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1. EXECUTIVE SUMMARY

This project addresses the needs of the U.S. Department of Energy (DOE) to develop advanced
monitoring technologies and protocols to track the fate of subsurface carbon dioxide (CO2) plumes
for carbon storage. Specifically, the project seeks to develop and test a unique and novel system
of technologies consisting of electromagnetic data acquisition, coupled multiphysics imaging, and
reservoir model enhancement to understand the migration and long-term distribution of CO2 in
the subsurface. The overarching objective is to develop an integrated approach for long term
monitoring of carbon storage.

The two main components of the project include the methodology development and the test of the
method at a field site. The methodology component consists of

1) developing the field procedure and protocol for collecting time-lapse controlled-source
electromagnetic (CSEM) data with source electric current injected into the subsurface
through wellbore casings;

2) building of background 3D electrical conductivity utilizing multiple sources of data such
as supplemental surface transient EM (TEM) surveys, well-logs, and seismic structural
information, for enhancing CSEM signal from reservoir depths; and

3) coupled multiphysics simulations and inversion of CSEM data constrained by production
data and by structural information from seismic imaging of the reservoir and overlying
formations.

The testing component used the field site of Bell Creek Oil Field, which served both as a field
laboratory for the method development as well as a test site to evaluate the CSEM signal strengths
and the methodology developed in this research project.

We have accomplished all the proposed tasks and developed the methodology as planned. These
include the procedure for time-lapse CSEM data acquisition, data processing techniques,
integration with 3D conductivity model building, fast reservoir simulation for history matching
using machine learning, and interpreting CSEM data with coupling to the reservoir modeling.
Collectively, the outcome of these tasks form a coherent workflow that can be applied to monitor
dedicated carbon storage in saline reservoirs. The testing component evaluated the applicability
and limitations of the method, and concluded that the method would be ideal for monitoring
dedicated carbon storage sites utilizing saline reservoirs.



2. PROJECT OVERVIEW

2.1 ORIGINAL PROBLEM STATEMENT

The challenges faced in a carbon capture and storage (CCS) project are due to a unique blend of
environmental, economic, logistical, and technical challenges. The result is a challenging mix of
tradeoffs in CCS design choices. In an effort to ensure storage permanence, CO2 is typically
injected at depths of several kilometers; these depths, however, make monitoring much more
difficult and expensive. The depths also decrease resolution of low-cost monitoring techniques
such as electromagnetic methods that rely on diffusive fields. In many cases brownfield oil
reservoirs are utilized as CCS or EOR-CCS sites for economic reasons of existing infrastructure
as well as the economic benefits of producing hydrocarbons simultaneously with CO2 storage. In
these instances, geologic seals are known to be of good integrity, and the most likely scenario for
leakage is through a wellbore casing (Gasda et al., 2004; Carey et al., 2007), or fault.

State-of-the-art monitoring of CCS projects, in order to ensure long term storage permanence,
relies upon a combination of technologies including deep seismic methods, reservoir modeling
based on site characterization, and surface-based measurements. Incorporating these signals into a
(reasonably-autonomous) dynamic intelligent monitoring system remains a noble goal for long
term monitoring. However, many of the (surface-based) monitoring technologies are not
responsive to changes in the reservoir, and are more suitable for detecting catastrophic leaks.
Embedded sensors are responsive, but often provide information only in the immediate vicinity of
the sensor. Furthermore, costs associated with the permanent installation of sensors at the depths
of most CCS projects are prohibitive--a single drill hole can cost on the order of a million dollars
in many instances. There is a pressing need for cost-effective, deeply responsive monitoring
solutions.

For these reasons management of a CCS project is generally attacked in a multi-faceted approach
incorporating geologic and reservoir characterization, reservoir simulation, risk analysis, and
monitoring. Monitoring technologies include surface based CO2 sensors (i.e., eddy-covariance
sensors https://www.licor.com/env/products/eddy covariance/) as well as borehole monitoring
technologies and sensors (i.e., micro-seismic, reservoir pressure and temperature), and geophysical
monitoring.

Surface based direct CO2 detection sensors offer an important last line of defense against
catastrophic leakage, but are not generally sensitive to movement of CO2 at depth. Monitoring
wells equipped with sensors are an important component of a CCS management strategy, but they
are generally too expensive to be deployed in even sparse sampling patterns. Reservoir modeling
is a powerful CCS tool that is relied upon heavily. The quality of the models is dependent upon
good site characterization, data, and modeling skills. While reservoir models do provide
information about CO2 movement within the reservoir, validation of the model is difficult with
sparse data. Therefore, the uncertainties around models are often large, and managing the risks
associated with these uncertainties is a complicated undertaking.
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For these reasons geophysical methods represent the most practical way to acquire spatial
information about CO2 migration in a CCS project. The development of such information would
be readily accommodated by existing CCS workflows. Seismic methods are a natural consideration
due to the depths in question. However, time lapse active source seismic is generally prohibitively
expensive to use as a routine monitoring technology. Passive seismic can be used to identify faults
and pressure changes, but may not provide coverage of the entire reservoir. Furthermore, seismic
attributes are not directly related to subsurface fluid typing and may not be sensitive to the
migration of CO2 within the reservoir. Gravity methods are promising due to the direct sensitivity
to changes in fluid density, but in many CCS reservoirs the signal is too weak to reliably measure
and interpret (Krahenbuhl et al., 2011).

We believe that two major technological components are available to develop one such monitoring
solution that is low-cost and responsive to CO2 migration at large depths:

1. In the offshore oil industry, controlled-source electromagnetics (CSEM) have earned the
reputation of a cost-effective de-risking technology capable of imaging resistors within
conductive media. Geologic storage of CO2 presents a similar challenge: the CO2 plume
is generally resistive while brines at depth are conductive. Meanwhile, sufficient
understanding and field trials have been achieved on a specific variant of the CSEM which
utilizes the wellbore casing as energizing electrodes and measures data on the ground
surface.

2. There have been significant advances in both coupled modeling of multiphysics data and
constrained inversion of geophysical data for reservoir monitoring in oil and gas
production. A related advancement is in connecting reservoir simulation results to physical
properties that are the basis for geophysical monitoring.

Electrical properties of porous rocks are known to be sensitive to the fluid composition in the
interstitial space in a CCS environment (Borner et al., 2013). Geophysical methods for probing
electrical conductivity at depth include electrical resistance tomography (ERT), induction EM,
CSEM and magnetotellurics (MT). While ERT methods can be done from the surface, in order to
obtain a sharp image at depth, it is usually necessary to utilize cross-well measurements. To
complicate matters, electrodes must be electrically insulated from casing, or resistive casing must
be used (Kiessling et al., 2010). In the case of monitoring deep storage, these requirements pose a
significant economic hurdle. Surface based MT and audio-MT methods have the ability to image
deep structures--and are therefore valuable exploration tools--but lack the resolution to discern
subtle changes of interest in continuous monitoring. Induction EM is generally incapable of
imaging the depths necessary for CCS monitoring, and is mostly sensitive to the presence of
conductors.

In marine exploration, CSEM methods represent a mature technology that is relied upon to image
resistors at depth. On land CSEM is a less common technique, but one which is increasingly being
adopted (Streich, 2015). Typically, in CSEM galvanically coupled bipole transmitters inject
current into the ground. The transmitters may operate either in the frequency or time domain. In
the frequency domain, peak signal is expected in the 0.5-5 Hz range, above which it falls off
quickly (Wiranto et al., 2010). The resulting electrical and magnetic fields are then measured on
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the surface. The electric field (E) measurements have been shown to be more sensitive to the
presence of resistors at depth than the magnetic field (H) measurements, which are more sensitive
to conductors. Therefore, land based CSEM utilizing E field measurements is a promising and
emerging technique for monitoring CCS projects.

Grayver et al. (2014) demonstrate the utility of CSEM for a CCS project using surface based
sources and electric-field receivers. Wirianto et al. (2010) demonstrate the benefits of using
vertical sources with surface based electric field measurements, although they propose the
equivalent/reciprocal case of a single receiver in a borehole and moving sources on the surface.
Vilamajo et al. (2015) perform borehole to surface CSEM at a CCS site in Spain and achieve good
quality data for a modest target. Their dipole transmitter was strongly influenced by the conductive
casing even though it was insulated from it. Tang et al. (2015) present an analysis of the use of a
charged wellbore casing (CWC) as a long galvanically coupled electrode. Groundmetrics recently
commercially developed similar technology in their TCS-30 CSEM transmitter and capacitively-
coupled E field receivers (www.groundmetrics.com).

Utilizing CSEM for monitoring CCS projects is therefore an emerging and promising technique,
but not without its limitations. The benefit of either vertical electric field receivers or transmitters
has been demonstrated numerous times. However, installing this capability is usually prohibitively
expensive as it is not (currently) possible to retrofit existing boreholes. The resolution of CSEM is
not stellar due to the diffusive nature of electric field propagation. Integration with reservoir and
constrained interpretation are promising approaches to maximizing the available information
(Liang et al., 2011), but more work is required to establish the relationship between change of
electrical conductivity with CO2 distribution and migration. For these reasons, CSEM monitoring
of CCS projects has not yet been widely adopted.

2.2 ORIGINAL HYPOTHESIS AND PROJECT APPROACH

We propose the use of legacy wellbore casings as long vertical current injection electrodes in
CSEM monitoring at an active CCS-EOR project in order to demonstrate the responsiveness of
the method to changes in subsurface fluid distribution. The sensitivity of such surveys has been
established, but the technology has not yet been validated in an extended monitoring application.

The use of legacy wellbore casings as electrodes achieves an extraordinary reduction in costs
compared to installation of dedicated vertical electrodes or monitoring wells capable of use in a
CSEM survey. Any CCS project will contain at the very minimum the injection well, so the
technique will be broadly applicable. Additionally, many CCS projects utilize brownfield oil fields
due to the fact that such locations are well characterized, have validated and trusted geologic traps,
and existing infrastructure. Additionally, injection of CO2 is an effective method for enhanced oil
recovery (EOR), and as such external economic factors also can influence site selection.

In order to demonstrate that CWC-CSEM is a responsive technology it will be necessary to find a

field site where the reservoir is expected to be dynamic and changing composition rapidly. Since

CCS sites are carefully chosen such that leaks are extremely unlikely, this is a difficult condition

to find. However, at EOR/CCS sites reservoir fluids are under a constant state of flux due to the
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utilization of water alternating gas (WAG) injection schedules which utilize alternating patterns of
water floods after CO2 injection to chase oil out of the reservoir (Figure 2.2.1). Such a field site
offers an exciting opportunity for imaging as each of the phases should have distinct electrical
conductivity signatures. Imaging WAG cycles will demonstrate the responsiveness of the
technique. Additionally, an EOR site allows for validation and calibration through the availability
of production data. Having many production holes gives many pieces of validation information.

Injection well Production well
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Figure 2.2.1. In a CCS/EOR site alternating injections of water and CO2 are utilized to release
trapped gas. As each phase will have unique electrical conductivity signatures an EOR/CCS site
is an ideal location for testing and validation of electrical property methods (figure adapted from
Dai et al., 2014).

Surveys will utilize state of the art commercially available CSEM instrumentation. High power
transmitters and 32 bit digitizers with a broad dynamic range will provide for high fidelity data to
be acquired. Tradeoffs between capacitive- and galvanically coupled sensors are numerous.
Capacitive sensors can be easier to install, especially in rugged terrain, and have a small footprint.
Galvanic sensors have lower noise characteristics and tend to be better calibrated, with less
repeatability errors (more stable). Proper calibration is critical for inversion (Minsley et al., 2014).
For the proposed field site, installation of galvanic sensors in loose soil will not be problematic,
and considering the need for stable time-lapse data, we elect to use galvanically coupled E field
receiver sensors.

All receivers will be surface located in order to ensure no disruption in field operations at the active
site. As a result, the proposed work will not require access to any borehole internals. Electrically
coupling casings will be minimally disruptive to field operations, and due to the high power
transmitter, we will have flexibility in which casings are needed for use as transmitters.
Additionally, we prefer surface based receivers as measurements in multiple locations can be made
simultaneously and do not require access to the wellbore interior. The downside of this approach
is near surface sensitivity and noise. The use of 32 bit A:D converters along with noise mitigation
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algorithms, reference station noise cancellation (Oettinger et al., 2001), filtering, despiking, and
digital processing can be employed. Rapidly acquired central loop sounding transient
electromagnetic data will be collected in order to apply static corrections (Sternberg et al., 1988).

Previous demonstrations of CSEM to monitor CCS projects have focused on method validation
and have not incorporated the well characterized reservoir geometry or production data into
analysis and inversion. Constraining results with this information will maximize the available
information. Since dissolved phase CO2 will have negligible impact on the electrical conductivity
of brines, it is important to stress that the CSEM is not a standalone monitoring product. However,
by integrating with reservoir models, the reliability of the models can be improved and better
understanding of the geospatial distribution of CO2 can be achieved. Furthermore, as we are
imaging the whole overburden, leaks will also be detected, where the effects of CO2 in the
dissolved phase of fresh water will be discernible.

Integration of CWC-CSEM into an effective monitoring program requires establishing
mechanisms to get information both to the reservoir model and from it. This need will impact
nearly all activities of the project. The first stages of the project will involve forward modeling the
CWC-CSEM response at the field site based on an initial relationship between saturations and
electrical conductivity. This relationship will be revisited throughout the project and refined as
more information is made available. Coupled modeling capabilities will allow for the simulation
of CWC-CSEM data directly from reservoir models. This capability will enable novel statistical
analysis of the uncertainty of reservoir parameters with respect to electrical ones.

A conceptual flowchart of the proposed project is illustrated in Figure 2.2.2. The overarching
objective is to improve the reservoir model through integration of geophysical monitoring data.
The starting point of the proposed methodology consists of the existing reservoir model (green
oval), seismic imaging and production data (gray ovals) that were used to build the reservoir
model. We carry out time-lapse monitoring using charged well-casing CSEM at the site. A near-
surface EM survey will also be conducted to deal with statics caused by near-surface
inhomogeneity. The EM data will be interpreted through constrained and coupled inversion with
constraints from seismic image of the reservoir and from production data. The electrical
conductivity will be linked to fluid saturations and reservoir porosity via Archie’s law. The
reservoir properties imaged from EM inversions will be integrated back into the reservoir model
for refinement. The components inside the dashed green rectangle are those within the proposed
project, and the gray ovals outside are available at the site for use in the project.
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Figure 2.2.2. The proposed project with essential components and their relationship.
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Figure 2.2.3. Example reservoir models for Prudhoe Bay converted to electrical conductivity. The
upper left panel illustrates gas and water saturations within the reservoir at different epochs, and
the lower left image is the reservoir density distribution. The remaining panels are the developed
3D distributions of electrical conductivity and conductivity change for the same epochs by
combining the saturations and porosity (not shown) from the reservoir models (Krahenbuhl et al.,



An important and unique component of the proposed project is the integration of the reservoir
models and production data with geophysical monitoring. The reservoir simulations both guide
the geophysical monitoring design and receive feedback from the geophysical monitoring. A
crucial technology to support this endeavor is the linkage between the reservoir model with
geophysical properties. Figure 2.2.3 highlights the advances in this arena with application to
Prudhoe Bay gas-cap water injection (Krahenbuhl et al, 2016). Additional work is required for
adaptation to CCS with site specific information, and the essential capability and expertise are
available.

A detailed reservoir model exists at FWU with the full suite of reservoir properties. Based on it,
reservoir simulations can be carried out to meet the needs of the proposed project. Figure 2.2.4
displays a depth slice of the porosity distribution extracted from the FWU reservoir model.

eastng
00 2000 4000 6000 8000 10000 12000 14000 16000

0.225
2000 0.200
4000 0175
0.150
6000
3 0128 &
y A
S )
< 8000 =
S ]
= 0.100 h
10000 0.07%
12000 0.050
0.025
14000
0.000

Figure 2.2.4. Porosity distribution at a depth slice within the FWU field site from the reservoir
model.

2.3 ORIGINAL PROJECT OBJECTIVES

The objectives of the project are to:

e Demonstrate the use of CWC-CSEM as an effective tool for time lapse monitoring and
large scale imaging of CO2 in the subsurface within the context of a CCS project.

e Leverage other monitoring techniques and data in order to establish relationships between
electrical conductivity.

e Develop coupled modeling capabilities such that reservoir models can be directly input
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into electrical modeling algorithms.

e Utilize prior knowledge of the field site and near surface electromagnetics into a
constrained inversion of the CWC-CSEM data.

e Develop an integrated framework for inversion and analysis of CWC-CSEM data

e Revisit history matching of production data in conjunction with CWC-CSEM derived
reservoir parameters. This step will allow for the reintegration of the monitoring
technology into the reservoir model.

2.4 ORIGINAL PROJECT FIELD SITE

We propose collecting data at the Farnsworth field unit (FWU), which is the active CCS-EOR site,
utilized by the Southwest Regional Partnership (SWP) on Carbon Sequestration, a DOE-NETL
funded project. As such the FWU is well characterized, monitored, and studied. The FWU is
located in the Anadarko Basin in northern Texas.

2.5 FIELD SITE CHANGE: FARNSWORTH UNIT TO BELL CREEK

Securing and retaining access to the originally proposed field site location represented one of the
biggest project risks. During the second quarter of the project, the team was informed that major
changes in management would be occurring at Chaparral Energy, LLC (operator of Farnsworth
Unit) the proposed field site for data collection and simulation. These structural changes at
Chaparral were in response to low oil prices which resulted in a Ch. 11 bankruptcy restructuring
for the company. For these reasons, Chaparral necessarily adopted a policy of declining any
research opportunities that could possibly incur cost. As such, Chaparral energy informed the team
of their decision to decline our request for performing extensive CWC-CSEM surveys using
Chaparral owned boreholes. This notification presented a significant set-back for the project as
reservoir modeling, EM simulations, and field planning for Farnsworth had already begun. We
immediately began the process of investigating alternative field sites for the project. The most
promising development toward this occurred through multiple conversations, over phone and in
person, with representatives from Denbury Resources Inc. Denbury is an industry leader in CO2-
EOR operations and was excited to apply and utilize state-of-the-art imaging and monitoring
technologies at their CO2-EOR sites. Denbury have expressed a keen interest in collaboration.
Denbury would not only allow our project access to one of their CO2 EOR sites, but they have
expressed a strong interest in our project outcomes and they have offered several reservoir site
options as a result. This includes site access, as well as the reservoir simulation models, seismic,
injection and production data, all of which are critical for the SubTER project. The most promising
site from their list for our purposes is the Bell Creek reservoir in Montana. The reasons we
identified this site as a promising alternative project location were as follows:

e There was an existing agreement between Denbury and CSM for Bell Creek that could be
easily extended to the SubTER project
e The Phase 5 area of interest at Bell Creek had not seen any CO2 yet, which is ideal for
instigating a monitoring project.
e Extensive production data are available allowing for the history matching objectives of the
11



project to be retained

e (CO2 injection would begin within a few months, aligning closely (although slightly
delayed) with the timing of the project

e There is a large collection of boreholes available for use as electrodes to energize the
subsurface, which is essential for the CWC-CSEM surveys.

e Surface land ownership and use at Bell Creek are simpler than at FWU where extensive
agricultural use limited survey access depending on the season and crop rotation schedule.

In the third project quarter we requested approval from NETL for the site change and this was
approved. The contract with Denbury and EERC began immediately and a formal agreement was
signed between CSM and Denbury Resources Inc by the fourth quarter.

2.6 ORIGINAL IMPACT STATEMENT

There is a need for the development of responsive monitoring techniques for CCS projects capable
of long term monitoring and verification of storage permanence. This is due to a lack of cost-
effective tools that are able to probe to the required depths and be sensitive to changes in the
makeup of storage reservoir fluids. Responsive monitoring technologies need to be sensitive not
only to the distribution of CO2 within the reservoir, but also in any part of the overburden where
leakage may occur.

The proposed project is designed to validate and address the requirements stated above. The
proposed technology relies upon legacy infrastructure and will require a minimal amount of
hardware installation. It will be possible to install sensors permanently with minimal additional
effort. The choice of an EOR-CCS site was made in order to validate the responsive nature of the
method and to leverage existing efforts by DOE-NETL in this arena. At the field site the operator’s
use of water alternating gas injection patterns will provide a distinct imaging target.
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3. METHODOLOGY

Here we describe the methodology for all aspects of the project, and the workflow from data
collection through reservoir modeling to comparing possible conductivity models and inversion
for reservoir conductivity. The first step is geophysical data acquisition. Next, an initial reservoir
model is developed, and a machine learning-assisted history matching workflow produces a suite
of plausible reservoir saturation cases. These saturation models are converted to electrical
conductivity models. Then, the processed geophysical data can be compared with modeled data
for each of the saturation cases to distinguish between them. Additionally, we propose a method
to directly and efficiently invert the geophysical data for reservoir conductivity. Reservoir
saturations can be interpreted from this inversion result.

3.1 SURVEY DESIGN & DATA ACQUISITION

Data acquisition consists of the collection of two types of geophysical data: time-lapse controlled
source electromagnetic (CSEM) data, and transient electromagnetic (TEM) data. Here we describe
the methods used to collect these data. Four data collection campaigns were carried out at the Bell
Creek field, spanning nearly two years. The dates of the campaigns were October 10-18, 2017,
May 25-June 6 2018, September 30-October 12, 2018, and July 14-26, 2019.

Controlled source electromagnetic survey

The CSEM field campaigns were carried out as follows. We connected a 30 kW Zonge GGT-30
transmitter to two well casings at a time. During the first two campaigns, we used two 12 AWG
transmitter wires per casing running in parallel to minimize resistance. However, we found that
we could achieve the same amount of current with a cleaner transmission signal (one that more
closely resembled a square wave) using a single 10 AWG wire, and did so in the last two
campaigns. Generally, well casings were used as both of the transmitter electrodes. Transmitter
wells were spaced about 2 km apart (Figure 3.1.1). We used three wells in any given campaign,
transmitting between two wells at a time. One well pair was oriented in the northeast-southwest
direction, and the other in the east-west direction. One well was shared between both pairs.

We transmitted a 100% duty cycle square waveform at a range of frequencies between 0.125 Hz
and 16 Hz, logarithmically spaced by a factor of two. In addition, we transmitted at 0.125 Hz with
a 50% duty cycle. The duty cycle refers to the percentage of the current transmission waveform
that is non-zero; a 100% duty cycle indicates a square wave that toggles between positive and
negative current, and a 50% duty cycle corresponds to a waveform that cycles between four stages:
positive current, zero current, negative current, and zero current. One transmission “sweep”
consisted of transmitting at least 64 periods at each frequency, from lowest to highest, followed
by sixteen periods at 0.125 Hz with a 50% duty cycle (Table 3.1.1). We ensured that every receiver
recorded data during at least three sweeps per well pair. The transmitter signal was recorded at a
sampling rate of 4096 Hz. The nominal transmitted current was 30 A, which required output
voltage between 200 V and 600 V, depending on the well pair.
13
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Figure 3.1.1: CSEM survey layout for the May 2018 campaign. Red dots indicate receiver
locations. Blue dots represent the wells used as transmitter electrodes, and the blue lines represent
transmitter wires.

Table 3.1.1: CSEM transmission sweep schedule, in the order transmissions were carried out.

Frequency, Hz Duty cycle Number of periods Duration, min:sec
0.125 100% 64 8:32
0.25 100% 96 6:24
0.5 100% 128 4:16
1 100% 192 3:12
2 100% 256 2:08
4 100% 256 1:04
8 100% 512 1:04
16 100% 1024 1:04
0.125 50% 16 2:08

Receiver stations were spaced roughly 400m apart. Zonge Zen receivers logged data at a sampling
rate of 4096 Hz during active transmission. Receivers measured two horizontal components of the
14



electric field at every station. Non-polarizing Ag-AgCl electrodes were used. 100m receiver
electric dipoles were placed in an L’ configuration, allowing orthogonal dipoles to share one
electrode. The high impedance of the Zens’ input channels ensured that the measurements of the
two components of the electric field would remain independent, despite sharing a common
electrode. Two or three spatial components of the magnetic field were also measured at most
stations. Zonge Ant-4 magnetic coils were used to measure the orthogonal magnetic fields.
Overnight, the receivers assumed a passive magnetotelluric recording schedule, logging data at
256 Hz with short intervals at 4096 Hz. See the CSEM survey results section for information about
the final survey geometry.

Transient electromagnetic survey

Transient electromagnetic (TEM) soundings provide information about near-surface conductivity.
While these data are not sensitive to the conductivity of the reservoir, they do provide useful
information about near-surface conductivity which aids in the interpretation of the CSEM data.
Twenty TEM stations were collected using an ABEM WalkTEM. Figure 3.1.2 shows the locations
of the stations. All transmitter loops were 40x40 m. At each location, a series of measurements
were taken using two centrally located in-loop receivers with effective areas of 5 m? (RC005) and
200 m? (RC200), respectively. Additionally, two transmitter moments were used: 1) low moment
(LM) - 1 turn; ~1 Ampere current, 2) high moment (HM) - 1 turn; ~seven Ampere current.
Typically, a sounding consisted of six measurements repeated 25 times. These six measurements
consist of four transmitter moment-receiver pairs (LM-RC005, LM-RC200, HM-RC005, and HM-
RC200) and two noise measurements (No-RC005 and No-RC200) are recorded during a period
with no transmissions. Each measurement spans 39 logarithmically-spaced time windows, ranging
from 0.01 ms to 5 ms.
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3.2 RESERVOIR SIMULATION

Bell Creek Model Development

EERC Model and Data

The initial geologic model was provided to the SUbTER team by the Energy & Environmental
Research Center (EERC) in a Petrel© project and a suite of ancillary data within the 'Curator Data
Set.' It contained well information, historical production and injection data, formation surfaces for
all the formations from the Pierre to the Skull Creek, LAS well logs, limited pressure and
temperature data, a static output (rescue file) from the Eclipse simulator, and surface infrastructure
maps. The Petrel project contained detailed 3D data for the Shell Creek, Springen Ranch, Bell
Creek Sands (Muddy), and Rozet formations, including facies, total porosity, effective porosity,
permeability, water saturation, and formation pressure. All of the wells within the EERC model
boundary were included along with any associated well logs. Appendix A3.1 contains the
complete list of data supplied by EERC.

A couple of deficiencies with this model required that we rebuild the model from scratch and
history match it to get the water saturation and conductivity distribution for the reservoir for the
dates we were in the field. First, the EERC model did not include a fluid model with oil properties
and water salinity, relative permeability and capillary pressure data, and injection and production
bottom-hole pressure limits. There was also no time associated with any initial properties, such as
water saturation and pressure distributions. Without a known date for this data, we could not use
it. Following up with EERC about this missing data, we received no response and excluded it from
our study. Secondly, and more importantly, our survey area extended beyond the EERC model's
northern boundary, requiring the extension to the north.

Fluid model

A fluid model, including oil properties and water salinity, was not included in the Curator dataset
from EERC. Through discussions with the field engineers and site operators and tools available in
Petrel, we were able to estimate a compositional oil model consistent with an oil lacking the light
volatiles like methane and ethane. We obtained water chemistry data from the operator during the
field survey campaign in May 2018.

Fluid properties estimations

Analysis of production data and conversations with the site operator indicates that there has been
minimal historical production of methane (C1) or other volatiles (C2 — C4), and the reservoir is
mostly heavy oil components. For this reason, the lightest oil components have been removed or
set to a low fraction while the heaviest components are assigned to the highest fraction. It is also
assumed no CO; is naturally present. After testing, we developed a nine component compositional
oil model that is believed to broadly represent the oil at Bell Creek (Table 3.2.1). The phase
envelope and fingerprint plots for the oil model are shown in Figure 3.2.1.
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Table 3.2.1. Compositional Oil Model representing the volatile depleted state seen at Bell Creek.
The study site's oil is considered a 'dead oil," with the low mass volatiles (C1 thru C4) removed or
set to a low fraction. The heavy oil components dominate the fluid model.

Compositional Oil Model - Depleted State

co2 N2 C1 Cc2 Cc3 ca C5 c6 C7+
Liquid Phase 0 0 2.67 2.29 175 2.36 8.56 26.3 56.07
VaporPhase 0 0 46.71 22.95 11.65 8.44 6.43 3.82 0

Compositional Oil Model
9 Component ‘Dead Oil’ - Depleted of Volatiles

Phase Envelope

Critical Point
684.4 degF
527 psi

Pressure [psi]

T T T T
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Figure 3.2.1. Phase envelope (top) and oil fingerprint (bottom) for this study's fluid model. Note
the CO», and N are set to 0, and C1 thru C4 are set to a low fraction.
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Water Chemistry

We obtained water Chemistry data from the operator during the May 2018 field survey (Table
3.2.2). The produced water's resistivity was of particular interest to our study, as was needed to
calculate the reservoir conductivity. From the limited samples the operator had available, the
reservoir brine conductivity is calculated to be about 0.73 S/m using Archie's Law (Equation
3.2.1), with an average of 6177 TDS (Table 3.2.2).

Cond(S/m) = () * 0.73 ¢ % Syq,” (Eq. 3.2.1)

With ¢ being porosity and Sy the water saturation.

Table 3.2.2. Water chemistry data for the Muddy Formation.

Resistivity Brine
Temperature Calculated Molar (ohmm)at Conductivity
Sample Location  Analysis Name Sample Date (°F) DS Conductivity 25°C (S/m)
CHARGE PUMP DSAT Analysis 1/29/2018 120 3469.84 3620.22 2.7623 0.36
CHARGE PUMP Partial Water Analysis 7/27/2017 0
FILTER OUTLET DSAT Analysis 6/29/2017 120 6814.08 8108.06 1.2333 0.81
FILTER INLET DSAT Analysis 6/29/2017 120 8248.23 10266.45 0.974 1.03
Average 120 6177.38 0.73

Relative Permeability and J-Function data

The Curator data set did not contain relative permeability and capillary pressure relationships.
Relative permeability and capillary pressure relationships were developed from data contained in
an Exxon document "Engineering & Geologic Study: Bell Creek Consolidated (Muddy) Unit
Area" provided by the operator (Exxon Company, 1990). This document contains J-function data
that allows for relative permeability and capillary pressure curves to be estimated. A 'J' Function
(Jsw) combines capillary pressure (Pc), permeability (k), porosity (¢), interfacial tension between
oil and water (o), and the contact angle of water (8) to create a plot of 'J' values versus water
saturation. By rearranging the formula to solve for capillary pressure, we get Equation 3.2.2. The
initial report does not contain wettability data. We use an interfacial tension of 24 dynes/cm? with
a contact angle of 5° for the gas/oil fluid pair and interfacial tension of 28 dynes/cm? with a contact
angle of 55° for the oil/water fluid pair. A capillary pressure curve is calculated from the 'J'
Function curve h=145' (Figure 3.2.2).
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Figure 3.2.2. J-function data for the Bell Creek Field. The data from curve h=145'is used to create
the relative permeability and capillary pressure curves.

The relative permeability can now be estimated from the capillary pressure data using an empirical
formula (Fatt and Dykstra, 1951; Honarpour, 2018) modified to describe a three-phase fluid
system. Equation 3.2.3 calculates the wetting phase relative permeability (k) while Equation
3.2.4 calculates the non-wetting phase relative permeability (kmw) for each of the fluid pairs;
oil/water and gas/oil. The critical and end-points are selected from these relative permeability and
capillary pressure curves and assigned to Petrel's relative permeability and capillary pressure
creation dialog. We are taking an additional 'fitting' step because the machine learning work will

use the critical and end-points and curve numbers as their algorithm variables. The relative
permeability and capillary pressure curves are shown in Figure 3.2.3.
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Figure 3.2.3. Relative permeability and capillary pressure relationship derived from J-function
data.

Historical Production and Injection data

We received historical production and injection data covering the period from June 1967 thru
August 2019 from the operator and the Montana Board of Oil & Gas Conservation (Figure 3.2.4).
The data is imported into Petrel to create a historical production and injection schedule for each of
the well in the model. The wells are set to rate control with the historical production data are used
as the target rate. A maximum bottom-hole pressure constraint of 80% lithostatic is assigned to the
injection wells. It is interesting to note that there are two distinct phases in the 'gas' production
data. This is due to the low volume of volatile components in the original oil in place. Early in the
field's lifetime, circa 1967 to 1975, this limited volume is produced, and no further CHs production
happened in this field. Since 2013, there has been significant CO; injection into Bell Creek for
EOR operations. The CO; is being produced shortly after injection leading to the second spike in
gas production shown in Figure 3.2.4.
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Bell Creek Historical Data
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Figure 3.2.4. Historical production and injection data for the Bell Creek Field provided by the
operator.

Geologic and Simulation Models

The geological model is the foundation for the EM modeling work, requiring a full 3D electrical
conductivity model encompassing everything from 'heaven to hell,' or from the atmosphere to the
basement granite. The EM simulations will be our tie to the CWC-CSEM and TEM data collected
in the field. This requirement necessitates the need to expand the geological model provided by
EERC to include all the formations from the surface to below the Skull Creek, ideally down to the
basement granite. We created a geologic model from the model and data provided by EERC,
supplemented with well logs, formation tops from the Montana Board of Oil & Gas Conservation,
and petrophysical data from the literature. The geologic model, shown in Figure 3.2.5, is created
by adding the formation surfaces below the Skull Creek, including the Dakota, Fall River, Lakota,
Charles, Mission Canyon, and Lodge Pole Formations (the deepest formation with depth data).
This added approximately 1700-ft (500-m) below the target reservoir to the geological models.
The target reservoir is within the Bell Creek Sands / Muddy Formation (red arrow in Figure 3.2.5
and Figure 3.2.6). Petrophysical properties were not assigned to any of the formations above the
Shell Creek Formation and below the Rozet Formation because they are not part of the simulation
models and only used to generate the EM model's structural framework. This geological model
framework is then used to create the simulation model for machine learning (ML) assisted history
matching work.

22



Formations

— Ground
Pierre
Eagle Sand
Shannon
Gammon
Niobrara
— Carlile
— Turner
— Pool Creek
[ —Greenhorn
— Belle Fourche
Mowry
— Shell Creek
— Springen Ranch
BC Sand
Rozet
Skull Creek
Dakota Sand

Fall River
Lakota
—Charles
Mission Canyon

Bell Creek

e

Figure 3.2.5. The geological model is built from the EERC data, showing the formations from the
ground surface to the Mission Canyon Formation at the base. The Bell Creek Sands are the thin
red formation indicated with the arrow. The figure has no vertical exaggeration. The three project
wells are noted on the figure, 2808, 9711, and 2308.

With the geological model now constructed, a coarse grid simulation model is extracted. The grid
is up-scaled from 50ft x 50ft cells at 434 x 536 x 45 cells (10,468,080 total cells) for the geological
model to a coarser grid with 100ft x 100ft cells at 174 x 188 x 14 cells (457,968 total cells). Only
the Shell Creek Formation, Springen Ranch Formation, Bell Creek Sands/Muddy Formation, and
the Rozet Formation are included in the simulation model. Pressure and water saturation properties
are up-scaled from the EERC data. Gas saturation (Sg) is assumed zero based on production
records. There is no oil saturation (S,) in the EERC data, so we assumed S, to be 1 - water
saturation (Sw).

Due to physical constraints on transferring large volumes of data over the internet, a copy of the
entire Petrel project, encompassing the EERC model, the geologic model, and the up-scaled
simulation grid, is physically sent to the New Mexico Tech (NMT) team for their machine learning
assisted history matching work. NMT then further up-scaled the simulation model to aid in rapidly
running a large volume of simulations. The cell size for NMT’s very coarse simulation model is
1148 ft x 1148 ft (350 meters x 350 meters), 11.5x coarser than the base model.
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Reservoir Model Expansion

The northern extent of the reservoir model provided to the project by EERC ends more than a mile
south of our northernmost field survey site. We identified that the reservoir model should extend
beyond the survey area. To address this problem, we created a second geologic model that
expanded the domain to the North. Figure 3.2.6 shows the expanded geologic model with the three
project wells highlighted, 2808, 9711, and 2308.

Well location, elevation, total depth, and formation top data for 60 wells covering the new model's
expanded area are obtained from the Montana Board of Oil & Gas Conservation database. We also
received updated production and injection data through August 2019 for all operational wells in
the field, including the new wells to the North and West. This data is imported into the Petrel
project.

Formations

Ground
Pierre
Eagle Sand
Shannon
Gammon
Niobrara

— Carlile
Turner

— Pool Creek
Greenhorn

— Belle Fourche
Mowry

— Shell Creek

— Springen Ranch

BC Sand

Rozet

Skull Creek

Figure 3.2.6. The expanded geological model showing the formations from the ground surface to
the Mission Canyon Formation at the base. The Bell Creek Sands are the thin red formation
indicated with the arrow. The figure has no vertical exaggeration. The three project wells are noted
on the figure, 2808, 9711, and 2308.

The well tops are used to contour surfaces for all 22 geologic formations from the ground surface

to the Mission Canyon Formation. While the target formation is the BC Sands, or often called the

'Muddy' Formation, we developed surfaces for the geological model that encompassed the entire
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stratigraphy from the ground level to the Mission Canyon Formation, the deepest formation with
data. This was done to establish the framework for the expanded EM model and the flow
simulations. Figure 3.2.7 compares the old model domain (blue polygon) to the new model domain
(red polygon) and shows all of the wells used to contour formation surfaces. In Figure 3.2.7,
production wells have a filled circle symbol, injection wells have an open circle with an arrow, the
project wells have a closed circle with a cross, and the rest of the wells are exploration or plugged
and abandoned wells symbolized with an open circle and a cross.

Figure 3.2.7. Contoured ground surface with all the wells used to create the formation surfaces
and the large model domain boundary (red polygon) and the original model domain (blue polygon).
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From the expanded geologic model, a volumetric zone consisting of the Springen Ranch
Formation, Shell Creek Formation, Bell Creek Sands/Muddy Formation, and the Rozet Formation
is gridded to 50ft by 50ft cells in the Lk, for a total of 10,468,080 total cells. Of those cells, only
8,705,976 are active, with the rest outside the model domain and set to inactive.

A facies model is constructed next using well-log data and information from a formation analysis
study performed by Exxon in July 1990 titled Engineering & Geologic Study of the Bell Creek
Consolidated (Muddy) Unit Area (Exxon Company, 1990). The report identified three distinct
zones within the Bell Creek formation with eight different facies and a ninth carbonate facies from
the EERC dataset. The porosity and permeability distribution are derived from well log data and
empirical relationships. The facies, porosity, and permeability are upscaled to the geologic grid
resolution. These up-scaled well logs are then co-kriged to the facies model and populated across
the domain using the sequential gaussian simulation method in conjunction with the variogram
data from the facies analysis. See Appendix A3.2 for a detailed description of the methods used.

The simulation model domain is now extracted for the fine-scale geologic model by up-scaling to
1501t x 150ft cells. The up-scaling gives a grid size of 145(i) x 179(j) x 14(k) for a total of 363,370
cells. Of those cells, 297,341 have defined properties. Similar to the smaller domain model, only
the Shell Creek Formation, Springen Ranch Formation, Bell Creek Sands/Muddy Formation, and
the Rozet Formation are included in the simulation model. The initial pressure was assumed to be
hydrostatic for simplicity, but testing indicated that hydrostatic plus 2000 psi gave a better match
to historical production data. The initial water saturation was estimated using the reservoir quality
index (RQI) approach. The oil saturation is then calculated at 1-Sy, with the gas saturation assumed
to be 0.

Once the NMT team had achieved their goals (see section Use of a Machine-learning assisted
workflow to structure a history-matched simulation model), they provided their simulation model
and the input parameters for 500 history matched simulations to the UU team. Data transfer
limitation discussed above required that the simulation suite run at New Mexico Tech be re-run at
the University of Utah. The NMT team varied the following 15 parameters: Maximum Capillary
pressure (Pcmax), the residual water saturation on the oil/water relative permeability curve, the
residual gas saturation on the gas/oil relative permeability curve, the minimum water saturation,
the critical gas saturation, the Corey water, gas, oil/water, and oil/gas exponents, the maximum
water relative permeability at residual oil saturation, the maximum oil relative permeability at
maximum oil saturation, the maximum gas relative permeability at minimum water saturation, and
permeability modifiers applied on the I, J, K permeability. Out of the 500 cases, we identified 31
cases from 5 clusters for high-resolution simulations with the Bell Creek expanded model using
cluster analysis. Table A3.3.1 in Appendix A3.3 shows the parameters used in all 31 cases. From
the 31 cases, a sub-set of the most interesting eight cases was exported for the EM modeling step.
These eight simulations were also run on the very coarse grid model to compare to the fine grid
expanded model. See Appendix A3.4 for a detailed description of how each of the simulation
cases is created.
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Data Output for EM Modeling

The appropriate data is output to text files for the EM modeling using our workflow outlined in
Appendix A3.5. Out of the 31 high-resolution simulation cases, two cases from clusters 0, 1, and
3 and one case each from clusters 2 and 4 are identified for EM modeling. Five time-steps,
corresponding roughly to our field dates, are output for each case; September 30, 2017, May 31,
2018, September 30, 2018, May 31, 2019, and July 31, 2019. A water saturation delta is calculated
between September 30, 2017, and July 31, 2019, to aid in selecting eight models for output to the
EM modeling step. In each cluster, we are looking for water saturation deltas that exhibit the most
variation between cases.

In cluster 0, we chose cases 25 and 339. The water saturation delta for all cases in this cluster is
indistinguishable from each other except for case 339. In cluster 1, case 37 and case 241 exhibited
the most significant difference between cases. The cases within cluster 1 also look very similar to
each other and the cases in cluster 0. Cluster 2 only outputs a single case for EM modeling because
there are only two cases in the cluster, and both cases look very similar. Case 412 is chosen because
it exhibits a greater degree of variance in water saturation over case 225 compared to the rest of
the data across all clusters. Two cases are chosen from cluster 3, case 14, and case 234. Simulation
case 14 is very similar to the majority of the data, while case 234 shows the most variation
compared to 14. The final case exported for EM simulations is case 227 from cluster 4. There is
only a single case in this cluster, so only one is exported. The difference in water saturation looks
very similar to the majority of the data. See Appendix A3.6 for water saturation delta maps of
each of the cases selected for output to the EM modeling step.

Machine-Learning Assisted History-Matching

The overall objective of the history matching study is to structure a reservoir model with a set of
reservoir characterization parameters that could make predictions of the fluid production to agree
with the field historical data. Based on the preliminary simulation runs, a basic comprehending of
the uncertain parameter sensitivities and the computational overheads required by the history
matching process can be obtained. The internal boundary condition of the current reservoir model
is constrained by the oil production rates of the producers, and the fluid injection rates of the
injectors. The primary output tracked to calculate the history matching error is the water and gas
production rate. We apply secondary constraints to the bottomhole pressure of the wells to be 800
psi and 3228 psi at the producers and injectors, respectively. The history matching runs tune the
permeability multipliers ranging from 0.1 to 10 of the base permeability distributions to investigate
the general response of the model. The preliminary results show a promising result of oil
production matching. Moreover, further efforts need to be expended to improve the gas and water
production matching. At this stage, a larger volume of simulation runs needs to be prepared to
decide the reservoir properties to be tuned other than the permeability multiplier. However, the
reservoir model we are using is computational expensive, which potentially limits the sensitivity
and history matching studies since we must investigate a significant amount of running time. To
address the issue, we utilized a robust history matching workflow that assisted the history matching
procedure in this work.
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Figure 3.2.8. Proposed history-matching workflow

As shown in Figure 3.2.8, the general history matching workflow is illustrated, which employs a
synergetic process of numerical reservoir simulation and machine-learning technologies to achieve
a much faster and more accurate history-matched model. The critical modules of the workflow are
discussed in the following steps:

1.

Model upscaling: Establish a upscaled reservoir model by re-design the grid size of the
current reservoir model, our target is to reduce the grid dimension from 174x188%14 (total
0f'457,968) to 87x94x5 (total of 40,890) which is about 11 times smaller. To eliminate the
concerns related to numerical dispersion, we will gradually reduce the grid resolution and
check the impact of using a coarser grid system. We will stop the grid coarsening when the
disparities observed from the production response becomes significant (5% of margin).
Sensitivity analysis: Once the upscaled model is developed, we will deploy it to prepare a
certain volume of runs and conduct sensitivity analysis to find out the impactive reservoir
parameters to the production response. Besides the permeability multiplier, we will include
the permeability aspect ratio, relative permeability curves and capillary pressure data in the
sensitivity analysis.

Proxy model training: The data set created in the sensitivity analysis study could be utilized
to train a proxy model that mimics the high-fidelity model. We will develop an artificial
neural network model to assist the history matching study. The fast computational speed
of the proxy model would accelerate the history matching processes by orders of
magnitudes. In this work, we attempt to train two different versions of proxies: the forward-
looking proxy which predicts the reservoir response using a set of reservoir properties as
input, and an inverse history matching proxy which inversely generated the suitable
reservoir properties to match the field historical data.
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4. Machine-learning (ML) assisted history matching: The procedures summarized in Figure
3.2.9 illustrates the machine-learning module of the workflow. Using the developed proxy
models, we will go through a workflow to find satisfactory history matching results. The
field history will feed to the inverse history matching model and predict the reservoir
properties. Such prediction will be examined by re-running the high-fidelity numerical
model. If the production response generated from such check yield good matching quality
against the historical data, the solution can be identified as a valid characterization of the
reservoir system. Otherwise, the prediction from the inverse proxy will be used as an
educated initial guess. The forward-looking proxy will collaborate with a global optimizer
to minimize the history matching error. At this stage, large volume of simulation runs will
be carried to search for the reservoir parameters yielding satisfactory matchings with the
field data.

5. Validation with the original reservoir model: The solution obtained by the artificial-
intelligence assisted history matching workflow will be tested by the original reservoir
model with finer grid system. The worst scenario is that the matching results generated
from the finer reservoir model using the reservoir properties determined by the Al-
workflow is not satisfactory, we will modify the parameters with much less volume
reservoir simulation runs using the solution as an initial guess.
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Figure 3.2.9. Illustration of the machine-learning assisted module
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Efforts will be put in to realize the proposed history matching workflow. When the electromagnetic
inversion data becomes available, we will include that data in the history matching process.
However, there are uncertainties in the fluid model of the current model. We recommend
conducting a detailed fluid analysis to understand the fluid composition, and eliminate the
uncertainties arising from this aspect. When a history-matched model is established, we will
structure a forecasting model which is competent to track the fate of the CO2 gas in a long-term
period.

Application of machine-learning assisted history matching protocol in Bell Creek Formation

The objective of this section is to discuss the procedures and results by implementing the proposed
machine learning assisted protocol to improve the accuracy and computational efficacy of the
history matching study of the Bell Creek formation. As shown in Figure 3.2.10 (a) and (b), an
upscaled reservoir model is established using a reduced grid block dimension with 15,582 active
grid cells, which is approximately 25 times coarser than the original model. Figure 3.2.11 shows
the oil production rate comparison by running the original and upscaled model. The oil rate profiles
show negligible disparities, which indicate that the upscaling of the grid system does not introduce
significant numerical dispersion. And more importantly, the CPU time required to run the original
reservoir model is approximately 70 hours using a HP Z8G4 workstation (192 GB physical
memory and 16 cores used in parallel processing), while the upscaled model requires 30 to 40
minutes of computational time to run the model. Thus, the upscaling of the model successfully
reduces the computational overhead by 100 times without introducing remarkable numerical
errors. Furthermore, such an upscaled model can be used in the history matching study by
preparing batch simulation runs.

The reservoir properties tuned in this work include the oil/water capillary pressure date, relative
permeability curves, and the permeability multipliers along the lateral (x- and y-) and vertical (z-)
directions (Table 3.2.3). Notably, the capillary pressure and relative permeability data are
calculated using Brook and Corey and Corey’s correlation, respectively.

Table 3.2.3. The tuning reservoir properties and the ranges

Capillary Permeabilit

pressure Corey’s formulation coefficients lipli Y

coefficient multiplier

PCmax, pSl Sorw Sorg Sir Sgc Nw Now Nog Ng Krwma kroma krgma ;nOd ;nOd modz
Minimum | 20.00 0.05 | 0.05 | 0.10 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | 020 | 0.50 | 0.80 | 0.10 | 0.10 | 0.01
Maximum | 150.00 0.35 | 035 | 0.30 | 0.10 | 7.00 | 7.00 | 7.00 | 7.00 | 090 | 1.00 | 1.00 | 8.00 | 800 | 0.10
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A total of 200 numerical simulation runs are prepared by randomly assigning the reservoir
properties within the prescribed ranges, which structures a one-to-one relationship between the
tuning reservoir properties against the forecasting results. In Figure 3.2.12, the results from the
200 batch simulation runs are presented. There are cases amongst the numerical experiments
showing promising matching quality. As displayed in Figure 3.2.13, one of the best representative
cases indicates good oil production matching, but the water and gas production still need
improvements. However, to improve the history matching quality would demand more simulation
runs. To further tune the simulation model, a machine-learning based proxy model will be trained
using the results from the 200 batch simulation runs as knowledge-base. Once the proxy model is
trained, it will be coupled with a global optimization algorithm to minimize the history matching
error.
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Figure 3.2.12. Results from batch simulation runs

32



In this work, three multi-layer neural network (MLNN) models are trained to predict the oil, water
and gas production rates as a function of time. The input of the MLNN models would be the tuning
reservoir properties. During the development stage of the proxy models, we use 180 of the data for
training and validation, and 20 runs for blind testing applications. It is worth emphasizing that the
cases used in the blind testing applications are different with the training data to ensure the
generalization capability of the model.

In Table 3.2.4, the architecture and blind testing errors of the MLNN models are summarized.
Promising error margins are observed from the average values of the blind testing applications. To
further investigate the reliability of the proxy models, we present one best, average quality and one
worst blind testing case in Figure 3.2.14. It can be observed that, even for the worst scenario case,
the MLNN models effectively mimic the high-fidelity numerical model. Thus, these proxies can
be employed as an expert system to further minimize history matching error.

Table 3.2.4. The architecture and blind testing application performance of the MLNN models

Topology” Transfer function Average testing error
Oil rate model [81,66,95] Logistic function 1.9%
Water rate model [22] Tangent function 20%
Gas rate model [31,100,100,94] Logistic function 8.2%

*Note: the topology vector indicates the number of hidden layer and number of hidden neurons
of the MLNN model. For instance, the gas rate NN model has four layers with 31, 100, 100 and
94 hidden neurons in each layer.
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Figure 3.2.14. Blind testing applications of the MLNN models

Afterwards, the MLNN model is coupled with particle swarm optimization to minimize the history
matching error function, which is defined as the sum of the mean square errors of the oil/water/gas
rate matchings. In Figure 3.2.15, the evolutionary process of the PSO algorithm is presented. The
PSO optimization converges at 326 iteration to achieve the minimum history matching error. It is
worthy to point out that each PSO iteration employs 100 particles to find the leading solution,
which means that 32,600 simulation runs are needed to complete the optimization process. The
use of the proxy enables the history matching study to be accomplished within a reasonable period
of time, because the computational overhead is prohibitively intensive even using the upscaled
reservoir model.
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Table 3.2.5. Optimum history matching solution

3.3 INTEGRATED MODEL CONSTRUCTION TO LINK RESERVOIR

SIMULATIONS AND FIELD EM DATA

A crucial aspect of the project is to understand and reproduce the link between reservoir simulation
models and geology to the physical property distributions at the site. Such a link has the ability to
guide the CWC-CSEM field surveys at the front end, and act as a feedback mechanism into the
reservoir simulations at the back end. Within this project, we have developed a practical method
for establishing such a link between the reservoir simulation models of the CO2-EOR field site,
the large-scale 3D conductivity variations above and below the reservoir, and the 3D and time-
varying distributions of electrical conductivity from production activities. Full details into the
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underlying workflow developed to create such a 3D and time-varying conductivity site model with
demonstration of its application to the simulation of predicted CWC-CSEM data has been
published within the Expanded Abstracts and presented in a Special Section on CO2 Monitoring
at the 2019 Annual Society of Exploration Geophysicists Meeting and Exhibition. For brevity, we
provide here a summary of the essential components of this work. Additional details into the
development for this section of the project are available at Krahenbuhl et al., 2019.

Building A 3D Conductivity Site Model

The construction of a representative 3D and time-varying conductivity model of the Bell Creek
field site must start at the ground surface, drop through the significant geologic sequences,
incorporate the detailed reservoir simulation data within the injection/production interval, and
continue to extend below the reservoir to depth. To accomplish this, the complete site models are
developed in two primary stages. The first is the creation of detailed time-varying conductivity
models of the dynamic production interval as reservoir simulations are updated over time. The
second is building the larger background model for the Bell Creek field site through the
multiphysics integration of seismic, borehole resistivity, and field TEM data. To accomplish these
two overarching objectives for building the full site model, the complete process can be divided
into a sequence of five interrelated tasks as presented here.

Step 1: Reservoir Simulation Modeling

A dynamic reservoir model consistent with current field conditions is critical to design field
surveys and interpret the resulting CSEM data. To accomplish this, a geological model previously
developed by North Dakota Energy & Environmental Research Center (EERC) was leveraged to
create an up-to-date 3D dynamic model of the reservoir interval. The porosity field, Figure 3.3.2,
was constructed from the collection of well logs at the site, calibrated to core data, and distributed
stochastically across the reservoir interval by a facies model.

Simulations are then run using historical production and injection data, and model parameters such
as the fluid model and relative permeability model are varied to provide a suite of plausible
solutions. Given that history matching provides a non-unique solution, having multiple realization
that match field data is a desired outcome (Figure 3.3.1). These results are then used as initial
conditions for predictive simulation covering the dates of the project’s field work. The final result
of the reservoir modeling step is the generation of fluid saturation distributions over time, water in
particular, that can then be converted to conductivity in step 2.
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Figure 3.3.1: Reservoir simulation modeling. " The two images illustrate different CO2
concentrations while satisfying the same production history.

Step 2: Conversion to Electrical Conductivity

To construct a sequence of conductivity models for Bell Creek, we apply Archie’s equation
(Archie, 1942) with the 3D reservoir porosity model and dynamic saturation models (e.g., Figure
3.3.2). We implement Archie’s equation as:

op = -0, " SE | (Eq. 3.3.1)

a
where a is a tortuosity factor [= 0.6], ow is the conductivity of injected water measured on site [=
0.733 S/m], ¢ is the 3D porosity model (Figure 3.3.3), m is cementation factor [= 1.9], Sw are the
3D time-varying saturation models (Figure 3.3.3), and n is Archie’s saturation exponent [= 2.0].
One of the resulting conductivity models for Bell Creek is illustrated in Figure 3.3.2, Figure 3.3.3,
and Figure 3.3.5 for a single time-state of the field.
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Figure 3.3.2: Application of Archie’s Law to convert 3D static and time-varying reservoir
simulation data, specifically porosity and water saturation, into conductivity.
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Step 3: Incorporating Seismic Horizons

The first two steps focus on the task of updating the dynamic reservoir model within the production
interval and converting those simulations to conductivity. The remaining steps focus on building
the larger background conductivity model and integrating the two into complete and representative
site models that would be consistent with the timing of each CWC-CSEM field survey. To
accomplish this, the first step is to build the complete over- and under-burden for the site. For this
we use seismic horizons from previous site investigations as structural data to delineate the
significant stratigraphic layers and formation boundaries within the larger geologic model. A
subset of the horizons are presented in Figure 3.3.3 along with the surface topography and
reservoir interval.
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Figure 3.3.3: Multiphysics integration of geology, seismic, reservoir simulation, and borehole data
into a complete 3D site conductivity model.

Step 4: Adding Deep Induction Log and Inversion of TEM Data

Once the significant formation boundaries have been defined within the over- and under-burden,
the next step is to incorporate representative conductivities for each of the stratigraphic layers. To
accomplish this, we integrate the resistivity data from a collection of boreholes throughout the site
with the inversion results of TEM field data collected during each CWC-CSEM field campaign.
An example of the overlapping borehole ILD and TEM data used to define the background
conductivity model are presented in Figure 3.3.3 (left panel), and Figure 3.3.4. The resulting 3D
conductivity site model, prior to incorporating the detailed reservoir interval from step 2, is
presented in Figure 3.3.4 along with one of the ILD borehole logs from the field site.
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Figure 3.3.4: The large-scale 3D conductivity site model after filling in the horizons with borehole
resistivity and TEM inversion data.

Step 5: Merge the Background and Reservoir Models

The final step to build the complete site model is to bring the two previously constructed models
together. To accomplish this, the detailed reservoir model, at any time, is inserted into the larger
background model at the appropriate depth interval. An important component to this step is
allowing the reservoir model to be updated independently over time, converted to conductivity,
and incorporated into the full site model without the need to rebuild the complete background.
Results of the final 3D conductivity site model for one time-state, including the over-burden,
under-burden, and detailed reservoir data, are illustrated in Figure 3.3.5.
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Figure 3.3.5: Final 3D conductivity site model including the relevant geological sequences and
the reservoir interval at one time-state inserted at the appropriate depth. The gray lines on the
topography define the Phase 5 production area and the three red points on the topography are the
locations of three legacy wells utilized for the CWC-CSEM field surveys.

Demonstration: CWC-CSEM Simulations

We briefly demonstrate the application of the developed site model (Figure 3.3.5) to simulating
the predicted CWC-CSEM responses as one step in the larger problem of reservoir imaging and
monitoring of injected CO2 during enhanced oil recovery.

Simulations of the CWC-CSEM surveys are carried out in a two-step process: 1) determining the
current distribution in the casings, and 2) combining this response into a 3D numerical solution of
Maxwell’s equations. The current in the borehole casing is calculated using a method of moments
approach (Schenkel and Morrison, 1990). Within this formulation, the response of the casing is
calculated using a superposition of Dyadic Green’s Functions in the presence of an active
transmitter source (Tang et al., 2015). Once the response of the borehole has been determined, the
3D Maxwell’s equations are solved using a decoupled vector and scalar potential formulation
called EMSchur3D (Irons et al., 2012).

Performance of the 3D EM solver is greatly influenced by the choice of sparse matrix solver which
is called repeatedly. The underlying system is complex-symmetric but not Hermitian. As a result,
many solvers are not optimized for this system. Benchmarks suggest that the complex symmetric
variant PARDISO (Kourounis et al., 2018) is the best performing solver when sufficient memory
is available (Table 3.3.1). Iterative and hybrid solvers are less memory intensive, but run
significantly slower (Guennebaud et al., 2010).

Field electromagnetic data collected at the surface may then be compared to electromagnetic

simulations based on reservoir model realizations and Archie relations (Figure 3.3.6). This
workflow allows for validation and/or reduced uncertainty in reservoir modeling parameters.

41



Table 3.3.1: Timing examples using EMSchur3D on a test problem of dimensionality 50x50x25
cells. All times were on twin socket featuring Xeon(R) CPU E5-2670 CPU’s and utilizing up to
28 physical cores. The PARDISO direct solver (D) had the best performance, but also the greatest
memory requirements. The BICGSTAB iterative solver (IS) was less performant, but also had a
much lower memory footprint.

SuperLU (D) | 4.9¢-30 4.6 0.43 5.02
PARDISO (D) | 5.2¢-30 0.18 0.34 0.52
BiCGSTAB (IS) | 2.6e-29 0.0 2.17 2.17
BiCGSTAB 8.3e-30 0.57 1.92 2.48
w/ILU (IS+D)
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Figure 3.3.6: EM simulation data using the presented workflow. Electric field lines flowing
around a resistive CO2-plume is shown.
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Summary

Within this project component, we have successfully developed a method for the integrated
development of 3D electrical conductivity models of an oil field for CO2-EOR monitoring with
charged wellbore casing controlled source electromagnetics (CWC-CSEM) and presented its
application at the Bell Creek Oil Field. Such developments are critical for understanding and
reproducing the link between reservoir simulation models and geology to the physical property
distributions at the site. They additionally provide an ability to guide the CWC-CSEM field
surveys at the front end, and act as a feedback mechanism into the reservoir simulations at the back
end.

3.4. CSEM DATA PROCESSING

Controlled-source electromagnetic data consist of time series of components of the electric and
magnetic fields, paired with a time series of the current output from the transmitter. It is more
efficient to perform electromagnetic modeling in the frequency domain than the time domain,
though. Therefore, in order to compare observed data with modeled predictions, the data must be
transformed into the frequency domain. Furthermore, the receiver signals are linearly dependent
on the transmitter signal, so they may be normalized by the transmitter signal without loss of
information. When this is done in the frequency domain, the result is a complex function of
frequency known as a response function. The purpose of data processing is to convert time series
data into response functions, and, in the process, to mitigate the effects of noise on the recovered
response functions.

Processing workflow

The first step is to pair a transmitter time series with a receiver component time series and window
each to their overlapping time range (Figure 3.4.1). The transmitter and receiver signals undergo
the same processing steps for consistency’s sake.

Once the time series have been windowed, 60 Hz noise is filtered out. This can be done by means
of a lockin filter (Strack, 1992) or a notch filter. A lockin filter (Figures 3.4.2a, 3.4.2b) removes
a 60 Hz sinusoid, and is applied as follows. First, a running mean computed over a window of 1/60
s is subtracted from the signal. Then, a 60 Hz sinusoid is fitted to each portion of the demeaned
signal that is not soon after a transmitter polarity change. For the portion of the signal that occurs
soon after a polarity change, the sinusoids that were fitted to the adjacent portions of the signal are
linearly interpolated based on time. This 60 Hz sinusoid is subtracted from the original signal to
obtain a denoised signal.
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Figure 3.4.1: Part of a pair of receiver (Ex component) and 0.25 Hz transmitter time series, shown
at (a) a scale of seconds and (b) a scale of milliseconds. The transmitter time series is shown in
blue, and the receiver time series is in orange.
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Figure 3.4.2: The same signals as shown in Figure 3.4.1a after filtering 60 Hz noise. (a) The
results of applying a lockin filter plotted on the scale of seconds. (b) The results of applying a
lockin filter plotted on the scale of milliseconds. (c) The results of applying a notch filter centered
at 60 Hz plotted on the scale of seconds. (d) The results of applying a notch filter centered at 60
Hz plotted on the scale of milliseconds. The two different approaches yield similar results at both
scales.
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A 60 Hz notch filter is another common method for removing 60 Hz noise (Figures 3.4.2¢, 3.4.2d).
Figure 3.4.2 shows that the difference in the filtered signal between these two approaches is small.
We applied a lock-in filter to the portions of a signal that are 100 samples after a transmitter on-
time and 40 samples before the next.

After filtering 60 Hz noise, the next step is to apply a drift correction (Figure 3.4.3). For this step,
a robust running mean is computed by averaging over a time window equal to one transmitter
period. If the signal were centered around 0 V (i.e. no DC component) and if it were purely periodic
with a period equal to the period of the transmitted signal, then the running mean would be zero
everywhere. The running mean is subtracted from the signal to yield a drift corrected signal.

Fourier coefficients are computed for the drift corrected signals at the frequency of transmission,
and at the 3rd, 5th, 7th, and 9th harmonics of that frequency. The Fourier coefficient of the receiver
is divided by the Fourier coefficient of the transmitter signal to yield the value of the response
function at a single frequency. These Fourier coefficients are computed using a short-time Fourier
transform, so a windowing function and a window stride must be chosen. After testing various
options, we chose a simple rectangular windowing function with a length and a stride of one
transmitter period. Our testing indicated that the choice did not strongly affect the transfer
functions, but it did significantly affect estimates of the variance. The rectangular window offers
high sensitivity in the presence of random noise, high spectral resolution, and a maximal number
of time windows and therefore a maximal number of estimates of the transfer function.
Disadvantageously, the rectangular window exhibits high spectral leakage. However, since the
frequencies of transmission, power line noise, and cathodic protection are all known, spectral
leakage can be minimized by choosing window lengths strategically. Additionally, Fourier
coefficients for window sizes of any integer number of transmitter periods can be derived from
Fourier coefficients for a window size of one transmitter period, simply by averaging Fourier
coefficients from adjacent time windows.

Robust running mean Time series after drift correction
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Figure 3.4.3: (a) The robust running mean for the transmitter and receiver signals shown in Figure
3.4.2a. (b) The drift corrected transmitter and receiver signals. Transmitter signals are shown in
blue, and receiver signals are in orange.
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Averaging Fourier coefficients from adjacent time windows, or equivalently, using a large time
window, is a way to minimize the effect of cathodic protection noise. In the Bell Creek field,
pipelines are protected from oxidation via pulses of galvanic current that occur on eithera 5 s or a
10 s cycle. This cathodic protection noise can cause wide variations in our processed data. To
mitigate that effect and avoid unrealistically high variance, we average Fourier coefficients such
that the length of the equivalent time window equals an integer number of cathodic protection
cycles. For example, for a 0.25 Hz transmission, each Fourier coefficient corresponds to a 4 s time
window. Taking the mean of five coefficients from adjacent windows is equivalent to using one
20 s rectangular window. Such a window contains exactly two 10 s cathodic protection cycles.
Thus, Fourier coefficients at transmission frequencies will not vary greatly from one 20 s window
to the next, and the variance among different windows is lessened. Furthermore, spectral leakage
of the cathodic protection signal into the frequency of transmission and its harmonics is minimized,
so long as the transmission frequency and harmonics are not themselves harmonics of the cathodic
protection frequency. Unfortunately, this happens for transmission frequencies of 0.5 Hz, 1 Hz, 2
Hz, 4 Hz, 8 Hz, and 16 Hz. No choice of windowing function can remove this effect.

Robust averaging and variance estimation

The short time Fourier transform returns many estimates of the Fourier coefficient at each
frequency, one for each window. In order to average the coefficients robustly, we use a regression-
M estimate. Regression-M estimation is commonly used for robust MT data processing (Egbert
and Booker, 1986), and has been applied to CSEM data (Streich et al., 2013).

Regression-M estimation provides estimates of both the response function and its variance at each
frequency. In our implementation, we begin with least-squares estimates of the response function
and its variance, derived by minimizing the sum of squares of differences between the measured
receiver Fourier coefficients and the predicted receiver Fourier coefficients, which are the products
of the transmitter Fourier coefficients with the response function. An iterative process is begun.
The observed receiver values are modified by down-weighting residuals that are more than 1.5
times the error scale away from zero, where the initial error scale estimate is the standard deviation
of the residuals. Then, the conditionally weighted residuals are added back to the predicted receiver
coefficients. New response function estimates are obtained by least squares using the modified
receiver observations. Using the new response function estimates, new predicted receiver
coefficients and residuals are computed. Then, the error scale estimate is updated, computed as the
square root of the sum of the squared residuals divided by 0.7784 (2N-2), where N is the number
of measured Fourier coefficients. The value 0.7784 accounts for the bias in the scale estimate
resulting from decreasing larger residuals. This value was derived by assuming a normal
distribution Egbert and Booker (1986). This process is repeated until an objective function fails to
decrease by more than 2x1077%. The objective function we use is the Huber norm of the residuals
with a threshold of 1.5 times the standard deviation estimate.
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Difference data

Processed CSEM data consist of response functions. A response function describes the complex
response of a receiver component to the transmitted current as a function of frequency. After
processing time-series data to obtain these response functions (McAliley et al., 2019), we wish to
obtain the differences in the response functions that result from changes in the conductivity
between survey campaigns. We refer to these differences as difference data. The difference of two
response functions, though, will include the effects of changes in survey geometry between
campaigns (receiver locations and transmitter wire paths). We expect the primary field from the
transmitter wire to be stronger than the secondary field from conductivity changes within the
reservoir. Therefore, changes in survey geometry will cause errors in interpretation if they are
ignored. If the receiver locations and transmitter wire paths are measured in each campaign, then
those effects can be mitigated by including the survey changes during modeling.

3.5 CSEM MODELING AND INVERSION

Controlled source electromagnetic modeling

History-matched reservoir modeling provides multiple candidates for the time-varying distribution
of fluids in the reservoir. We compute a corresponding conductivity model for each time step of
each candidate, as described in the section on conductivity model construction. Next, we must
evaluate the conductivity models against our CSEM data and determine which models fit the
observed electromagnetic data. Therefore, we must compute response functions for each
conductivity model at every frequency for which we have data.

To compute CSEM data in the frequency domain, we solve the following boundary value problem
for the electric field:

VXUV X E + iwugoE = iwugfs, (Egs. 3.5.1)
AXE=0n-H=0,

where E and H are the electric and magnetic field vectors as functions of position and frequency
w, u, 1s relative magnetic permeability, u, is vacuum permeability, i is the imaginary number, ¢
is electrical conductivity, and J; is the source current density. The normal to the boundary of the
domain is denoted by 7, and the boundary conditions listed constitute the perfect electrically
conducting boundary. The use of these equations implies a quasi-static approximation; i.e., they
imply the assumption that ¢ » we where ¢ is permittivity, and thus that the behavior of the fields
is dominantly diffusive rather than wave-like. In this study, we assume uniform vacuum
permeability, i.e., u. = 1. Once the electric field has been computed, the magnetic field can be
computed quickly by Faraday’s Law.
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Three dimensional modeling is performed using the open-source code emg3d, by Werthmiiller et
al. (2019). The code uses a finite volume discretization on a tensor mesh and the multigrid method
to solve the above BVP numerically. In principle, the three dimensional solver should be sufficient
to compute electromagnetic fields. Two issues confound such a naive application of the solver,
though. Both issues relate to the sizes of discretized cells on the mesh. First, computed fields are
inaccurate within a few cells of a source current (transmitter wire). The smallest cell size on our
mesh is 60 m to a side, and some of our receivers fall within 60 m of a transmitter wire, so this
issue must be addressed. Second, the modeling must account for conductive steel well casings
which were electrically connected to our transmitter. The cross-sectional diameter of such a casing
is approximately 0.1 m, far less than the minimum cell size. In principle, both issues can be
addressed by using a very finely discretized mesh. However, computing fields on a sufficiently
fine mesh, especially on a tensor mesh, would be prohibitively computationally costly.

To address the first issue of small transmitter-receiver offsets, we use a primary-secondary
formulation. In such a formulation, primary fields arising from the wire source are computed for a
simple conductivity model such as a uniform half space. Such primary fields can be computed
analytically or semi-analytically, so they are accurate even at small offsets. Then, secondary fields
that arise from conductivity differences between the fully 3D conductivity model and the simple
primary conductivity model are computed using a 3D numerical solver. Streich (2009) provides a
complete derivation of the primary-secondary formulation. To compute primary fields, we use
empymod, a semi-analytic 1D electromagnetic modeling code written by Werthmiiller (2017),

The second issue of incorporating well casing effects into the model can be addressed by applying
the method of moments to compute electrical currents in well casings. Tang et al. (2015) describe
this approach in detail for a casing in a half space. Here we provide a brief overview of the method.
First, each casing is discretized into multiple small segments. For our model, we use a segment
length of 5 m. Next, an interaction matrix I" is formed. Each column of the interaction matrix
describes how a current in one segment contributes to the electric field in every other segment.
Tang et al. (2015) derive an analytical expression for terms of this matrix for equally-sized
segments within one vertical casing. We use that expression for segments in the same well. For
segments in different wells, we use numerical integration in conjunction with empymod to
compute interaction terms. Incident electric fields E'* from the transmitter wires are then
computed at each segment. Assuming constant electric field and current within each segment, the
current in each casing segment J can then be computed by solving a linear system of equations,
given the well casing resistivity p.,

(Ip. — )] = E™, (Eq. 3.5.2)
Tang et al. (2015) also describe how to combine the method of moments with the primary-
secondary formulation. The primary field is defined to be the field due to both the wire sources

and the casing current sources in a homogeneous half space, and the secondary field is then the
field that arises due to deviations in conductivity from that of the primary half space model.

48



Table 3.5.1: Conductivity of each unit used in the final 3D model.

Unit Conductivity (S/m)
Ground Surface 0.18

Pierre 0.18

Eagle 0.18

Shannon 0.18

Gammon 0.18

Niobrara 0.18

Carlile 0.18

Turner 0.18

Pool Creek 0.18

Greenhorn 0.18

Bell Fourche 0.18

Mowry 0.18

Shell Creek 0.465

Springen Ranch 0.425

Bell Creek Saturation dependent
Rozet Saturation dependent
Skull Creek 0.395

Dakota 0.212

Fall River 0.083

Lakota 0.18

Charles 0.18

Mission Canyon 0.18
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We constructed a three dimensional conductivity model. We assigned one conductivity value to
each stratigraphic unit, chosen by taking the harmonic average of conductivities of that unit from
well logs. We used seismic horizons to locate units in our model. We found, however, that fields
calculated for this model did not match our observed fields as well as a homogeneous half space
model of 0.18 S/m. Therefore, we modified the model, setting the conductivities of all layers
except those near the reservoir depth to 0.18. Table 3.5.1 shows the conductivities used in our
final 3D model.

During modeling, we found that our mesh was insufficiently fine to handle topographic effects,
creating artifacts in the modeled fields. We therefore constructed a three dimensional conductivity
model without topography. A constant value of 1135 m was chosen for the land surface elevation.
The tops of well casings were truncated or extended as needed such that they all reach the land
surface in the model.

Casing currents

Conductive steel-cased wells are notoriously difficult to incorporate into 3D numerical PDE
solvers because the casing segments must be finely discretized, and the high conductivity contrast
introduces large numerical errors. We side-step this difficulty by using the method of moments to
compute electric currents in casings, then treating those casing currents as sources in a numerical
PDE solver. To do so, we follow the method-of-moments approach outlined by Tang et al. (2015).
In this approach, a linear system of equations must be constructed and solved for current along the
length of the casing. We have ported code into Python to solve this modeling step. Doing so allows
us to generalize the approach to incorporate multiple well casings and more spatially complex
models of the electrical conductivity of the subsurface. Figure 3.5.1 shows computed currents
along a 1365 m vertical casing in a conducting halfspace of 0.18 S/m, excited by a 2000 m wire
carrying current at 0.125 Hz. These parameters reflect our experimental parameters at Bell Creek.
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Figure 3.5.1: Current distribution along a vertical casing excited by a horizontal wire at the surface
of a halfspace, computed in Python.

Tang et al. (2015) computed each one casing’s current, ignoring the effects of one casing on
another. We expanded our casing current modeling capability to include inter-casing effects. We
compute those interactions by numerical integration. Since we energized two casings at once in
our survey, one at each end of our transmitter wire, this algorithmic advancement increases our
modeling accuracy. The code to model casing currents is publicly available, and can be found at
https://github.com/AndyMcAliley/em_casing.

Sensitivity computation

Computing the sensitivity of CSEM data to reservoir conductivity changes serves two purposes.
First, it provides a sense of where within the reservoir our data can detect saturation changes.
Second, it is necessary to invert data for conductivity changes. Here, we show a method for
efficiently computing the sensitivity of difference data to conductivity changes.

Let us define F; as a directional component of either the electric or magnetic field as measured at
one receiver location at one particular time. Following McGillivray et al. (1994), the sensitivity of
Fi to a conductivity perturbation in a volume V; of homogeneous conductivity o; is

ng =/v,. (& -E) a,
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where E is the electric field arising from the transmitter source, and E; " is the adjoint electric
field. The adjoint field is the field due to an electric or magnetic (depending on F;) dipole source
located at the receiver and oriented in the direction of the field component F;.

We are interested in the sensitivity of the data difference AF; to a
conductivity change Ag; within a volume. Since changes in fluid saturation can result in
conductivity changes that vary over many orders of magnitude, it is preferable to invert for changes
in the logarithm of conductivity. Therefore, we define a sensitivity matrix J such that its elements
are

i (Eq. 3.5.4)

where m; = Ing;. A first order approximation to the data difference of one field component is

=1 (Eq. 3.5.5)

where M is the number of discretized model cells. We discretize the model domain within the
reservoir layer into rectilinear prisms and numerically compute the integral in Equation 3.5.2 over
each model cell for all data to form J. Thus in matrix-vector form,

(Eq. 3.5.6)

Inversion of CSEM data

We present a workflow to recover relative change in reservoir conductivity from time-lapse CSEM
data that incorporates the effects of steel casings on the data. The recovered conductivity change
can then be combined with the reservoir model to estimate fluid saturation changes. We utilize
time-lapse difference data because it is more robust to the influences of infrastructure and
variations in shallow conductivity. Our imaging algorithm is computationally efficient and simple
to implement.

To recover relative conductivity change in the reservoir, we invert the data by Tikhonov
regularization. We minimize an objective function ¢, which is a linear combination of the data
misfit ¢4 and the model regularization term ¢, scaled by a regularization parameter f , as

¢ =9a+Pom. (Eq. 3.5.7)
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The model regularization term is a combination of measures of the smallest and flattest model.
The data misfit requires a way to predict data, given a model. In this case, the data cannot be
predicted accurately after perturbing the conductivity without a 3D forward modeling algorithm.
However, it can be approximated by using the linearized sensitivity matrix, as

(Eq. 3.5.8)

Here, AF;is a difference in a directional component of either the electric or magnetic field as
measured at one receiver location over one particular epoch. The linearized sensitivity matrix J
can be formed as described above. Then, the data misfit can be computed as

I

- 2
b [Wa (@ -3 |

2
(Eq. 3.5.9)

where d°% is a vector of differences in measured fields between two campaigns, Wa is a diagonal
matrix of the reciprocals of the estimated standard deviations of the data errors, J is the sensitivity
matrix, and m is a vector of changes in the logarithms of conductivities
of model cells between campaigns (the A symbol has been dropped for
convenience).

For land CSEM, the minimum error in the data can be estimated based on repeated measurements
(McAliley et al., 2019). Additional data errors arise from uncertainty in recorded receiver and
transmitter locations, and changes in near-surface conductivity due to variations in water saturation
and temperature. These errors can be estimated and used to obtain a target data misfit. In this case,
however, there is also error introduced by ignoring the nonlinearity in the forward modeling.
Therefore, the target data misfit should account for modeling errors in addition to errors in the
observed data.

The regularization parameter  controls how well the recovered model fits the observed data. A
value of B can be chosen such that the data misfit of the recovered model matches the target data
misfit. Alternatively, heuristic methods to estimate the optimal target misfit can be used such as
the L-curve criterion or generalized cross-validation. Regardless, multiple inversions should be
performed with different values for 3, and the results of these inversions taken together should
inform the interpretation of the data.

In conclusion, we have developed and implemented a workflow to image changes in reservoir
conductivity from time-lapse CSEM data. It employs simple, fast forward modeling to compute
sensitivities that allow for 3D linearized inversion for conductivity changes. The workflow
accounts for both variations in survey layout and the electromagnetic effects of steel casings.
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4. RESULTS /ACCOMPLISHMENTS

We now describe the results of each step of our workflow, from field data acquisition through
reservoir simulations and history matching to electromagnetic modeling and inversion. We also
highlight accomplishments and technology products that our team developed, including a machine
learning history matching workflow, a CSEM data processing workflow, and a publicly available
data processing Python library that facilitates interactive visualization and quality control of
CSEM data.

4.1 SURVEY DESIGN & DATA ACQUISITION

Controlled source electromagnetic survey

Figure 4.1.1 shows the final time-lapse survey layout. Due to delays and equipment issues during
the October 2017 campaign, we only recorded data at 10 receiver stations (Figure 4.1.1a). In May
2018, we expanded to 33 receiver stations (Figure 4.1.1b). We used sub-aerial dig-free
installations of the magnetometers, developed by Oregon State University (Schultz et al., 2017).
In October 2018, we again used sub-aerial magnetometer installations. The western well that we
used in October 2017 and May 2018 was inaccessible due to renewed production, so we chose a
nearby well to use for transmitting (Figure 4.1.1¢). In July 2019 we used the same western well
as October 2018 (Figure 4.1.1d).

The change in transmission well between the second and third campaigns limits our time-lapse
data. In each campaign there are two transmitter configurations: one that runs northeast-southwest,
and one that runs east-west. The wells used for the northeast-southwest configuration were
unchanged throughout all four campaigns, so time-lapse data for that well pair is available for all
epochs. The east-west configuration was the same among the first two campaigns, and among the
last two campaigns, so time-lapse data for that well pair is only available for the October 2017 to
May 2018 epoch, and for the October 2018 to July 2019 epoch. Furthermore, there are few receiver
stations in the longest epoch, October 2017 to July 2019, due to the limited number of stations in
the first campaign. Therefore, when we show time-lapse data plots in this report, we show data for
the epoch from May 2018 to July 2019 for the northeast-southwest transmitter well pair. These
time-lapse data have the most time elapsed between campaigns while still having over thirty
receiver stations active.
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N Google Earth

(c) (d)
Figure 4.1.1: CSEM survey layout for (a) October 2017, (b) May 2018, (c¢) October 2018, and (d)
July 2019 campaigns. Red dots indicate receiver locations. Blue dots represent the wells used as
transmitter electrodes, and the blue lines represent transmitter wires. In October 2018, 10 receiver
stations recorded data, while 33 stations recorded data in May and October 2018. In October 2018
the western transmitter well was inaccessible, so we were forced to transmit on a nearby well
instead.

Transient electromagnetic survey

Data processing took place within the SPIA TEM processing environment (version 3.3.1.0, Aarhus
GeoSoftware, Aarhus Denmark). Data processing entails importing raw transients, assuming 5
percent error on all time gates, rejection of raw transients that show signs of noise and/or
contamination, rejection of time gates that fall below the noise floor and show signs of noise and/or
contamination, and averaging the remaining data with error analysis to produce a single sounding
curve for every transmitter moment-receiver pair.

Processed data for every station were inverted in the SPIA TEM processing environment (version
3.3.1.0, Aarhus GeoSoftware, Aarhus Denmark). Careful analysis of model domain was performed
to ensure that the model space was sufficient to fit the inverted data. Final depth range for all
models begin at the surface and extend to 300 m depth - one station (SBC_TEM 180526 _R2 07a)
has a model that extends to 350 m depth due to late-time data showing minimal contamination
from the nearby infrastructure. Final models used a 50 ohm-meter starting resistivity and a 20
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layer, "blocky" style inversion (the inversion kernel applies an L1 norm on the vertical resistivity
derivative. This pushes the layers to the fewest number of gradients within the model space,
regardless of the gradient across any given layer interface). Layer thicknesses were fixed and
logarithmically increase with depth. The inversion calculates an estimate of sensitivity to the data
with depth. This sensitivity is represented by the two depth-of-investigation (DOI) channels.
DOI Conservative values represent the bottom of the model with a high sensitivity to the data.
DOI Standard values represent the bottom of the model where sensitivity to the data is assumed
to be adequate (Christiansen and Auken, 2012, https://doi.org/10.1190/ge02011-0393.1).

Due to heavy infrastructure in this area many of these individual transients and time gates were
culled yielding models that had shallower sensitivity to the geology than we had hoped. Given
these cultural effects, typical DOI estimates are between 150 and 300 m (see Figure 4.1.2a).

Inversion results are provided in the digital data release both in tabular format as well as plotted
with both the data and model spaces presented. An example of the data plots are presented in
Figure 4.1.2b. See Appendix A5 for plots of all processed data and inverted models.

One time-domain EM sounding was in relatively close proximity to an existing well with a deep
induction log (ILD). Figure 4.1.2¢ shows a comparison between the inverted model and the ILD.
The inversion result matches the induction log, while also predicting a resistive overburden. The
TEM inversion can be used to better define the electrical resistivity of the near-surface, which can
in turn inform the interpretation of time-lapse CSEM data for saturation changes at the depth of
the reservoir.
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Figure 4.1.2: a) Comparison of both “DOI conservative”, and “DOI standard” depth-of-
investigation (DOI) estimates for all 20 stations. b) Example of data and model plots for
SBC TEM 180526 R2 07a. ¢) Smooth inversion of TEM data from sounding location
SBC TEM 171013 BC 0la, plotting alongside a deep induction log (ILD) from nearby well. The

Latitude, Longitude, Elev_m
SBC_TEM_180526_R2_07a 45.13363189, -105.05764840, 1188.9
Data Residiual: 0.49
- . R UTMzone, Easting UTM WGS84, Northing UTM WGS84, Elev_m
Total Residival: 0.46 13, 495467.0, 4997797.0, 11889
0 Model Spac'e 10" ‘ Data ISpace .
50} 1 10%F 3
100} 1 10 E
102F E
150 1
—_— — =
B ::_510—3 3 = E
= 200 4 Sl
45- _______________________________ - u—
a Q510 “ 3
2501 1 .
———————————————— 10'5 E ¥ E
¥
®
300 B
10°¢ E
AveData_ ErrorBar
| i FwResp_HM-RC005
350 TCoor_ —iionm 1077 f|—— FwResp_HM-RC200 3
rvativ —— FwResp_LM-RC005
——DOL  ngara " 267 M FwResp_LM-RC200
400 T T 10-8 1 1 1
10° 10’ 102 108 1073 1072 107 10° 10’
Resistivity [ Q*m | Time [ ms |
50t
c
+ 100
Q
0
150 | )
—_—Ei’: —ILD log
— —TEM inversion
= — — Estimated TEM DOI
200 \"7.1 . il N PP | . P "
0 2 3 4
10 10 10 10 10
o) Resistivity, 2-m

dashed black line indicates the minimum estimated depth of investigation.

57



4.2. RESERVOIR SIMULATION

Initial Model Building

A statistical analysis of the oil production volume and rate is carried out to understand how well
the ML-assisted history matching performed in the coarse low-resolution model compared to the
higher resolution original model. The ML-assisted history matching work is done on the low-
resolution model, and then those parameters applied to the high resolution expanded model. The
ML-assisted history matching work is done at our partner institute, New Mexico Tech, and due to
data transfer limitations, we are provided the parameters from their work. We ran the full dynamic
simulation on both the coarse, low-resolution model and the high resolution, expanded model. A
suite of single-factor analysis of variance (ANOVA) statistical tests is performed on the oil
production rate datasets for both the coarse and fine resolution models. We then analyzed the oil
production rate between observation and the eight cases exported for EM modeling in more detail
using a t-test and a regression analysis.

Coarse Model

The oil production rate is an excellent match to the historical data except for the period between
1976 and the early 1990s. During this time, all the model cases exhibit a reduction in the oil
production rate compared to the observed data (Figure 4.2.1). An ANOVA analysis is applied to
the coarse resolution model cases to determine if the ML-assisted cases are from the same
underlying population or if there is significant variation between datasets. This analysis indicates
a significant variation between the datasets, with a P-value of 0 and F (7.62) is much larger than
Ferie (1.88), indicating that the whole dataset does not come from the same underlying population
distribution as the observed data. If we analyze only the 8 ML-assisted cases and exclude the base
case (HM_BASE UPDATED 240 from Figure 4.2.1), the results are almost the same if not a
little worse. See Table A3.7.1 in Appendix A3.7.

We apply a two-sample t-test assuming equal variances to each of the 8 ML-assisted cases and the
Base Case, comparing against the observed dataset. For all the ML-assisted cases, F is much larger
than Ferit, and the P-value is 0, indicating that the sample means significantly differ from the
overserved mean. The base case has a P-value of 0.255 and a t-stat less than tcrit, indicating that
there was about a 25% probability that the base case is from the same underlying population as the
observed dataset. The results reinforce what is observed in the ANOVA analysis. The ML-assisted
history matching cases and the base case are not from the same underlying distribution. See Table
A3.7.2 in Appendix A3.7 for the complete t-stats for all eight ML-assisted history matched cases
and the base case.

Regression analysis is used to analyze the correlation between the simulated data and the observed
data. The coarse-resolution model cases show a range of correlations (R? values) to the observed
dataset from very high at 0.983 for the HMBase240 case to 0.698 for AIHM-CASE37. All the
cases showed a fairly high standard error of between 387 STB/d for HMBase240 to 1646 STB/d
for AIHM-CASE37, indicating that the data is not from the same underlying population (see Table
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A3.7.3 in Appendix A3.7).
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Figure 4.2.1. Oil production for the coarse-resolution model cases.

Overall the statistical analysis indicates that while there is a high correlation between the ML-
assisted history matched cases and the observed dataset, they are not from the same underlying
population. When the average field pressure through time is analyzed, the oil production rates'
behavior is explained. The coarse simulation grid model reduces the pressure below most of the
oil components' miscibility point, volatilizing them and driving excess gas production. Figure
4.2.2 shows that for all cases except the base case (HM_BASE UPDATE 240), the pressure drops
to atmospheric between 1973 and 1976. This is creating a non-physical condition within the
reservoir and leads to erroneous results. Given more time and resources, a complete redesign of
the coarse grid model used for the ML-assisted history matching would need to be done. Even the

base case model's pressure is reduced to levels well below what is known to have taken place in
the field.
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Figure 4.2.2. The average field pressure for the coarse-resolution model cases.

This coarse of a model grid could be why we observe non-physical pressure conditions within the
reservoir. For future work, a finer grid resolution is desired. A lot of the reservoir information is
lost when up-scaling from a cell size of 100ft by 100ft to a cell size of 1148ft by 1148ft.
Interestingly, when the same parameters are applied to the fine-scale simulation model, there is an
excellent match to production data, and the pressure field responds in the expected way.

Fine Model

The results for the fine grid model are very different than what we observed for the coarse model.
There is a good match between all the cases and the observed data for the oil production rate
(Figure 4.2.3). The worst performing case is the base case (HMCGLD-Base3 2). During the base
case development, the pressure would drop below the miscibility point during the early phase of
the simulation. Permeability is increased by 10x over the initial values developed from the log
data, allowing the pressure to remain above the miscible point throughout the entire simulation.
The ML-assisted history matching cases increase the overall permeability in the I, J, K, giving an
even better match to the observed oil production rate.

Analyzing these model cases using the ANOVA indicates that there is very little statistical
difference between the datasets. F is less than Fci¢, and the P-value is 0.999, indicating that these
can all be considered from the same underlying population. If we remove the base case, as we did
for the coarse grid analysis, the results are the same. See Table A3.7.4 in Appendix A3.7.
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Figure 4.2.3. fine resolution oil production.

To get a better understanding of how well the simulated data correlated to the observed data, two
sample t-tests assuming equal variances were performed. The results for the fine resolution model
cases indicate that for all cases t is less than tcrit, indicating that there is a possibility they are all
from the same underlying population. The P-value is low, between 0.165 and 0.052, indicating
that there is a low chance the cases are all from the same population as the observed dataset. The
t-test also indicates that the observed data is consistently higher than any individual case; see Table
A3.7.5 in Appendix A3.7. The data's correlation to the observed data was explored using
regression analysis. The fine resolution model cases show a very high correlation to the observed
dataset, with R? values of 0.963 to 0.976, but also fairly high standard error of between 568 STB/d
to 712 STB/d (Table A3.7.6 in Appendix A3.7).

The oil production rate analysis indicates that the ML-assisted history matched cases are highly
correlated with the observed data. But when a t-test and regression analysis is done on select cases,
the fit disappears. Statistically, each case is highly correlated but from a different underlying
population from the observation dataset. This is a desirable result because it gives statistically
distinct water saturation maps for each case, part of the project's goals.

The fine grid model's average field pressure is in stark contrast to what is seen in the coarse grid
model. The pressure plotted in Figure 4.2.4 shows less variation in pressure than the coarse grid,
and more importantly, the pressure mimics more closely what we expected. There is an initial
pressure drop during the early oil production phase of operations. Then the pressure increased as
the water injection phase re-pressurizes the field and stabilized the pressure.
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Figure 4.2.4. Pressure for the fine resolution model.

Machine Learning Assisted History Matching

The finalized history matching results are displayed in Figure 4.2.5. Promising matching quality
can be observed for the oil and water production rates. And the optimum solution of the reservoir
characteristic data is listed in Table 3.2.5. This particular solution is also confirmed by high-
fidelity numerical modelling as shown in Figure 4.2.6. The gas rate matching at the early stage of
the project exhibits relatively high error, which is due to the uncertainties introduced by the initial
fluid composition. However, when the reservoir is depleted and the CO> injection starts, the
matching quality becomes much better. Such observation indicates a good characterization of the
relative permeability, capillary pressure and absolute permeability multiplier determined by the
proposed workflow.

In conclusion, the proposed workflow is capable of obtaining a history matching solution quite
effectively. For the future actions, the following suggestions can be considered:

1. The gas production prediction does not fit production at early times, due to the uncertainties
of the fluid composition. Since there is little information about the composition information
of the reservoir fluid, it is difficult to impose physical constraints on this aspect. However,
during the CO; flood period, the gas production rate matches very well with the field data,
which indicates that the permeability field and relative permeability data characterize the
multiphase flow mechanisms quite effectively.

2. The lack of field pressure data also introduces uncertainty to the history matching results.
When more field pressure data becomes available, it can be used to screen the history
matching results with more physical constraints. Besides, the current promising matching
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with the fluid production data indicates that the saturation variation within the system is
well-captured. Therefore, these results can be employed for the further investigation of the
water saturation distributions.
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Figure 4.2.5. Finalized history matching results found by the machine-learning model.
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Figure 4.2.6. Finalized history matching results confirmed by the high-fidelity numerical model.

4.3. CSEM DATA PROCESSING

DoZen: data processing software

A custom CSEM data processing software library named DoZen was developed to process data
from this project. It contains functions to read the data formats used by Zonge instruments, apply
our custom processing workflow, visualize data and metadata, and implement quality control
measures. The code is written in Python and is openly available for download, use, or modification
at https://github.com/AndyMcAliley/DoZen. See the Appendix A4 for a description of DoZen’s
capabilities.

Processed data

Processed response function data for each campaign have many dimensions: response function
frequency, electromagnetic field component, receiver station location, transmitter configuration,
frequency, and campaign. The high dimensionality makes visualizing the data difficult. Figures
4.3.1 and 4.3.2 show different views of the data. Figure 4.3.1 shows the data at all receiver stations
at once, for one frequency, one field (two horizontal components), one transmitter configuration,
and one campaign at a time. Figure 4.3.2 shows data at all frequencies and campaigns at once, but
for one field component, one receiver location, and one transmitter configuration at a time. The
difficulty of visualizing the data was one motivating factor for developing DoZen. It allows data
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to be plotted interactively, which is crucial for high dimensional data exploration.
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Figure 4.3.1: Real and imaginary components of the electric field response functions for the May
2018 campaign, transmitting between wells that are separated along the northeast-southwest
direction, at (a) 0.125 Hz, (b) 0.5 Hz, (c) 4 Hz, and (d) 16 Hz. Blue arrows show the x and y
components of the real parts of the electric field response functions, and yellow arrows show the
imaginary parts. The magenta dots represent transmitter wells, and the magenta line connects the
two transmitter wells used for these data. The arrows are scaled logarithmically so that the spatial
pattern of the response functions is easy to discern.
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Figure 4.3.2: Response functions for receiver stations (a) 23-5 and (b) 25-1 for three field
campaigns. Shown are response functions for the component of the electric field in the north
direction, for the transmission well pair that is separated along the northeast-southwest direction.

While the data plots allow for quality checks, the relationship between these data and reservoir
saturations is too complicated to directly interpret the data. Thus, forward modeling and inversion
are required to draw meaningful conclusions from CSEM data.

Data variance

We have investigated the variance in the processed data. Figure 4.3.3 shows the variability of the
signal between periods. This can be investigated by breaking the transmitter and receiver signals
apart into individual periods based on the transmitter frequency, and comparing each period to the
others. Figure 4.3.3a shows, in effect, a histogram for each sample within a period. Both the



transmitter signal and the receiver signal demonstrate little correlation between how they vary and
proximity to polarity changes, except that the samples on which polarity changes fall have high
variance, especially for the transmitter. This can be seen clearly in Figure 4.3.3b.

All waveforms Variance in waveform

0.020

0.025
1.0 0.018

s ml 0016 0.020

0.00030

v

0.00025

@ B
0.0 0.014 3 5 0.015

ransmitter Signal, v

H
] 0.00020 §
0012 & =

= —os | 0.010
|
) 0.010 0.00015
-10 0,005

! 0008 0.00010

0 2500 5000 7500 10000 12500 15000 0 2500 5000 7500 10000 12500 15000
samples sample

Figure 4.3.3: (a) Every period of the transmitter and receiver signals from Figure 3.4.2b, plotted
atop one another to visualize the variance between periods at each sample. (b) The standard
deviation for each sample in Figure 4.3.3a. The two blue spikes correspond to polarity changes in
the transmitter signal.

Fourier coefficients are computed for every period of the signals. Figure 4.3.4 shows the quotients
of the receiver coefficients divided by the transmitter coefficients for each period. Here, the
window within which each Fourier coefficient is moved by only one quarter of a period from one
point to the next in the plot, in order to demonstrate how the start and end points of the window
with respect to transmitter polarity changes determine how the quotients vary. In essence, the
location of the window with respect to polarity changes determines the angle of the line along
which samples vary. In Figure 4.3.4, the points are roughly arranged as a plus sign. Samples that
are distributed vertically from the mean tend to correspond to windows that start at polarity
changes, while samples that are scattered horizontally away from the mean correspond to windows
that begin and end halfway between polarity changes. Thus, the choice of when processing
windows begin and end determine whether variance is contained largely within the real part of the
quotients or the imaginary part. The mean, however, is unaffected by this choice.
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Figure 4.3.4: Quotients of receiver and transmitter Fourier coefficients computed at each period
of the signal, plotted in the complex plane. The black ellipses indicate regions within one, two,
and three standard deviations of the mean. The points are colored by the time at which the
corresponding period occurs within the signal. Dark points correspond to periods that occur early
while light colors indicate periods that occur near the end of the signal.

Analysis of signal magnitude and variance

Tietze et al. (2015) analyzed the use of time-lapse borehole-to-surface CSEM for monitoring
injected CO- at the Bockstedt oil field. They modeled the change in field strength at the surface
resulting from a resistivity change from 16 Qm to 0.6 Qm in a three-dimensional reservoir at 1200
m depth, which is similar to the Bell Creek field. The modeling results indicate differences on the
order of 107 V/(Am?) for the inline electric field component at low frequencies, and 1071?
V/(Am?) at high frequencies. The cross-line component of the magnetic field exhibited an absolute
difference upwards of 10™% A/(Am?).
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At Bell Creek, our measured electric field response differences are on the order of 107° V/A at
low frequencies (Figures 4.3.5a and 4.3.5b). After accounting for receiver and transmitter dipole
lengths, this corresponds to differences on the order of 107*° V/(Am?). At high frequencies,
differences are on the same order of magnitude or larger. The large differences at high frequencies
are likely due in part to changes in receiver location or transmitter wire path. Since the locations
of receivers and transmitter wire path are recorded during each campaign, the effects on the time-
lapse signal can be mitigated.
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Figure 4.3.5: Time-lapse response difference between May 2018 and October 2018. Real and
imaginary components of the electric field response functions, transmitting between wells that are
separated along the northeast-southwest direction at (a) 0.125 Hz, (b) 0.5 Hz, (c) 4 Hz, and (d) 16
Hz.
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The magnetic field response difference at the lowest frequency is on the order of 1073 uT/A. These
values correspond to differences on the order of 107° A/(Am?) after accounting for the transmitter

dipole length. Like the electric field data, high frequency magnetic response differences are equally
large or larger.

Standard deviations are estimated based on response functions computed from different time
windows of the signal (Figure 4.3.6). Estimated standard deviations of the magnitude of the
response functions are less than one percent of the magnitude, which are significantly below the
magnitude of the time-lapse differences. Table 4.3.1 summarizes the magnitudes of time-lapse
responses and the estimated standard deviations at low and high frequencies.
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Figure 4.3.6: Response function estimates plotted in the complex plane, for the northeast-
southwest aligned transmitter well pair, northing component of the electric field at receiver 279,
at 0.25 Hz, measured in October 2018. Each dot represents the response function estimate
computed using a moving boxcar window. Dark dots correspond to windows that are applied to
early parts of the time-series data, and light dots to later windows. The three concentric ellipses
indicate distances of one, two, and three standard deviations from the mean. Here, the majority of
the variance is in the imaginary part. We find that the beginning and end positions of the windows

70



determine whether the majority of the variance is contained in the imaginary component, the real
component, or a combination. These values are averaged via an M-regression estimate to yield an
estimate of the value of the response function and its variance.

Table 4.3.1: Average order of magnitude of differences between May and October 2018 in
measured CSEM response functions, and order of magnitude of standard deviations of response
functions estimated via M-regression. The difference data are two to three orders of magnitude
larger than the standard deviations, demonstrating a strong time-lapse signal.

Measured data difference Estimated standard deviation
E-field, low frequency 106 V/A 10 V/A
E-field, high frequency 10° V/A 107 V/A
B-field, low frequency 106 uT/A 107 uT/A

We compared the variance for individual transmissions (Figure 4.3.7a) to that for repeated
transmissions (Figure 4.3.7b). From this analysis, we find that the average variance among
repeated transmissions is two orders of magnitude larger than that of individual transmissions, and
thus the standard deviation is one order of magnitude greater. At low frequencies, though, the
increase in standard deviation between individual measurements and repeated measurements is not
as great. The observed time-lapse signal at low frequencies remains one order of magnitude greater
than the estimated standard deviation among repeat transmissions.
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Figure 4.3.7: Histograms showing the base 10 logarithm of the response function variance (a)
within individual transmissions, and (b) among repeat transmissions for electric and magnetic
components. The numbers in the upper left are the geometric means of the variance for the
magnetic and electric field components, respectively.
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We find that the measured time-lapse CSEM signal well exceeds the estimated standard deviation
of the measurements. Additionally, the magnitude of the time-lapse response difference agrees
with the expected magnitude as published by Tietze et al. (2015), for both the electric and magnetic
fields. These differences are significantly larger than the variance in the data, and the differences
are coherent across multiple frequencies. Some part of the differences are due to small changes in
survey geometry, which can be taken into consideration during modeling and inversion. The sign
of the differences is consistent among multiple receiver stations, which also suggests that a time-
lapse signal arising from CO, movement is detected by the survey.

4.4. CSEM MODELING AND INVERSION

Sensitivity analysis

As a first step towards inversion of CSEM data for reservoir conductivity change, we computed
the sensitivities of the difference data to changes in electrical conductivity within the reservoir.
Figure 4.4.1 shows the sensitivity of the east-west component of the electric field of one receiver
to conductivity change throughout the reservoir. In general, the sensitivities depend on the
conductivity model, including lateral variations. Here, though, we compute only the sensitivities
for a homogeneous background conductivity model with well casings. The sensitivity is highest
near the ends of the electrodes, and it depends on the receiver component.
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Figure 4.4.1. Sensitivity of the east-west component of one electric field difference datum (black
X) to conductivity change in the reservoir at 0.125 Hz for (a) a northeast-southwest oriented
transmitter, and (b) an east-west oriented transmitter wire. The black arrow points in the positive
direction of the receiver dipole, and its length is the length of the receiver dipole, to scale.

4000 5000 6000

CSEM linearized inversion results

Next, we present the results of linearized inversion of the measured CSEM difference data. In
order to invert the data, the effects of changes in survey geometry must be removed. Therefore,
we compute the electromagnetic fields of a background conductivity model with well casings. We
compute responses using each campaign’s survey geometry separately. We difference the modeled
responses for separate campaign geometries. These differences are applied to the corresponding
difference data to correct for changes in geometry between campaigns. Figure 4.4.2 shows
observed difference data before and after corrections. The correction is negligible except for
receiver stations that are within about 300 m of the transmitter wire, or about 1000 m of an
energized casing.
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Figure 4.4.2. (a) Electric field difference data before corrections for survey geometry changes are
applied, and (b) after corrections.

Applying our linearized inversion workflow to the field data, we recover distributions of time-
lapse conductivity change within the reservoir (Figure 4.4.3). As expected for smooth
regularization, the recovered conductivity has smooth spatial variation. The recovered models
show patterns of conductivity change which can be interpreted as regions where fluid saturations
have changed. A change in fluid saturation from conductive brine to resistive gas should cause the
conductivity of the reservoir to change by roughly a factor of ten. Figure 4.4.3 shows that the
recovered conductivity changes are far larger. The marginal effect of large conductivity contrasts
on electromagnetic fields at the surface diminishes as the contrast increases. Since we are using
linearized sensitivities computed for a model with no lateral conductivity contrast, our estimated
residuals do not account for this effect. Therefore, we interpret relative highs and lows in
conductivity change from the recovered conductivity change models.

The largest conductivity changes occur near charged well casings. This is likely an artifact of the
inversion since the sensitivities are highest near casings, as shown in the 2020 Q1 report. Few
areas of no change exist in the recovered models, which is not consistent with expectations. Much
of the change may be due to near surface conductivity changes, or near surface infrastructure which
alters the sensitivities. Furthermore, the data misfit indicates errors that are several orders of
magnitude higher than the expected data errors. This indicates that the modeling is not sufficiently
capturing the governing physics, possibly due to the simplified background conductivity, the
assumption of linearity, or the assumption that all conductivity change occurs within the reservoir.
Thus, we conclude that, while we recover models of conductivity change, it is difficult to infer
saturation changes in the reservoir from the recovered models.
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Figure 4.4.3. Inverted relative conductivity change over epochs (a) October 2017 to June 2018,
(b) June 2018 to October 2018, and (c) October 2018 to July 2019.
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CSEM Modeling Results

Following the 3D EM modeling methodology above, we computed CSEM data for the
conductivity models derived from reservoir simulation. We found that the CSEM data are unable
to detect the predicted saturation changes. To reach this conclusion, we analyze the data in three
ways: comparing field magnitudes, comparing plots of fields, and comparing the data misfit for
the different saturation cases generated by the reservoir history matching workflow.

First, we compare field magnitudes. Recall that this process involves computing primary fields,
which arise from the transmitter wire over a homogeneous half space with well casings, and
secondary fields, which arise from deviations in conductivity from the half space. Note that
changes in the field that are due to saturation changes in the reservoir are entirely captured in the
secondary field. The predicted secondary difference is the difference between secondary fields
from two different campaigns. The difference is due to two factors: changes in reservoir saturation
and hence reservoir conductivity, and changes in survey geometry between the campaigns.
Therefore, while it is not equal to the time-lapse signal of interest, the predicted secondary
difference provides an upper limit on that signal.

Table 4.4.1 allows a comparison of the orders of magnitude of different predicted and observed
quantities. The predicted secondary difference is significantly smaller than all of the columns,
indicating that these data are not sensitive enough to capture information about changes in
reservoir saturation. The observed standard deviation is derived from repeated measurements, as
described in the data processing methodology. It fails to capture many sources of error, including
positioning errors, modeling errors, and any systematic errors. Therefore, it is likely much smaller
than the error in our data. Using it as a lower bound on data error, we find that the upper bound on
the time-lapse signal falls below this lower bound on error. Thus, no matter how well we capture
the electromagnetic physics, the reservoir properties, and account for infrastructure and systematic
noise sources, we cannot expect to detect reservoir saturation changes from the CSEM data.

Table 4.4.1 provides useful information for future experiments. The predicted difference data are
much greater than the predicted secondary difference. Therefore, the predicted difference data are
dominated by the predicted primary difference data, which arise only from survey geometry
changes. Thus, the predicted difference data provide estimates for the magnitude of the effect of
small variations in survey geometry on difference data. The observed difference data are greater
than the predicted difference data by a factor of 2 or more. This indicates that other sources of
error exist which, taken together, have a greater magnitude than survey geometry errors. These
sources of error could be due to changes in infrastructure between campaigns, such as new
pipelines. They could also arise from changes in the near-surface conductivity, features like
additional well casings and pipelines that are not included in the model, and cathodic protection
noise. Since the observed standard deviation is much lower, they are not due to random instrument
noise. This magnitude of systematic error could be expected in CSEM data collected at other active
oil fields like the Bell Creek field. Caution is advised if the expected time-lapse signal magnitudes
are not significantly larger than the magnitude of our observed data.

Table 4.4.1. Magnitudes of predicted difference in secondary fields, predicted CSEM difference
data, observed difference data, and robust estimates of standard deviations among repeated
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observations, for the epoch from May 2018 to July 2019 and for transmitter well pair 97-11 to 23-
08. The ranges are the 10% quantile and the 90% quantile. The predicted secondary differences
arise mainly from saturation changes in the reservoir. The predicted difference data - modeled
predictions of the actual observations - are dominated by the effects of changes in survey layout

between campaigns.

Predicted Predicted Observed Observed

secondary [ difference data | difference data standard

difference deviation

E-field at 0.125 Hz, 8X1012 to 1X10? to 4%107 to 7X10" to
(V/im)/A 5%10! 8X108 2X107 3%107°

E-field, 1 Hz, (V/m)/A 9X10'2 to 3%X107 to 8X10? to 2X10" to
9x 10! 2X107 4%107 1%X107?

E-field, 16 Hz, (V/m)/A 5X1071 to 6X107 to 3%X108 to 5X107!" to
5X10712 1X106 3X10° 1%X107?

B-field, 0.125 Hz, uT/A 8X1010 to 1X107 to 3%X107 to 3X108 to
5X107 1X107 4%107 8§X10°

B-field, 1 Hz, uT/A 1X107? to 3%X107 to 1X10°° to 2X108 to
4%107 1X107 6X107 4X10°

B-field, 16 Hz, pT/A 1X10'" to 3%X107 to 2X10° to 2X108 to
7X101 3%X107 7%X107 5X10°

Examining plots of the observed and predicted fields reinforces these conclusions. Figure 4.4.4
shows the total field response for a single campaign at the lowest transmission frequency. The
modeled total fields and observed total fields have a reasonable match in magnitude and spatial
pattern, with some noticeable differences. In time-lapse data, some of those differences subtract
out. Some remain, though, due to the non-linear relationship between EM fields and conductivity.
Therefore future studies may warrant modification of the subsurface conductivity model such that
the single-campaign data can be predicted to a high degree of accuracy.
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Figure 4.4.4: Horizontal electric field response at 0.125 Hz from July, 2019, (a) observed and (b)
predicted. The transmitter wire path for these data is shown in magenta. Field arrows are scaled
logarithmically.
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Figure 4.4.5: Secondary electric field difference data at 0.125 Hz from May, 2018 to July, 2019.
These data are not corrected for changes in survey geometry. The transmitter wire path for these
data is shown in magenta. Field arrows are scaled logarithmically. Note that the scaling used for
this quiver plot is different from all other quiver plots because the data have much smaller

magnitudes.
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The predicted secondary electric field difference data are shown in Figure 4.4.5. They exhibit an
ordered spatial pattern across the survey area. Contrast this with Figure 4.4.6a, which shows
observed difference data. The observed data show no such pattern. Note also that the observed
difference data do not agree with predicted difference data. Figures 4.4.6 and 4.4.7 compare the
two for electric and magnetic fields, respectively. While predicted and observed data are of similar
orders of magnitude, the data are not alike. The predicted data are due to changes in transmitter
and receiver locations. The seemingly random pattern in the observed data suggests three
conclusions. First, the difference data do not arise from changes in reservoir saturation. Second,
they do not arise from survey geometry changes alone, since they do not resemble the predicted
data. Third, they are influenced by local effects, as opposed to effects that influence all parts of the
survey area equally.
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Figure 4.4.6: Horizontal electric field difference data at 0.125 Hz from May, 2018 to July, 2019,
(a) observed and (b) predicted. These data are not corrected for changes in survey geometry. The
transmitter wire path for these data is shown in magenta. Field arrows are scaled logarithmically.
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Figure 4.4.7: Horizontal magnetic field difference data at 0.125 Hz from May, 2018 to July, 2019,
(a) observed and (b) predicted. These data are not corrected for changes in survey geometry. The
magenta line is the transmitter wire path. Field arrows are scaled logarithmically.
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Finally, we compare data misfits for the ten reservoir saturation cases provided by history matching
analysis. Data misfit is the norm of the scaled difference data residual vector. We computed
difference data residuals as follows. We predicted the fields at the receiver locations for each
campaign separately. Then, for a given epoch, we subtracted the later campaign’s fields from the
earlier campaign’s fields to obtain predicted difference data. Note that receiver locations vary
between campaigns. We compute each campaign’s data at the receiver locations for that campaign,
and we apply no correction to the difference data for the change in location. In this way, these
predicted data are not the same as the corrected difference data used in the linearized inversion.
Difference data residuals are simply the observed time-lapse difference, uncorrected for location,
minus the predicted difference data, as

r=(d; —dy) = (p2 — P, (Eq. 4.4.1)
where r is a vector of difference data residuals, d; and d, are vectors of measured response
functions from two different campaigns, and p, and p, are vectors of predicted response functions
for two different campaigns, using the transmitter and receiver locations that are specific to each

campaign.

Data misfit is the norm of the difference data residuals, scaled by their standard deviations. We
compute both the l; and [, norms. The general expression for the [, norm of the residuals is

n
i=1

where n is the number of data and o; is the standard deviation of the i residual.

Ty

p)l/P

: (Eq. 4.4.2)

o

To quantify the agreement with the CSEM data, we computed data misfits for the ten different
saturation cases. With six epochs (campaigns 1 to 2, 1to 3, 1to 4,2 to 3, 2 to 4, and 3 to 4), 40
frequencies, one to three transmitter configurations, 10 to 33 receiver stations, and four or five EM
field components, the total number of difference data for one modeled case is 28535. Table 4.4.2
lists the data misfit values. The values are identical to many significant digits, again demonstrating
that the CSEM data are not sufficiently sensitive to distinguish different saturation cases. The large
data misfit values reflect the poor fit between predicted and observed difference data with respect
to the standard deviations of the observed data. This indicates that there are effects on the data that
are not accounted for.
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Table 4.4.2: CSEM data misfit, by sum of absolute errors and by sum of squared errors, for the
10 cluster analysis cases. The misfit is nearly the same among all cases.

Case number| [; norm of difference data residual | [, norm of difference data residual
339 1661154319 376542768.9673
25 1661154337 376542768.9617
37 1661154409 376542768.9544
241 1661154384 376542768.9694
412 1661154249 376542768.9615
14 1661154299 376542768.9486
234 1661154416 376542768.9612
227 1661154297 376542768.9670
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S. DISCUSSIONS

We collected time-lapse CSEM data over two years at the Bell Creek oil field during injection
operations. The data acquisition process facilitated the development of the workflow, and the
acquired data themselves also serve as a specific test case.

Despite the high levels of electromagnetic noise at the field, we were able to process the data and
estimate their noise level. There is a measurable and significant signal in the time-lapse difference
data which is much greater than the effects of changes in survey locations between campaigns, and
greater than random instrument noise expected in such surveys. The project has developed a sound
survey procedure and data processing methodology to acquire time-lapse CWC-CSEM data that
are coherent in time.

We found that the CSEM data are unable to detect the predicted saturation changes in the Bell
Creek reservoir, based on the forward EM simulations using fluid saturation changes from
reservoir modeling. Furthermore, the ten different saturation realizations examined are not
distinguishable by the CSEM data. The depth of the reservoir and the conductive shale overburden
weaken the time-lapse EM signal. More unexpectedly, a complex injection schedule of water and
CO2 reduced the saturation contrast in the reservoir, and the brine was less conductive than the
average reservoir brine for typical carbon storage sites.

Although it is coherent in time, the measured time-lapse EM signal does not exhibit a coherent
spatial pattern. It is concluded that this signal is due largely to changes in conductive infrastructure
over the course of the time-lapse survey, such as newly installed pipelines and power lines.

Our observed data provide an estimate of the noise level to be expected at an active oil field. This
estimate establishes the basic ambient noise parameter for future surveys. This field-data derived
estimate is essential for future feasibility studies and survey planning to determine if CSEM
monitoring will be effective at other injection sites.

Machine learning assisted history matching was able to produce a very good match to observed
production across many model permutations. The parameters produced a better history match with
the fine-scale simulation model than with the very coarse-scale model. Statistically, there were
significant differences between each of the cases, resulting in slightly different saturation maps.
However, the differences in these saturation maps are too small, and it will be difficult to
distinguish any differences in EM modeling results because of the low brine conductivity, the large
depth of the reservoir, and the conductive overburden above the reservoir at this site.
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6. CONCLUSIONS

The project is aimed at developing the methodology and workflow of charged wellbore casing
controlled-source electromagnetic (CWC-CSEM) method for carbon storage monitoring. The
objectives are:

1. developing the field procedure and protocol for collecting time-lapse controlled-source
electromagnetic (CSEM) data with source electric current injected into the subsurface
through wellbore casings and associated data processing techniques,

2. developing the procedure for building background 3D electrical conductivity model
utilizing multiple sources of data such as supplemental surface transient EM (TEM)
surveys, well-logs, and seismic structural information, for use in time-lapse CSEM data
interpretation,

3. developing a coupled multiphysics simulation and inversion method for CSEM data
constrained by production data and structural information from seismic imaging, and

4. testing the methodology at a field site.

We have accomplished all the proposed tasks and developed the methodology as planned. These
include the procedure for time-lapse CSEM data acquisition, data processing techniques,
integration with 3D conductivity model building, fast reservoir simulation for history matching
using machine learning, and interpreting CSEM data with coupling to the reservoir modeling.

The testing component of the project measured significant time-lapse CSEM responses. However,
we have determined that it is not related to the injections since our modeling has indicated that the
combination of the lower brine conductivity in the reservoir, and the hybrid CO2/WAG injection
cycles could not have produced significant CSEM responses. We note that this site was made
available to the project after the original site selected in the proposal changed ownership and we
had only limited access.

Despite the null outcome of the measured data in relationship to the actual injection cycles at the
test site, the primary component of the project is a success and has accomplished the planned
research and development for the field procedure and methodology of using charged wellbore
casing CSEM to monitor carbon storage.

The developed method and associated workflow are general and have broad applicability. The
ideal sites for employing this technique would be the fit-for-purpose carbon-storage sites using
saline reservoirs, where the brine fluid is highly conductive and its displacement by injected CO2
would lead to significant change in electrical conductivity.
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7. RECOMMENDATIONS

We recommend that future surveys include a detailed site-specific feasibility study before this
technology is applied. The feasibility study must include basin conductivity, reservoir geometry,
brine conductivity, and fluid injection and production predictions.

Strong communication with local landowners and site operators is necessary to obtain approval
for survey plans. Friendly relationships with local residents and authorities support data collection
in myriad ways. They can also improve local perceptions of the CO2 injection project as a whole.

Permanent emplacement of transmitter and receiver stations will minimize the effects of changes
in survey geometry, which we found to be two orders of magnitude greater than the data standard
deviations.

The machine learning assisted history matching method produced an ensemble of plausible
reservoir models which acceptably fit the production data. However, the resulting saturation
models were similar to one another. Further development of this novel method, especially by
incorporating uncertainties in the facies model, may improve its capability to capture the full
distribution of plausible saturation models, which CSEM data can further refine to produce CO2
distributions that fit all available data.

This technology is best applied in areas that are far from cultural sources of electromagnetic noise
such as power lines and cathodically protected pipelines. Our study provides an estimate of the
expected noise level in time-lapse CSEM data at an active oil field; feasibility studies for future
CO2 monitoring efforts in such environments should examine both the expected signal strength
arising from CO2 movement and the expected cultural noise. If the noise level equals or exceeds
signal strength, steps must be taken to model the effects of changing infrastructure. While active
oil fields are noisy electromagnetically, CO2 storage sites would be more amenable to CSEM time-
lapse monitoring.
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9. APPENDICES

Al: PRESENTATIONS AND PUBLICATIONS

I.  One abstract for presentation at the 2017 AIChE Annual Meeting (Topical Conference:
Advances in Fossil Energy R&D).

a. Monitoring Carbon Sequestration Using Charged Wellbore Controlled Source
Electromagnetics and Integrated Reservoir Models

II.  One oral paper and extended abstract at AEGC conference which features a heavy
emphasis on non-seismic methods.
a.
III.  Two presentations and a poster presented at the 2018 AGU annual meeting:
a. Validation and development of multiphase reservoir simulations with controlled
source electromagnetics
b. Devising a framework to couple geophysical measurements (CSEM) with reservoir
simulations to monitor CO2 plume movement.
c. Time-lapse Charged Wellbore Casing Controlled Source Electromagnetic Surveys
for Monitoring Injected Carbon Dioxide
IV.  Two conference presentations given at the 2019 SEG annual meeting:
a. Integrated Model Construction for CO2-EOR Monitoring via Charged-Wellbore
Casing Controlled-Source Electromagnetics
b. Analysis of land-based CSEM data for CO2 monitoring at Bell Creek, MT
V.  One abstract has been accepted for presentation at the AICHE annual meeting.
a.

A2: INFORMATION DISSEMINATION

A custom CSEM data processing software library named DoZen was developed to process data
from this project. It contains functions to read the data formats used by Zonge instruments, apply
our processing workflow, visualize data and metadata, and implement quality control measures.
The code is written in Python and is hosted at https://github.com/AndyMcAliley/DoZen. The code
to model casing currents is publicly available as well, and can be found at
https://github.com/AndyMcAliley/em_casing.

A3: RESERVOIR MODELING

A3.1: Curator Data Set Contents
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All Data is referenced to North American Datum 1927 UTM Zone 13 North (feet).

The following data is contained within the Curator Data Set folder and has also been imported
into a Petrel project for ease of viewing.

Well heads
o File Format — ASCII (Well Heads)

o A text file (tab delimited) file has been included for import into most software
programs

o An Excel spreadsheet has been included for easier viewing and manipulation
o The following columns are contained with the files:

§ UWI

§ Well name

§ Surface X

§ Surface Y

§ Kelly bushing elevation — Corrected to LiDAR surface elevation

§ Total Depth

Data for legacy wells not contained within data boundary (22-02 and 15-14)
o Well heads
o Well logs (raster and LAS)
o Horizon tops

o Only 2 wells

Perforations
o File Format- Well Event data (ASCII) (.ev)
§ Format for import into Petrel

o An Excel spreadsheet has been included for easier viewing

Boundaries
o File Format - ASCII (CPS-3 lines)
o Development Phase boundaries 1-9

o Entire area of development phase boundaries 4 and 5 are included along with
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a portion of development phases 2, 3, and 6
o Data boundary
§ Data is clipped on the eastern margin to the Bell Creek Field Boundary

Horizon tops
o File Format — ASCII (Petrel well tops)
o Picked from well logs at each well location

o A text (tab delimited) file has been included for import into most software
programs

o An Excel spreadsheet has been included fore easier viewing and manipulation

o All horizon tops have been picked and checked for accuracy by
geologists/geomodelers at the EERC

o The following horizons tops have been picked for wells within the data
boundary and are contained with the Horizon Tops Above Muddy file

§ Pierre

§ Eagle

§ Shannon

§ Gammon

§ Niobrara

§ Carlile

§ Turner Sand
§ Pool Creek
§ Greenhorn
§ Bell Fourche
§ Mowry

o The following horizons tops have been picked for wells within the data
boundary and are contained with the Horizon Tops Muddy file

§ Springen Ranch
§ Shell Creek

§ Bell Creek Sand
§ Rozet

§ Skull Creek
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LAS well logs
o File Format - LAS
o One file per well

§ Each curve in the log suite for the corresponding well are contained
within one file named as UWI number

Pressure and temperature gradients from drill stem tests
o File Format — ASCII (Petrel points with attributes)
o Gradients were extrapolated from the depth of the drill stem test to surface

o Simulation model is isothermal (temperature held constant during simulation)

Surfaces
o File Format - ASCII (IRAP Classic Grid)
o Interpolated from horizon tops
o Convergent interpolation gridding algorithm
o Grid size — Shell Creek through Skull Creek
§ 41.25 ft x 41.254t
§ Half the size of seismic resolution

§ Rotated -44.50 degrees to match seismic rotation allowing for more
accurate seismic inversion into grid.

o Grid size — ground surface through Mowry
§ 50 ft x 50 ft
§ No rotation
o The following surfaces are included in the data set:
§ Ground surface- generated from LiDAR points
§ Pierre
§ Eagle
§ Shannon
§ Gammon
§ Niobrara
§ Carline

§ Turner Sand
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§ Pool Creek

§ Greenhorn

§ Bell Fourche

§ Mowry

§ Shell Creek

§ Springen Ranch

§ Bell Creek Sand — Target reservoir
§ Rozet

§ Skull Creek

Static model properties
o File Format — Rescue

o Properties clipped from a static model that covers the entire Bell Creek Field
area

o Grid Size —41.25 ft by 41.25 ft by 23 layers
§ Shell Creek to Springen Ranch — 1 layer
§ Springen Ranch to BC Sand — 1 layer
§ BC Sand to Rozet — 20 layers
§ Rozet to Skull Creek — 1 layer
o Each cell contains the following properties
§ Facies

Facies logs were assigned to each well based on seismic and
well log interpretation

Facies logs were upscaled into the grid

Facies were distributed using multiple point statistics
conditioned by training images

o Separate training images were created for each geobody
(area of similar geologic properties)

Facies model was used to further constrain petrophysical
properties of porosity and permeability.

§ Total porosity

Total porosity logs were calculated using well logs and were
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calibrated to core data.
Total porosity logs were upscaled into the grid.

Distributed by variogram based sequential Gaussian
simulation within each facies.

§ Effective porosity

Effective porosity logs were calculated using well logs and
total porosity logs and were calibrated to core data.

Effective porosity logs were upscaled into the grid.

Distributed by variogram based sequential Gaussian
simulation within each facies.

§ Permeability

Permeability logs were calculated via a neural network that
compared core porosity and permeability and bulk density logs.

Permeability logs were upscaled into the grid.

Distributed bivariately with effective porosity using a
porosity/permeability cross plot.

§ Water saturation
Distributed using a J-function methodology.

o Calculate Reservoir Quality Index (RQI).
§
§ K= permeability
§ @ = effective porosity

o Calculate normalized porosity (PHIZ).
§
§ @ = effective porosity

o Calculate Flow Zone Indicator (FZI).
§

o Define Flow Units (FU) based on FZI values.

o J-function was applied to each flow unit.
§ Excellent-quality reservoir

§ Good-quality reservoir
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§ Medium-quality reservoir

§ Low-quality reservoir

§ Very low-quality reservoir
§ Formation pressure

Distributed using pressure gradient from DST multiplied by
measured depth plus atmospheric pressure.

§ Zones/Segments

A property that separates all cells based on the layer within
which they are contained.

§ Measured depth
Depth from the kelly bushing to the center of the cell.

Interferometric Synthetic Aperture Radar (InSAR) data
o File Format — Petrel points with attributes (ASCII)
§ X, Y, Z values are to spatially locate points

§ Columns are elevation above sea level of the ground surface at the date
in the column heading. Each date is an attribute within the point set in

Petrel.

o ALOS data
§ Ground elevation data from the ALOS satellite from January 13 2007 to
January 24 2011.

o CSK

§ Ground elevation data from the CSK satellite from September 11 2015
to May 8 2016

o File Format — Petrel points with attributes (ASCII)
o Zis in feet above sea level of the ground surface

o Used to generate the ground surface
The following data is contained only within the Curator Data Set folder.

Raster well logs
o File Format - TIFF

o Multiple files per well
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§ Separate file for each TIFF image raster

o Named as UWI_"Logname"

Production and Injection Database
o File Format — Excel Spreadsheet

o Database of historic production and injection from 1967 to July 2017 for each
well within the data boundary.

Well Status
o File Format — Excel Spreadsheet
o File containing:
§ Well Name
§ UWI
§ Well Status as of May 2017

Pipelines and Infrastructure map
o File Format — PNG image

o Map showing current location of pipelines and infrastructure within the data
boundary.

A3.2: Facies modeling

A facies model is constructed next using well log data and information from a formation analysis
study performed by Exxon in July 1990 titled Engineering & Geologic Study of the Bell Creek
Consolidated (Muddy) Unit Area (Exxon Company, 1990). The report identified three distinct
zones within the Bell Creek formation, with eight different facies. The first zone is the silty shale
zone characterized by a spontaneous potential (SP) of less than a 50% deflection from the Clean
Sand facies value as measured from the shale baseline (Exxon Company, 1990). The second zone
is Zonel and is characterized by three different facies with distinct SP and Gamma-Ray curve cut-
offs. The Clayfilled Sand has a greater than 90% SP deflection but less than 18 ohms in the deep
induction resistivity log (ILD). The Moderately Clayfilled Sand has an SP deflection between 50%
and 90% and resistivities of between 18 and 30 ohms. The Moderately Clean Sand has an SP
deflection greater than 90% and greater than 30 ohms of ILD resistivity. The third zone, Zone2
also consists of three distinct facies, a clay filled sand characterized by less than 15 ohms induction
log resistance, Dirty Sand characterized by an SP deflection of between 50% and 90% from the
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shale baseline, and Clean Sand characterized by an SP deflection greater than 90%. The cut-offs
for the facies model described above were derived from data presented in the Exxon report's
appendix and are summarized in Table A3.2.1 (Exxon Company, 1990).

Table A3.2.1 Facies cut-off data from Exxon's engineering and geologic study of the Bell Creek

Sands/Muddy Formation.

Zone Facies Name SP (mV) ILD (ohm.m) Notes

Sale Shale > 27 < 48

Sit or Shale Sity Shale > -55 48 6 SP defection less than 50% clean sand. from shale baseline

Zonel Clayfiled Sand (IC) -85 -70 6 18 Clean sand SP & Gana-Ray, LD less than 18 ohms
Moderatdy Clayfiled Sand (IS) -55 -70 18 30 SP defection between 50% and 90% LD between |8 ohmsand 30 ohms
Moderatey Clean Sand (IG) < 70 < 30 SP defection greater than 90%. ILD greater than 30 chms

Zonell Clayfiled Sand (2C) > .55 6 I5 ILDless than 15 ohms
Dirty Sand (25) > 70 > I5 SP defection between 50% and 0%
Clean Sand (2G) < 70 > 30 SP defection greater than 0%

- Exxxon report

The facies cut-offs identified above were applied to the Spontaneous Potential (SP) and Resistance
(ILD) well logs to identify the different facies within the Bell Creek Sands/Muddy Formation as
well as the overlying Springen Ranch and Shell Creek formations, and the underlying Rozet
Formation. A ninth carbonate facies, not listed in the Exxon report but shown in EERC's facies
model along the western border of the field, was also identified. Variograms of each of the facies
are created to aid in populating data across the model domain. The facies were then populated
across the model domain using the sequential indicator simulation algorithm. Figure A3.2.1 shows
a realization of the facies model for layer 25 in the Bell Creek Formation.
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Figure A3.2.1 Facies model of the Bell Creek Formation. Shown here is layer 25, the middle of
the Bell Creek Formation. Facies codes Overburden, Underburden, Code 11, and Code 12 are not

used in this facies model but were present in the Petrel template used to display the data.

The porosity and permeability distribution were derived from well log data and empirical
relationships. The first step in determining porosity from well logs is to create a calculate the
volume of shale (Vsh) well log for each well using the gamma-ray (GR) well log and assuming a

linear relationship (Equation A3.2.1)
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GRlag - GRmin

Vsh = GRmax - GRmm

(Eq. A3.2.1)

Next, a density porosity (PHID) well log is calculated from the density (RHOB) well log and
Vsh well log using Equation A3.2.2, where pma is the matrix density of 2.65 g/cm3, pr is the
fluid density of 0.85 g/cm3, pqn is the shale density of 2.6 g/cm3, and py is the density (RHOB)

well log value. The Exxon field report indicates that the shale density (2.6 g/cm3) is very similar
to the sandstone density (2.65 g/cm3) in this field, so the Vsh correction is small.

B = Pma — Pb — Vsh (pma - sh)
Pma — Py Pma — Py

(Eq. A3.2.2)

The Exxon report indicated that the porosity from density is an accurate measure of this field's true
porosity so it was used to create the porosity distribution used in the rest of the modeling (Exxon
Company, 1990). Most of the wells are lacking neutron porosity, so this makes using density
porosity a favorable approach for calculating porosity from the most available well logs.

The last step is to calculate a permeability well log for each well from the density porosity well
log using the Morris & Briggs formula (Equation A3.2.3) with assumed residual water saturation
(Swir) value of 20% (Exxon Company, 1990).

-

&3
k =250 = >

wir

(Eq. A3.2.3)

The porosity and permeability well logs were then scaled-up to the geological model grid
resolution in preparation for populating the data across the model. Figure A3.2.2 shows the
measured and derived well logs. The gamma-ray (GR), neutron porosity (NPHI), spontaneous
potential (SP), deep induction log resistivity (ILD), and density log (RHOB) are measured well
logs and part of the EERC data. The porosity (POR), log permeability (Logk MQG), up-scaled
porosity (POR[U]), and up-scales log permeability (Logk MG[U]) are derived from the measured
well logs.
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Figure A3.2.2 Sample of the well logs used to create the facies model and porosity distributions
in the updated geological model.

These up-scaled well logs were then co-kriged to the facies model and populated across the domain
using the sequential gaussian simulation method in conjunction with the variogram data from the
facies analysis. The final porosity distribution is shown in Figure A3.2.3.
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Figure A3.2.3 Porosity distribution for the expanded model.

To populate the permeability across the reservoir, the log of the permeability needs to be taken so
that it can be related to the porosity. A log permeability well log calculated on the up-scaled
permeability well log. This data is then co-kriged with the porosity distribution and populated
across the domain using the sequential gaussian simulation method. Finally, the log permeability
is converted back into permeability. The permeability distribution is shown in Figure A3.2.4.
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Figure A3.2.4 Permeability distribution in the expanded model.
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A3.3: MML History Matching Parameters

Table A3.3.1. MML history matching parameters for fluid model and the permeability.

krw Kro krg
Cluster FID Pemax Sorw Sorg Swmin Sger nw nog @Sorw @Somax @Swmin modz mody modx
0 25 31333 0213 0.286 0.265 0022 5407 6.986 6.997 6918 0551 1000 0973 7.954 3184
0 76 26.296 0.210 0.265 0.267 0.015 5389 6.986 6.997 6918 05% 1000 0578 7.505 2899
0 125 03711 0.185 Q167 0.298 0.029 4468 6.985 6.997 305 0685 05%8 0804 7.122 311
0 120 34742 0.1%0 0349 0215 0.076 5564 6.986 6.5%0 1092 058 1000 08 7.592 4558
0 178 30.976 0.214 Q287 0.264 0022 5421 6.985 6.997 6918 0552 1000 0s72 7.954 3133
0 331 32554 0.186 0.345 0.217 0074 5517 6.985 6.681 1091 0611 1000 0802 7.399 4521
0 339 37.3% 0.189 0134 0.298 0033 4543 6.985 6.997 2918 06 0555 0.8m 7.954 379
0 435 31167 0213 0286 0.265 Q022 5415 6.986 6.997 6918 0555 1000 09571 7.954 3.182
1 31 26.581 0.183 0158 0.298 0.027 4525 6.891 6.997 3074 073® 0607 0805 6.755 2976
1 37 21523 0.262 0343 0.295 0004 433% 6.928 3248 1210 0327 0721 050 7.695 2987
1 9 21473 0234 034 0298 Qo022 4366 6.985 4.594 2281 0379 0829 0875 7.843 4475
1 141 24388 0217 0.207 0.264 0043 5.066 6.986 6.997 4913 0463 1000 0877 7.954 4426
1 19 21431 0178 Q157 0.298 0.025 4475 6930 6.997 323 0779 0645 0807 6.466 2765
1 236 24268 0.180 Q156 0238 0026 4437 6.839 6.997 3124 0788 0618 0805 6581 2841
1 241 26.092 0.208 0127 0.298 0033 4576 6374 6.997 2559 082 0666 0816 5.900 2033
1 353 21431 0.179 0.158 0.298 0.026 4484 6.912 6.997 3231 0779 0641 0808 6.473 2744
2 255 48248 0.222 0154 0.255 0.000 5116 6986 6.997 6918 0399 1000 0855 7.954 5324
2 412 43.935 0.190 0349 0.298 0.0s8 4323 6.986 5.587 1095 0S08 0778 0802 7.926 5.486
3 14 21432 0229 0178 0.298 0.002 4794 6.986 6.997 6918 0720 1000 0988 6511 2190
3 19 214338 0.227 Q174 0238 0.000 4308 6985 6.997 6918 0730 1000 098 6.470 2306
3 32 21432 0.227 Q177 0.298 0.001 4870 6.986 6.997 6918 0726 1000 0938 6.467 2348
3 128 21431 0227 0184 0.298 0.004 4882 6.986 6.997 6918 0719 1000 0938 6511 2199
3 137 21433 0191 0123 0.298 0024 4814 6.986 6.997 5095 0637 1000 o808 7.015 4373
3 234 23182 0213 0247 0279 0012 5226 6.986 6.997 6918 0624 1000 0953 7.336 2578
3 2 21431 0.252 0233 0.250 0032 6054 6182 6.997 6918 0731 1000 0969 6.061 2047
3 06 25988 0.210 0.267 0.270 0016 5348 6.986 6.997 6918 0571 1000 0s81 7.578 2877
3 338 23437 0.208 0258 0.265 0014 5366 6.986 6.997 6918 0616 1000 0s81 7.380 2839
3 41 21433 0229 Q176 0.298 0.001 4765 6.986 6.997 6918 0718 1000 0998 6.518 2227
3 443 21790 0.255 0202 0.250 0017 6087 5939 6.997 6918 0760 1000 0976 5.558 18%
3 430 21431 0.223 0199 0.291 0.006 43537 6.986 6.997 6918 0705 1000 0938 6.672 2139
4 27 81841 0.177 0217 0.269 0.004 5356 6.985 6.994 4746 0599 0999 0802 7.954 7.378
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A3.4: Building the simulation cases

The ML history matching varied the relative permeability and capillary pressure relationship, and
the permeability distribution in the LJ,K. The relative permeability and capillary pressure
relationship is defined in Petrel's Make rock Physics dialog, under the Reservoir Engineering tab,
and requires the input of 18 variables to define the oil/water, gas/oil, and oil/water capillary
pressure. Create a new saturation function (Saturation tab) called Bell Creek Case ## and check
'Use correlation for oil-water' under the Capillary pressure section (Figure A3.4.1). The ML
assisted history matching work varied nine of these parameters; maximum capillary pressure
(Pcmax), residual oil in the oil-water relative permeability pair (Sorw), residual oil for the gas-oil
relative permeability pair (Sorg), residual water saturation (Swmin), residual gas saturation (Sgcr),
Corey oil (Corey O/W) and water (Corey Water) exponents for the oil-water relative permeability,
Corey oil (Corey O/G) and gas (Corey Gas) exponents for the gas-oil relative permeability, the
maximum water relative permeability at residual oil saturation (kiw@Sorw), the maximum oil
relative permeability at max oil saturation (kro@Somax), the maximum gas relative permeability
at residual water saturation (k. (@Swmin), and the water saturation at O capillary pressure
(Sw@Pc=0). The Sw@Pc=0 is calculated as 1-Sorw-0.01 per Petrel/Eclipse rules. These are entered
into the appropriate boxes (Figure A3.4.1) and the rest of the values are left as default.

| A Make rock physics functions -
Srwon  Compacton | Adsomten | Jhncion parameten
@ Cwstenew  Bol ook Case 14
PO ey O
Use presets =
Table parameters
- L R e —
Pt ve covmestit,
¥ Use convlation
l]" Table ortves. 20
- - — — S 029800135
oy gus pp— Sorg 017847744 Seis 02580135
K@ Swme  [OSSTEI0RE ComyO/W: I o
et los Comy OG [RSIT0558 Kw@Sow:  INEEN
Keo@Somax [DIRTIEN ———
Caplary pressure
¥ Use comelation for of water
Il" Toble ertses. 20
M Pe 20 6082 pl___ v Su@fed
BoCoras: 384 —el
e Use Jhurcton for gas o
v ifpoly v oK X Cancel

Figure A3.4.1 Rock physics dialog for creating the relative permeability and capillary pressure
relationships.

Each of the ML history matching cases varied the I, J, K permeability by applying modifiers to the
base permeability. In Petrel, the calculator tool is used to create the I, J, K permeability maps for
each of the 31 simulation cases. This was done by simply multiplying the base permeability by the
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modifier to create the permx, permy, permz property maps for each model case.

Now the Simulation tab is selected and the Define case dialog is then chosen from the Simulation
section. This dialog will have the data from the last simulation case created already populated,
select Create new and name the case HMCGLD-CASE#. If not select edit existing and the base
case from the drop down menu and then select Create new. This will ensure that all the data used
in the base case is transferred over to the new ML-assisted case. Change the Title and comments
to match the case and cluster the data is from (Figure A3.4.2) and then select the Grid tab. Specify
the Permeability I, J, and K created from the ML-assisted case data (Figure A3.4.3) and select the
Functions tab. Under the Function tab, the appropriate saturation function is dropped into the
Drainage relative permeability model using the default three-phase combination model (Figure
A3.4.4). The model is then checked for consistency using the Check button. Once that has been
completed, and there are no errors, the simulation model is exported using the Export button. Once
done, the dialog is closed by clicking the OK button.

oo ~
B Oefine simulation case o]
@ Ceaterew HMIGLDCASEN v Copy user keywords
Edt exsting
Semisger 3 ECUPSE X0 - Tioe: D Single porosay - Gnd S8 Flow God Coarsel «
Cescretor ﬂ Geid |\ Functiors | A Seateges | 1) Advanced || Results

» Tte Mastory Match Large Doman case W4

Echo case commerts n dataset Echo case history in dataset

[4) Bun v Creck | [ (3 Boot v oy | V0K X Cancel

Figure A3.4.2 Define simulation dialog showing the Description tab.

104



() ® Costerew. HMOGLDCASEN 17 Copy user keywords
/ © ERestng | s HMCGLD-CASER2 ]
Sedstor 58 ECUPSE X0 - Tipe: D Single porosity - God  HH FlowGndComsel ~
| Descrgton | Gt A/ Functors | A Swampes |3, Advanced [ [ Ress |
N S 1CE T G I A
Input Unit Keyword . Fracture
1 (91K perm 14 Permeabisty | PERM] v O
B K;'«-n.u Permeabiity ) [PLRMY] v
3 W (@ k] pemas 1a Permeabity K PERMD v
¥ (2] D pocosays Pecosty [PORO) M
s B .wan_w Water saturation [SWAT) v
W (2S5 onsatunarions _ Of satunaticn [SOR] v
¥ (9] P Feematicn pressure2000p Pressure PRESSURE) v
7 (@8 w00 Vapor compoment mole fraction ¥
@ MFOI0 Ugatd component mole fraction v
10 | Gas satunatice [SGAS) v
[@8a ) Doex] 13 oo [Beex] (o |[vox | [KCmcs |
Figure A3.4.3 The Grid tab.
@ Creserew HMOGLDCASEN (V] Copy user keywords
S © Eentng. | . HMCGLD-CASEAR2 7]
Smustor 38 ECUPSE 300 - Tive D Single porcsay - Gnd: 5 FlowGnd Comsel ~

| Descrigton ) Grig | M Funchors |4 Swaepes | ) A [[5 Resuns |

o8 DY Eack ol fusd madel (PVT) oy~ |
[ Regon ndex propety” #] Man zones -
3Pnase relative pemesbity model.  Dedault 07 |
“M: m:"‘ww I ) 9] Use combned tabies [*) Use non-Durcy flow [ Use JAunction
Rel perms.
L_Buommu

(©Bn ) Dowa]) 13 5 | BEwat]

Figure A3.4.4 The Function tab.
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The simulation model is now almost ready to be run. A few things need to be checked in the
simulation files before transferring to the CHPC and running on the cluster. Navigate to the
project's simulation folder within the Petrel project (projectname.sim) from the file explorer. Open
the newly created simulation folder and open the simname.DATA file in a text editor (notepad++)
and remove the MULTISAVE and MULTIOUT keywords and data. We want all the data in a
single output file. Open the simname SCH.INC file and remove the comments after ENDSKIP
keyword and before the WELSPEC keyword. This is just house cleaning. These comments can
accumulate in this file if you use the previous simulation model case as the template for the next
model case. Open the simname SOL.INC file next and check the INCLUDE files it is calling out.
If there are any that refer to a file outside the simulation case folder, they need to be deleted.
Example: '.\HMCGLD-CASE412\HMCGLD-CASE412 YMF.INC' / when it should look like:
'HMCGLD-CASE14 YMF.INC' /. All data the Eclipse simulator needs should be contained
within the simulation case folder (project standard). The last file to edit is the simname SUM.INC
file. Petrel will write output keywords that are not needed for this file, and it is cumbersome to
change it in the Petrel Define case dialog, so a quick file edit ensures all cases output the same
data. Open the HMCGLD-CASE120 2 folder and the HMCGLD-CASE120 2 SUM.INC file and
copy the contents. Now erase the contents of the new case simname SUM.INC file and paste the
copied values. Save all and close.

A3.5: Export data from Petrel for EM modeling

1. Right click on a property that will be output (Oil Saturation)
a. Select "Export Object"

2. 'Export As' dialog box
a. Name file 'results.txt'
b. Select Gslib properties (ASCII) as 'save type'
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,@ Exportas — . - - g

A -
(< s M

Savein: [l Desktop

v
(= an — PP
g ibraries
=~ ‘ System Folder
Recent Places .
' 1 | Computer Network
— : System Folder ; System Folder
>
&

Nathan Moodie

System Folder

! 4

Desktop
] n GoldSim Player11.1 Petrel 2015
= ! ' Shortcut Shortcut

= | [ 2.07 KB 118 KB
Libraries Petrel 2016 Schlumberger Simulation
<"l Shortcut Launcher
L&,’ [ﬂ“ 118 KB Shortcut

Computer Sk test
Text Document
241 MB

Network
File name: test bd v
Save as type: [Gsllb properties (ASCII) (*.7) '] | Cancel I
File example/description:

PETREL: Properties
7

i_index unit1 scale1
j_index unit1 scale1
k_index unit1 scale1

<

. E 3

3. Properties selection box
a. Check all properties that will be exported
i.  Porosity, Permeability, oil saturation, water saturation, gas saturation,
pressure
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=[] Properties
ﬂD Main zones
K[ Permesability
@[] Porosity
P[] Pressure-edited
~8g [v] Oil Saturation-edited
-8l ] Water Saturation-edited
- 8g[] Gas_Saturation
- Fral] CO2-xmf

| v OK

b. Click 'Advanced' button
i.  Check 'Include cell index'

ii.  Check 'Include cell center coordinates'
iii.  Click 'OK'

Include cellindex (I, J and K)

Include cell center coordinates (X, Y and Z)
Remove undefined values l]
Undefined value:  -99

[vok | [ Cancdl |

4. Remove ‘over-burden’ [layers 1-5] and ‘under-burden’ [layers 12-14] from text file
a. Open file in a text editor and delete all rows with z=1 to 5 and z=12 to 14.
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A3.6: Delta water saturation, permeability in X, Y, Z. relative permeability and capillary
pressure plots
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Figure A3.6.1 This figure shows the difference in water saturation between September 30, 2017,
and July 31, 2019 for Case 25 in the large central plot. The permeability assigned to the X, Y, and
Z is shown on the right and the oil/water and gas/oil relative permeability, with oil/water capillary
pressure.
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Figure A3.6.2 This figure shows the difference in water saturation between September 30, 2017,
and July 31, 2019 for Case 339 in the large central plot. The permeability assigned to the X, Y,
and Z is shown on the right and the oil/water and gas/oil relative permeability, with oil/water
capillary pressure.

Cluster 1
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Case 37
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Figure A3.6.3 This figure shows the difference in water saturation between September 30, 2017,
and July 31, 2019 for Case 37 in the large central plot. The permeability assigned to the X, Y,
and Z is shown on the right and the oil/water and gas/oil relative permeability, with oil/water
capillary pressure.
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Case 241
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Figure A3.6.4 This figure shows the difference in water saturation between September 30, 2017,
and July 31, 2019 for Case 241 in the large central plot. The permeability assigned to the X, Y,
and Z is shown on the right and the oil/water and gas/oil relative permeability, with oil/water
capillary pressure.
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Figure A3.6.5 This figure shows the difference in water saturation between September 30, 2017,
and July 31, 2019 for Case 412 in the large central plot. The permeability assigned to the X, Y,
and Z is shown on the right and the oil/water and gas/oil relative permeability, with oil/water
capillary pressure.
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Figure A3.6.6 This figure shows the difference in water saturation between September 30, 2017,
and July 31, 2019 for Case 14 in the large central plot. The permeability assigned to the X, Y, and
Z is shown on the right and the oil/water and gas/oil relative permeability, with oil/water capillary
pressure.
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Case 234
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Figure A3.6.7 This figure shows the difference in water saturation between September 30, 2017,
and July 31, 2019 for Case 14 in the large central plot. The permeability assigned to the X, Y, and
Z is shown on the right and the oil/water and gas/oil relative permeability, with oil/water capillary
pressure.
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Figure A3.6.8 This figure shows the difference in water saturation between September 30, 2017,
and July 31, 2019 for Case 227 in the large central plot. The permeability assigned to the X, Y,
and Z is shown on the right and the oil/water and gas/oil relative permeability, with oil/water
capillary pressure.
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A3.7: Model Resolution Information

Table A3.7.1 ANOVA results for the coarse resolution model data

Anova: Sngle Factor Al Data

Source of \&ristion 55 df MS F Pslve Ferit
Batween Gowps 5223408 9 SBMEH7 7622 0.000 1.881
Within Goups 4591E+10 6030 TEI4EHS
| Tota 45445410 6039
Anova: Sngle Factor AI& Qbserved Data

Source of Venistion 55 af MS F Pslue Ferit
Between Gouwps 46366408 8 S5795E407 7767 0.000 1.5490
Within Goups 4,045+10 54927 7ASE+HS
Totd 4.095E+10 5435
Anova: Sngle Factor AlData Only

Source of \sristion 55 df MS F Pslue Ferit
Batween Gowps 2.760E+08 7 3543E407 5422 0.000 2011
Within Goups 3508E+10 4824 72R2EH06
Totd 35366+10 4831

Table A3.7.2 T-test results for the coarse-resolution model cases

t-Test: Two-Samplke Assuming Bqual Variances [STB/d]

HMBase240  AIFRM-CASEZS AIRM-CASES39  AIRM-CASE37  AIRM-CASEZ241

Observations €04 €04 604 €04 04

Poded Varancs 8,584,329 8,107,789 8,368,127 7,392,673 8,497,581

Hypotheszed Mezn Difference 0 0 0 0 0

df 1206 1206 1208 1206 1206

tStat 1.140 3.333 3.229 6.768 2.311

P(T <=t) one-tail 0.127 0.000 0.001 0.000 0.010

t Critial one-tail 1.645 1.646 1.645 1.645 1.645

P(T ==t) twertail 0.255 0.001 0.001 0.000 0.021

t Crtial two-tail 1.962 1.962 1.962 1.962 1.962
ATHM-CASEZ12  AIFM-CASEIE  AIRM-CASEZ34  AIRM-CASE2 27

Observations €04 €04 604 €04

Poded Varance 7,764,640 8,352,817 8,228,671 8,241,008

Hypothesized Mean Difference 0 0 0 0

df 1208 1206 1208 1206

t Stat 5.538 1.836 2,704 3.382

P(T ==t) one-tail 0.000 0.033 0.003 0.000

t Crtial one-tail 1.645 1.646 1.646 1.645

P(T <=t) twortail 0.000 0.067 0.007 0.001

t Crtial two-tail 1.962 1.962 1.962 1.962
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Table A3.7.3 Regression analysis results for the coarse resolution simulations.

o> 9 o

©° a1 q© ) o ) © 1) oR°
A%®° " w1 o n® o an S
o‘:n'd 0‘;‘1‘“ 0‘;‘15\ 0‘)\1'“ 05\7'3‘ 0‘)‘11] o‘;p'ol Q‘Jl\‘at o‘ﬂ"“ 0‘)‘\1\

oo el

Date

Regression [STB/d]
HMBas=240 AIHM-CASE25  AIHM-CASE33S AIHM-CASES7 AIHM-CASE241
Regression Statistic
RSquare 0.9833 0.5455 0.5478 0.6582 0.9730
Standard Error 387.2 673.5 685.0 1646.3 4326
Observations 04 €04 504 04 04
AIHM-CASE412 AIHM-CASE14 AIHM-CASE234 AIHM-CASE227
Regression Statistic
RSquare 0.7885 0.9761 0.9638 0.9435
Standard Error 1378.3 463.8 570.1 712.0
Observations 04 €04 604 504
ANOVA [STB/d]
df 55 MS F Significance F
Regression HMBzs2240 1 5,316,487,206 5,316,487,206 35,4646 0
Regression AIHM-CASE2S 1 5,133,627,763 5,133,627,763 11,3159 0
Regression AIHM-CASE3 39 1 5,124,252,243 5,124,252,243 10,520.4 0
Regression AIHM-CASES7 1 3,775,175,120 3,775,175,120 1,392.9 0
Regression AIHM-CASE241 1 5,260,675,930 5,260,675,930 21,682.8 0
Regression AIHM-CASE412 1 4,263,078,652 4,263,078,652 2,244.0 0
Regression AIHM-CASEL4 1 5,277,262,087 5,277,262,087 24,537.7 0
Regression AIHM-CASE234 1 5211,071,844 5,211,071,844 16,033.2 0
Regression AIHM-CASE227 1 5,101,568,132 5,101,568,132 10,063.9 0
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Figure A3.7.1 Water production for the coarse-resolution model cases.
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Figure A3.7.2 Gas production for the coarse-resolution model cases.
Table A3.7.4 ANOVA results for the fine-grid model cases.
Al OVA: All Groups [STB/d]
Source of Varistion 55 of MS F Ryzlve Ferit
Between Groups 6.607E+H07 23 2,872,513 0.2416 05999 1.5300
Within Groups 1.785E+11 15048 11,888,573
Total 1.790E+11 15071
Al OVA: Observed and Al Data [STB/d]
Source of Veriation 55 of MS F Ryalue Ferit
Between Groups 5.938E+07 22 2,695,082 0.2264 05999 1.5428
Within Goups 1.719E+11 14421 11,922,918
Total 1.720E+11 14443
Al OVA: Al Data Only [STB/d]
Source of Varistion 55 of MS F Ryzlve Ferit
Between Groups 7.075E+06 21 336,899 0.0284 1.0000 1.5565
Within Groups 1.634E+11 13794 11,848,735
Total 1,634E+11 13815
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Table A3.7.5 T-test analysis results for the fine-resolution model.

t-Test: Two-Sanple Assuming Equal Variances [STB/d]
Base3 DCasel5 CiCase339 CiCase37 CiCase2di
Observations 628 628 628 628 628
Pooled Variance 12326788.61 12,701,350 12,704,716 12,674,906 12,685,283
Hypothesized Mean Difference 0 0 0 0 0
df 1254 1254 1254 1254 1254
tStat 1957 1466 1.459 1.59 1.476
P(T <=t) one-tail 0.025 0.071 0.072 0.062 0.070
t Critical one-tail 1646 1646 1646 16% 1.646
P(T <=t) two-tail 0.051 0.143 0.145 0.124 0.140
t Critical two-tail 1.962 1962 1.962 1.962 1.962
CXa=e4i2 C3Cxseid CXasel34 C4Caxse 227
Observations 628 628 628 628
Pooled Variance 12,758,780 12,721,314 12,991,668 12,759,647
Hypothesized Mean Difference 0 0 0 0
df 1254 1254 1254 1254
tStat 1.389 1420 1.942 1.405
P(T <=t) one-tail 0.083 0.078 0.026 0.080
t Critical one-tail 16496 1646 1.6496 1.6%
P(T <=t) two-tail 0.165 0.156 0.052 0.160
t Crifical two-tail 1.962 1962 1.962 1.962
Table A3.7.6 Regression analysis results for the fine-resolution model cases.
Regression Satistics [STB/d]
Base3 C0Case25 CiCase37 C1Case339 CliCase241
Regresson Stabisfcs
R Square 0.9626 0.8750 0.9735 0.9748 0.9755
Standard Error 7122 533.2 599.3 585.1 577.1
Observations 628 628 628 628 628
C2Case412 C3Case14 C3Case234 CaCase 27
Regression Stafstcs

R Square 0.9751 0.97%2 0.9734 0.8747
Standard Error 581.2 5%8.2 6011 585.6
Observations 628 628 628 628
AMNOVA [STB/d]

df 55 MS F Significance F
Regession Base3 1 8.181E409 8.181E+09 16132 0
Reg ession COCase25 1 8.285E409 8.286E+09 243%4 0
Regession C1Case37 1 8.274E409 8.274E+09 23039 0
Regession C1Case339 1 8.285E+409 8.285E+09 24202 0
Regession C1Case241 1 8.290E+409 8.290E+09 24896 0
Regession C2Case412 1 8.287E409 8.287E+09 24531 0
Regession C3Case 14 1 8.297E+409 8.297E+09 25702 0
Regession C3Case234 1 8.273E409 8.273E+09 22895 0
&gessim C4Case 227 1 8.284E409 8.284E+09 24074 0
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Figure A3.7.3 Gas production from the fine resolution model.
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Figure A3.7.4 Water production for the fine resolution model.

A4. DOZEN: CSEM DATA PROCESSING LIBRARY
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DoZen’s major advantages lie in three areas: automation, data quality control, and variance
analysis. Advantages in these three areas all reinforce one another. Automation allows us to
quickly and iteratively evaluate and improve our workflow. Improved data quality control tools
aid the evaluation of the workflow by identifying data outliers and exposing trends in the data. The
full time-lapse dataset consists of over 50,000 separate time series, so a streamlined process for
identifying and minimizing the effects of noisy data is critical for ensuring the highest data quality.
Variance analysis can be used for identifying such noisy data. Identifying and removing parts of
the time series that are corrupted by cultural noise reduces the variance. Accurate estimation of the
variance and reduction of data variance both improve our capability to image subsurface CO2
movement, since the appropriate level of CSEM data misfit can be identified using the data
variance.

Having written custom processing code, we are able to automate our processing workflow via
scripts. This automation allows different processing parameters to be tested to efficiently
determine the optimal processing workflow. It also facilitates error handling, since reprocessing
the data after error identification is much quicker.

DoZen allows efficient plotting and quality control checks. Zonge receiver data files (.z3d format)
for a full campaign can be read all at once, and a timeline showing which receivers were active
during which times is shown (Figure A4.1). Clicking within this plot opens waveform plots for
the corresponding transmitter/receiver pair. This allows data anomalies to be visualized and
understood much more rapidly. Times when receivers collected usable magnetotelluric data
overnight are also easily identifiable from the timeline.

Active receivers, October 2018

— 212
fsaid -_213
2273 — 214
2271
2269
2266 R —
2264
2262
2259 —

2257 - —— 1
2255
2253
2252
2251
2246
2244
2242
2237 (IR

Station number

2236 I —
2235 RLU

2233
2232 O —
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2222 N — — -
2217
2215
2213
2211
2203
2191 —
2183

2018-10-04 2018-10-05 2018-10-06 2018-10-07 2018-10-08 2018-10-09 2018-10-10 2018-10-11

Figure A4.1: Screen shot from DoZen, showing which receiver stations were active during which
times over the course of the October 2018 CSEM campaign. Red lines denote times when wells
97-11 and 23-08 were used as source electrodes. Blue lines show when wells 97-11 and 97-14
were used, and green lines show when wells 97-14 and 23-08 were used. Black lines indicate times
when the transmitter was inactive. Long black lines correspond to overnight receiver deployments.
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In DoZen, this plot is interactive. Clicking a colored line opens a plot of the transmitter and receiver
waveforms corresponding to that time and receiver station.

DoZen provides several other tools for data processing and quality control. One tool facilitates
numbering and locating stations, given GPS measurements stored in CSEM data files (Figure
A4.2). It both allows easy correction of misnumbered receiver stations, and allows the user to
dictate which measurements should be averaged together, which is useful when a station has been
occupied multiple times during the same campaign.

Another useful tool displays a timeline of when receivers were in the ground, and which
transmissions occurred during that time (Figure A4.3). The user can select any receiver station
and component, and view time series data as well.

These tools are run in a browser with a Python backend, allowing platform-agnostic deployment
of these tools. Some tools, like the timeline shown in Figure A4.3, can be saved as html files
which can then be opened in any web browser, requiring no installation.

RX_Location_Averager # | x_web_mercator y_web_mercator  rx_station run
. 0| -11,700,236.4573 5,639,644.08639: 3183 Do not change
Station number
3251 1 -11,699,567.6131 5,638,243.70966! 3191 Do not change
2 -11,698,217.3675 5,638,222.84016( 3211 Do not change
Station run 3 -11,698,372.2472 5,639,507.49656 3213 Do not change
Do not change C
4 | -11,698,447.9275 5,640,779.61244! 3215 a
[ ] 5 -11,698,453.6713 5,641,385.72882! 3217 Do not change
{ } 6 -11,697,834.9361 5,638,841.28538( 3222 Do not change
7 -11,697,895.4724 5,639,962.36472i 3224 Do not change
- 8| -11,697,872.8947 5,640,960.22170° 3226 Do not change
bt 9 -11,697,366.8269 5,638,341.34766° 3231 Do not change
5325#6.9‘793 f 10 | -11,697,365.2897 5,638,757.52069 3232 Do not change
T 11 -11,697,264.7111 5,640,034.58155: 3233 Do not change
45.13 2578 3002a
g 2378 .3 J 12 -11,697,274.906€ 5,640,521.86690: 3235 Do not change
oD 3217a / 3 3266a
i 22@?3%%‘63 13 | -11,697,287.2219 5,641,015.16154° 3236 Do not change
32193a
4 4 -11,697,055.0558 5,641,453.94136( 3237 Do not change
¢ 3235a 32558 1 o
s, 4512 4 3 3275a 15 | -11,696,863.861¢ 5,641,117.60773° 3246 Do not change
] 322482 3264a
31 §20$1 3a ) 16  -11,696,682.5831 5,639,941.82276: 3244 Do not change
L] g 544
d .3253a .32738. 17 | -11,696,749.790€ 5,639,773.66185° 3001 Do not change
1 242 R
4511 4 .322.8h2a '332538 18 | -11,698,899.0221 5,639,659.78189¢ 3203 a
[ )
1 a.3231 a 3262a3271a 19 | -11,698,896.8135 5,639,661.62827! 3203 b
3191a ) 3211 514 ¢
MT 544 ¢ ¢ S251a
45.1 4 Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
t T T T T t T T —t 7T
-105.12 -105.1 -105.08 -105.06 -105.04
X
Save locations Save z3d metadata

Figure A4.2: A screenshot of a browser-based tool for determining station locations interactively.

The CSEM data loggers record GPS positions multiple times during an occupation. If a receiver

station was moved or occupied twice, the two locations should not be averaged together. The tool

allows a user to both select the GPS locations that should be averaged together and to specify

station ID to assign to the averaged location. Here, locations shown in green on the map have been

added to a station location database. Those stations are also detailed in the table on the right.
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Locations in blue are raw GPS locations from the data logger, yet to be averaged and added to the
database. The red dot shows a group of GPS locations that has been selected by the user.
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Figure A4.3: A screenshot of a browser-based tool for easily viewing time series data. Any
transmitter-receiver time series pair can be quickly selected and plotted, and metadata can be
displayed.
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Two further tools were developed. The first allows any pair of transmitter/receiver time series to
be viewed, either as a pure time series (Figure A4.4a) or as the response at a chosen harmonic of
the transmission frequency evaluated at successive time windows (Figure A4.4b).
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(a) Data viewer showing time series.

Figure A4.4: Browser-based data viewer tool
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(b) Viewer showing Fourier
coefficients for the first harmonic of
the transmission frequency

The second tool allows any response function to be viewed and analyzed in terms of its variance
at every frequency. (Figure A4.5). Electromagnetic noise due to man-made sources can vary over
the course of the day, affecting separate transmissions differently. This quality control tool can be
used to identify unusually noisy transmissions and exclude them from the processed data. This
improves the signal-to-noise ratio in the data and increases the power of the CSEM data to resolve

spatial variations in CO; saturation.
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Figure A4.5: Screenshot of post-processing quality control tool. At the top left, dropdown menus
allow response functions to be selected for any transmitter configuration, receiver location, and
EM field component. On the left, the response function for all field campaigns are plotting with
error bars. On the right, the Fourier coefficients for one campaign and one frequency are plotted
in the complex plane. In this example, the first three transmissions in the legend are far noisier
than the rest (the rest all fall within the small cluster in the middle of the plot on the right). These
have been muted due to their high noise levels.

These tools work well when used in tandem. Response functions, which combine all the
transmissions for a given receiver station into one plot, can be viewed first as an overview. If any
transmission looks suspiciously noisy, that transmission can be isolated and viewed in detail in the
time series viewer. This provides a way to quickly identify overly noisy data within the large
dataset, understand the nature of the noise, and mute noisy data as needed via an interactive
graphical interface. The tools are run in a browser with a Python backend, allowing platform-
agnostic deployment of the tools.
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AS. TIME-DOMAIN ELECTROMAGNETIC RESULTSS
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Latitude, Longitude, Elev_m
SBC_TEM_180526_R2_05a 45.12669981, -105.07451550, 1165.9
T‘:::i—z::ig;ﬁ:if g i :3 UTMzone, Easting UTM WGS84, Northing UTM WGS84, Elev_m
- e 13, 494140.0, 4997028.0, 1165.9
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Resistivity [ Q*m | Time [ ms |
Latitude, Longitude, Elev_m
SBC_TEM_180526_R2_06a 45.13294338, -105.06576130, 1214.0
T':::i—:::igi::i g'gi UTMzone, Easting UTM WGS84, Northing UTM WGS84, Elev_m
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SBC_TEM_180526_R2_07a

Data_Residiual: 0.49
Total_Residiual: 0.46

Latitude,
45.13363189,

Longitude, Elev_m
-105.05764840, 1188.9

UTMzone, Easting UTM WGS84, Northing UTM WGS84, Elev_m

13, 495467.0, 4997797.0, 1188.9
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400 I I 10-8 I L L
10° 10' 10? 10° 107 102 107" 10° 10’
Resistivity [ Q*m | Time [ ms |
Latitude, Longitude, Elev_m
SBC_TEM_180526_R2 _08a 45.12043530, -105.07343930, 1153.6
TZ:ﬁi‘iiiigﬁﬂ g'gg UTMzone, Easting UTM WGS84, Northing UTM WGS84, Elev_m
— e 13, 494224.0, 4996332.0, 1153.6
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SBC_TEM_181001_R3_10a

Data_Residiual: 1.3

Latitude,

Longitude,

Elev_m

45.10588456, -105.07665950, 1131.2

: 43 . UTMzone, Easting UTM WGS84, Northing UTM WGS84, Elev_m
Total Residiual: 1.15 13, 493969.2, 4994715.8, 1131.2
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Resistivity [ Q*m | Time [ ms |
Latitude, Longitude, Elev_m
SBC_TEM_181001_R3_11a 45.10636240, -105.08573610, 1113.3
T':::i—:::igi::i g'gg UTMzone, Easting UTM WGS84, Northing UTM WGS84, Elev_m
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SBC_TEM_181001_R3_12a

Data_Residiual: 0.36

Total_Residiual: 0.36

Latitude,
45.11010116,

Longitude, Elev_m
-105.08159370, 1117.9

UTMzone, Easting UTM WGS84, Northing UTM WGS84, Elev_m

13, 493581.5, 4995184.6, 1117.9
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400 I I 10-8 I L L
10° 10' 10? 10° 107 102 107" 10° 10’
Resistivity [ Q*m | Time [ ms |
Latitude, Longitude, Elev_m
SBC_TEM_181001_R3_13a 45.11408839, -105.08721220, 1119.6
T':::i—:::igi::i g'g UTMzone, Easting UTM WGS84, Northing UTM WGS84, Elev_m
— s 13, 493140.0, 4995628.0, 1119.6
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Latitude, Longitude, Elev_m
SBC_TEM_181001_R3_14a 45.12245175, -105.08740680, 1108.3
T‘:::i—z::ig;ﬁ:if g i ;; UTMzone, Easting UTM WGS84, Northing UTM WGS84, Elev_m
- e 13, 493125.7, 4996557.1, 1108.3
Model Space 1 Data Space
0 . 10 T T T
50 4 100 3
107 E 3
100 A
102 E
150 | 1 .
= L \‘\i ]
= 200} 1 =
R e B .
A AN
250 q -
________________ 105k - ]
=
L 4 x
300 1oL ] i
——AveData_ErrorBar i&\]
350 - i FwResp_HM-RC005
. por ~ 207 m 1077 f|—— FwResp_HM-RC200 E
conservative —— FwResp_LM-RC005
== DT, angara =267 m —— FwResp_LM-RC200
400 I I 10-8 I L L
10° 10' 10? 10° 107 102 107" 10° 10’
Resistivity [ Q*m | Time [ ms |
Latitude, Longitude, Elev_m
SBC_TEM_181001_R3_15a 45.12643885, -105.08828010, 1115.6
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Latitude, Longitude, Elev_m
SBC_TEM_181001_R3_16a 45.12161726, -105.08261710, 1122.1
D Residiual: 0.67
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Latitude, Longitude, Elev_m
SBC_TEM_181002_R3_17a 45.10649793, -105.09745120, 1147.7
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SBC_TEM_181002_R3_18a

Data_Residiual: 0.37
Total_Residiual: 0.35

Latitude,
45.11538834,

Longitude, Elev_m
-105.10327510, 1110.4

UTMzone, Easting UTM WGS84, Northing UTM WGS84, Elev_m

13, 491876.7, 4995773.9, 1110.4
Model Space 1 Data Space
0 : 10 . T T
50 4 100 3
107 E 3
100+ 1
102 E
150 1
= 200f N '\\‘i
& -
s L ____ 3 - 3
250 - 1 .
10°¢ - E
=
-
300 [ q
10 1
——AveData_ErrorBar
350 - i FwResp_HM-RC005
. por ~ s m 107 f|—— FwResp_HM-RC200 E
conservative —— FwResp_LM-RC005
== DO, ngara =234 m —— FwResp_LM-RC200
400 I I 10-8 I L L
10° 10' 10? 10° 107 102 107" 10° 10’
Resistivity [ Q*m | Time [ ms |
Latitude, Longitude, Elev_m
SBC_TEM_181002_R3_19a 45.10744327, -105.06086350, 1233.9
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