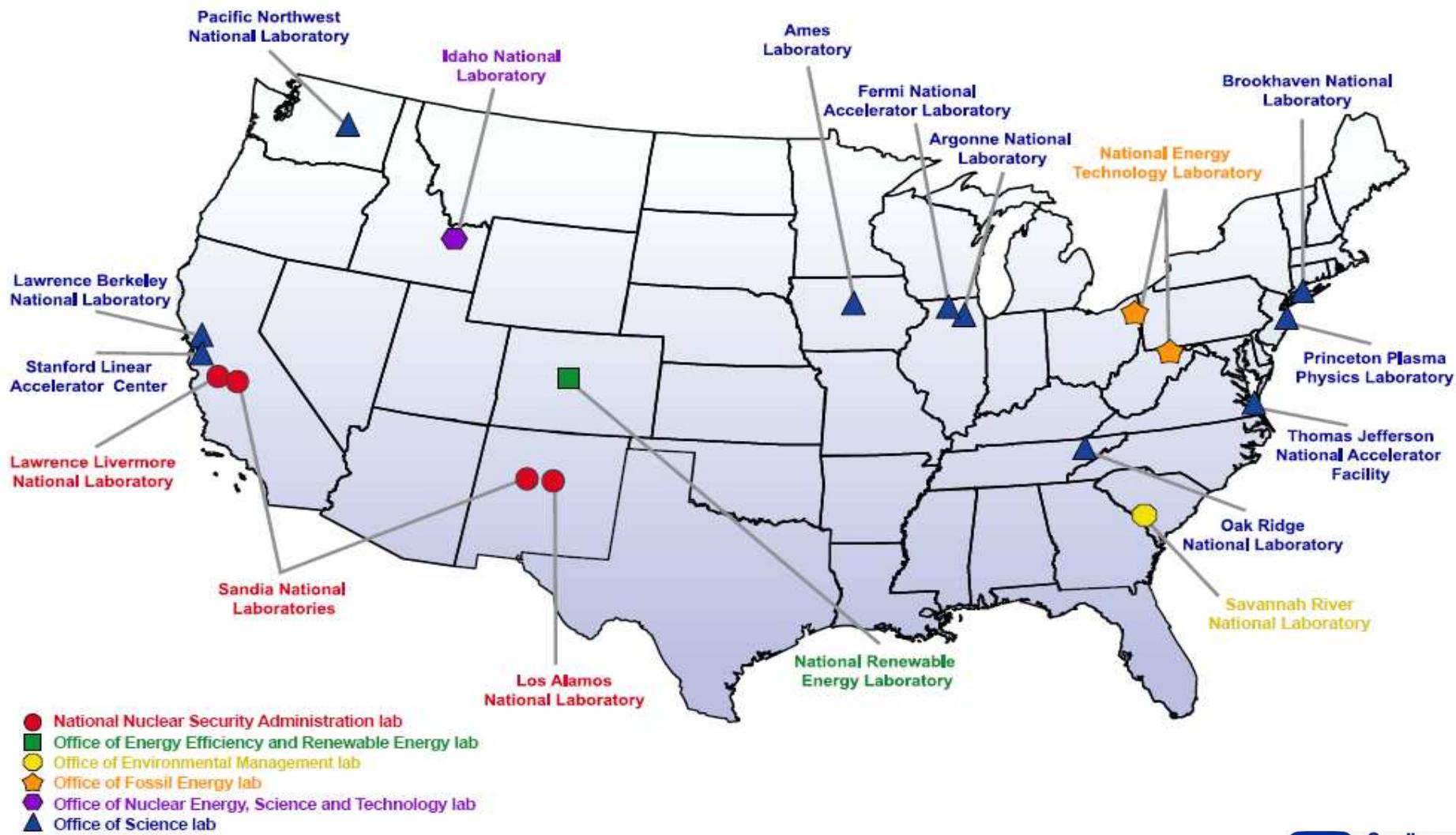


Applying Mathematics: Solving Problems at a National Laboratory

Daniel M. Dunlavy

Senior Member of Technical Staff


Sandia National Laboratories, Albuquerque, NM

*Pi Mu Epsilon Talk, Western Michigan University
September 21, 2007*

My Background

- **Northwestern University**
 - B.A., Computer Studies, 1994
- **Western Michigan University**
 - M.S., Applied Mathematics, 2001
- **University of Maryland, College Park**
 - Ph.D., Applied Mathematics/Scientific Computation, 2005
- **Sandia National Laboratories**
 - Student Intern, 2001
 - John von Neumann Postdoctoral Fellow, 2005–2007
 - Senior Member of Technical Staff, 2007–Present
- **Interests**
 - Informatics, optimization, linear algebra, machine learning

Department of Energy National Laboratories

<http://www.energy.gov/organization/labs-techcenters.htm>

Mathematics at the Labs

<i>Lab</i>	<i>Division, Directorate, Center, Department</i>	<i>Web Site</i>
Sandia/NM	Computation, Computers, Information, and Mathematics	www.cs.sandia.gov
Sandia/CA	Computational Sciences and Mathematics Research	csmr.ca.sandia.gov
Argonne	Mathematics and Computer Science	www.mcs.anl.gov
Brookhaven	Computational Science Center	www.bnl.gov/csc
Lawrence Berkeley	High Performance Computing Research Department	hpcrd.lbl.gov
Lawrence Livermore	Center for Applied Scientific Computing	www.llnl.gov/casc
Oak Ridge	Computer Science and Mathematics	www.csm.ornl.gov
Pacific Northwest	Computational Sciences and Mathematics	computing.pnl.gov/csm/

Opportunities for Students

- **Undergraduate**
 - Summer Internships
- **Graduate**
 - Summer Internships
 - Computational Science Graduate Fellowship
 - National Physical Science Consortium Fellowship
 - SNL, LLNL, LANL Sponsorship
- **Postdoctoral**
 - von Neumann (SNL), Wilkinson (ANL), Alvarez (LBL), Householder (ORNL)
 - Project-based positions

Note: most positions require U.S. citizenship

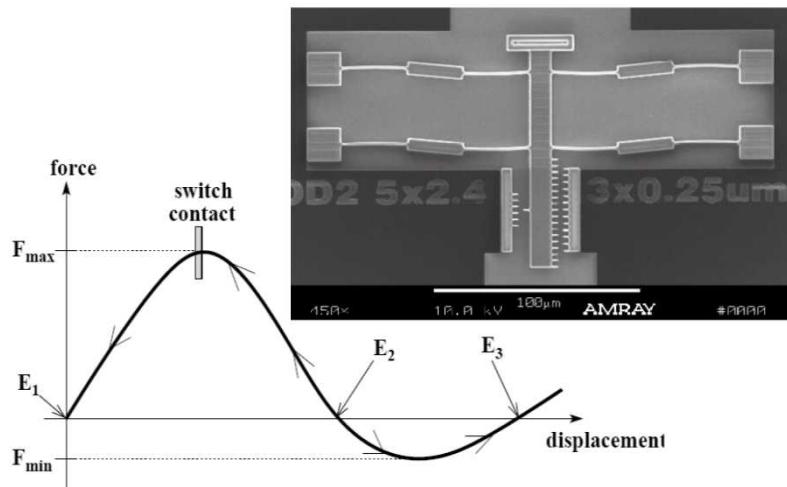
Important Skills

- **Strong technical proficiency and experience**
 - Mathematics, statistics, computing
 - Work experience important
- **Depth and breadth**
 - Technical leadership in challenging areas
 - May have several different “careers” at a lab
- **Programming skills**
 - Applied research
 - Scripting languages usually not enough
- **Leadership skills**
 - Research teams for most projects
 - Recruitment (students, postdocs, project team members)

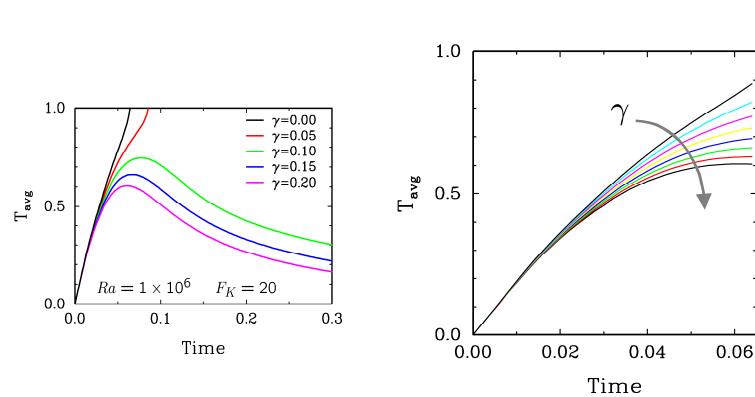
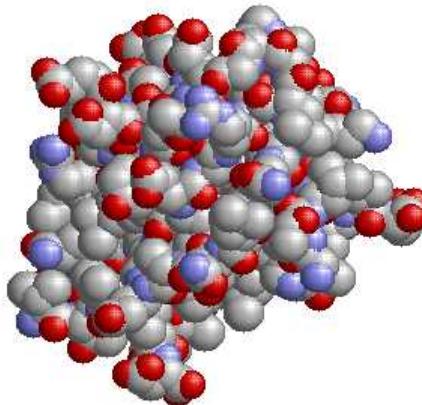
Benefits of Working at the Labs

- **Focus on research**
 - Academic-like setting
 - Write scholarly papers
 - Weekly colloquia/seminars
 - Attend conferences
- **Some educational/mentoring opportunities**
 - Summer students, thesis committees, etc.
- **Access to world-class researchers**
 - Both internally and externally
- **Impact of research**
 - Real, challenging, important problems
 - Can impact national science policy

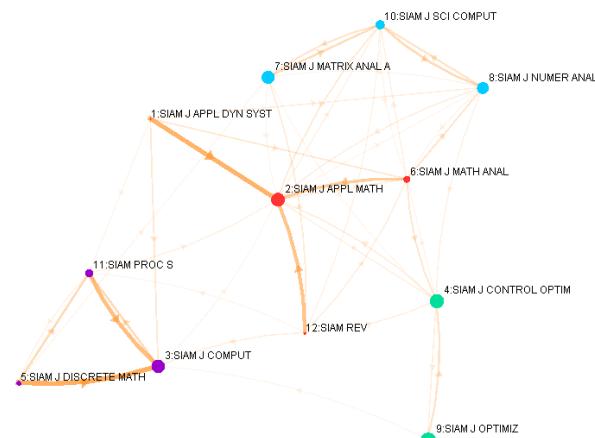
Transitioning from School to Lab


- **Working on a team**
 - Work experiences extremely helpful
 - Summer internships
 - Workshops at IMA, MSRI, SAMSI, IPAM, etc.
- **Mentoring Students**
 - As early as first day
- **Funding**
 - Postdoctoral time covered
 - Proposal writing is essential
- **Transitioning to permanent staff**
 - Postdocs: main recruiting tool for many groups
 - Balancing internal impact and external visibility

My Path to a Position at Sandia



- **Work experience**
 - Internships: Sandia (summer), CCS (1.5 years during Ph.D.)
- **Workshops/conferences**
 - IMA Graduate Workshop, SIAM (4), NIST (2) , GReD (2), Biosciences (2)
- **Multiple projects**
 - SNL: Multilinear algebra/tensors (text analysis)
 - SNL: PDE preconditioning (chemical equilibrium)
 - SNL: Surrogate-based optimization (MEMS design)
 - SNL/UM: Homotopy optimization methods (protein folding)
 - SNL/UM: Text clustering and summarization (document retrieval)
 - IMA: Nonlinear solvers (RF circuit design)
 - WMU: Linear algebra (structured eigenvalue problems)
- **Skills**
 - C, C++, Java, Matlab, Perl
 - Algorithm design, experimental design and analysis
 - End-to-end code development, code integration, team development, general code development

Applications


Engineering

Biology

Chemistry

Informatics

Survey

- Undergraduate/Graduate
- Calculus (1220/30, 1700/10)
- Multivariate Calculus/Matrix Algebra (2720)
- Differential Equations/Linear Algebra (3740)
- Numerical Analysis (5070, 6070)
- Optimization (4080, 6050, 6080)
- Computer Science (programming, algorithms)
- Statistics (sampling, design of experiments)

Homotopies

Definition

A **homotopy** between two continuous functions

$$f^0, f^1 : X \rightarrow Y$$

is defined as a continuous function

$$H : X \times [0, 1] \rightarrow Y$$

such that

$$H(x, 0) = f^0(x) \text{ and } H(x, 1) = f^1(x), \quad \forall x \in X$$

Examples

$$H(x, \lambda) = \lambda f^1(x) + (1 - \lambda) f^0(x) \quad [\text{convex}]$$

$$H(x, \lambda) = f^1(x) - (1 - \lambda) f^1(x^0) \quad [\text{global}]$$

$$H(x, \lambda) = \lambda f^1(x) + (1 - \lambda)(x - a) \quad [\text{probability-one}]$$

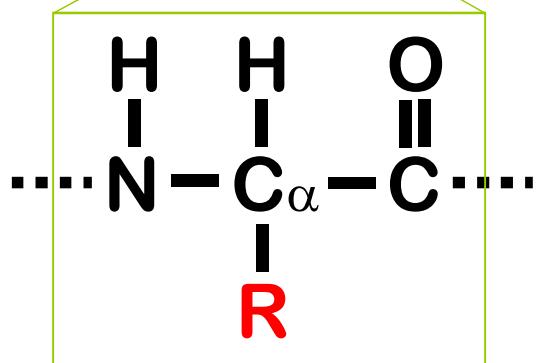
Solving Nonlinear Systems of Equations

Goal

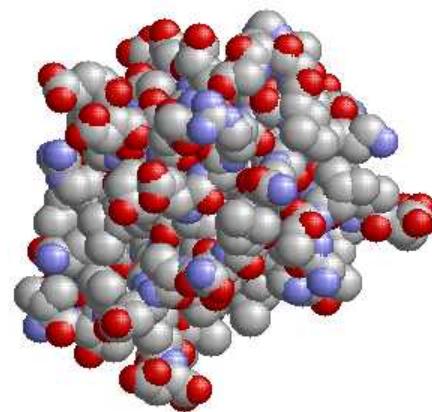
Given $f^1 : \mathbb{R}^n \rightarrow \mathbb{R}^m$, find x such that $f^1(x) = 0$

Homotopy (Continuation, Embedding) Method

- 1) Initialize: $f^0(x^0) = 0$ [known or trivial solution]
- 2) Define homotopy: $H(x, \lambda)$
- 3) Trace equilibrium curve: $H(x, \lambda) = 0$ from $\lambda = 0$ to $\lambda = 1$


Issues

- 1) Does a smooth curve, $c(\alpha) \in H^{-1}(0)$, exist? [implicit function theorem]
- 2) Does the curve reach $\lambda = 1$ in a finite length? [problem dependent]
- 3) How can we numerically trace the curve? [predictor-corrector]


Application: Protein Structure Prediction

Amino Acid Sequence

... - Ala - Arg - Asp - Asn - Arg - ...

Protein Structure

Given the amino acid sequence of a protein (1D), is it possible to predict its native structure (3D)? [energy minimization; Anfinsen, 1971]

Application: Protein Structure Prediction

Goal

Minimize energy function of **target** protein

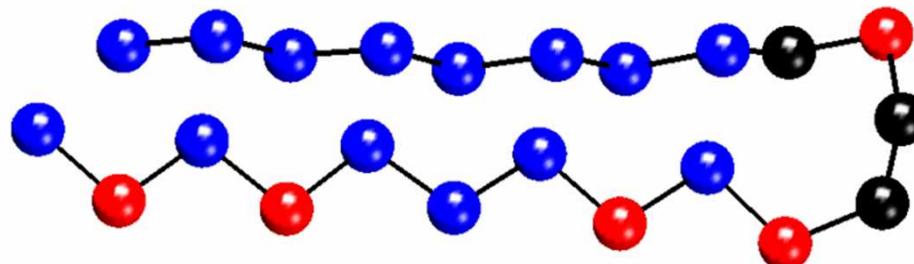
$$E^1(X^*) = \min_{X \in \mathbb{R}^{3n}} E^1(X), \quad (E^1 : \mathbb{R}^{3n} \rightarrow \mathbb{R})$$

Homotopy Optimization Method (HOM)

- 1) Start with (known) lowest energy structure of **template** protein:

$$E^0(X^0) = \min_{X \in \mathbb{R}^{3n}} E^0(X)$$

- 2) Define a **homotopy** function deforming template into target:

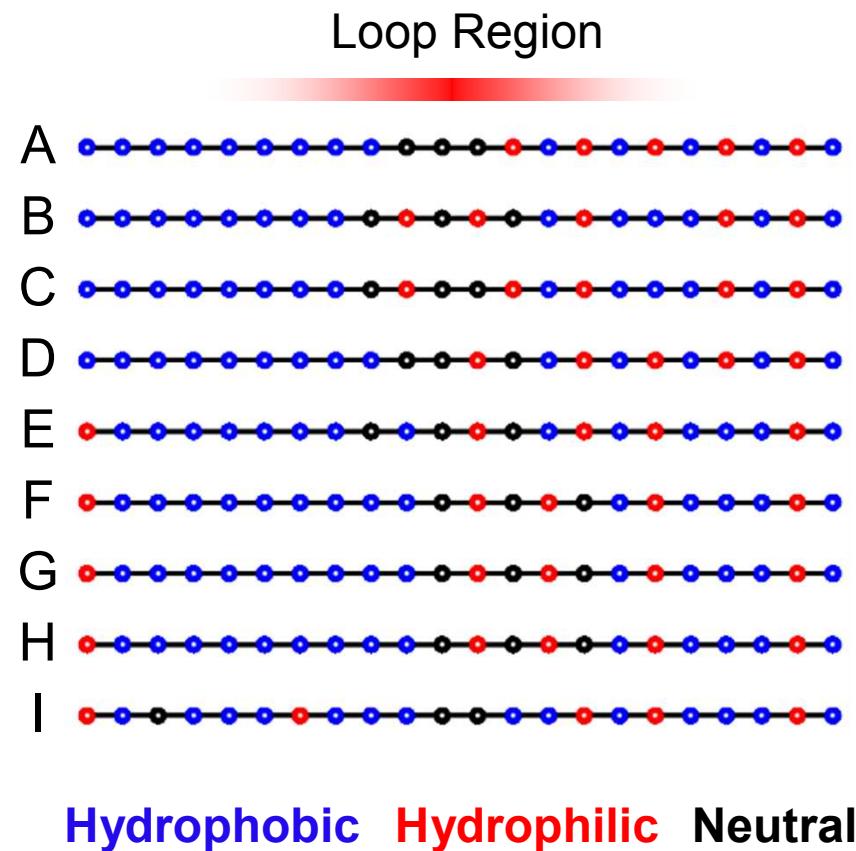

$$H(X, \lambda) = \rho^1(\lambda)E^1(X) + \rho^0(\lambda)E^0(X) \quad [\text{domain knowledge}]$$

- 3) Produce sequence of minimizers of $H(X, \lambda)$ starting at $\lambda = 0$ and ending at $\lambda = 1$

Application: Protein Structure Prediction

Backbone model [Veitshans, *et al.*, 1996]

- Single chain of particles with residue attributes
- Particles model C_α atoms in proteins



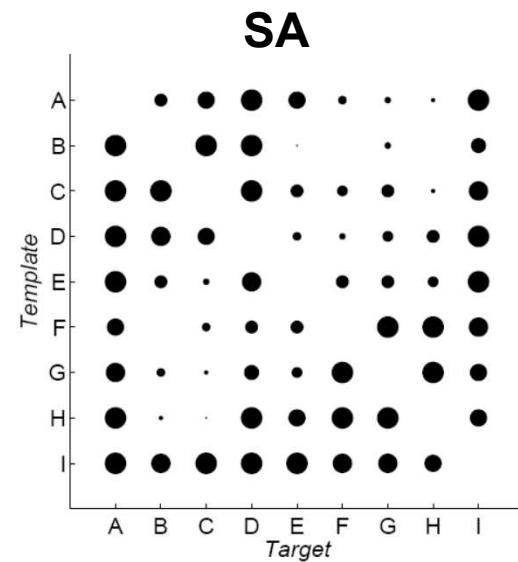
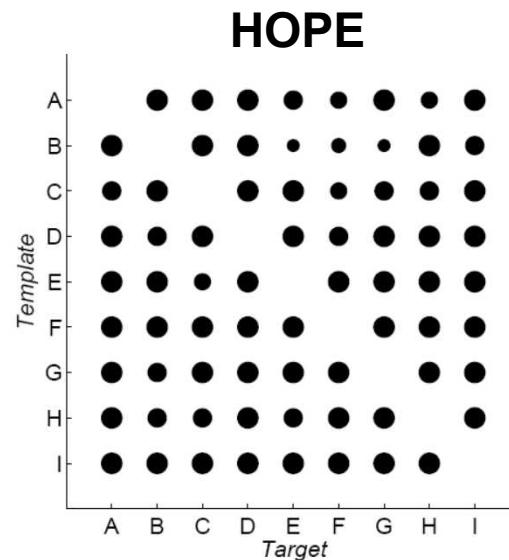
Properties of particles

- Hydrophobic, Hydrophilic, Neutral
- Diverse hydrophobic-hydrophobic interactions

Application: Protein Structure Prediction

Experiment: 9 chains (22 particles) with known structure

Application: Protein Structure Prediction

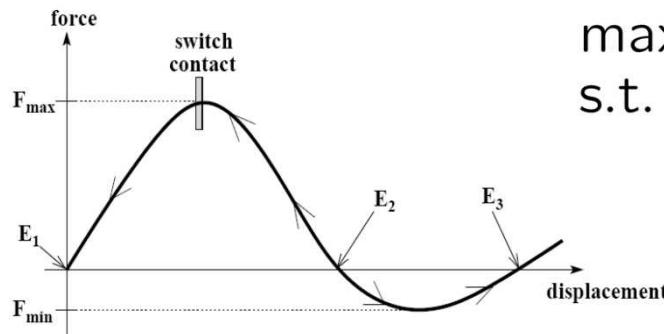
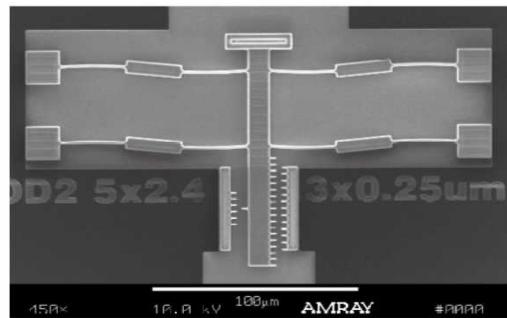


HOPE [Dunlavy, *et al.*, 2005; Dunlavy and O'Leary, 2005]

- HOM using stochastic perturbations, ensembles of minimizers
- Increases probability of finding global minimizer(s)

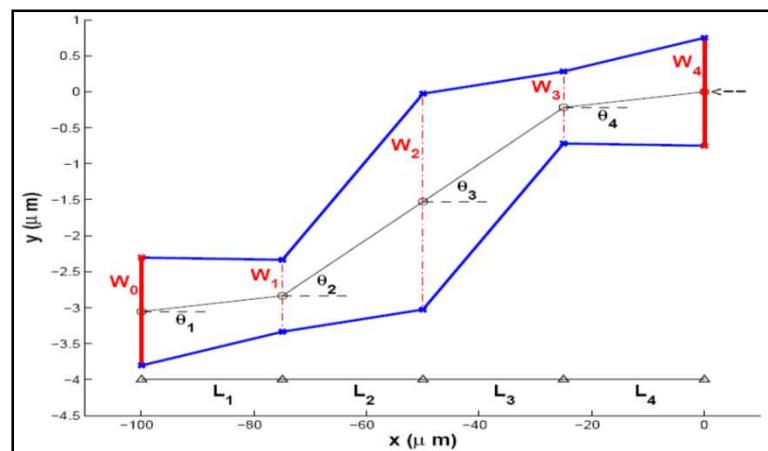
Ensemble-Based Simulated Annealing [Salamon, *et al.*, 2002]

- Popular optimization method for protein structure prediction

Success of HOPE and ensemble-based simulated annealing (SA) with ensembles of size 16 for each template-target pair. The size of each circle represents the percentage of successful predictions over the 10 runs.

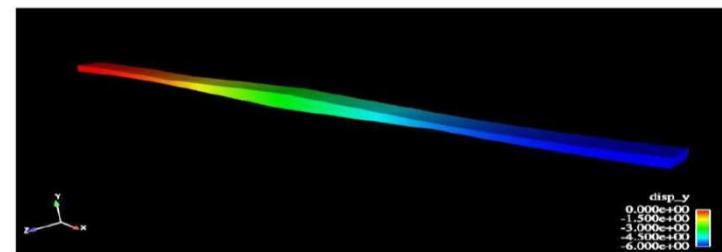



Conclusion: Less work, more accuracy using homotopies


Application: MEMS Design Optimization

Microelectromechanical Systems (MEMS) Design

Bi-stable Switch



$$\begin{aligned} \max \quad & F_{\max}(d) \\ \text{s.t.} \quad & E_2(d) \leq 8 \\ & S_{\max}(d) \leq 3000 \\ & F_{\min}(d) = -5. \end{aligned}$$

13 design variables: $d = (W_i, L_i, \theta_i)$

Force (F), displacement (E), and stress (S) computed using finite element analysis

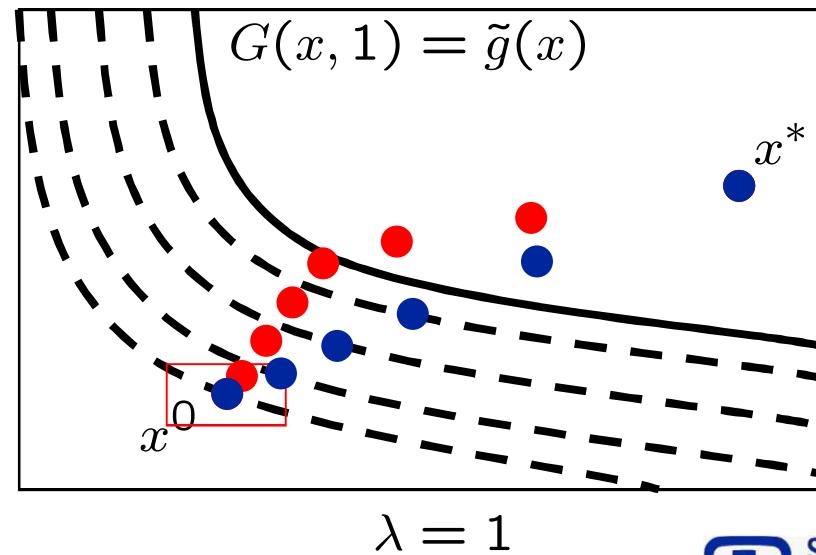
[evaluations $\sim O(\text{hours})$]

MEMS: Constraint Relaxation

● Original Problem

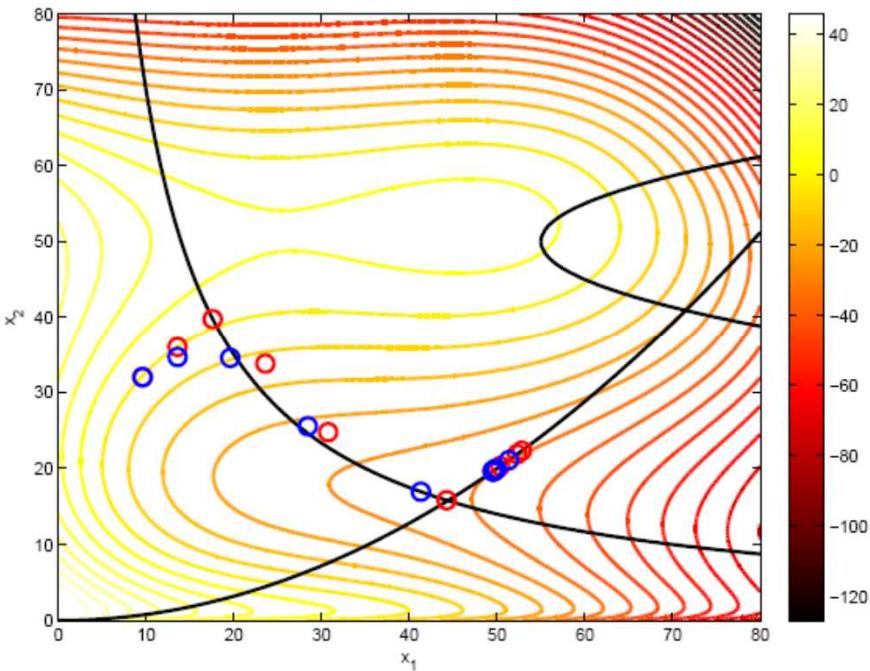
$$\begin{aligned} \min \quad & f(x) \\ \text{s.t.} \quad & g_l \leq g(x) \leq g_u \\ & h(x) = 0 \\ & x_l \leq x \leq x_u \end{aligned}$$

● Constraint Relaxation

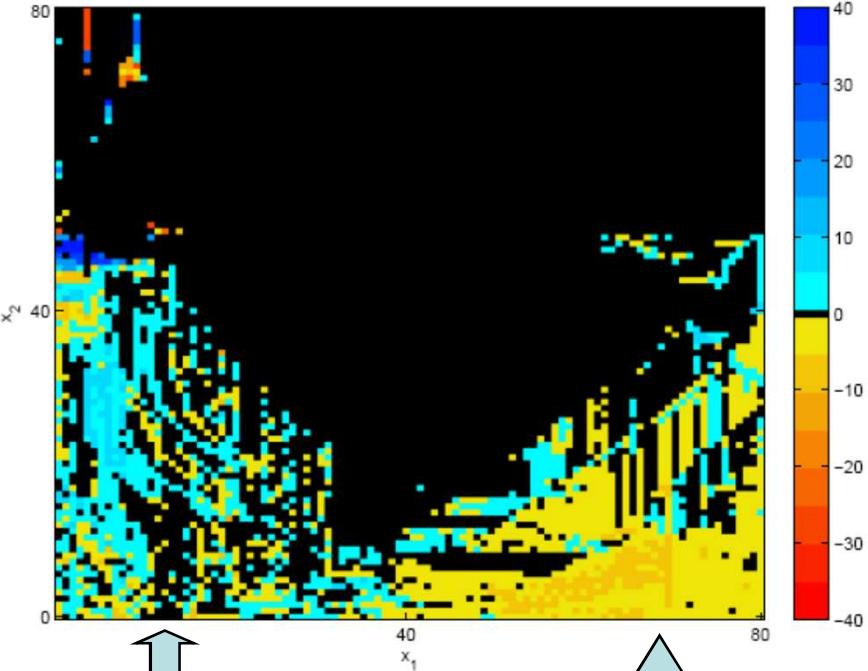

$$\begin{aligned} \min \quad & f(x) \\ \text{s.t.} \quad & g_l \leq G(x, \lambda) \leq g_u \\ & H(x, \lambda) = 0 \\ & x_l \leq x \leq x_u \end{aligned}$$

$$\begin{aligned} G(x, \lambda) &= G(x) + (1 - \lambda)b_G \\ H(x, \lambda) &= H(x) + (1 - \lambda)b_H \end{aligned}$$

b_G, b_H chosen s.t.


$$\begin{aligned} g_l &\leq G(x^0, 0) \leq g_u \\ H(x^0, 0) &= 0 \end{aligned}$$

[adaptation of Perez, *et al*, 2004]



MEMS: Effect of Constraint Relaxation

Sample homotopy constraint relaxation

10^6 starting points on uniform grid

Optimal/feasible directions differ by $< 90^\circ$.
Relaxation beneficial to achieve balance.

Optimal/feasible directions opposed.
Relaxation harmful since feasibility
must ultimately take precedence.

Sandia
National
Laboratories

Application: MEMS Design Optimization

Experiments using Constraint Relaxation (CR)

- Surrogate-based optimization (SBO) + trust region [DAKOTA]
- Sequential quadratic programming (SQP) [NPSOL, DOT]
- Problems
 - Barnes Problem (common engineering test problem for SBO methods)
 - Constrained and Unconstrained Testing Environment (CUTE)
 - MEMS Bi-stable switch design

Results [Eldred and Dunlavy, 2006]

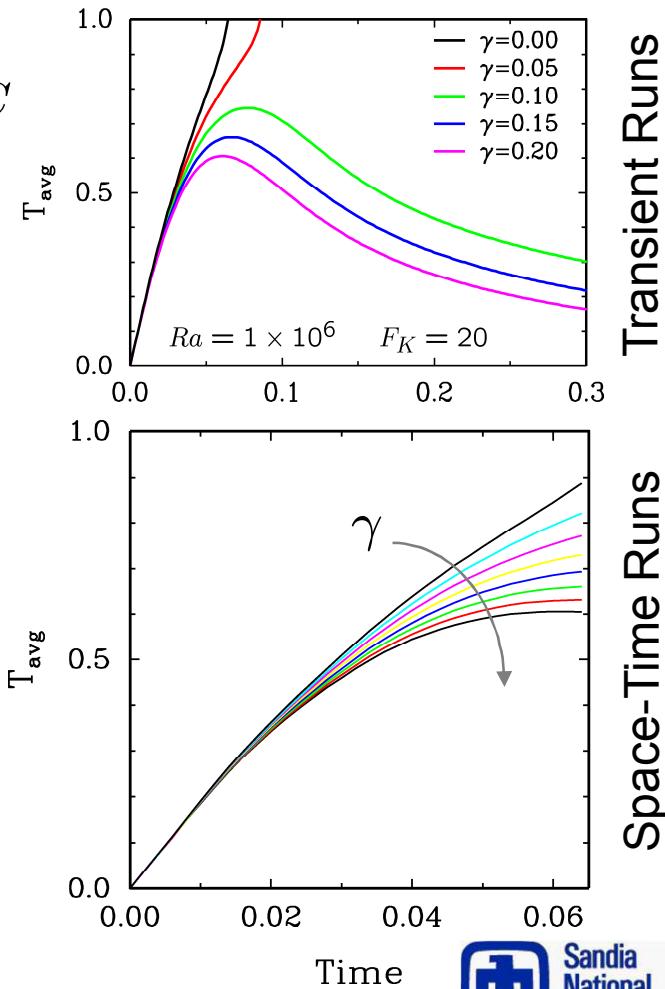
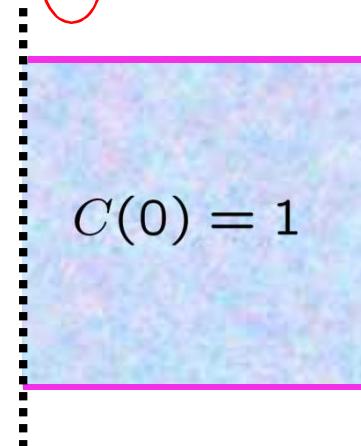
- Barnes: helps in some parts of domain, hinders in others
 - Angle between directions of descent and greatest constraint reduction
- CUTE: helps most for problems with equality constraints
 - Constraint satisfaction a challenge for SQP
- MEMS: leads to **3X** reduction in computation!!!

Conclusion: CR via homotopies can lead to reduced computation

Application: Chemical Equilibrium

Extended Frank-Kamenetskii Explosion Model

- Includes reactant consumption term
- 5 scalar PDEs, 5 unknowns: v_x, v_y, P, T, C



$$\frac{dv}{dt} + v \cdot \nabla v = -\nabla P + \nabla^2 v + RaTe_z$$

$$\nabla \cdot v = 0$$

$$\frac{dT}{dt} + v \cdot \nabla T = \nabla^2 T + F_K Ce^T$$

$$\frac{dC}{dt} + v \cdot \nabla C = \nabla^2 C - \gamma F_K Ce^T$$

- $T = 0$
- insulated
- axis of symmetry

Application: Chemical Equilibrium

Space-Time Formulation of Transient PDEs

Transient simulation: $B\dot{x} = f(x, \lambda)$

Backward Euler: $B\frac{x_1 - x_0}{\Delta t} - f(x_1, \lambda) = 0 \Rightarrow B\frac{x_2 - x_1}{\Delta t} - f(x_2, \lambda) = 0 \Rightarrow \dots$

Instead, solve for all solutions at once: $g(y, \lambda) = 0$

where $y = [x_1 \ x_2 \ \dots \ x_n]^T$ and $g_i = Bx_i - Bx_{i-1} - \Delta t f(x_i, \lambda)$

With Newton solver, direction is found by solving: $(J \equiv \nabla f)$

$$\begin{vmatrix} (B - \Delta t J) & 0 & 0 & 0 & 0 \\ -B & (B - \Delta t J) & 0 & 0 & 0 \\ 0 & -B & (B - \Delta t J) & 0 & 0 \\ 0 & 0 & -B & (B - \Delta t J) & 0 \\ 0 & 0 & 0 & -B & (B - \Delta t J) \end{vmatrix} \begin{vmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \\ \Delta x_4 \\ \Delta x_5 \end{vmatrix} = \begin{vmatrix} -g_1 \\ -g_2 \\ -g_3 \\ -g_4 \\ -g_5 \end{vmatrix}$$

Efficient solves of this system are key to success!

Application: Chemical Equilibrium

Explosion Model Experiments

- Finite element method [\[MPSalsa\]](#)
 - 2M unknowns
 - 1024 processors

Results [\[Dunlavy and Salinger, 2006\]](#)

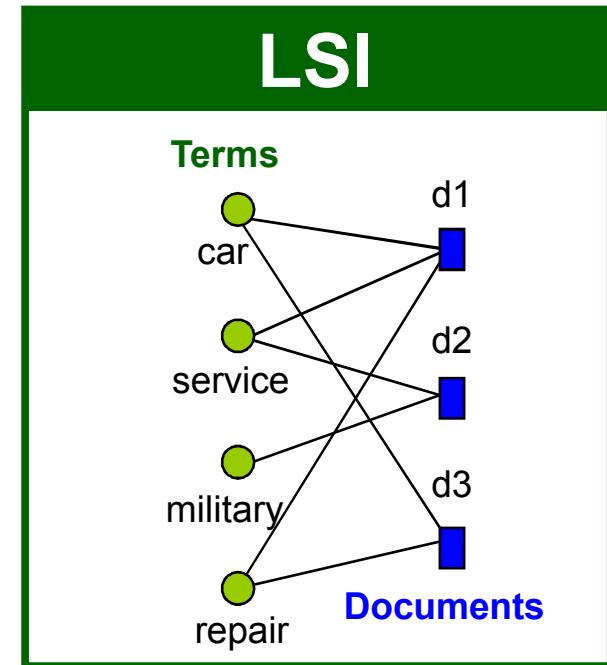
- Need good initial guess to solve space-time systems
 - Transient simulation for first parameter value, then continuation
- Preconditioners
 - Several developed to leverage spatial/temporal parallelism
 - At least 20% more efficient to solve space-time systems

Conclusion: Continuation of space-time systems more efficient than transient simulations when preconditioners are used.

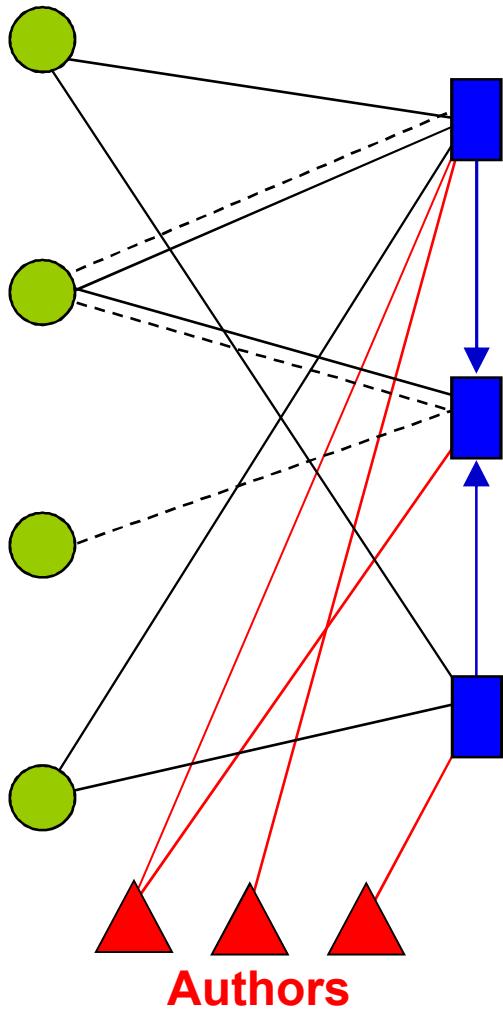
Application: Informatics

- **Network analysis and bibliometrics**

- **PageRank** [Brin & Page, 1998]

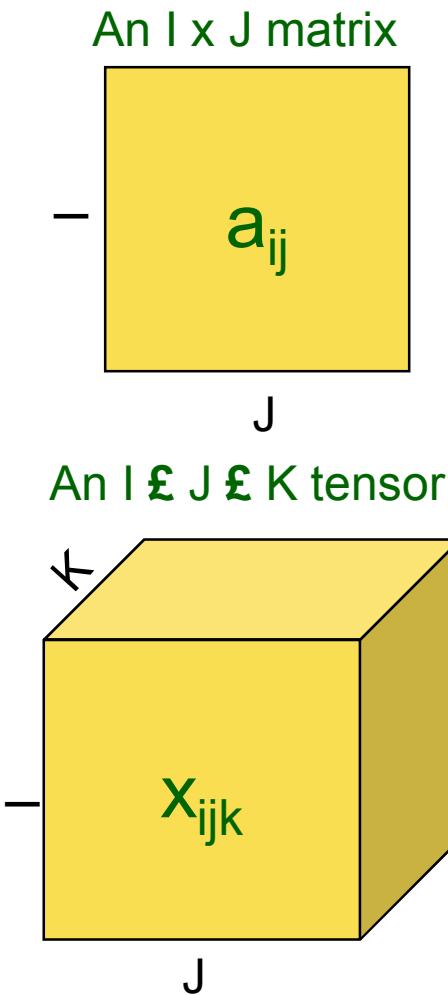

- Transition matrix of a Markov chain: \mathbf{M}
- Ranks: $\mathbf{M}\mathbf{r} = \mathbf{r}$

- **HITS** [Kleinberg, 1998]

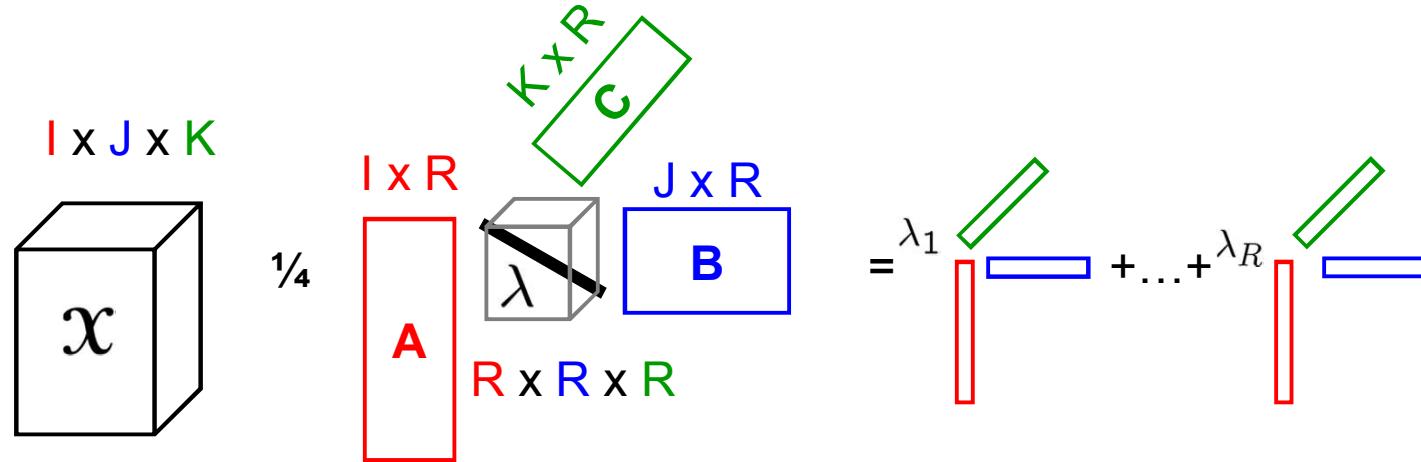

- Adjacency matrix of the Web graph: \mathbf{L}
- Hubs: $\mathbf{L}\mathbf{L}^T \mathbf{y} = \mathbf{y}$
- Authorities: $\mathbf{L}^T \mathbf{L} \mathbf{x} = \mathbf{x}$

- **Latent Semantic Indexing (LSI)** [Dumais, et al., 1988]

- Vector space model of documents (term-document matrix): \mathbf{A}
- Truncated SVD: $\mathbf{A} \approx \mathbf{T}\Sigma\mathbf{D}^T = \sum_{r=1}^k \sigma_r \mathbf{t}_r \mathbf{d}_r^T$
- Maps terms and documents to the “same” k -dimensional space

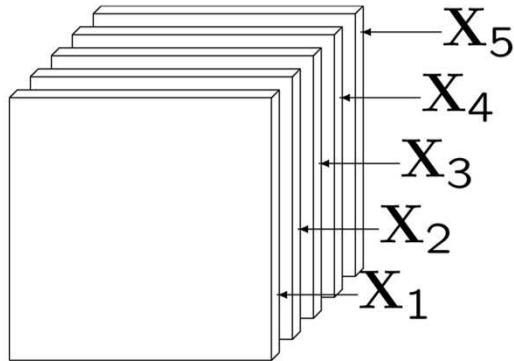

Multilinear Algebra, More Complex Graph Analysis

- **Nodes (one type) connected by multiple types of links**
 - Node x Node x Connection
- **Two types of nodes connected by multiple types of links**
 - Node A x Node B x Connection
- **Multiple types of nodes connected by a single link**
 - Node A x Node B x Node C
- **Multiple types of nodes connected by multiple types of links**
 - Node A x Node B x Node C x Connection
- **Etc...**


Tensors (Multidimensional Arrays)

Notation
s scalar
a vector
B matrix
\mathcal{X} tensor

- **Other names for tensors...**
 - Multi-way array
 - N-way array
- **The “order” of a tensor is the number of dimensions**
- **Other names for dimension**
 - Mode
 - Way
- **Example**
 - The matrix A (at left) has order 2.
 - The tensor \mathcal{X} (at left) has order 3 and its 3rd mode is of size K .


CANDECOMP/PARAFAC (CP) Decomposition

$$\mathcal{X} \approx [\lambda ; \mathbf{A}, \mathbf{B}, \mathbf{C}] = \sum_r \lambda_r \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$$

- **CANDECOMP** = Canonical Decomposition [Carroll & Chang, 1970]
- **PARAFAC** = Parallel Factors [Harshman, 1970]
- Core is *diagonal* (specified by the vector λ)
- Columns of \mathbf{A} , \mathbf{B} , and \mathbf{C} are **not** orthonormal
- If R is *minimal*, then R is the **rank** of the tensor [Kruskal 1977]
- Can have $\text{rank}(\mathcal{X}) > \min\{I, J, K\}$

SIAM Journal Data: Tensor Construction

Slice (k)	Description	Nonzeros	$\sum_i \sum_j x_{ijk}$
1	Abstract Similarity	28476	7695.28
2	Title Similarity	120236	33285.79
3	Keyword Similarity	115412	16201.85
4	Author Similarity	16460	8027.46
5	Citation	2659	5318.00

Frontal Slices \mathbf{X}_k

- $\mathbf{X}_1 = \mathbf{T}^T \mathbf{T}$ where $t_{ij} = f_{ij} \log_2(N/N_i)$ for terms in the **abstracts**
 - f_{ij} is the frequency of term **i** in document **j**
 - N_i is the number of documents that term **i** appears in
- $\mathbf{X}_2 = \mathbf{T}^T \mathbf{T}$ for terms in the **titles**
- $\mathbf{X}_3 = \mathbf{T}^T \mathbf{T}$ for terms in the author-supplied **keywords**
- $\mathbf{X}_4 = \mathbf{W}^T \mathbf{W}$ where $w_{ij} = \begin{cases} 1/\sqrt{M_j} & \text{if author } i \text{ wrote document } j \\ 0 & \text{otherwise,} \end{cases}$
- $x_{ij5} = \begin{cases} 2 & \text{if document } i \text{ cites document } j \\ 0 & \text{otherwise.} \end{cases}$

SIAM Journal Data: Document Similarity

Link Analysis: Hubs and Authorities on the World Wide Web,

C.H.Q. Ding, H. Zha, X. He, P. Husbands, and H.D. Simon, *SIAM REV*, 2004.

- **CP decomposition, $R = 10$:** $\mathbf{x} \approx [\lambda ; \mathbf{A}, \mathbf{B}, \mathbf{C}] = \sum_{r=1}^{10} \lambda_r \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$
- **Similarity scores:** $S = \frac{1}{2}\mathbf{A}\mathbf{A}^T + \frac{1}{2}\mathbf{B}\mathbf{B}^T$

Interior Point Methods

(Not related)

Sparse approximate inverses

(Arguably distantly related)

Graph Partitioning

(Related)

SIAM Journal Data: Document Similarity

Link Analysis: Hubs and Authorities on the World Wide Web,

C.H.Q. Ding, H. Zha, X. He, P. Husbands, and H.D. Simon, *SIAM REV*, 2004.

- **CP decomposition, $R = 30$:** $\mathbf{x} \approx [\lambda; \mathbf{A}, \mathbf{B}, \mathbf{C}] = \sum_{r=1}^{30} \lambda_r \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$
- **Similarity scores:** $S = \frac{1}{2}\mathbf{A}\mathbf{A}^T + \frac{1}{2}\mathbf{B}\mathbf{B}^T$

Score	Title
0.000563	Skip graphs
0.000356	Random lifts of graphs
0.000354	A fast and high-quality multilevel scheme for partitioning irregular graphs
0.000322	The minimum all-ones problem for trees
0.000306	Rankings of directed graphs
0.000295	Squarish k-d trees
0.000284	Finding the k-shortest paths
0.000276	On floor-plan of plane graphs
0.000275	1-Hyperbolic graphs
0.000269	Median graphs and triangle-free graphs

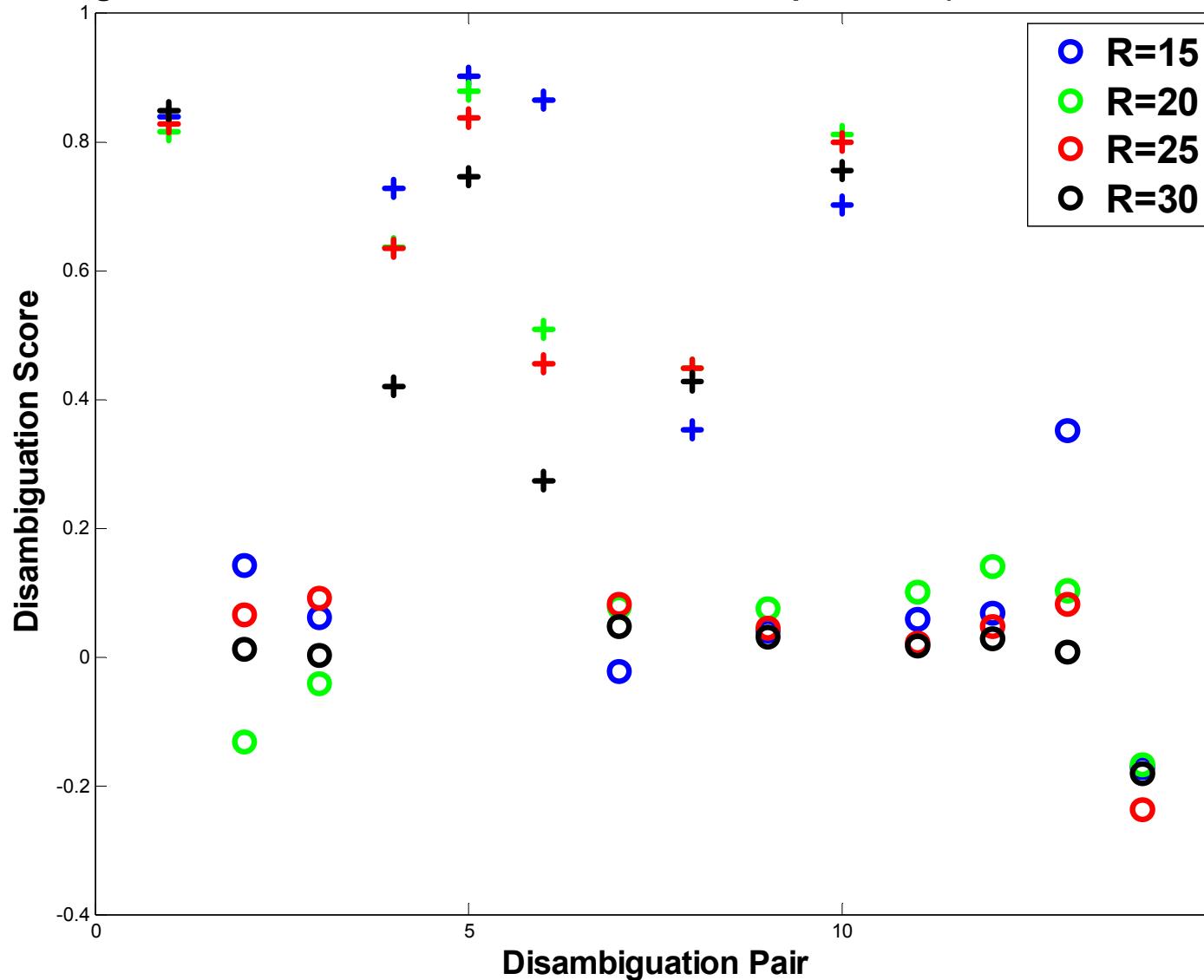
Graphs (Related)

SIAM Journal Data: Disambiguation

- **CP decomposition, $R = 20$:** $\mathcal{X} \approx [\lambda ; A, B, C] = \sum_{r=1}^{20} \lambda_r a_r \circ b_r \circ c_r$
- **Computed centroids of top 20 authors' papers** (g_A, g_B)
- **Disambiguation scores:** $s = \frac{1}{2}A g_A + \frac{1}{2}B g_B$
- **Scored all authors with same last name, first initial**

Before Disambiguation		After Disambiguation	
Papers	Author	Papers	Author
17	Du Q	17	Du Q
15	Kunisch K	16	Chan TF
15	Zwick U	16	Manteuffel TA
14	Chan TF	16	McCormick SF
13	Klar A	15	Kunisch K
13	Manteuffel TA	15	Zwick U
13	McCormick SF	13	Klar A
13	Motwani R	13	Golub GH
12	Golub GH	13	Motwani R
12	Kao MY	12	Kao MY

T Chan (2), TM Chan (4)


T Manteuffel (3)

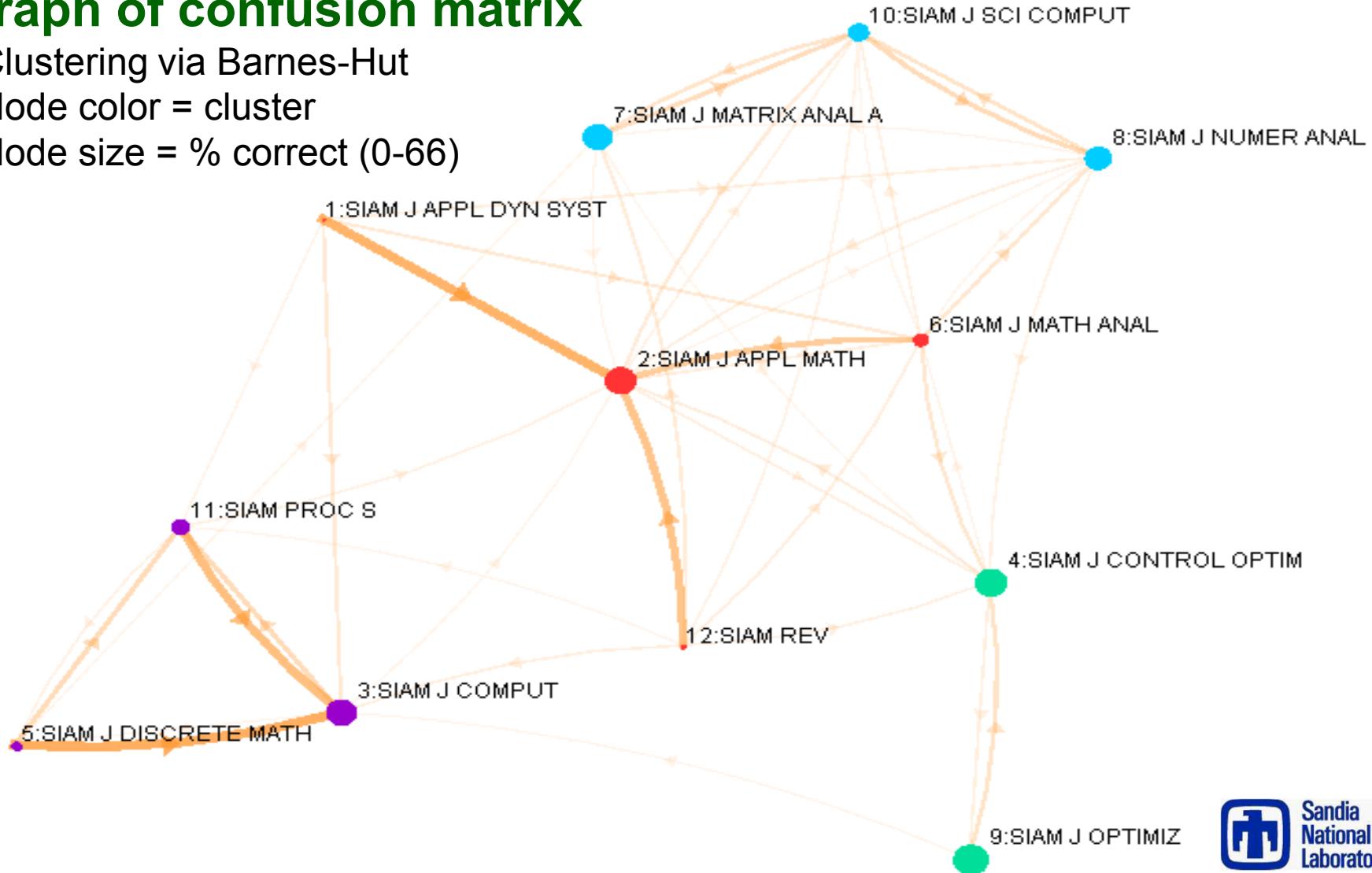
S McCormick (3)

G Golub (1)

SIAM Journal Data: Disambiguation

Disambiguation Scores for Various CP Tensor Decompositions (+ = correct; o = incorrect)

SIAM Data: Journal Prediction


- CP decomposition, $R = 30$, vectors from B
- Bagged ensemble of decision trees (n = 100)
- 10-fold cross validation
- 43% overall accuracy

<i>ID</i>	<i>Journal Name</i>	<i>Size</i>	<i>Correct</i>	<i>Mislabeled as</i>
1	SIAM J APPL DYN SYST	1%	0%	2 (44%)
2	SIAM J APPL MATH	11%	58%	6 (10%)
3	SIAM J COMPUT	11%	56%	11 (20%)
4	SIAM J CONTROL OPTIM	11%	60%	2 (10%)
5	SIAM J DISCRETE MATH	5%	15%	3 (47%)
6	SIAM J MATH ANAL	8%	26%	2 (29%)
7	SIAM J MATRIX ANAL A	8%	56%	10 (19%)
8	SIAM J NUMER ANAL	12%	50%	10 (16%)
9	SIAM J OPTIMIZ	7%	66%	4 (16%)
10	SIAM J SCI COMPUT	13%	36%	8 (21%)
11	SIAM PROC S	9%	32%	3 (38%)
12	SIAM REV	3%	5%	2 (34%)

SIAM Data: Journal Prediction

Graph of confusion matrix

- Clustering via Barnes-Hut
- Node color = cluster
- Node size = % correct (0-66)

Other Tensor Applications at Sandia

- **Tensor Toolbox (MATLAB)** [Kolda/Bader, 2007]

<http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/>

- **TOPHITS (Topical HITS)** [Kolda, 2006]

- HITS plus **terms** in dimension 3
- Decomposition: CP

- **Cross Language Information Retrieval** [Chew et al., 2007]

- Different **languages** in dimension 3
- Decomposition: PARAFAC2

- **Temporal Analysis of E-mail Traffic** [Bader et al., 2007]

- Directed e-mail graph with **time** in dimension 3
- Decomposition: DEDICOM

Thank You

Applying Mathematics: Solving Problems at a National Laboratory

Danny Dunlavy

Email: dmdunla@sandia.gov

Web Page: <http://www.cs.sandia.gov/~dmdunla>