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Motivation for Study of InGaN Underlayers

» Understanding the mechanisms that impact luminescence efficiency in InGaN
QWs and LEDs is critically important for achieving high-energy-efficiency solid-

state lighting

= A dramatic increase in InGaN QW luminescence has been observed
when InGaN “underlayers” (ULs) are inserted beneath InGaN QWs
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Goal: Clarify mechanisms behind underlayer-induced luminescence enhancement
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Previous Work and Focus of this Work

Various models have been proposed that
may explain the impact of underlayers:

» Separation of QWs from defective growth interface
[Akasaka et al., APL (2004)]

Sapphire substrate

» Reduction of non-radiative defect populations in QWs

Scholz et al.

[Akasaka et al., APL (2005); Son et al., J Cryst Growth (2006)] | B 20 (1067) 258

. . ) Proposed V-defect
» Formation of “V-defects” with energy barriers that

prevent non-radiative recombination at dislocations
[Takahashi et al., JUAP (2000); Hangleiter et al., PRL (2005)]

Focus of this Work: ]

Hangleiter et aI
PRL 95 (2005) 127402

» Evaluation of the role of V-defects through control of UL growth temperature
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» Evaluation of the role of UL indium composition, In,Ga, N x =0-0.09




Microstructure of threading dislocations and V-defects in
InGaN QW-on-underlayer samples

_ > Does every thread terminate at a V-defect?
Open Microstructural

_ > Does this vary with dislocation type?
Questions: Y 7P

> Are there really QWs on the pit sidewalls?
Bright-field X-TEM image with g=(11-20) HAADF-STEM image of V-defect facet

A aws &
4‘f\undeﬂayer

>GaN

1.0 pm } sapphire |
> geb analysis of 32 threads shows 50% are » Composition-sensitive STEM images
edge (b=a) and 50% are mixed (b=a+c) demonstrate QWs exist on the sidewall

> Detailed inspection confirms all of both types facets of the V-defects

reaching the surface terminate at V-defects
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Microstructural results appear consist with screening by V-defects @ Sandia




If we eliminate V-defects in the underlayer,
does the InGaN QW photoluminescence decrease?

Sample design for “identical” InGaN QWs
with and without V-defects:

» Two similar 200-nm-thick Ing ,Ga, ggN underlayers

» Grown at different temperatures to control V-defects } T4=1030 °C
» 5-period Ing 15Gag s5sN/GaN MQWs on top Sapphire substrate
3x3 um? AFM Images X-Ray Diffraction Data
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Temperature Dependent Photoluminescence Study
of capped InGaN MQW-on-UL structures

AFM and CL data for GaN capped Temperature-Dependent
MQW structure (similar to LEDs) Photoluminescence (PL)

InGaN MQWs with ~100 nm GaN cap (Tg ~950°C) 415 nm excitation-> selective QW pumping
Standard 790 °C Underlayer Planarized 880 °C Underlayer
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Underlayers enhance efficiency even without V-defects! @ Sandia




How does indium composition in the In,Ga, N underlayer
influence InGaN QW efficiency?

Sample
Designs:

Temperature-Dependent Photoluminescence

Normalized PL Intensity
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have V-defects.
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» Varied underlayer composition from x=0 to 0.09; 200-nm-thick; InGaN QWs on top
» “Hybrid” sample: 20-nm-thick InGaN (x=0.018) on top of 180-nm-thick, 790 °C GaN

QW Quantum Efficiency versus Composition
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» We find high IQE for all underlayers once Indium
composition rises above ~2%

> Also, striking IQE improvement (~3X) for the hybrid
underlayer with just 20 nm of InGaN (x=0.018)

PL studies reveal the critical role of indium in the underlayer for increased IQE @ Sandia
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Arrhenius Analysis of the
Temperature-Dependent Photoluminescence (PL)

Temperature Dependent PL Data
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Fitted to a Two-Channel Arrhenius Model

o

I(T) =

1+ A*exp(-E,/kT) + B*exp(-E,/kT)

Fitted model parameters
as a function of UL indium composition:

In Comp(%) A E. (meV) B E, (meV)
0 73.5 50.3 2.6 12.5
Hybrid * 22.1 47.4 0.62 10.3
2.5 6.0 52.0 0.3 6.8
4.5 4.8 54.2 0.07 3.44
7.2 7.47 53.1 0.09 2.95
9.2 14.4 71.2 0.09 4.64
*Top 20 nm 1.8% In \ N % ——
possible exciton carrier

mechanisms:

dissociation

delocalization

» Adding indium does not modify the dominant PL-quenching mechanism (similar Ea)
> Instead, amplitude trends suggest free carriers encounter fewer non-radiative recombination

centers for all underlayer samples containing indium
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Cathodoluminescence (CL) Study of InGaN Quantum Wells
on Underlayers with Different Indium Compositions

200-nm GaN UL

Hybrid (20-nm InGaN on top) 200-nm InGaN UL, x=2.5%

CL intensity scale: gg.270 180-540 180-540

(arb. units)
' » The nm-scale “dark spots” in scanning CL images correspond one-

to-one to V-defects in SEM images, consistent with reduced QW
emission on the V-defect sidewalls

» On the micron-scale the CL emission varies in intensity and
exhibits a mottled structure for all samples

SEM

Relatively uniform increase of CL across the sample with
the addition of indium to ULs is qualitatively consistent

with reduced point defects or impurities.
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Conclusions
Several hypotheses for PL enhancement by underlayers were evaluated:

» Defective interface due to change in growth temperature:
Low-temperature GaN underlayers move this interface away from the QW region
but produce only a limited increase in quantum efficiency.

» V-defect mediated screening of threading dislocations:
We see similar quantum-efficiency gains with & without V-defects.

» Reduction of non-radiative recombination centers inside the QWs:
Consistent with temperature-dependent PL data & spatially resolved CL data.

Future Work:

» Clarification of reduction of non-radiative recombination centers:
What are the dominant centers (point defects/impurities)?
How do indium ULs influence their populations?

» Validation of luminescence enhancement with electrical injection (LEDs):

Carrier transport and capture distinctions between resonant PL vs. EL
- ref: Akasaka et al, APL 2006: 5X EL enhancement from 420 nm InGaN QW LEDs

for InGaN vs. GaN underlayers
Sandia
National
Lahoratories




