Dogleg Path
st. n=—acy(vr) c(zK)

ny = minimum norm solution of

min|[ea (zi)n + c(xx) ¢

With inexactness, we solve for An = nly — ng’:

< cz(l;ck) cz%k)* ) ( Ayn ) - ( —Cz(wk)—%?j;ik)-ke% )

Theorem. If |lex]|2 + llexllz < llca(@k)ns? + c(zk)||2, then the inexact quasi-
normal step ny satisfies boundedness and FCD conditions.

» Skip Tangential Step
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} Tangential Step

» The exact model requires that t; approximately solve the problem:

. 1
min 5<Hk(t+”k)7t+nk>;(+<Vx£k,t—|—nk>X

s.t. co(xp)t=0
Ht+ nk||X < Ayg.

» Assume that there exists a bounded linear operator Wy, : Z — X,

where Z is a Hilbert space, such that Range(W}) = Null(c,(zx)).
— Covers all existing implementations for handling ¢, (zx)t = 0.

» Drop constant term from the QP, ignore ny in the trust-region
constraint, set gx = Hgng + V. Ly,

» Use a full space approach, in which the CG operator is Hy (exact),
and the inexactness is moved into an inexact projector Wy.

) 1
min 5 (Hpt, t) v + (gr, 1) »
s.t. t € RangeWy), |lt|lx < Ag.

» The application of W, requires linear system solves.
Example: W, is an orthogonal projector onto Null(c,(x)).
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4 Tangential Step

Steihaug—Toint Flexible Full-Space CG

0. Lettp =0 € X. Let r9 = gi. Given tol > 0.
1. Fori=0,1,2,...
1.1 Compute z; = Wy(r;). If ||2:]|» < tol, stop and return t;.

i—1 (%;Hkpﬁx )

L2 pi=—zi+2.-0 (pj Hipj) "7

1.3 If (7, pi) # 0 and (p;, Hp;) ,» < 0, compute 6 such that
sign(8) = sign(— (rs, pi) ») and ||t; + Op;|lx = Ay, and return t; + Op;.

If (ri,pi)» =0 and (p;, Hp;) < 0, compute 6 such that
lt: + Opillx = Ak, and return t; + Op;.

1.4 If (r;,p;) » = 0, stop and return t;.
1.5 a; = —(rs,pi) x/(Pis Hepi) x
1.6 tiy1 =t + aip;

1.7 If ||ti+1|lx > Ak, compute 6 such that sign(6) = sign(— (r;, p;) ») and
It: + Opillx = Ak, and return ¢; + Op;.

1.8 rip1 =1 + o Hyp;
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4 Tangential Step

Steihaug—Toint Flexible Full-Space CG

0. Lettp =0 € X. Let r9 = gi. Given tol > 0.
1. Fori=0,1,2,...
1.1 Compute z; = Wy(r;). If ||2:]|» < tol, stop and return t;.

i—1 (zi:Hkpj) o

12 pi=—z+ 3205 (P Hipj) 5 7

1.3 If (v, pi) # 0 and (p;, Hp;) ,» < 0, compute 6 such that
sign(8) = sign(— (rs, ps) ») and ||t; + Op;|lx = Ay, and return t; + Op;.

If (ri,pi)» = 0 and (p;, Hp;) < 0, compute 6 such that
lt: + Opillx = Ak, and return t; + Op;.

1.4 If (r;,p;) » = 0, stop and return t;.
1.5 a; = —(rs,pi) x/(Pis Hepi) x
1.6 tiy1 =t + aip;

1.7 If ||ti+1|lx > Ak, compute 6 such that sign(6) = sign(— (r;, p;) ») and
lt: + Opillx = Ak, and return ¢; + Op;.

1.8 rip1 =1 + o Hyp;
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< Tangential Step

Steihaug—Toint Flexible Full-Space CG

0. Lettp =0 € X. Let r9 = gi. Given tol > 0.
1. Fori=0,1,2,...
1.1 Compute z; = Wy(r;). If ||zi||x < tol, stop and return ¢;.

i—1 (zi:Hkpj) o

12 pi=—z; + Z_]':[) (PijkPj)ij

1.3 If (v, pi) # 0 and (p;, Hp;) ,» < 0, compute 6 such that
sign(0) = sign(— (ri,pi) 1) and ||t; + Op;||x = Ak, and return t; + p;.

If (ri,pi)» =0 and (p;, Hp;) < 0, compute 6 such that
lt: + Opillx = Ak, and return t; + Op;.

1.4 If (ri, pi) » = 0, stop and return ¢;.
1.5 a; = —(rs,pi) x /(Pis Hepi) x
1.6 tiy1 =1t + aip;

1.7 If ||ti+1|lx > Ak, compute 6 such that sign(0) = sign(— (r;, p;) ) and
lt: + Opillx = Ak, and return ¢; + Op;.

1.8 rip1 =1 + o Hyp;
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= Tangential Step

Steihaug—Toint Flexible Full-Space CG

0. Lettp =0 € X. Let r9 = gi. Given tol > 0.
1. Fori=0,1,2,...
1.1 Compute z; = Wy(r;). If ||zi||x < tol, stop and return ¢;.

i—1 (zi:Hkpj) o

12 pi=—z; + Z_]':[) (pijkPj)ij

1.3 If (v, pi) # 0 and (p;, Hp;) ,» < 0, compute 6 such that
sign(0) = sign(— (ri,pi) 1) and ||t; + Op;||x = Ak, and return t; + p;.

If (ri,pi)» =0 and (p;, Hp;) < 0, compute 6 such that
lt: + Opillx = Ak, and return t; + Op;.

1.4 If (r;,p;) » = 0, stop and return t;.
1.5 a; = —(rs,pi) x/(Pis Hepi) x
1.6 tiy1 =t + aip;

1.7 If ||ti+1|lx > Ak, compute 6 such that sign(0) = sign(— (r;, p;) ) and
lt: + Opillx = Ak, and return ¢; + Op;.

1.8 rip1 =1 + o Hyp;
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} Tangential Step

Global Convergence Requirements

Assume that Wy (r;) = ﬁfkri for every iteration i of the flexible STCG
algorithm (proof skipped!). The inexact reduced—space tangential step wy,

and the inexact projection operator W), must satisfy
(C1) IWs"ge = Wigellae < mamin (W5 gelle, Ar)
(C2) (Wi HiWewe,we) < rollwil,

(C3) —% <VT/;*H;CI7I7kwk,wk>X - <ﬁ7k*gk7wk>X >

—~ % i —~ %
k3| Wi gkl xmin {MHWk grllx, H5Ak} ,

for positive constants k1, ..., k5 independent of k.

y
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% Tangential Step
Application of the Inexact Operator Wi
Recall:
(i) At every iteration k of the SQP algorithm, flexible STCG is called.

(ii) At every STCG iteration 4, we compute iteratively an inexact
projected residual z; = W (r;) = Wyr; such that

(oo ™57 (3)-(6)+(4)
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% Tangential Step
Application of the Inexact Operator va

Recall:
(i) At every iteration k of the SQP algorithm, flexible STCG is called.

(ii) At every STCG iteration i, we compute iteratively an inexact
projected residual z; = W (r;) = Wyr; such that

(oo “57)(5)-(4)+(3),

Theorem. If the augmented system solver is stopped at iteration m satis-
fying
(m) [Wegrll kgkll Ak (m)
lle; ™| < i B llz L
||9k|| " gl
v
then the global SQP convergence requirements (C1)—(C3) are satisfied.

<
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}. Simplified Model Problem

minimize J = %/ (J(z) v— j(:z:) v)de + %/(u(w) —ti(z))%da
o Q
subject to
In(x) = pn (Vn(z) + n(z)Vy(z))
Jp(x) = pp(Vp(z) — p(x)Vy(z))
V-J,(z)=0
V- Jp(x)=0
=V (k(z)Vy(z)) = n(z) — p(z) — u(z)
. nmaﬁiﬁ%ﬂﬂﬂ . D. Ridzal Numerical Uncertainty in PDE—Constrained Optimization
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}. Simplified Model Problem

minimize J = %/O(J(x) v —J(z) v)de + %/Q(u(x) —U(z))%dx
subject to
Ja(@) = i (V) + (2) Ty ()

n—e', p—e?

—
“Slotboom variables”

&-v""" D. Ridzal Numerical Uncertainty in PDE—Constrained Optimization
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}. Simplified Model Problem

1 N ~
minimize J = 5/ (Vy(z)-v—=Vy(z)-v)ide + g/(u(x)—u(a:))zdm
o Q
subject to
—V - (k(z)Vy(z)) = e?®) — e v@) _y(z).
n—e', p—e?
“SIotboonTvariabIes”
J — Vy
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} Experimental Setup

minimize J = ;Ao(Vy(x)-y—Vﬂ(x).y)2dx + —/Q(u(x)—ﬂ(x))de
subject to

—V - (k(z)Vy(z)) = e?@) — e ¥@ _y(z) in Q
y(x) = yp(x) on I'p
0 on FN

» Galerkin FE discretization with linear elements
> use a simple fixed target potential Doping Profile

> several target doping profiles u:
1/1, le-1/1el, le-2/1e2, 1e-3/1e3, ...

» linear solver: GMRES with ILU preconditioner

» SQP convergence criteria:
lle(@r)]l < 107°, [V Lz, A)|| < 107°.

D. Ridzal Numerical Uncertainty in PDE-Constrained Optimization 38 @&mﬁa National Laboratories



Inexactness Control: le-3/1e3 Doping

Motivation

Math Model— Algebraic Form

Algebraic Form— Numerical Solution
107
+5 + + + +O +0 + +0 +0 +0 4O +0 +O0 +0 +0 +0 +0 +0O +
10_4 6*; () o o ] () o o () o @ [¢] (0] [¢] @ (0] () @* @*ﬁk @
* *; * & x * * *
1078 * % X * *ox * * *  * *
0 x ¥ . * * * * * %
* o %ﬁ * * * * * * X *
L T T T
* * * % *
\ M I T T
10‘ | | | | | | | | o ol |
0 20 40 60 80 100 120 140 160 180 200
[J Lagrange multiplier tolerances. * Tangential step tolerances.
O Quasi—normal step tolerances. + Additional projection tolerances.
fixed relative tol's
inx. ctrl le-10 le-8 le-6 le-4 le-2
converges YES YES YES NO NO NO
GMRES iter's 1384 7847 6177 — — —
SQP iter's 19 20 20 — — —
NOS D. Ridzal Numerical Uncertainty in PDE—Constrained Optimization
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Motivation

Math Model

> Algebraic Form Algebraic Form— Numerical Solution

Inexactness Control: Robustness

doping inx. ctrl | 1le-10 1le-8 1le-6 1le-4 1le-2
1/1 4 4 4 F F F
lel / le-1 8 8 8 F F F
1le2 / 1e-2 10 11 11 F F F
1e3 / 1e-3 19 20 20 F F F
led / le-4 23 24 24 F F F
leb / 1e-5 26 29 29 F F F

Table: Number of SQP iterations with respect to changes in the doping profile.
Inexactness control vs. fixed stopping tolerances. 'F’ indicates failure.

doping inx. ctrl | 1le-10 1e-8 1le-6 1le-4 1le2
1/1 633 3105 2564 - - -
lel / le-1 534 3058 2417 - - -
le2 / 1e-2 845 3574 2753 - - -
1e3 / 1e-3 1384 7847 6177 - - -
led / le-4 2678 9107 6988 - - -
leb / 1e-5 2113 9542 7564 - - -

Vi D. Ridzal
foar Se

Table: Total number of GMRES iterations.

Numerical Uncertainty in PDE-Constrained Optimization

40 @ Sandia National Laboratories



Motivation

Math Model— Algebraic Form

I
200

Algebraic Form— Numerical Solution
"
The Local Convergence “Knob
\ \ \ \ \ \
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Summary

> Large—scale optimization algorithms must control stopping
conditions for all underlying iterative linear system solves.

» For trust-region SQP algorithms, global convergence can be
guaranteed through a mechanism of inexpensive and easily
implementable stopping conditions for linear system solvers.

» Completely eliminated the need to “guess” fixed solver tolerances;
the optimization algorithm automatically controls inexactness based
on its progress toward a KKT point.

» Dynamic stopping conditions significantly reduce oversolves and
allow the user to match a prescribed local convergence rate.
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