SAND2020- 84568

Leveraging Production Visualization Tools In
Situ

Kenneth Moreland, Andrew C. Bauer, Berk Geveci, Patrick O’Leary, and
Brad Whitlock

Abstract The visualization community has invested decades of research and devel-
opment into producing large-scale production visualization tools. Although in situ
is a paradigm shift for large-scale visualization, much of the same algorithms and
operations apply regardless of whether the visualization is run post hoc or in situ.
Thus, there is a great benefit to taking the large-scale code originally designed for
post hoc use and leveraging it for use in situ.

This chapter describes two in situ libraries, Libsim and Catalyst, that are based
on mature visualization tools, Vislt and ParaView, respectively. Because they are
based on fully-featured visualization packages, they each provide a wealth of fea-
tures. For each of these systems we outline how the simulation and visualization
software are coupled, what the runtime behavior and communication between these
components are, and how the underlying implementation works. We also provide use
cases demonstrating the systems in action. Both of these in situ libraries, as well as
the underlying products they are based on, are made freely available as open-source
products. The overviews in this chapter provide a toehold to the practical application
of in situ visualization.

Kenneth Moreland
Sandia National Laboratories, Albuquerque, NM, USA, e-mail: kmorel@sandia.gov

Andrew C. Bauer
United States Army Corps of Engineers, e-mail: andrew.c.bauer9.civ@mail .mil

Berk Geveci
Kitware, Inc., Clifton Park, NY, USA, e-mail: berk.geveci@kitware.com

Patrick O’Leary
Kitware, Inc., Clifton Park, NY, USA, e-mail: patrick.oleary@kitware.com

Brad Whitlock
Intelligent Light, Rutherford, NJ, USA, e-mail: bjw@ilight.com

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

2 Moreland, Bauer, Geveci, O’Leary, and Whitlock

1 Introduction

Although in situ is a paradigm shift for large-scale visualization, much of the same
algorithms and operations apply regardless of whether the visualization is run post
hoc or in situ. Thus, there is a great benefit to taking the large-scale code originally
designed for post hoc use and leveraging it for use in situ. Two of the most popular post
hoc visualization tools are Vislt [9] and ParaView [2]. Contributing to the success
of these tools is that they each are feature rich, have proven parallel scalability, have
automated scripting capabilities, are free, and have a large development community.
To leverage these capabilities for an in situ environment, each tool now provides a
library that allows data and control to pass from another software tool. Vislt provides
a library named Libsim [32], and ParaView provides a library named Catalyst [4].
In this chapter we review these libraries and demonstrate how they are used to
implement in situ visualization.

The introduction of this book lists many important features of in situ visualization
that motivate the implementation and use of Libsim and Catalyst. However, the
introduction also lists several limitations of in situ visualization that do not apply to
post hoc visualization. The upshot is that for the foreseeable future both in situ and
post hoc visualization will be important for discovery at large computing scales, and
so providing both types of visualization are important. Because Libsim and Catalyst
each derive functionality from their respective classic tools, they immediately make
available both in situ and post hoc visualization. Furthermore, visualizations made
post hoc are easily made in situ and vice versa.

We present Libsim and Catalyst together in this chapter because there are many
common features the two libraries share. The two systems share the same in situ
taxonomy described in the introduction.

Integration Type Both tools are general purpose and designed to work well with
a variety of simulation codes. However, their primary function is specific to
visualization and the simulation must be modified to use the library.

Proximity Libsim and Catalyst assume they are running in close proximity using
the same resources as the simulation.

Access Because Libsim and Catalyst are libraries that share the same memory
space as the simulation, it is possible for these codes to directly access the
simulation’s memory. However, they only access memory specifically given to
them, and the data must be in a specified format.

Division of Execution Libsim and Catalyst use time division to alternate use of
the simulation’s resources.

Operation Controls The main mode of operation is to perform visualizations ac-
cording to a predefined batch script. However, both Libsim and Catalyst are
capable of performing human-in-the-loop visualization by attaching a remote
GUI to a running simulation.

Output Type Libsim and Catalyst are each capable of producing a wide variety
of outputs. Images and image databases [3] are common outputs, but derived
geometric structures and statistics are also possible data products.

Leveraging Production Visualization Tools In Situ 3

In addition to having similar properties, Libsim and Catalyst share similar meth-
ods to interface with simulations, to specify what visualization operations to perform,
and to instantiate the visualization operation. Both Libsim and Catalyst are interfaced
to a simulation by writing an “adapter.” The adapter is primarily responsible for con-
verting the data representation used by the simulation to the data representation used
by Libsim and Catalyst. Both Libsim and Catalyst use VTK [25] as their underlying
implementation, and thus the adapter for either must convert the simulation’s data
format to VTK’s data format. VTK can reference data in external arrays, so often
the adaption of a simulation’s data structures to VTK’s data structures can be done
without copying the data.

Also similar among the two libraries is their runtime behavior. Each allows the
simulation to operate in its own execution loop. At the simulation’s discretion, it
periodically invokes Libsim or Catalyst with an updated collection of data. Under
typical batch operation, the library processes the data, saves whatever visualization
product is generated, and returns control back to the simulation. Both libraries also
support a mode in which a live, remote GUI is updated. In this mode control can
either be immediately returned to the simulation, or the simulation may be blocked
while a remote user interactively explores the data, which is particularly useful for
debugging the simulation.

The following two sections provide details for Libsim and Catalyst. Each section
describes how the respective library is integrated with a simulation, how the library
behaves at runtime, and the underlying implementation of the library. Because of their
similarity there is redundancy in these descriptions. For clarity, we have repeated
descriptions in each section to provide a thorough explanation of each.

2 Libsim

Libsim [33] is a library that enables in situ visualization using Vislt [9], a massively
parallel visualization and data analysis tool built on VTK. Vislt contains a rich set
of data readers, operators, and plots. These features read, filter or transform data,
and ultimately provide a visual representation of the data to allow for exploration
and analysis. Many of these features can be chained together to build pipelines that
create sophisticated visualizations. Libsim satisfies multiple use cases, shown in
Figure 1. Libsim was conceived originally as an online visualization mechanism for
debugging simulations with the aid of the VisIt GUI. Over time, Libsim evolved to
allow both interactive and batch uses cases that allows it to generate a host of data
products without a user in the loop. Today, virtually anything that is possible in the
Vislt GUI is also possible from Libsim. This flexibility has enabled Libsim to be
integrated into diverse simulations related to fields of study such as Computational
Fluid Dynamics (CFD) or Cosmology. Libsim is highly scalable and has been run at
levels of concurrency surpassing 130K cores.

4 Moreland, Bauer, Geveci, O’Leary, and Whitlock

Interactive, Human in the Loop
R+ simulation

Rank 0

Commands

Geometry & images ‘

Metadata

Rank 3

Batch, Automated
simulation

Rank 0 Rank 1

Output

Extract data,
XDB

Output

Fig. 1 Libsim supports interactive and batch use cases.

2.1 Integration with Simulation

Libsim integrates with applications as a set of library calls that are usually encap-
sulated into a module called a data adaptor (depicted in Figure 2). Libsim provides
C, FORTRAN, and Python bindings to minimize the amount of cross-language
programming that is asked of application scientists. Libsim provides a relatively
low-level application programming interface (API) so it can be integrated flexibly
into host simulations. Libsim can be used directly, or it can be used within other
infrastructures that integrate into the simulation, such SENSEI [5] or Damaris [10].
The typical procedure for instrumenting a simulation with Libsim involves writing
a data adaptor and proceeding through four stages: initialization, exposing data, it-
eration, and adding user interface. During initialization, the simulation sets up the
relevant environment and calls functions to either prepare for interactive connections
or for batch operations. Writing the data adaptor involves exposing simulation data
to Libsim. The next stages are optional. Iteration involves adding code that will
produce any plots or data extracts. The final stage adds a user interface and registers
simulation functions to respond to user-interaction via the Vislt GUIL

Leveraging Production Visualization Tools In Situ 5

Analysis
Input File

Simulation
Sl

-

Adaptor

||iiiii||
Adaptor Callbacks
visit_handle

GetMesh (int domain, const char *name)

{

|043U0) 10B4IXT

b

// build mesh
return mesh;

Fig. 2 Simulations instrumented with Libsim link to the Libsim library. The simulation supplies
data adaptor functions that expose data to Vislt pipelines. The Vislt pipelines can supply a running
Vislt instance with data or produce in situ data products.

The Libsim API can be thought of as having 2 components: a control interface and
a data interface. The control interface is responsible for setting up environment, event
handling, and registering data callback functions. The data interface is responsible
for annotating simulation memory and packaging related data arrays into mesh data
structures that can be used as inputs to Vislt. Data arrays are passed by pointer,
allowing both zero-copy access to simulation data and transfer of array ownership
to Vislt so data can be freed when no longer needed. Arrays can be contiguous in
memory as in structure of array (SOA) data layouts or they can use combinations
of strides and offsets to access simulation data as in array of structures (AOS)
data structures. Libsim supports commonly used mesh types including rectilinear,
curvilinear, Adaptive Mesh Refinement (AMR), and unstructured grids consisting of
finite element cell types. Libsim also can also support computational domains that
are not actually meshes such as Constructive Solid Geometry (CSG). However data
are represented, Libsim usually relies on the simulation’s data decomposition when
exposing data to Vislt, and the simulation can expose multiple meshes with their own
domain decompositions. Libsim permits simulations to add field data on the mesh
centered on the cells or on the points. Field data consists of scalars, vectors, tensors,
labels, and arrays with an arbitrary number of tuples per element. Libsim includes

6 Moreland, Bauer, Geveci, O’Leary, and Whitlock

additional data model concepts, allowing simulations to specify domain adjacency,
ghost data, mixed material cells, and material species.

During the instrumentation process, a decision must be made whether to support
interactive connections or batch operations via Libsim, or both. The paths differ
somewhat, though in both cases there are some upfront calls that can be made to set
up the environment for Libsim. This consists of VisIt’s environment and the parallel
environment. When interactive connections are expected, Libsim will write a small
.sim2 file containing network connection information that Vislt can use to initiate a
connection to the simulation. This file is not needed for batch-only operation. The
following code example includes the Libsim header files, sets up Libsim for parallel
operation, discovers environment settings needed to load VislIt runtime libraries, and
finally creates the .sim2 file needed for interactive connections.

#include <VisItControlInterface_V2.h>
#include <VisItDataInterface_V2.h>

/* Broadcast callbacks */
static int
bcast_int(int *value, int sender, void *cbdata)
{
return MPI_Bcast(value, 1, MPI_INT, sender, MPI_COMM_WORLD);
3
static int
bcast_string(char *str, int len, int sender, void *cbdata)
{
return MPI_Bcast(str, len, MPI_CHAR, sender, MPI_COMM_WORLD);
}
void libsim_initialize(int interactive)
{
/* Parallel setup */
int rank, size;
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
VisItSetBroadcastIntFunction2 (bcast_int, NULL);
VisItSetBroadcastStringFunction2 (bcast_string, NULL);
VisItSetParallel(size > 1);
VisItSetParallelRank(rank);
/* Get VisIt environment */
char *env = NULL;
if(rank == 0)
env = VisItGetEnvironment ();
VisItSetupEnvironment2 (env);
if(env != NULL)
free(env);
if(rank == 0 && interactive)
{
/% Write out .sim2 file that VisIt uses to connect. */
VisItInitializeSocketAndDumpSimFile(
"simulation_name"
"Comment about the simulation",
"/path/to/where/sim/was/started",
NULL, NULL, "simulation_name.sim2");

Leveraging Production Visualization Tools In Situ 7

}

When integrating Libsim for interactive operation, calls to the control inter-
face to handle events must be inserted into the simulation. Libsim provides the
VisItDetectInput() function for this purpose. It listens for connections from a
Vislt client. Simulations can build event loops using the VisItDetectInput function
or call it in a polling manner from their own event loops. When a connection request
is detected, the function will return a value indicating that other Libsim functions
must be called to complete the connection request and load the runtime library. Once
the runtime library is loaded, the developer may register data callback functions
that expose simulation data as Libsim objects. Data callback functions are called
by Vislt’s runtime library to inquire about simulation metadata and when specific
meshes and fields are needed in order to create a specific data product. Data callbacks
must be installed once the Vislt runtime library has been loaded. In a batch-style
integration, this can be immediately after the call to VisltInitializeRuntime() whereas
for interactive, the data callbacks must be installed after a successful call to Visl-
tAttemptToCompleteConnection(), which signifies a successful connection of Vislt’s
viewer application to the simulation.

static void
libsim_bcast_cmd_cb(int *command, void *cbdata)
{
MPI_Bcast(command, 1, MPI_INT, O, MPI_COMM_WORLD);
}
static void
libsim_control_cb(
const char *cmd, const char *args, void *cbdata)

{
/% Optional: Respond to text commands */
}
/% MetaData and Mesh callbacks shown later...*/

static void libsim_setup_callbacks(void)

{
void *cbdata = /* Point this at application data */;
VisItSetCommandCallback(libsim_cmd_cb, cbdata);
VisItSetSlaveProcessCallback2(libsim_bcast_cmd_cb, cbdata);
VisItSetGetMetaData(libsim_metadata_cb, cbdata);
VisItSetGetMesh(libsim_mesh_cb, cbdata);

}

/% Simplified example - invoked by the simulation. */
void libsim_interactive(void)
{
switch(VisItDetectInput(blocking, -1))
{
case 0:
/* No input from VisIt, return control to sim. */
break;

8 Moreland, Bauer, Geveci, O’Leary, and Whitlock

case 1:
/* VisIt is trying to connect to sim. */
if(VisItAttemptToCompleteConnection() == VISIT_OKAY)
libsim_setup_callbacks();
break;
case 2:
/* VisIt wants to tell the engine something. */
if(!VisItProcessEngineCommand())
VisItDisconnect();
break;

The deferred nature of Libsim data requests ensures that the simulation does not
have to waste time computing results that might not be used, as when computing
derived fields for visualization. Data requests are assembled inside of the Vislt
runtime libraries from its execution contract, which includes a manifest of all of
the data needed to create a visualization. Libsim’s callback function design enables
the Vislt runtime library to request data on demand from the Libsim adaptor in the
simulation. Data are requested in stages, first metdata is obtained to inform the Vislt
runtime about the meshes and variables provided by the simulation. Simulations can
expose as little data or as much data as they like. The callback functions include
a user-defined data argument that allows application data to be associated with
callbacks when they are registered in order to make it easier to access application
data from callbacks when they are invoked by the Vislt runtime library.

visit_handle
libsim_metadata_cb(void *cbdata)
{
visit_handle md = VISIT_INVALID_HANDLE,
mmd = VISIT_INVALID_HANDLE;
/% Create metadata. */
if(VisIt_SimulationMetaData_alloc(&md) == VISIT_OKAY)
{
/* Access application data */
application_data *app = (application_data *)cbdata;

/% Set the simulation state. */
VisIt_SimulationMetaData_setMode (md,
VISIT_SIMMODE_RUNNING);
VisIt_SimulationMetaData_setCycleTime(md, app->cycle,
app->time);

/% Add mesh metadata. */
if(VisIt_MeshMetaData_alloc(&mmd) == VISIT_OKAY)
{
/* Set the mesh’s properties.*/
VisIt_MeshMetaData_setName (mmd, "mesh");
VisIt_MeshMetaData_setMeshType(
mmd, VISIT_MESHTYPE_RECTILINEAR);
VisIt_MeshMetaData_setTopologicalDimension(mmd, 3);

Leveraging Production Visualization Tools In Situ 9

VisIt_MeshMetaData_setSpatialDimension(mmd, 3);
VisIt_MeshMetaData_setNumDomains (
mmd, app->total_num_domains);
VisIt_SimulationMetaData_addMesh(md, mmd);
}

/* We could expose more meshes, variables, etc. */

}

return md;

Once the data requirements are determined for a visualization, Libsim invokes
the registered mesh callback to obtain mesh data on a per-domain basis. Libsim
is flexible and it can represent several mesh types. Meshes, as with most Libsim
data constructs, are constructed from arrays. Libsim provides functions that enable
simulation data arrays to be annotated with size, type, offset, and stride information
so arrays can be passed back to Vislt to be used zero-copy as much as possible. In
addition, simulation callback functions can wrap temporary memory that Vislt is
allowed to free in case zero-copy representations are not feasible. Once the mesh
callback has been executed, variables and then other types of data are requested,
each from their respective callback function. As a simulation adaptor grows more
complete, additional callbacks can be registered to support variables, materials,
AMR nesting, mesh decompositions, etc.

visit_handle
libsim_mesh_cb(int domain, const char *name, void *cbdata)
{
visit_handle h = VISIT_INVALID_HANDLE;
if(VisIt_RectilinearMesh_alloc (&) != VISIT_ERROR)
{
visit_handle hx, hy, hz;
/% Access application data */
application_data *app = (application_data *)cbdata;
VisIt_VariableData_alloc (&hx);
VisIt_VariableData_alloc (&hy);
VisIt_VariableData_alloc(&hz);
VisIt_VariableData_setDataDChx, VISIT_OWNER_SIM, 1,
app->dims[0], app->xc);
VisIt_VariableData_setDataDChy, VISIT_OWNER_SIM, 1,
app->dims[1], app->yc);
VisIt_VariableData_setDataD(Chz, VISIT_OWNER_SIM, 1,
app->dims[2], app->zc);
VisIt_RectilinearMesh_setCoordsXYZ(h, hx, hy, hz);
}

return h;

With simulations able to produce an ever increasing amount of data, Libsim’s
empbhasis gradually shifted from being a tool for debugging simulation codes towards
production of data products without massive amounts of I/O. To generate data
products, the simulation can call Libsim functions to set up Vislt plots and Vislt

10 Moreland, Bauer, Geveci, O’Leary, and Whitlock

operators and to set their attributes before saving images or exporting processed
datasets. These operations can also be set up via a Vislt session file rather than
relying on fixed sets of plots. This allows the user to connect using Vislt interactively
to set up the desired visualization, save the configuration to a session file, and then
apply the recipe in batch to produce movies and other data products.

/% Save plots designated by a session file. */
VisItRestoreSession("setup.session");
VisItSaveWindow ("a0000.png", 1024, 1024, VISIT_IMAGEFORMAT_PNG);

/% Set up some plots directly */

VisItAddPlot ("Mesh", "mesh");

VisItAddPlot ("Pseudocolor", "pressure");

VisItDrawPlots();

VisItSaveWindow("a0001.png", 1048, 1024, VISIT_IMAGEFORMAT_PNG);

Libsim has been used increasingly with CFD codes with common needs for
producing lightweight surface-based data extracts that can be explored using desk-
top visualization tools. Surface data extracts often consist of slices, isosurfaces, or
boundary surfaces plus field data. Generating such extracts in situ results in a drastic
reduction in saved data and time needed compared to extracting such data from bulk
volume data during post-processing. To permit general surface extracts to be speci-
fied via an external configuration file and simplify multiple aspects of instrumenting
codes using Libsim (particularly for parallel event loops), we have created a com-
panion library called “extract control”. Extract control enables multiple extract types
(e.g. surfaces, images, or Cinema databases [3]) to be requested via a convenient
YAML file that the user can change, as opposed to direct Libsim function calls or
using Vislt session files. The extract control library also encapsulates some of the
usual boilerplate code needed to support interactive event loops as well as batch-style
Libsim integrations, resulting in fewer lines of code.

Interactive instrumentation using Libsim allows the VisIt GUI to use the simula-
tion as a normal compute engine, making it possible to do most kinds of analysis or
data interrogation with large file-based datasets. Interactive simulations benefit from
other features provided by VisIt and Libsim. For instance, Libsim provides functions
that let the simulation provide sample data that can be aggregated into strip charts
that plot quantities of interest over time. Strip charts can display arbitrary sample
data, though time and memory measurements are commonly plotted. The VisIt GUI
displays strip charts and other simulation state in the Simulation window. The Simu-
lation window also exposes controls published by the simulation. These controls take
the form of command buttons in the simplest case that, when pressed, can invoke
callback functions in the simulation adaptor. This allows the user to initiate actions
in the simulation based on button clicks in the VisIt GUI. The VisIt GUI also allows
for simulation-specific custom user interfaces. Custom user interfaces are designed
using Qt Designer and the VisIt GUI can replicate such user interfaces as extensions
within the Simulation window. Custom user interfaces enable the VisIt GUI to al-
ter simulation parameters to affect more complicated steering actions. This feature

Leveraging Production Visualization Tools In Situ 11

was successfully used by Sanderson et al [24] to create a customized simulation
dashboard for the Uintah software suite.

2.2 Runtime Behavior

Libsim accepts control from the simulation and then enters an event loop or other
batch-oriented code in the simulation adaptor to generate data extracts and im-
mediately return. When Libsim’s operations complete, control is returned to the
simulation. Libsim’s runtime behavior depends on how it was used to instrument the
simulation, and its behavior varies between human-in-the-loop-blocking to nobody
in the loop, non-blocking. The behavior for interactive use cases is determined by
how the VisItDetectInput() function was called when instrumenting the sim-
ulation. The function can be used to implement blocking event loops or polling
event loops that are invoked periodically from the simulation. Blocking calls return
when commands have been received by the VisIt GUI and may result in additional
calls that request user input. Blocking calls may also include a timeout that enables
the function to return after a specified period of inactivity to return control to the
simulation. Libsim includes other functions that can be called in conjunction with
the event loop to notify Vislt’s runtime library of new simulation data so it can be
used to push data to the Vislt GUL This feature allows the Vislt GUI to connect
to the running simulation and recompute its plots in response to updates from the
simulation so the user can watch the simulation evolve. Connecting to the running
simulation, making plots, watching for a while, and then disconnecting is supported
in simulations that use Libsim and this cycle can be repeated over the life of the
simulation.

2.3 Underlying Implementation

Vislt functionality is divided into different processes, according to function. Vislt
provides client programs such as the GUI so users can analyze data interactively.
Vislt’s viewer acts as a central hub, which manages state, communication with other
programs, and rendering data. VisIt’s compute “engine” reads data and executes any
plot and operator pipelines to generate geometry or image data for the viewer. The
compute engine can run locally or on other HPC systems via client/server mode.
Libsim enables a simulation to act as a proxy for the Vislt compute engine. Libsim is
actually separated into a front-end library and a runtime library. The front-end library
is minimal and is linked to the simulation. The front-end library provides all of the
user-facing functions such as event handling while providing an interface to runtime
library functions that are loaded later once Libsim is actually told to do work. This
separation allows simulations to link with Libsim once but dynamically change the
version of Vislt used at runtime. An important function of the front end library is

12 Moreland, Bauer, Geveci, O’Leary, and Whitlock

to write a sim2 file, which is a file containing networking information that the VisIt
GUI can use to initiate a socket connection to the simulation. Since Vislt relies on
the sim2 file for connecting to simulations, from a user’s point of view, accessing
a running simulation is essentially the same as accessing any file-based dataset.
Upon opening the sim?2 file, Vislt initiates a socket connection to the simulation and
once a successful connection is made via the VisItDetectInput () function, the
simulation dynamically loads the Libsim runtime library and calls additional data
adaptor code to register data-producing callback functions with Libsim.

The Libsim runtime library incorporates parts of the VisIt engine and viewer so
it can manage plots and execute visualization pipelines to deliver Vislt functionality.
When plots are created, Vislt instantiates a visualization pipeline consisting of vari-
ous data analysis filters. The pipeline uses a contract mechanism to build a list of data
that is needed to produce the desired visualization. The list of data in the contract is
used to request simulation data via a specialized database plug-in. Libsim’s database
plug-in invokes callback functions from the simulation data adaptor to obtain data
rather than reading from files. A callback function is responsible for returning differ-
ent types of data such as a mesh domain or a specific variable on that mesh domain.
Data are returned by making Libsim function calls that package simulation data into
Libsim objects. The Libsim objects ferry data from the simulation into the Libsim
database reader where they are unpacked and used to assemble VTK datasets that
Vislt can use internally in its visualization pipelines.

2.4 Use Case

Libsim has been used in a variety of domains and applications. Libsim automati-
cally produces batch data extracts (such as geometry, rendered images, or Cinema
databases) at scale and lets VisIt connect to running simulations for interactive ex-
ploration, monitoring, and steering. In the CFD domain, Libsim has been used to
generate in situ data extracts consisting of reduced sets of geometry suitable for post
hoc data analysis of engineering datasets [11, 14]. Forsythe et al [13] successfully
used this approach in CREATE-AV Kestrel to generate geometric extracts to accel-
erate analysis of fully coupled high-fidelity simulations of a rotorcraft in a ship’s
airwake. Helicopters landing on sea-based landing platforms experience turbulent
airflows resulting from their surroundings such as the ship airwake produced from air
moving around the structures on naval ships. Airwakes produces nonlinear aerody-
namic effects that must be taken into account in order to accurately simulate landing
in such a setting, as in this flight simulator coupling. Libsim was integrated into
Kestrel to produce geometric data extracts in FieldView XDB format representing
45 seconds in 2700 time steps, taken every 5 simulation time steps. The resulting
extract-based simulation data are drastically smaller than a corresponding volume
dataset, and the system “rendered the animations in hours rather than the days it
would have otherwise taken [23].”

Leveraging Production Visualization Tools In Situ 13

Fig. 3 The Evolution of Temporal Mixing Layer from Initial to Vortex Breakdown.

In a larger computation, Libsim was used as an in situ analysis infrastructure
coupled to the AVF-LESLIE [28, 29] combustion code by SENSEI. AVF-LESLIE
was configured to simulate unsteady dynamics of a temporally evolving planar
mixing layer at the interface between two fluids. This interface results in a type
of fundamental flow that mimics the dynamics encountered when two fluid layers
slide past one another and is found in atmospheric and ocean fluid dynamics as well
as combustion and chemical processing. Visualizations of the flowfield in Figure 3
show isosurfaces of the vorticity field, at 10,000, 100,000, and 200,000 time steps
where the flow evolves from the initial flow field, vortex braids begin to form, wrap
and then the flow breaks down leading to homogeneous turbulence, respectively.

AVF-LESLIE was statically linked to Libsim and Vislt and run on Titan at Oak
Ridge Leadership Class Computing Facility on 131,072 cores. Static linking was
selected because of an observation that Libsim’s usual deferred loading of the Vislt
runtime library incurred significant overhead when running at large scale on Titan.
A SENSEI data adaptor was created for AVF-LESLIE. It passed structured mesh
and field data from the main FORTRAN-based simulation through a C-language
compatibility layer where data pointers were used to create VTK datasets that were
passed into SENSEIL VTK datasets were exposed to Libsim inside SENSEI via an
additional data adaptor that ultimately passed data to the Vislt runtime library to
create data products. Two types of in situ computations were performed: a rendering
workflow, and an extract-based workflow. The rendering workflow generated 1600 x
1600 pixel images of a vorticity isosurface and composited partial images into a
single PNG image using tree-based compositing within Vislt’s runtime library. The
vorticity quantity was computed on demand in the SENSEI adaptor for AVF-LESLIE.
The extract workflow saved the same isosurface to FieldView XDB files, aggregating
geometry to smaller subgroups of 96 ranks to reduce file system contention. A typical
extract from this dataset was approximately 200 times smaller than the full volume
data, and this enabled the project to save data 20 times more frequently while
remaining still 10 times smaller than when using volume data.

Libsim continues to provide in situ capabilities for frameworks and codes that
need to run at large scale and want to leverage the capabilities in a fully-featured
visualization tool such as Vislt.

14 Moreland, Bauer, Geveci, O’Leary, and Whitlock

Pass script
through
input deck

Output
Processed
Data

N
Rendered Images

Statistics

Polygonal Output
P | [T Te——— with

i Field Data
Series Data

Fig. 4 In situ workflow with a variety of Catalyst outputs.

3 Catalyst

The ParaView Catalyst library is a system that addresses challenges of in situ visu-
alization and is designed to be easily integrated directly into large-scale simulation
codes. Built on and designed to interoperate with the standard visualization toolkit
VTK and scalable ParaView application, it enables simulations to perform analy-
sis intelligently, generate relevant output data, and visualize results concurrent with
a running simulation. The ability to concurrently visualize and analyze data from
simulations is synonymous with in situ processing, co-processing, co-analysis, con-
current visualization, and co-visualization. Thus ParaView Catalyst, or Catalyst, is
often referred to as a co-processing, or in situ, library for high-performance comput-
ing (HPC).

Figure 4 demonstrates a typical workflow using Catalyst for in situ processing. In
this figure, we assume a simulation code is integrated with Catalyst. The end-user
initiates the workflow by creating a Python script using the ParaView application
graphical user interface (GUI), which specifies the desired output from the sim-
ulation. Next, when the simulation starts, it loads the Python script; then, during
execution, Catalyst generates synchronously (i.e. while the simulation is running)
any analysis and visualization output. Catalyst can produce images (i.e. screenshots)
and image databases [3], compute statistical quantities, generate plots, and extract
derived information such as polygonal data, such as iso-surfaces, to visualize.

A variety of simulation codes have used Catalyst. A subset list of these codes
instrumented to use Catalyst include PHASTA from the University of Colorado,
Boulder [22]; MPAS-Atmosphere and MPAS-Ocean from the climate modeling
group at Los Alamos National Laboratory (LANL) and the National Center for
Atmospheric Research (NCAR) [31]; XRAGE, NPIC, and VPIC from LANL [20];
HPCMP CREATE-AV™ Helios from the U.S. Army’s CCDC AvMC Technology

Leveraging Production Visualization Tools In Situ 15

Adaptor

Fig. 5 ParaView Catalyst interface architecture.

Development Directorate; CTH, Albany and the Sierra simulation framework from
Sandia National Laboratories [18]; H3D from the University of California, San Diego
(UCSD), and Code Saturne from Electricité de France (EDF) [16].

The most significant scale run to date used over 1 million MPI processes on
Argonne National Laboratory’s BlueGene/Q Mira machine [5]. The scaling studies
utilized PHASTA, a highly scalable CFD code, developed by Kenneth Jansen at the
University of Colorado, Boulder, for simulating active flow control on complex wing
design.

3.1 Integration with Simulation

In this section, we describe how developers can interface a simulation code with
the ParaView Catalyst libraries. The interface to the simulation code is called an
adaptor. Its primary function is to adapt the information in internal data structures
of the simulation code and transform these data structures into forms that Catalyst
can process. We depict this process in Figure 5.

A developer creating an adaptor needs to know the simulation code data structures,
the VTK data model, and the Catalyst application programming interface (API).

3.1.1 Simulation Codebase Footprint

Although interfacing Catalyst with a simulation code may require significant effort,
the impact on the codebase is minimal. In most situations, the simulation code only
calls three functions.

First, we must initialize Catalyst in order to place the environment in the proper
state. For codes that depend on the message-passing interface (MPI), we place this

method after the MPI_Init() call.
MPI_Init(argc, argv);

#ifdef CATALYST
CatalystInitialize(argc, argv);
#endif

Next, we call the coprocess method to check on any computations that Catalyst
may need to perform. This call needs to provide the simulation mesh and field data
structures to the adaptor as well as time and time step information. It may also

16 Moreland, Bauer, Geveci, O’Leary, and Whitlock

provide additional control information, but that is not required. Typically, we call the
coprocess method at the end of every time step in the simulation code after updating
the fields and possibly the mesh.
for (int timeStep=0; timeStep < numberOfTimeSteps; timeStep++) {
// < simulation does its thing >
// < update fields and possibly mesh after timeStep >
#ifdef CATALYST
CatalystCoProcess(timeStep, time, <gridinfo>, <fieldinfo>);
#endif
}

Finally, we must finalize Catalyst state and adequately clean up. For codes that
depend on MPI, we place this method before the MPI_Finalize() call.
#ifdef CATALYST
CatalystFinalize();
#endif
MPI_Finalize();

In general, we colocate the initialize and the finalize methods with the coprocess
method in the adaptor and the developer implements the adaptor code in a separate
source file, which simplifies the simulation code build process.

3.1.2 Instrumentation Details

As shown in Figure 5, the adaptor code is responsible for the interface between the
simulation code and Catalyst.

Core to the adaptor is the vikCPProcessor class, which manages the in sifu analysis
and visualization pipelines, which in turn automate the flow of data through a series

of tasks. Given
vtkCPProcessor®* Processor = NULL; // static data

we can define an example initialize method, Catalystlnitialize, as
void CatalystInitialize(int numScripts, char* scripts[]) {
if (Processor == NULL) {
Processor = vtkCPProcessor::New();
Processor->Initialize();
}
// scripts are passed in as command line arguments
for (int i=0; i<numScripts; i++) {
vtkCPPythonScriptPipeline* pipeline =
vtkCPPythonScriptPipeline::New();
pipeline->Initialize(scripts[i]);
Processor->AddPipeline(pipeline);
pipeline->Delete();
}
}

Leveraging Production Visualization Tools In Situ 17

In this way we provide pipeline scripts passed in as command-line arguments to an
instantiation of vtkCPProcessor to manage. For our example, the finalize method,
CatalystFinalize, simply deletes the storage for any defined pipelines.
void CatalystFinalize() {
if (Processor) {
Processor->Delete();
Processor = NULL;
}
}

Besides being responsible for initializing and finalizing Catalyst, the other re-
sponsibilities of the adaptor are:

* Determining whether or not to perform co-processing.
¢ Mapping the simulation fields and mesh to VTK data objects for co-processing.

For this example, we specify the mesh as a uniform, rectilinear grid defined by
the number of points in each direction and the uniform spacing between points.
There is only one field associated with this mesh, which is called temperature and
defined over the points (vertices or nodes) of the mesh. Thus, the coprocess method,

CatalystCoProcess, performs the following commonly required tasks:
void CatalystCoProcess(
int timeStep, double time, unsigned int numPoints[3],
unsigned int numGlobalPoints[3], double spacing[3],
double* field) {
vtkCPDataDescription* dataDescription =
vtkCPDataDescription::New();
dataDescription->AddInput ("input");
// 1. Specify the current time and time step for Catalyst.
dataDescription->SetTimeData(time, timeStep);
// 2. Check whether Catalyst has anything to do at this time.
if (Processor->RequestDataDescription(dataDescription) != 0) {
// 3. Create the mapped VTK mesh.
vtkImageData* grid = vtkImageData::New();
grid->SetExtents (
0, numPoints[0]-1, ®, numPoints[1]-1, O, numPoints[2]-1);
// 4. Identify the VTK mesh for Catalyst to use.
dataDescription->GetInputDescriptionByName ("input")->
SetGrid(grid);
dataDescription->GetInputDescriptionByName ("input")->
SetWholeExtent (0, numGlobalPoints[0]-1,
0, numGlobalPoints[1]-1,
0, numGlobalPoints[2]-1);
grid->Delete();
// 5. Associate mapped VTK fields with the mapped VTK mesh.
vtkDoubleArray* array = vtkDoubleArray::New();
array->SetName (" temperature");
array->SetArray(field, grid->GetNumberOfPoints(), 1);
grid->GetPointData () ->AddArray(array);
array->Delete();
// 6. Call CoProcess to execute pipelines.
Processor->CoProcess(dataDescription);

18 Moreland, Bauer, Geveci, O’Leary, and Whitlock

}

dataDescription->Delete();

}

In Section 3.3 we’ll discuss the details of the API to help solidify the understanding
of the flow of information.

3.2 Runtime Behavior

The analysis and visualization methods can be implemented in C** or Python and
can run in situ, in transit, or a hybrid of the two methods. Python scripts can be
crafted from scratch or using the ParaView GUI to set up prototypes and export as
Catalyst scripts interactively.

We designed Catalyst to run synchronously (tightly coupled) with the simulation
supporting in situ workflows, where we execute analysis methods and visualization
pipelines alongside the simulation, leveraging the same address space.

Catalyst can support in transit workflows using two sub-groups of a global MPI
communicator: one for simulation processes and one for analysis and visualization
processes. However, the data movement from the simulation processes is not au-
tomatic and requires the writing of an additional communication routine during
instrumentation.

Much more commonly, Catalyst enables hybrid workflows using either VTK’s /O
capabilities or by leveraging additional middleware such as ADIOS [5]. For example,
analysis methods and visualization pipelines could send intermediate results to burst
buffers, and ParaView or another application would pull data from the burst buffers
for interaction and further analysis.

Also, Catalyst can connect to a separately running ParaView Live session for
exploring results on the fly. The Live method can facilitate a Monitoring/Steering
workflow. This capability, in turn, enables subtly unique steering workflows, where
the analysis methods and visualization pipelines are modified interactively through
user feedback.

Finally, we aligned synchronous and asynchronous communication patterns
with specific Catalyst workflows. Live supports both, and communications can be
changed, as described above with hybrid workflows, utilizing third-party software.

3.3 Underlying Implementation

The core of our implementation is how the adaptor passes information back and
forth between the simulation code and Catalyst. We need to exchange three types
of information: VTK data objects, pipelines, and control information. The VTK
data objects are the information containing the input to the pipelines. The pipelines
specify what operations to perform on the data and how to output the results. The

Leveraging Production Visualization Tools In Situ 19

control information specifies when each pipeline should execute, and the required
information from the VTK data objects needed to execute the pipelines properly.

Before providing the details of the API, we want to describe the flow of information
and its purpose. This information affords a higher level of understanding of how the
pieces work together.

First, we initialize Catalyst, which sets up the environment and establishes the
pipelines to execute. Next, we execute the pipelines as required. Finally, we finalize
Catalyst.

The initialize and finalize steps are reasonably straightforward, but the interme-
diate step has a lot happening in the underlying implementation. Principally, the
intermediate step queries the pipelines to see if any of the pipelines require process-
ing. If not, then control returns immediately to the simulation code. This query is
nearly instantaneous, where the expectation of many calls wastes negligible com-
pute cycles. On the other hand, if one or more pipelines demand re-execution, then
the adaptor needs to update the VTK data objects representing the mesh and fields
from the simulation, and then execute the desired pipelines with Catalyst. The exe-
cution time can vary widely depending on the quantity and type of tasks. Once the
re-executing pipelines finish, then control returns to the simulation code.

The main classes of interest for the Catalyst API are vtkCPProcessor, vtkCP-
Pipeline, vtkCPDataDescription, vtkCPInputDataDescription, and the derived
classes that are specialized for Python. When Catalyst is built with Python sup-
port, all of these classes are Python wrapped as well.

vtkCPProcessor is responsible for managing the pipelines. This management
includes storing them, querying them, and executing them. Note that the Add-
Pipeline method fundamentally adds a pipeline (vtkCPPipeline or vtkCPPython-
ScriptPipeline) for execution at requested times. This class mimics the structure of
the simulation instrumentation.

First, the Initialize method initializes the object and sets up Catalyst. The initializa-
tion method uses either MPI_COMM_WORLD or an API supplied MPI communi-
cator. Note that the Initialize method can depend on vtkMPICommunicatorOpaque-
Comm, defined in vtkMPLh, and is used to avoid directly having to include the
mpi.h header file. Next, the CoProcess method executes the proper pipelines based
on information in the required argument description. When applying this method,
we update and add the description to the vtkDataObject representing the mesh and
fields. We use the helper method, RequestDataDescription, to determine, for a given
description, if we desire execution of any pipelines. For this method, the description
argument should have the current time and time step set and the identifier for avail-
able inputs. Finally, the Finalize method releases all resources used by Catalyst. If
a Catalyst Python script includes a Finalize method, we execute this method at this
point.

The vtkCPDataDescription class stores information passed between the adaptor
and the pipelines. The provided information comes from either the adaptor for the
pipeline or the pipeline for the adaptor. The adaptor needs to provide the pipelines
with the current time, the current time step, and the names for input meshes produced
by the simulation. For most use cases, the adaptor will provide a single input mesh to

20 Moreland, Bauer, Geveci, O’Leary, and Whitlock

Catalyst called input. Naming the inputs is needed for situations where the adaptor
provides multiple input meshes with each mesh treated independently.

The vtkCPInputDataDescription class is similar to vtkCPDataDescription in that
it passes information between the adaptor and the pipelines. The difference is that
vtkCPInputDataDescription passes information about the meshes and fields.

Finally, there are a variety of other methods to increase the efficiency of the
adaptor. For example, to streamline data preparation for coprocessing, other methods
may inform the adaptor of the requested fields for the pipelines.

3.4 HPCMP CREATE-AV™ Helios Use Case

The U.S. Department of Defense’s High-Performance Computing Modernization
Program’s (HPCMP) Computational Research and Engineering Acquisition Tools
and Environments for Air Vehicles (CREATE-AV) project has overseen the de-
velopment of a rotorcraft simulation tool called Helios [26, 27, 34], a high-fidelity,
multi-disciplinary computational analysis platform for rotorcraft aeromechanics sim-
ulations. Used by academia, government, and industry, Helios handles the aerody-
namics solutions using a dual-mesh paradigm: body-fitting meshes in the near-body
region and adaptive mesh refinement (AMR) meshes in the off-body region.

The Helios package contains tools for a near-complete workflow, except geom-
etry creation and post-processing tools. These tools include specifying rotor blade
geometry and movement, mesh assembly and partitioning, a graphical user interface
(GUI) for defining simulation input parameters, the parallel simulation environment,
and management of simulation results. The default computational fluid dynamics
(CFD) libraries include SAMCart for CFD solution in the off-body region and a
choice of using kCFD and mStrand for the near-body region. Additionally, FUN3D
and OVERFLOW can be used as plugins CFD solvers for the near-body region.

3.4.1 Specialized Workflow for Rotorcraft Analysis

Helios handles specialized complex high-fidelity simulations of coupled fluid-
structure interaction for a variety of flight conditions, including rotorcraft flying
in their turbulent wake. Likewise, the Helios development team tailored the in situ
processing.

The first Helios release that used ParaView Catalyst for in situ capabilities was
version 3, which only included streamlines, slices, and contours and required the
end-user to hand-edit Python input files. December 2019 marked the latest Helios
release, version 10. Since version 3, the developers enhanced the in situ operations
with particle paths, Cartesian extracts, taps, and derived variable calculations, defined
through Helios’s pre-processing GUI, shown in Figure 6. Helios can utilize custom
Catalyst scripts created with the ParaView GUI, but end-users seem to prefer using
the pre-processing GUI due to the specialized nature of rotorcraft analysis.

Leveraging Production Visualization Tools In Situ 21

Fle Edt Mode View Render Window Help
Load ' @ ~ | |Global Flat Toggle Reset .
BB S & e (o] e o B |
Mesn | X Simulation | X Reference |/ Coviz | o/ Advanced | o/ Add-ons | / OutputConrol
Viewer

Body (¥ Coviz

Hierarchy _
i 720]

36 |

Overset
Viewer
Hellos
Input Aggregated Vik

Non-dimensional ~

bty Cutting

X~ [1000 |60 (0 [sticex

Iso-surface Definitions
eotace?

[rtace Valois) Ot Fianame

Q crierion (Non-dimensional ~| (50] (0001 contour #

Stream line Definitions
Stramoeta?

No ~

Taps Definitions

No v

Tracking Definitions
ding?

Line

Carteslan Resampling Extracts
“““““““ ping

Fig. 6 Example set up of Ditied_+
the in situ panel of Helios’s Ylumeti Grid erions
pre-processing GUI.

The widely varying post-processing experience with specific tools by Helios end-
users dictated the use of data extracts for the in situ outputs. Thus, enabling the
end-user to manage their regular post-processing workflow with familiar tools.

3.4.2 Specialized Catalyst Edition

ParaView is a large software project with a variety of functionalities not required for
the batch in situ processing done with Helios. Since Helios does not generate in sifu
images, all rendering components can be excluded from the Helios specific Catalyst
in situ library. In addition, we can remove most data readers and writers except the
readers for in situ restart and the writers for extracts (no requirement for input/output
libraries like HDFS5 or NetCDF). Customizing ParaView Catalyst specific to Helios
provides the following benefits:

* Reduction in the number of source code files and associated compile time.

¢ Decrease in the number of third-party library dependencies and simplifying the
build and install process.

* Reduction in the Catalyst library size and faster shared library load times due to
smaller library size and a smaller number of linked libraries [7].

22 Moreland, Bauer, Geveci, O’Leary, and Whitlock

Table 1 Helios memory In Situ Build Type Memory Usage (MB)
reporting on node 1 on a Cray
XC40/50. None 24,450
Standard ParaView Catalyst 29,798
Helios Catalyst Edition 26,958

t +
17472 v A flA'4 4 84 AVA"4 "ar 4 v A A A A A A A A + A4 4 A4

Fig. 7 In situ slice and surface extract showing the Helios near-body grids (green) and off-body
grids (grey).

Version 10 of Helios uses a specialized Catalyst edition based off of the ParaView
5.6 release that includes Python wrapping.! Table 1 shows the memory load for three
different Helios shared library build configurations: without Catalyst, with Catalyst
5.6, and the specialized Catalyst edition. The in situ extracts for these comparison
runs were the internal surface and slice. The simulation runs used the Department of
Defense’s Onyx HPC machine at the Engineer Research and Development Center,
which is a Cray XC40/50 with the memory reported from the first node by Helios’s
memory reporting routines.

3.4.3 Combination of Bespoke and VTK Functionality

Helios uses a dual-grid paradigm where an AMR grid is used sufficiently far from
the rotorcraft body and a curve-fitting grid around the rotorcraft body, as shown in
Figure 7. Depending on the setup, the end-user may select different solvers on the
near-body grid and over the computational domain.

For example, kCFD could be used to compute the CFD solution on the grid for
the rotorcraft fuselage, OVERFLOW could be used to compute the CFD solution
for the rotor blades, and SAMCart could be used to compute the CFD solution over
the off-body AMR grid. The rotor blade grids rotate, and their intersection with the

1 This ParaView edition is available at
https://github.com/acbauer/ParaViewParticleTrackingCatalystEdition.

Leveraging Production Visualization Tools In Situ 23

Fig. 8 In situ particle path and surface extract outputs for Higher-harmonic control Aeroacoustics
Rotor Test II case. Images used with permission from Andrew Bauer courtesy of Kitware Source
Quarterly Magazine.

other grids will change as the simulation proceeds. Thus, the grid overlap needs to
be computed dynamically along with the blanking on the overlapping portion of the
grids.

PUNDIT is a library that computes the overlap and blanking while transferring
fields between grids. One of the Helios in situ outputs is an interpolated result onto a
Cartesian grid where PUNDIT performs the interpolation computation. The Python-
wrapped PUNDIT seamlessly operates within VTK’s Python wrapping to interface
with both Numpy and the VTK writers to output the desired information for a variety
of post-processing tools. This combination of bespoke Helios and VTK functionality
provides a convenient way to implement essential in sifu functionality.

3.4.4 Temporal Analysis

Traditionally, modifying an in situ temporal analysis with an associated post-
processing tool to work in situ has been difficult principally due to the pipeline
architecture employed by these visualization tools. ParaView has a separate in situ
particle path filter that works around this limitation. This filter is responsible for
caching the dataset from previous time steps to relieve the visualization pipeline of
this obligation. Additionally, it supports a simulation restarting the in situ particle
path computation by reading specified particle locations from a file. The in situ parti-
cle path computation must behave the same regardless of whether the simulation was
restarted or continuously computed from the initial conditions. Figure 8 demonstrates
this functionality for the popular Higher-harmonic control Aeroacoustics Rotor Test
II (HART-II) test case that maintains a good validation database.

Besides in situ particle paths, Helios supports temporal averaging of the interpo-
lated output onto the Cartesian grid. The reason for implementing this functionality
in a bespoke manner was the simplicity in computing the temporal average natively
within Helios. As with the previous bespoke solution, it supports simulation restart
using VTK writers and readers to dump out and read back in, respectively, restart
information.

24 Moreland, Bauer, Geveci, O’Leary, and Whitlock

3.4.5 Zero-Copy Issues

For the in situ particle path filter to update the particle path location at a time step, it
requires the full solution at both the current and previous time steps. This requirement
prevents the adaptor from using a zero-copy of the simulation data arrays on the full
dataset since the CFD solvers are not caching their meshes or fields for previous time
steps. Also, because Helios uses multiple CFD solvers in a single CFD simulation,
each of these CFD solvers will have a different non-dimensionalization scheme and
store fields in the solver specific non-dimensionalized form.

Also, the Helios in situ output is always in the SAMCart, or oft-body CFD solver,
non-dimensionalized form. Thus, all near-body CFD fields require conversion to this
non-dimensionalization form. This conversion prevents using zero-copying of the
near-body fields, even without requesting in situ particle path output. In the future,
after ParaView 5.6, the vtkScaledSOADataArrayTemplate class? will be used to
alleviate this limitation.

3.4.6 Common Output Benefit

There are multiple reasons that the Helios tools and workflow support multiple CFD
solvers for the near-body grids. A primary reason is the validation by comparing
the results of different CFD solvers for the same simulation case. Comparing results
through full data dumps in each CFD solver’s native format is a complex and bur-
densome task. With in situ data extracts, both the near-body and off-body grids use a
common data format, and all of the fields are in a consistent non-dimensionalization
scheme, regardless of which near-body CFD solver used, enabling easy comparisons.

4 Conclusion

Libsim and Catalyst provide extensive tools for performing in situ visualization.
They are likely the most feature-rich in situ libraries available to date.

That said, other similar in situ libraries exist. Lighter weight scripting libraries
like Mayavi [8, 21] and yt [30] have been leveraged to perform in situ visualization.
Other libraries like Ascent [15] are being designed from the ground up with in situ
in mind. In contrast, some simulation frameworks, such as SCIRun [19], incorporate
their own visualization functionality that can be used in situ.

Directly using the Libsim or Catalyst library requires what is often referred to as
a “closely coupled” or “on-node proximity” in which the library is linked with the
data producing program. However, they can be used with a general interface layer
such as SENSEI [5] or Damaris/Viz [10] to decouple the in situ library from the data
production. I/O libraries such as ADIOS [1, 17] can similarly be used for decoupling.

2https://vtk.org/doc/nightly/html/classvtkScaledSOADataArrayTemplate.html

Leveraging Production Visualization Tools In Situ 25

See Bauer, et al. [6] for a broader literature review of current in situ tools.

We have seen in this chapter that Libsim and Catalyst share many features and
design decisions. When they initially started, each had their own focus. Libsim got its
early start as an interactive simulation debugging tool, but as file I/O became a major
bottleneck on HPC, Libsim’s main mode shifted to batch processing. Conversely,
Catalyst got its start as a batch coprocessing library [12], but as use grew, interactive
capabilities were added. Today, the functionality of the two tools overlap. The major
difference is in the post-processing tool that each best interfaces with (VisIt versus
ParaView), and simulation teams would do well to integrate the in situ library that
works best with the other visualization tools used by the team.

Acknowledgements This research was supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. This chapter describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the chapter do not necessarily represent the
views of the U.S. Department of Energy or the United States Government.

Material presented in this chapter is a product of the CREATE (Computational Research and
Engineering for Acquisition Tools and Environments) element of the U.S. Department of Defense
HPC Modernization Program Office (HPCMO). Detailed input from the CREATE-AV™ Helios
development team was provided in order to properly customize the in situ workflow for rotorcraft
analysis. Mark Potsdam of the U.S. Army’s CCDC AvMC Technology Development Directorate
was the main technical point of contact for Army SBIRs and has contributed significantly to the
vision of Catalyst.

References

[1] AbbasiH, Lofstead J, Zheng F, Schwan K, Wolf M, Klasky S (2009) Extending
1/0 through high performance data services. In: IEEE International Conference
on Cluster Computing and Workshops, DOI 10.1109/CLUSTR.2009.5289167

[2] Ahrens J, Geveci B, Law C (2005) ParaView: An end-user tool for large data
visualization. In: Visualization Handbook, Elesvier, ISBN 978-0123875822

[3] Ahrens J, Jourdain S, O’Leary P, Patchett J, Rogers DH, Petersen M (2014) An
image-based approach to extreme scale in situ visualization and analysis. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp 424—434, DOI 10.1109/SC.2014.40

[4] Ayachit U, Bauer A, Geveci B, O’Leary P, Moreland K, Fabian N, Mauldin
J (2015) Paraview catalyst: Enabling in situ data analysis and visualization.
In: Proceedings of the First Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization (ISAV 2015), pp 25-29, DOI 10.
1145/2828612.2828624

26

(]

(6]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

Moreland, Bauer, Geveci, O’Leary, and Whitlock

Ayachit U, Bauer A, Duque EPN, Eisenhauer G, Ferrier N, Gu J, Jansen KE,
Loring B, Luki¢ Z, Menon S, Morozov D, O’Leary P, Ranjan R, Rasquin M,
Stone CP, Vishwanath V, Weber GH, Whitlock B, Wolf M, Wu KJ, Bethel
EW (2016) Performance analysis, design considerations, and applications of
extreme-scale in situ infrastructures. In: SC *16: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis, DOI 10.1109/SC.2016.78

Bauer AC, Abbasi H, Ahrens J, Childs H, Geveci B, Klasky S, Moreland K,
O’Leary P, Vishwanath V, Whitlock B, Bethel EW (2016) In situ methods,
infrastructures, and applications on high performance computing platforms.
Computer Graphics Forum 35(3):577-597, DOI 10.1111/cgf.12930

Boeckel B, Ayachit U (2014) Why is paraview using all that memory? https:
//blog.kitware.com/why-is-paraview-using-all-that-memory/
Buffat M, Cadiou A, Penven LL, Pera C (2017) In situ analysis and visualization
of massively parallel computations. International Journal of High Performance
Computing Applications 31(1):83-90, DOI 10.1177/1094342015597081
Childs HR, Brugger E, Whitlock BJ, Meredith JS, Ahern S, Biagas K, Miller
MC, Weber GH, Harrison C, Pugmire D, Fogal T, Garth C, Sanderson A, Bethel
EW, Durant M, Camp D, Favre JM, Rubel O, Navratil P (2012) Vislt: An end-
user tool for visualizing and analyzing very large data. In: High Performance
Visualization: Enabling Extreme-Scale Scientific Insight, Chapman and Hall,
pp 357-368

Dorier M, Sisneros R, Peterka T, Antoniu G, Semeraro D (2013) Damaris/Viz:
a nonintrusive, adaptable and user-friendlyin situ visualization framework. In:
IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV),
DOI 10.1109/LDAV.2013.6675160

Duque EP, Whitlock BJ, Stone CP (2015) The impact of in situ data processing
and analytics upon weak scaling of CFD solvers and workflows. In: ParCFD
Fabian N, Moreland K, Thompson D, Bauer AC, Marion P, Geveci B, Rasquin
M, Jansen KE (2011) The ParaView coprocessing library: A scalable, general
purpose in situ visualization library. In: Proceedings of the IEEE Symposium on
Large-Scale Data Analysis and Visualization, pp 89-96, DOI 10.1109/LDAV.
2011.6092322

Forsythe JR, Lynch E, Polsky S, Spalart P (2015) Coupled flight simulator
and cfd calculations of ship airwake using kestrel. In: 53rd AIAA Aerospace
Sciences Meeting, DOI 10.2514/6.2015-0556

Kirby A, Yang Z, Mavriplis D, Duque E, Whitlock B (2018) Visualization
and data analytics challenges of large-scale high-fidelity numerical simulations
of wind energy applications. In: 2018 AIAA Aerospace Sciences Meeting,
DOI 10.2514/6.2018-1171

Larsen M, Ahrens J, Ayachit U, Brugger E, Childs H, Geveci B, Harrison
C (2017) The ALPINE in situ infrastructure: Ascending from the ashes of
strawman. In: Proceedings of the In Situ Infrastructures on Enabling Extreme-
Scale Analysis and Visualization (ISAV *17), pp 42-46, D01 10.1145/3144769.
3144778

Leveraging Production Visualization Tools In Situ 27

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

Lorendeau B, Fournier Y, Ribes A (2013) In-situ visualization in fluid me-
chanics using catalyst: A case study for Code Saturne. In: IEEE Sym-
posium on Large-Scale Data Analysis and Visualization (LDAV), DOI
10.1109/LDAV.2013.6675158

Moreland K, Oldfield R, Marion P, Jourdain S, Podhorszki N, Vishwanath
V, Fabian N, Docan C, Parashar M, Hereld M, Papka ME, Klasky S (2011)
Examples of in transit visualization. In: Petascale Data Analytics: Challenges
and Opportunities (PDAC-11)

Oldfield RA, Moreland K, Fabian N, Rogers D (2014) Evaluation of methods to
integrate analysis into a large-scale shock physics code. In: Proceedings of the
28th ACM international Conference on Supercomputing (ICS ’14), pp 83-92,
DOI 10.1145/2597652.2597668

Parker SG, Johnson CR (1995) SCIRun: A scientific programming environ-
ment for computational steering. In: Proceedings ACM/IEEE Conference on
Supercomputing

Patchett J, Ahrens J, Nouanesengsy B, Fasel P, Oleary P, Sewell C, Woodring
J, Mitchell C, Lo LT, Myers K, Wendelberger J, Canada C, Daniels M, Abhold
H, Rockefeller G (2013) LANL CSSE L2: Case study of in situ data analysis
in asc integrated codes. Tech. Rep. LA-UR-13-26599, Los Alamos National
Laboratory

Ramachandran P, Varoquaux G (2011) Mayavi: 3D visualization of scientific
data. Computing in Science & Engineering 13(2):40-51, DOI 10.1109/MCSE.
2011.35

Rasquin M, Smith C, Chitale K, Seol ES, Matthews BA, Martin JL, Sahni
O, Loy RM, Shephard MS, Jansen KE (2014) Scalable implicit flow solver
for realistic wing simulations with flow control. Computing in Science &
Engineering 16:13-21, DOI 10.1109/MCSE.2014.75

Rintala R (2015) In situ XDB Workflow Allows Coupling of
CFD to Flight Simulator for Ship Airwake/Helicopter Interaction.
http://www.ilight.com/en/news/in-situ-xdb-workflow-allows-
coupling-of-cfd-to-flight-simulator-for-ship-airwake-
helicopter-interaction (accessed January 15, 2020)

Sanderson A, Humphrey A, Schmidt J, Sisneros R (2018) Coupling the uin-
tah framework and the visit toolkit for parallel in situ data analysis and
visualization and computational steering. In: Weiland M, Alam S, Shalf J,
Yokota R (eds) High Performance Computing - ISC High Performance 2018
International Workshops, Revised Selected Papers, Springer-Verlag, Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), pp 201-214, DOI
10.1007/978-3-030-02465-9_14

Schroeder W, Martin K, Lorensen B (2004) The Visualization Toolkit: An
Object Oriented Approach to 3D Graphics, 4th edn. Kitware Inc., ISBN 1-
930934-19-X

Sitaraman J, Wissink A, Sankaran V, Jayaraman B, Datta A, Yang Z, Mavriplis
D, Saberi H, Potsdam M, O’Brien D, Cheng R, Hariharan N, Strawn R (2010)

28

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Moreland, Bauer, Geveci, O’Leary, and Whitlock

Application of the helios computational platform to rotorcraft flowfields. In:
48th ATAA Aerospace Sciences Meeting Including the New Horizons Forum
and Aerospace Exposition, DOI 10.2514/6.2010-1230

Sitaraman J, Potsdam M, Wissink A, Jayaraman B, Datta A, Mavriplis D,
Saberi H (2013) Rotor loads prediction using helios: A multisolver framework
for rotorcraft aeromechanics analysis. Journal of Aircraft 50(2):478-492, DOI
10.2514/1.C031897

Smith TM, Menon S (1996) The structure of premixed flame in a spatially
evolving turbulent flow. Combustion Science and Technology 119

Stone CP, Menon S (2003) Open loop control of combustion instabilities in a
model gas turbine combustor. Journal of Turbulence 4

Turk MJ, Smith BD, Oishi JS, Skory S, Skillman SW, Abel T, Norman ML
(2011) yt: a multi-code analysis toolkit for astrophysical simulation data. The
Astrophysical Journal Supplement Series 192(9), DOI 10.1088/0067-0049/
192/1/9

Turuncoglu UU (2018) Towards in-situ visualization integrated earth system
models: RegESM 1.1 regional modelling system. Geoscientific Model Devel-
opment Discussions DOI 10.5194/gmd-2018-179

Whitlock B, Favre JM, Meredith JS (2011) Parallel in situ coupling of simu-
lation with a fully featured visualization system. In: Eurographics Symposium
on Parallel Graphics and Visualization, DOI 10.2312/EGPGV/EGPGV11/101-
109

Whitlock BJ, Favre JM, Meredith JS (2011) Parallel in situ coupling of sim-
ulation with a fully featured visualization system. In: Proceedings of the 11th
Eurographics conference on Parallel Graphics and Visualization, Eurographics
Association, pp 101-109, DOI 10.2312/EGPGV/EGPGV11/101-109
Wissink AM, Potsdam M, Sankaran V, Sitaraman J, Mavriplis D (2016) A dual-
mesh unstructured adaptive cartesian computational fluid dynamics approach
for hover prediction. Journal of the American Helicopter Society 61(1):1-19,
DOI 10.4050/JAHS.61.012004

