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Motivation Math Model→Algebraic Form Algebraic Form→Numerical Solution

Motivation
Applications of PDE–Constrained Optimization

I Solution of parameter estimation, optimal design, and inverse problems
arising in the modeling and design of semiconductor devices; collaboration
with the Charon project at Sandia National Labs.

SOURCE DRAINGATE

n+ n+

n

Doping Profile

I increase the current flow over a contact by tweaking the doping profile
I determine the doping profile based on a profile measurement and the

corresponding (experimental) current data

I Solution of optimal control, shape optimization, and inverse problems in
computational fluid dynamics.
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I minimize vorticity in a region of incompressible flow via boundary controls
I control temperature in an HVAC system by dynamically directing the flow
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Motivation
Optimal Control of Drift–Diffusion Semiconductor Equations

SOURCE DRAINGATE

n+ n+

n

Doping Profile

Minimize J =
1

2
‖J(x) · ν − bJ(x) · ν‖2−1/2,Γo

+
α

2
‖(u(x)− bu(x)‖20,Ω

subject to

Jn(x) = µn(∇n(x) + n(x)∇y(x))

Jp(x) = µp(∇p(x)− p(x)∇y(x))

∇ · Jn(x) = 0

∇ · Jp(x) = 0

−∇ · (k(x)∇y(x)) = n(x)− p(x)− u(x),

9>>>>>>=>>>>>>;
DRIFT–DIFFUSION

where y is the electrostatic potential, n and p are electron and hole densities, u
is the doping profile, µn and µp are electron and hole mobilities, k is the
permittivity, and the total current density is given by

J(x) = Jn(x) + Jp(x).

,
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Motivation
Boundary Control of the Incompressible Navier–Stokes Flow

 

Γ
c

Γ
out

Γ
in

Minimize
1

2

Z
D

(∂x1y2 − ∂x2y1)
2dx +

α

2

Z
Γc

|u|2dx

subject to

−ν∆y + (y · ∇)y +∇p = f in Ω,

∇ · y = 0 in Ω,

(ν∇y − pI)n = 0 on Γout,

y = u on Γc,

y = b on ∂Ω \ (Γc ∪ Γout),

where y is the velocity field, p denotes the pressure, ν is the inverse Reynolds

number, and u are the boundary controls.

,
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General Formulation and Solution

PDE–constrained optimization problems fit the mathematical model

min f(x)
s.t. x ∈ S,

where the spaces S are subsets of function spaces, defined by PDE and
possibly other (inequality, integer, etc.) constraints.

Two–Step Solution Process

1. the mathematical model is translated into its algebraic form

2. the finite–dimensional algebraic problem is solved numerically

min f(x)
s.t. x ∈ S

−→
min fh(xh)

s.t. xh ∈ Sh
−→ xh

min

I both steps can be very challenging (function spaces, problem size)

I a frequently ignored, yet critical challenge, is the handling of the
so–called numerical uncertainty

,
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Numerical Uncertainty
in PDE–Constrained Optimization

min f(x)

s.t. x ∈ S
−→

min f
h
(x

h
)

s.t. x
h ∈ Sh

1. Loss of information associated with the reduction of the
infinite–dimensional mathematical model to its algebraic form.

I choice of spatial discretization (FE: Galerkin, Mixed or FV or FD)
I choice of temporal discretization (explicit & type or implicit & type)
I size of discretization (spatial resolution, time step), etc.

min f
h
(x

h
)

s.t. x
h ∈ Sh

−→ xh

min

2. Loss of information associated with the use of a particular numerical
algorithm in solving the finite–dimensional algebraic problem.

I classical truncation or round-off error (well–studied)
I for large–scale problems, inexactness in the iterative solution of linear

systems, which are the core component of the algebraic form, and
therefore of critical importance for the behavior of optimization
algorithms (currently ignored in practice)

,
D. Ridzal Numerical Uncertainty in PDE–Constrained Optimization 6



Motivation Math Model→Algebraic Form Algebraic Form→Numerical Solution

Numerical Uncertainty
in PDE–Constrained Optimization

min f(x)

s.t. x ∈ S
−→

min f
h
(x

h
)

s.t. x
h ∈ Sh

1. Loss of information associated with the reduction of the
infinite–dimensional mathematical model to its algebraic form.

I choice of spatial discretization (FE: Galerkin, Mixed or FV or FD)
I choice of temporal discretization (explicit & type or implicit & type)
I size of discretization (spatial resolution, time step), etc.

min f
h
(x

h
)

s.t. x
h ∈ Sh

−→ xh

min

2. Loss of information associated with the use of a particular numerical
algorithm in solving the finite–dimensional algebraic problem.

I classical truncation or round-off error (well–studied)
I for large–scale problems, inexactness in the iterative solution of linear

systems, which are the core component of the algebraic form, and
therefore of critical importance for the behavior of optimization
algorithms (currently ignored in practice)

,
D. Ridzal Numerical Uncertainty in PDE–Constrained Optimization 6



Motivation Math Model→Algebraic Form Algebraic Form→Numerical Solution Survey Discretizations Numerics

Part I

Mathematical Model −→ Algebraic Representation

How does the choice of the spatial discretization affect

the solution of PDE–constrained optimization problems?

I Semiconductor Modeling: Survey of Discretization Techniques

I The Discrete Optimization Problem: Galerkin vs. Mixed Galerkin

I Demonstration of Numerical Failure

,
D. Ridzal Numerical Uncertainty in PDE–Constrained Optimization 6



Motivation Math Model→Algebraic Form Algebraic Form→Numerical Solution Survey Discretizations Numerics

Optimal Control of the Drift–Diffusion Equations

SOURCE DRAINGATE

n+ n+

n

Doping Profile

Minimize J =
1

2
‖J(x) · ν − bJ(x) · ν‖2−1/2,Γo

+
α

2
‖(u(x)− bu(x)‖20,Ω

subject to

Jn(x) = µn(∇n(x) + n(x)∇y(x))

Jp(x) = µp(∇p(x)− p(x)∇y(x))

∇ · Jn(x) = 0

∇ · Jp(x) = 0

−∇ · (k(x)∇y(x)) = n(x)− p(x)− u(x),

9>>>>>>=>>>>>>;
DRIFT–DIFFUSION

where y is the electrostatic potential, n and p are electron and hole densities, u
is the doping profile, µn and µp are electron and hole mobilities, k is the
permittivity, and the total current density is given by

J(x) = Jn(x) + Jp(x).
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Survey

Discretization of the Drift–Diffusion Equations

I primal Galerkin FE schemes with streamline or flux upwinding
(SUPG – Hughes, Brooks; FUPG – Carey, Sharma)

I mixed and hybrid FE methods with exponential fitting
(Brezzi, Marini, Pietra; Holst, Jüngel, Pietra)

I exponentially fitted triangular and tetrahedral FE methods
(Wang, Miller, Angermann)

I finite volume / covolume methods, e.g. the box method with
Scharfetter–Gummel upwinding (McCartin, Bank et al., Mock)

Optimization

I the impact of the spatial discretization on the solution of
PDE–constrained optimization problems is not well-studied

I one example: study of the SUPG method in discretize-then-optimize
vs. optimize-then-discretize (Collis and Heinkenschloss)

I comparative study of Galerkin versus mixed Galerkin discretizations

,
D. Ridzal Numerical Uncertainty in PDE–Constrained Optimization 8



Motivation Math Model→Algebraic Form Algebraic Form→Numerical Solution Survey Discretizations Numerics

Simplified Model Problem

minimize J =
1
2
‖J(x) · ν − Ĵ(x) · ν‖2−1/2,Γo

+
α

2
‖(u(x)− û(x)‖20,Ω

subject to

Jn(x) = µn(∇n(x) + n(x)∇y(x))
Jp(x) = µp(∇p(x)− p(x)∇y(x))

∇ · Jn(x) = 0
∇ · Jp(x) = 0

−∇ · (k(x)∇y(x)) = n(x)− p(x)− u(x)

,
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Simplified Model Problem

minimize J =
1
2
‖∇y(x) · ν −∇ŷ(x) · ν‖2−1/2,Γo

+
α

2
‖(u(x)− û(x)‖20,Ω

subject to

Jn(x) = µn(∇n(x) + n(x)∇y(x))
Jp(x) = µp(∇p(x)− p(x)∇y(x))

∇ · Jn(x) = 0
∇ · Jp(x) = 0

−∇ · (k(x)∇y(x)) = n(x)− p(x)− u(x)

J → ∇y

,
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Simplified Model Problem

minimize J =
1
2
‖∇y(x) · ν −∇ŷ(x) · ν‖2−1/2,Γo

+
α

2
‖(u(x)− û(x)‖20,Ω

subject to

−∇ · (k(x)∇y(x)) = f(x) + u(x) in Ω
y(x) = yD(x) on ΓD

(k(x)∇y(x)) · ν = g(x) on ΓN

ΓN

ΓN

ΓN

Γo ΓDΓD

,
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Galerkin Discretization

I state and control spaces

Y =
˘
y ∈ H1(Ω) : y = yD on ΓD

¯
, U = L2(Ω)

I test function space

V =
˘
v ∈ H1(Ω) : v = 0 on ΓD

¯
I (bi)linear forms

a(y, v) =

Z
Ω
k∇y · ∇v dx, b(u, v) = −

Z
Ω
uv dx,

〈f, v〉 =

Z
Ω
fv dx, 〈g, v〉ΓN

=

Z
ΓN

gv dx

I Weak form: Find y ∈ Y, u ∈ U , which solve, for all v ∈ V

minimize
1
2
‖∇y(x) · ν −∇ŷ(x) · ν‖2−1/2,Γo

+
α

2
‖(u(x)− û(x)‖20,Ω

subject to
a(y, v) + b(u, v) = 〈f, v〉+ 〈g, v〉ΓN

.

,
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‖∇y(x) · ν −∇ŷ(x) · ν‖2−1/2,Γo

+
α

2
‖(u(x)− û(x)‖20,Ω
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Galerkin Discretization
Flux Term: ‖∇y(x) · ν −∇by(x) · ν‖2−1/2,Γo

I Standard approach. Restrict the states to a finite element
subspace Yh, compute terms ∇yh · ν directly, and use a weighted
L2–norm to approximate the norm in H−1/2(Γo):

‖∇y · ν −∇ŷ · ν‖2−1/2,Γo
≈ h‖∇yh · ν −∇ŷh · ν‖20,Γo

I Better choice: Variational Flux Approximation (VFA).
Replace flux ∇yh · ν by a more accurate, C0 approximation λh,
obtained by solving the equation∫

Γ0

λhvh dl = k−1

(
a(yh, vh) + b(uh, vh)− (f, vh)−

∫
Γ\Γo

k∇yh · νvh dl

)

then approximate the flux term as follows:

‖∇y · ν −∇ŷ · ν‖2−1/2,Γo
≈ h‖λh − λ̂h‖20,Γo

,
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Galerkin Discretization
Variational Flux Approximation

∫
Γ0

λhvh dl = k−1

(
a(yh, vh) + b(uh, vh)− (f, vh)−

∫
Γ\Γo

k∇yh · νvh dl

)

I PDEs: Wheeler, Babuška, Brezzi, Hughes, etc.
When used to postprocess a given finite element solution (yh, uh),
the right hand side above involves only known quantities.

I Optimal control (to date): Berggren, et al. (Thanks!)
VFA is used in an already defined optimality system to improve the
accuracy of the solution.

I Our case, NEW use of VFA:
VFA changes the optimization problem, because the discretization

‖∇y · ν −∇ŷ · ν‖2−1/2,Γo
≈ h‖λh − λ̂h‖20,Γo

,

where λh is given above, is a function of both the unknown states
yh and the unknown controls uh!

,
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Mixed Galerkin Discretization

I consider the Poisson equation as a first–order system:
Given u ∈ L2(Ω), f ∈ L2(Ω), g ∈ L2(ΓN ), and yd ∈ H1(Ω)∩C(Ω),
seek y ∈ L2(Ω) and p ∈

[
L2(Ω)

]2
, with ∇ · p ∈ L2(Ω), satisfying

∇ · p + u = −f in Ω

k−1 p−∇y = 0 in Ω
y = yD on ΓD

(k∇y) · ν = g on ΓN .

I for the weak form, we introduce the spaces

H(div,Ω) =
{

q ∈
[
L2(Ω)

]2
: ∇ · q ∈ L2(Ω)

}
,

H0,N (div,Ω) =
{

q ∈ H(div,Ω) : q · ν = 0 on ΓN

}
,

Hg,N (div,Ω) =
{

q ∈ H(div,Ω) : (k q) · ν = g on ΓN

}
.

,
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Mixed Galerkin Discretization
I state spaces Y = L2(Ω) and P = Hg,N (div,Ω)

I control space U = L2(Ω)

I test function spaces V = L2(Ω) and Q = H0,N (div,Ω)

I (bi)linear forms

a(p, q) =

Z
Ω

1

k
p · q dx, b(q, y) =

Z
Ω

(∇ · q)y dx, c(u, v) =

Z
Ω
uv dx,

〈f, v〉 =

Z
Ω
fv dx, 〈yd, q · ν〉ΓD

=

Z
ΓD

yD q · ν dx

I Weak form: Find (y, p) ∈ Y × P , and u ∈ U , which solve, for all
q ∈ Q and all v ∈ V , the problem

minimize
1
2
‖k−2(p · ν − p̂ · ν)‖2−1/2,Γo

+
α

2
‖u− û‖20,Ω

subject to

a(p, q) + b(q, y) = 〈yd, q · ν〉ΓD

b(p, v) + c(u, v) = −〈f, v〉 .

,
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Mixed Galerkin Discretization
Flux Term: ‖k−2(p · ν − bp · ν)‖2−1/2,Γo

I Direct approximation. The flux is approximated directly by ph:

‖k−2(p · ν − p̂ · ν)‖2−1/2,Γo
≈ h‖k−2(ph · ν − p̂h · ν‖20,Γo

.

I A more natural, “compatible” flux approximation!

,
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Preliminary Comparison

minimize
1

2
‖J(x) · ν − bJ(x) · ν‖2−1/2,Γo

+
α

2
‖(u(x)− bu(x)‖20,Ω

subject to

−∇ · (k(x)∇y(x)) = f(x) + u(x) in Ω

y(x) = yD(x) on ΓD

(k(x)∇y(x)) · ν = g(x) on ΓN

GALERKINR
Γo
∇ϕi · ν ∇ϕj · ν dx

ϕi,j nodal basis functions VFA

∇ϕ · ν =?

	 STD: inaccurate flux computations
	 VFA: cumbersome implementation!

a(y, v) + b(u, v) = 〈f, v〉+ 〈g, v〉ΓN

⊕ less expensive solution of the PDE

MIXED GALERKINR
Γo
k−2 ψi · ν ψj · ν dx

ψi,j “face” basis functions

⊕ more natural choice for flux objectives

a(p, q) + b(q, y) = 〈yd, q · ν〉ΓD

b(p, v) + c(u, v) = −〈f, v〉
	 more expensive solution of the PDE

,
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Experimental Setup

ΓN

ΓN

ΓN

Γo ΓDΓD

I Galerkin: first–order nodal elements (P1)

I Mixed: lowest–order Raviart–Thomas elements (RT0)

I 32 × 32 × 2 triangular mesh

I forcing term f(x) = 0, yD = 0 on ΓD

I target doping bu = 1, reg. param. α = 6.25 · 10−4

I g = 0 on left, right ΓN ; g(x) = −k(x) on bottom ΓN

I parameter study: (a) diffusivity profile k
(b) target flux ∇by · ν

k = 102 k = 10−2

k
=

1
0

k
=

1
0

k
=

1
0
−

2

,
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Experimental Setup ... cont’d

Example 1. The desired flux is ∇ŷ · ν = 1 and k(x) = 102 in Ω.

Example 2. The desired flux is ∇ŷ · ν = 1 and k(x) = 10−2 in Ω.

Example 3. The desired flux is ∇ŷ · ν = 1 and

k(x) =


10 in [−1,−0.25]× [−1, 1]
10−2 in [−0.25, 0.25]× [−1, 1]
10 in [0.25, 1]× [−1, 1],

Example 4. The desired flux is ∇ŷ · ν = 100 and k(x) is as in Ex. 3.

,
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Objective Functional

Example 1 Example 2

GM Mixed GM-VFA GM Mixed GM-VFA

JF 1.99e-06 1.88e-06 1.95e-04 6.42e-09 2.51e-09 2.70e-09

Ju 1.10e-08 1.10e-08 3.81e-07 1.12e-03 1.08e-03 1.11e-03

J 2.00e-06 1.89e-06 1.95e-04 1.12e-03 1.08e-03 1.11e-03

Example 3 Example 4

GM Mixed GM-VFA GM Mixed GM-VFA

JF 6.07e-05 8.10e-10 2.83e-07 1.06e+01 2.56e-07 6.29e-07

Ju 7.17e-05 4.62e-05 4.50e-03 3.63e+00 4.57e-03 7.19e-03

J 1.32e-04 4.62e-05 4.50e-03 1.42e+01 4.57e-03 7.19e-03

Table: JF , Ju and J denote the values of the flux term, the control term and
their sum (the total value of the objective functional).

,
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Example 3
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Figure: Galerkin, mixed Galerkin, and Galerkin VFA optimal states (top row)
and optimal controls (bottom row) for Example 3.
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and optimal controls (bottom row) for Example 4.
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Summary

I performed study of Galerkin and mixed Galerkin discretizations used for
the numerical solution of PDE–constrained optimization problems with
applications to semiconductor design

I unique problem feature: objective functionals involve flux terms, which
have fundamentally different discrete representations depending on the
type of FE discretization

I for problems with heterogeneous material properties the mixed Galerkin
method offers the most robust performance and the most accurate results

I the worst performer is the standard Galerkin method (not recommended!),
which may yield state and control approximations that are many orders of
magnitude less accurate than those computed by the mixed method

I if, for whatever reason, the use of the mixed method is not feasible, then
the Galerkin discretization of the state equations should be combined with
the VFA approach in order to improve robustness and accuracy

I Compatibility of a spatial discretization with respect to a PDE may not be
enough to ensure stable and accurate solution of an optimization problem
governed by that PDE.
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Part II

Algebraic Form −→ Numerical Solution

How does inexactness in the solution of linear systems affect

the development of robust large–scale optimization algorithms?

I PDE–Constrained Optimization and Inexactness

I An Inexact Sequential Quadratic Programming Algorithm

I Numerical Results: Global and Local Convergence, Robustness

,
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PDE–Constrained Optimization Problems

I can be solved as constrained, nonconvex nonlinear programming problems
(NLPs) using all-at-once “intrusive” techniques

I due to constraint regularity, fast Newton–type algorithms are often
applicable, e.g. sequential quadratic programming (SQP)

I each iteration in an SQP algorithm requires the solution of several linear
systems involving the linearized constraints

I in large–scale applications, linear systems are solved using iterative solvers

⇒ the optimization algorithm must be responsible for dynamically managing
stopping tolerances for linear solvers!

Inexactness

I unconstrained optimization: Eisenstat, Steihaug, Dennis, Walker, Carter

I reduced–space line–search SQP: Jäger et. al (1997), Biros et. al (2002)

I dependence on Lipschitz constants and derivative bounds

I reduced–space TR SQP: Heinkenschloss / Vicente (2001)

I provide generic theoretical framework, but no concrete algorithm

I first usable algorithms: Heinkenschloss / R. 2006 (full–space TR SQP),
Byrd / Curtis / Nocedal 2007 (full–space line–search SQP)

,
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Review of Trust-Region SQP

Solve NLP:

min f(x)
s.t. c(x) = 0

where f : X → R and c : X → C, for some Hilbert spaces X and C, and
f and c are twice continuously Fréchet differentiable.

I define Lagrangian functional L : X × C → R:

L(x, λ) = f(x) + 〈λ, c(x)〉C
I if regular point x∗ is a local solution of the NLP, then there exists a

λ∗ ∈ C satisfying the 1st order necessary optimality conditions:

∇xf(x∗) + cx(x∗)∗λ∗ = 0
c(x∗) = 0

,
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I Newton’s method applied to the 1st order optimality conditions:(
∇xxL(xk, λk) cx(xk)∗

cx(xk) 0

)(
sx

k

sλ
k

)
= −

(
∇xf(xk) + cx(xk)∗λk

c(xk)

)
I If ∇xxL(xk, λk) is positive definite on the null space of cx(xk), the

above KKT system is necessary and sufficient for the solution of the
quadratic programming problem (QP):

min
1
2
〈∇xxL(xk, λk)sx

k, sx
k〉X + 〈∇xL(xk, λk), sx

k〉X
s.t. cx(xk)sx

k + c(xk) = 0

I To globalize the convergence, we add a trust–region constraint:

min
1
2
〈Hksx

k, sx
k〉X + 〈∇xLk, sx

k〉X
s.t. cx(xk)sx

k + c(xk) = 0
‖sx

k‖X ≤ ∆k.

Possible incompatibility of constraints: Composite–Step Approach.

,
D. Ridzal Numerical Uncertainty in PDE–Constrained Optimization 25



Motivation Math Model→Algebraic Form Algebraic Form→Numerical Solution Inexactness An Inexact TRSQP Algorithm TRSQP Numerics

Composite–Step Approach for the Solution
of the Quadratic Subproblem

I TR SQP step:
sk = nk + tk

I quasi-normal step nk:
moves toward feasibility

I tangential step tk:
moves toward optimality
while staying in the null
space of the linearized
constraints

e.g. Omojokun [1989],

Byrd, Hribar, Nocedal [1997],

Dennis, El–Alem, Maciel [1997],

Dennis, Heinkenschloss, Vicente [1998], Conn, Gould, Toint [2000]

cx(xk)sx + c(xk) = 0

cx(xk)t = 0

tk

nk

∆k

ζ∆k

,
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Acceptance of the Step

I Merit function:

φ(x, λ; ρ) = f(x) + 〈λ, c(x)〉C + ρ‖c(x)‖2C = L(x, λ) + ρ‖c(x)‖2C .

I Actual reduction at step k:

ared(sx
k; ρk) = φ(xk, λk; ρk)− φ(xk + sk, λk+1; ρk)

I Predicted reduction at step k:

pred(sx
k; ρk) = φ(xk, λk; ρk)−

[
L(xk, λk)+〈gk, sk〉X+

1
2
〈Hksx

k, sx
k〉X

+ 〈λk+1 − λk, cx(xk)sx
k + c(xk)〉C + ρk‖cx(xk)sx

k + c(xk)‖2C
]
.

,
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Composite–Step Trust–Region SQP Algorithm

1. Compute quasi–normal step nk.

→ One linear system involving cx(xk). Control inexactness!

2. Compute tangential step tk.

→ Multiple linear systems involving cx(xk). Control inexactness!

3. Compute new Lagrange multiplier estimate λk+1.

→ One linear system involving cx(xk). Control inexactness!

4. Update penalty parameter ρk.

→ Need to modify penalty parameter update!

5. Compute aredk, predk.

→ Need to modify the definition of predk!

6. Decide whether to accept the new iterate xk+1 = xk + nk + tk, and
update ∆k+1 from ∆k, based on aredk

predk
.

,
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TRSQP Algorithm: Overview of Inexactness

I Iterative linear system solves arise in the computation of:
(1) Lagrange multipliers, (2) quasi-normal step, (3) tangential step.

I Global convergence theory for TR/SQP methods provides generic
conditions that must be satisfied by (1)–(3).

I Our algorithm ties:
generic conditions ←→ inexactness specific to linear system solves

I The devised stopping criteria for linear system solves
I are dynamically adjusted by the SQP algorithm, based on its current

progress toward a KKT point,
I trade gains in feasibility for gains in optimality and vice versa,
I can be easily implemented and are sufficient to guarantee first–order

global convergence of the algorithm,
I allow for a rigorous integration of preconditioners for KKT systems
I give a mechanism for matching a prescribed local convergence rate

,
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Lagrange Multipliers

GLOBAL CONVERGENCE CONDITION

The sequence of Lagrange multiplier estimates {λk}k∈N is bounded.

I 1st–order necessary condition: ∇xf(xk) + cx(xk)∗λ = 0.
Least-squares estimate λk = − (cx(xk)cx(xk)∗)−1 cx(xk)∇xf(xk),
computed by solving the augmented system:„

I cx(xk)∗

cx(xk) 0

« „
z
λk

«
=

„
−∇xf(xk)

0

«
I With inexactness, λk = λk−1 + ∆λ, where ∆λ solves„

I cx(xk)∗

cx(xk) 0

« „
z

∆λ

«
=

„
−∇xf(xk)− cx(xk)∗λk−1 + e1

k

e2
k

«

Theorem. Let the sequence {λk}k∈N of multiplier estimates be generated by
λk = λk−1 + ∆λ, where ‖e1

k‖X + ‖e2
k‖C ≤ ε for some ε > 0 independent of k.

Then {λk}k∈N is bounded.

REMARK: relative stopping tolerance → direct link to ‖∇xf(xk) + cx(xk)∗λk−1‖

,
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Quasi–Normal Step

GLOBAL CONVERGENCE CONDITIONS

The quasi–normal step nk must satisfy the boundedness condition

‖nk‖X ≤ κ1‖c(xk)‖C ,

and the fraction of Cauchy decrease (FCD) condition

‖c(xk)‖2C − ‖cx(xk)nk + c(xk)‖2C ≥ κ2‖c(xk)‖C min {κ3‖c(xk)‖C , ∆k} ,

where κ1, κ2, κ3 > 0 are independent of k.

I Let nk approximately solve the problem:

min ‖cx(xk)n + c(xk)‖2Y
s.t. ‖n‖X ≤ ζ∆k.

I A practical approach: Powell’s dogleg method.

,
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Quasi–Normal Step

ncp
k = min

α≥0
‖cx(xk)n + c(xk)‖2C

s.t. n = −αcx(xk)∗c(xk)

nN
k = minimum norm solution of

min‖cx(xk)n + c(xk)‖2C

Dogleg Path

∆k

n
cp
k

ζ∆k

nN
k

cx(xk)sx + c(xk) = 0

The minimum norm solution nN
k can be computed by solving:„

I cx(xk)∗

cx(xk) 0

« „
nN

k

y

«
=

„
0

−c(xk)

«
.

,
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Quasi–Normal Step

ncp
k = min

α≥0
‖cx(xk)n + c(xk)‖2C

s.t. n = −αcx(xk)∗c(xk)

nN
k = minimum norm solution of

min‖cx(xk)n + c(xk)‖2C

Dogleg Path

∆k

n
cp
k

ζ∆k

cx(xk)sx + c(xk) = 0

∆n

With inexactness, we solve for ∆n = nN
k − ncp

k :„
I cx(xk)∗

cx(xk) 0

« „
∆n
y

«
=

„
−ncp

k + e1
k

−cx(xk)ncp
k − c(xk) + e2

k

«
.

Theorem. If ‖e1
k‖2C + ‖e2

k‖2C ≤ ‖cx(xk)ncp
k + c(xk)‖2C , then the inexact quasi-

normal step nk satisfies boundedness and FCD conditions.

Skip Tangential Step

,
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Tangential Step

I The exact model requires that tk approximately solve the problem:

min
1
2
〈Hk(t + nk), t + nk〉X + 〈∇xLk, t + nk〉X

s.t. cx(xk)t = 0
‖t + nk‖X ≤ ∆k.

I Assume that there exists a bounded linear operator Wk : Z → X ,
where Z is a Hilbert space, such that Range(Wk) = Null(cx(xk)).
→ Covers all existing implementations for handling cx(xk)t = 0.

I Drop constant term from the QP, ignore nk in the trust–region
constraint, set gk = Hknk +∇xLk.

I Use a full space approach, in which the CG operator is Hk (exact),
and the inexactness is moved into an inexact projector Wk.

min
1
2
〈Hkt, t〉X + 〈gk, t〉X

s.t. t ∈ Range(Wk), ‖t‖X ≤ ∆k.

I The application of Wk requires linear system solves.
Example: Wk is an orthogonal projector onto Null(cx(xk)).

,
D. Ridzal Numerical Uncertainty in PDE–Constrained Optimization 33



Motivation Math Model→Algebraic Form Algebraic Form→Numerical Solution Inexactness An Inexact TRSQP Algorithm TRSQP Numerics

Tangential Step
Steihaug–Toint Flexible Full–Space CG

0. Let t0 = 0 ∈ X . Let r0 = gk. Given tol > 0.

1. For i = 0, 1, 2, . . .

1.1 Compute zi = Wk(ri). If ‖zi‖X < tol, stop and return ti.

1.2 pi = −zi +
Pi−1

j=0

〈zi,Hkpj〉X
〈pj ,Hkpj〉X

pj

1.3 If 〈ri, pi〉X 6= 0 and 〈pi, Hpi〉X ≤ 0, compute θ such that
sign(θ) = sign(−〈ri, pi〉X ) and ‖ti + θpi‖X = ∆k, and return ti + θpi.

If 〈ri, pi〉X = 0 and 〈pi, Hpi〉X < 0, compute θ such that
‖ti + θpi‖X = ∆k, and return ti + θpi.

1.4 If 〈ri, pi〉X = 0, stop and return ti.

1.5 αi = −〈ri, pi〉X /〈pi, Hkpi〉X

1.6 ti+1 = ti + αipi

1.7 If ‖ti+1‖X ≥ ∆k, compute θ such that sign(θ) = sign(−〈ri, pi〉X ) and
‖ti + θpi‖X = ∆k, and return ti + θpi.

1.8 ri+1 = ri + αiHkpi

,
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Tangential Step
Global Convergence Requirements

Assume that Wk(ri) = W̃kri for every iteration i of the flexible STCG
algorithm (proof skipped!). The inexact reduced–space tangential step wk

and the inexact projection operator W̃k must satisfy

(C1) ‖W̃k

∗
gk −W ∗

k gk‖X ≤ κ1min
(
‖W̃k

∗
gk‖X ,∆k

)
,

(C2)
〈
W̃k

∗
HkW̃kwk, wk

〉
X
≤ κ2‖wk‖2X ,

(C3) −1
2

〈
W̃k

∗
HkW̃kwk, wk

〉
X
−
〈
W̃k

∗
gk, wk

〉
X
≥

κ3‖W̃k

∗
gk‖Xmin

{
κ4‖W̃k

∗
gk‖X , κ5∆k

}
,

for positive constants κ1, ..., κ5 independent of k.

,
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Tangential Step
Application of the Inexact Operator fWk

Recall:

(i) At every iteration k of the SQP algorithm, flexible STCG is called.

(ii) At every STCG iteration i, we compute iteratively an inexact

projected residual zi =Wk(ri) = W̃kri such that(
I cx(xk)∗

cx(xk) 0

)(
zi

y

)
=
(

ri

0

)
+
(

e1
i

e2
i

)
.

,
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Tangential Step
Application of the Inexact Operator fWk

Recall:

(i) At every iteration k of the SQP algorithm, flexible STCG is called.

(ii) At every STCG iteration i, we compute iteratively an inexact

projected residual zi =Wk(ri) = W̃kri such that(
I cx(xk)∗

cx(xk) 0

)(
zi

y

)
=
(

ri

0

)
+
(

e1
i

e2
i

)
.

Theorem. If the augmented system solver is stopped at iteration m satis-
fying

‖e(m)
i ‖ ≤ min

{
‖W̃kgk‖
‖gk‖

,
∆k

‖gk‖
, β

}
︸ ︷︷ ︸

γ

‖z(m)
i ‖,

then the global SQP convergence requirements (C1)–(C3) are satisfied.†

,
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Simplified Model Problem

minimize J =
1
2

∫
Γo

(J(x) · ν − Ĵ(x) · ν)2dx +
α

2

∫
Ω

(u(x)− û(x))2dx

subject to

Jn(x) = µn(∇n(x) + n(x)∇y(x))
Jp(x) = µp(∇p(x)− p(x)∇y(x))

∇ · Jn(x) = 0
∇ · Jp(x) = 0

−∇ · (k(x)∇y(x)) = n(x)− p(x)− u(x).

,
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Simplified Model Problem

minimize J =
1
2

∫
Γo

(J(x) · ν − Ĵ(x) · ν)2dx +
α

2

∫
Ω

(u(x)− û(x))2dx

subject to

Jn(x) = µn(∇n(x) + n(x)∇y(x))
Jp(x) = µp(∇p(x)− p(x)∇y(x))

∇ · Jn(x) = 0
∇ · Jp(x) = 0

−∇ · (k(x)∇y(x)) = ey(x) − e−y(x) − u(x).

n→ ey, p→ e−y︸ ︷︷ ︸
“Slotboom variables”

,
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Simplified Model Problem

minimize J =
1
2

∫
Γo

(∇y(x)·ν−∇ŷ(x)·ν)2dx +
α

2

∫
Ω

(u(x)−û(x))2dx

subject to

Jn(x) = µn(∇n(x) + n(x)∇y(x))
Jp(x) = µp(∇p(x)− p(x)∇y(x))

∇ · Jn(x) = 0
∇ · Jp(x) = 0

−∇ · (k(x)∇y(x)) = ey(x) − e−y(x) − u(x).

n→ ey, p→ e−y︸ ︷︷ ︸
“Slotboom variables”

J → ∇y

,
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Experimental Setup

minimize J =
1
2

∫
Γo

(∇y(x)·ν−∇ŷ(x)·ν)2dx +
α

2

∫
Ω

(u(x)−û(x))2dx

subject to

−∇ · (k(x)∇y(x)) = ey(x) − e−y(x) − u(x) in Ω
y(x) = yD(x) on ΓD

(k(x)∇y(x)) · ν = 0 on ΓN .

I Galerkin FE discretization with linear elements

I use a simple fixed target potential by
I several target doping profiles bu:

1/1, 1e-1/1e1, 1e-2/1e2, 1e-3/1e3, ...

I linear solver: GMRES with ILU preconditioner

I SQP convergence criteria:
‖c(xk)‖ < 10−6, ‖∇xL(xk, λk)‖ < 10−6.

Doping Profile

,
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Inexactness Control: 1e-3/1e3 Doping

0 20 40 60 80 100 120 140 160 180 200
10−8

10−6

10−4

10−2

� Lagrange multiplier tolerances.

◦ Quasi–normal step tolerances.

* Tangential step tolerances.

+ Additional projection tolerances.

fixed relative tol’s
inx. ctrl 1e-10 1e-8 1e-6 1e-4 1e-2

converges YES YES YES NO NO NO

GMRES iter’s 1384 7847 6177 — — —

SQP iter’s 19 20 20 — — —

,
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Inexactness Control: Robustness

doping inx. ctrl 1e-10 1e-8 1e-6 1e-4 1e-2
1 / 1 4 4 4 F F F
1e1 / 1e-1 8 8 8 F F F
1e2 / 1e-2 10 11 11 F F F
1e3 / 1e-3 19 20 20 F F F
1e4 / 1e-4 23 24 24 F F F
1e5 / 1e-5 26 29 29 F F F

Table: Number of SQP iterations with respect to changes in the doping profile.
Inexactness control vs. fixed stopping tolerances. ‘F’ indicates failure.

doping inx. ctrl 1e-10 1e-8 1e-6 1e-4 1e-2
1 / 1 683 3105 2564 – – –
1e1 / 1e-1 534 3058 2417 – – –
1e2 / 1e-2 845 3574 2753 – – –
1e3 / 1e-3 1384 7847 6177 – – –
1e4 / 1e-4 2678 9107 6988 – – –
1e5 / 1e-5 2113 9542 7564 – – –

Table: Total number of GMRES iterations.

,
D. Ridzal Numerical Uncertainty in PDE–Constrained Optimization 40



Motivation Math Model→Algebraic Form Algebraic Form→Numerical Solution Inexactness An Inexact TRSQP Algorithm TRSQP Numerics

The Local Convergence “Knob”

SLOW
LOCAL
3.5

MODERATE
LOCAL
5.7

FAST
LOCAL
6.7

0 50 100 150 200 250 300 350 400 450
10−6

10−4

10−2

100

0 50 100 150 200 250

10−6

10−4

10−2

0 20 40 60 80 100 120 140 160 180 200
10−8

10−6

10−4

10−2

FIXED RELATIVE TOLERANCE OF 1e-12 → 20.1 !!
,
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Summary

I Large–scale optimization algorithms must control stopping
conditions for all underlying iterative linear system solves.

I For trust–region SQP algorithms, global convergence can be
guaranteed through a mechanism of inexpensive and easily
implementable stopping conditions for linear system solvers.

I Completely eliminated the need to “guess” fixed solver tolerances;
the optimization algorithm automatically controls inexactness based
on its progress toward a KKT point.

I Dynamic stopping conditions significantly reduce oversolves and
allow the user to match a prescribed local convergence rate.

,
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