

LA-UR-20-29279

Approved for public release; distribution is unlimited.

Title: Unsupervised and Physics-Informed Machine Learning Analyses for Characterization of Energy Production from Unconventional Reservoirs

Author(s): Vesselinov, Velimir Valentinov

Intended for: Machine Learning in Oil & Gas, 2020-11-09 (Houston, Texas, United States)
Web

Issued: 2020-11-12

Disclaimer:

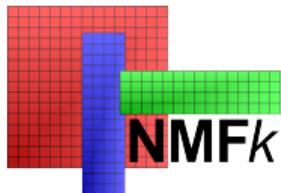
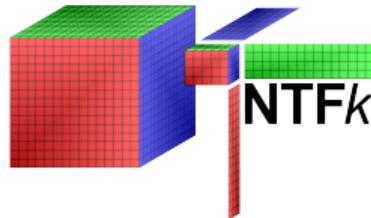
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Unsupervised and Physics-Informed Machine Learning Analyses for Characterization of Energy Production from Unconventional Reservoirs

Velimir V. Vesselinov (monty) (vvv@lanl.gov)

Earth and Environmental Sciences Division
Los Alamos National Laboratory, NM, USA

<http://tensors.lanl.gov>



- ▶ **Supervised** ML: learns everything from data
 - ⇒ requires big training datasets
 - ⇒ highly impacted by noise
- ▶ **Physics-informed** ML: learns from data but includes preconceived knowledge about the governing processes
 - ⇒ requires smaller training datasets
 - ⇒ produces better predictability with lower uncertainty
 - ⇒ robust to data noise
- ▶ **Unsupervised** ML: extracts features from data that can be applied for categorization and prediction
 - ⇒ unbiased analyses not impacted by data labeling, subject-matter-expert opinions, and physics assumptions ⇒ however, physics constraints can be added

- ▶ **Supervised** ML: learns everything from data
 - ⇒ requires big training datasets
 - ⇒ highly impacted by noise
- ▶ **Physics-informed** ML: learns from data but includes preconceived knowledge about the governing processes
 - ⇒ requires smaller training datasets
 - ⇒ produces better predictability with lower uncertainty
 - ⇒ robust to data noise
- ▶ **Unsupervised** ML: extracts features from data that can be applied for categorization and prediction
 - ⇒ unbiased analyses not impacted by data labeling, subject-matter-expert opinions, and physics assumptions ⇒ however, physics constraints can be added

- ▶ **Supervised** ML: learns everything from data
 - ⇒ requires big training datasets
 - ⇒ highly impacted by noise
- ▶ **Physics-informed** ML: learns from data but includes preconceived knowledge about the governing processes
 - ⇒ requires smaller training datasets
 - ⇒ produces better predictability with lower uncertainty
 - ⇒ robust to data noise
- ▶ **Unsupervised** ML: extracts features from data that can be applied for categorization and prediction
 - ⇒ unbiased analyses not impacted by data labeling, subject-matter-expert opinions, and physics assumptions ⇒ however, physics constraints can be added

- ▶ **Supervised** ML: requires “labeling” (prior categorization (knowledge) about the processed data)
Example: Recognizes images of cats and dogs after extensive training; but cannot recognize horses if not trained
Cannot discover something that we do not know already
- ▶ **Unsupervised** ML: extracts hidden features (signals) in the processed data without any prior information (**exploratory analysis**; **data-driven science**)
Example: Identifies features that distinguish images of animals (e.g., cats, dogs, horses, etc.)

- ▶ **Supervised** ML: requires “labeling” (prior categorization (knowledge) about the processed data)
Example: Recognizes images of cats and dogs after extensive training; but cannot recognize horses if not trained
Cannot discover something that we do not know already
- ▶ **Unsupervised** ML: extracts hidden features (signals) in the processed data without any prior information (**exploratory analysis**; **data-driven science**)
Example: Identifies features that distinguish images of animals (e.g., cats, dogs, horses, etc.)

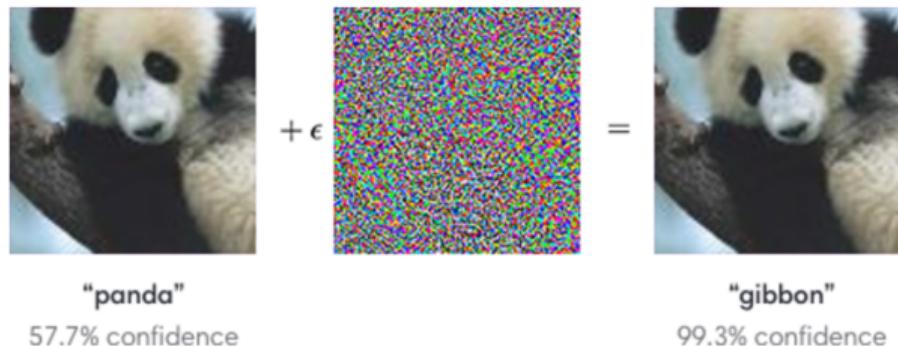
- ▶ **Supervised** ML: requires “labeling” (prior categorization (knowledge) about the processed data)
Example: Recognizes images of cats and dogs after extensive training; but cannot recognize horses if not trained
Cannot discover something that we do not know already
- ▶ **Unsupervised** ML: extracts hidden features (signals) in the processed data without any prior information (**exploratory analysis**; **data-driven science**)
Example: Identifies features that distinguish images of animals (e.g., cats, dogs, horses, etc.)

- ▶ **Supervised** ML: requires “labeling” (prior categorization (knowledge) about the processed data)
Example: Recognizes images of cats and dogs after extensive training; but cannot recognize horses if not trained
Cannot discover something that we do not know already
- ▶ **Unsupervised** ML: extracts hidden features (signals) in the processed data without any prior information (**exploratory analysis**; **data-driven science**)
Example: Identifies features that distinguish images of animals (e.g., cats, dogs, horses, etc.)

- ▶ **Supervised** ML: requires “labeling” (prior categorization (knowledge) about the processed data)
Example: Recognizes images of cats and dogs after extensive training; but cannot recognize horses if not trained
Cannot discover something that we do not know already
- ▶ **Unsupervised** ML: extracts hidden features (signals) in the processed data without any prior information (**exploratory analysis**; **data-driven science**)
Example: Identifies features that distinguish images of animals (e.g., cats, dogs, horses, etc.)

► Supervised ML

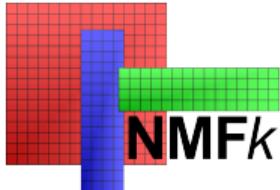
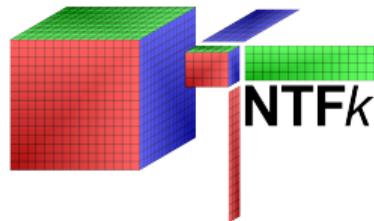
- ▶ introduces subjectivity (through the labeling process)
- ▶ does not provide insights why horses are different from dogs / cats
- ▶ cannot make predictions (that we do not know already)
- ▶ requires huge training (labeled) datasets
- ▶ we do not know why it works
- ▶ is impacted by “adversarial examples”



⇒ major limitations of the **supervised** ML methods for **science** applications

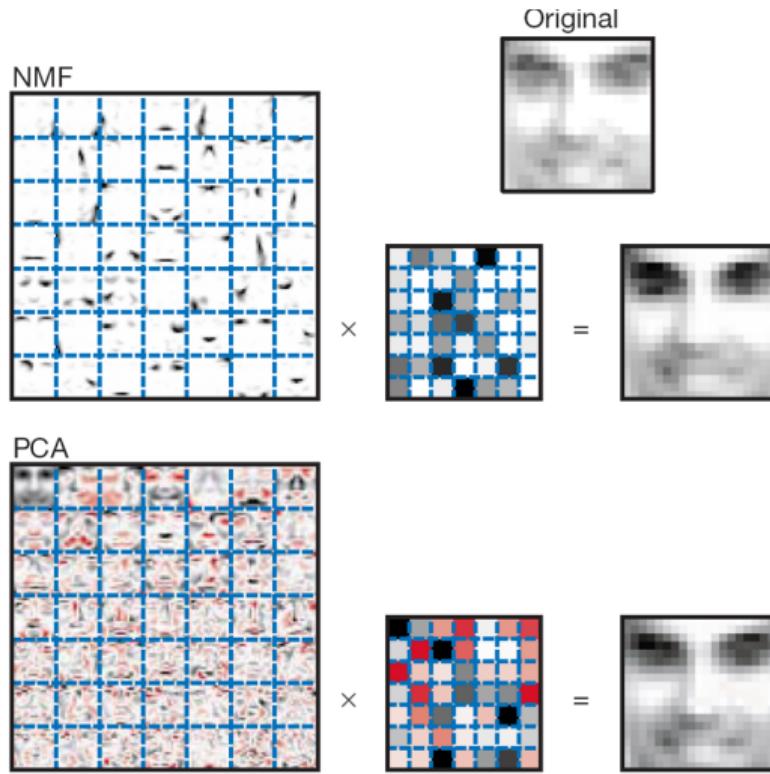
- ▶ Feature extraction (**FE**)
- ▶ Blind source separation (**BSS**)
- ▶ Detection of disruptions / anomalies
- ▶ Image recognition
- ▶ Separate physics processes
- ▶ Discover unknown dependencies and phenomena
- ▶ Develop reduced-order/surrogate models
- ▶ Identify dependencies between model inputs and outputs
- ▶ Guide development of physics models representing the data
- ▶ Make predictions
- ▶ Optimize data acquisition
- ▶ “Label” datasets for supervised ML analyses

- ▶ Novel LANL-patented, open-source, unsupervised Machine Learning (ML) methods and computational techniques
- ▶ Based in matrix/tensor factorization coupled with custom k -means clustering and nonnegativity/sparsity constraints:
 - NMF k : Nonnegative **Matrix** Factorization
 - NTF k : Nonnegative **Tensor** Factorization
 - <https://github.com/TensorDecompositions>
- ▶ Capable to efficiently process large datasets (TB's) utilizing GPU's, TPU's & FPGA's
⇒ **julia**, Flux.jl, AutoOffLoad.jl, TensorFlow, PyTorch, MXNet



Why nonnegativity?

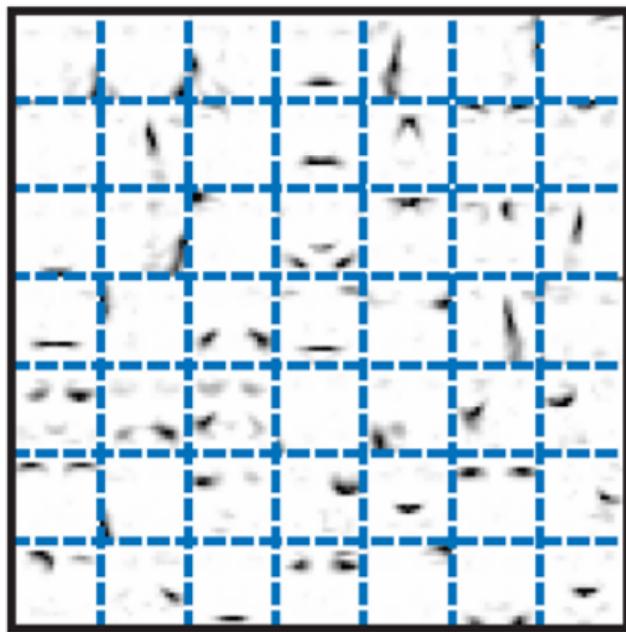
- ▶ NMF vs PCA (Lee & Seung, 1999)
- ▶ NMF: Nonnegative Matrix Factorization
- ▶ PCA: Principal Component Analysis



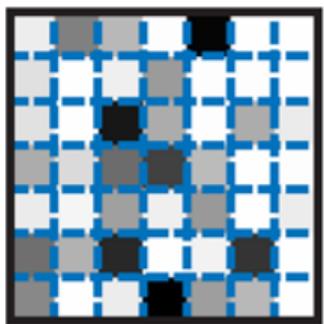
Nonnegativity constraints provide meaningful and interpretable results (+sparsity)

- ▶ **Tensors** (multi-dimensional/multi-modal/multi-way datasets) are everywhere:
 - ▶ observational data are typically a 5-D tensor (x, y, z, t, attributes)
 - ▶ model outputs are typically a 5-D tensor (x, y, z, t, attributes)
 - ▶ data dependency to N parameters will form a $(N + 5)$ -D tensor

NMF: Nonnegative Matrix Factorization

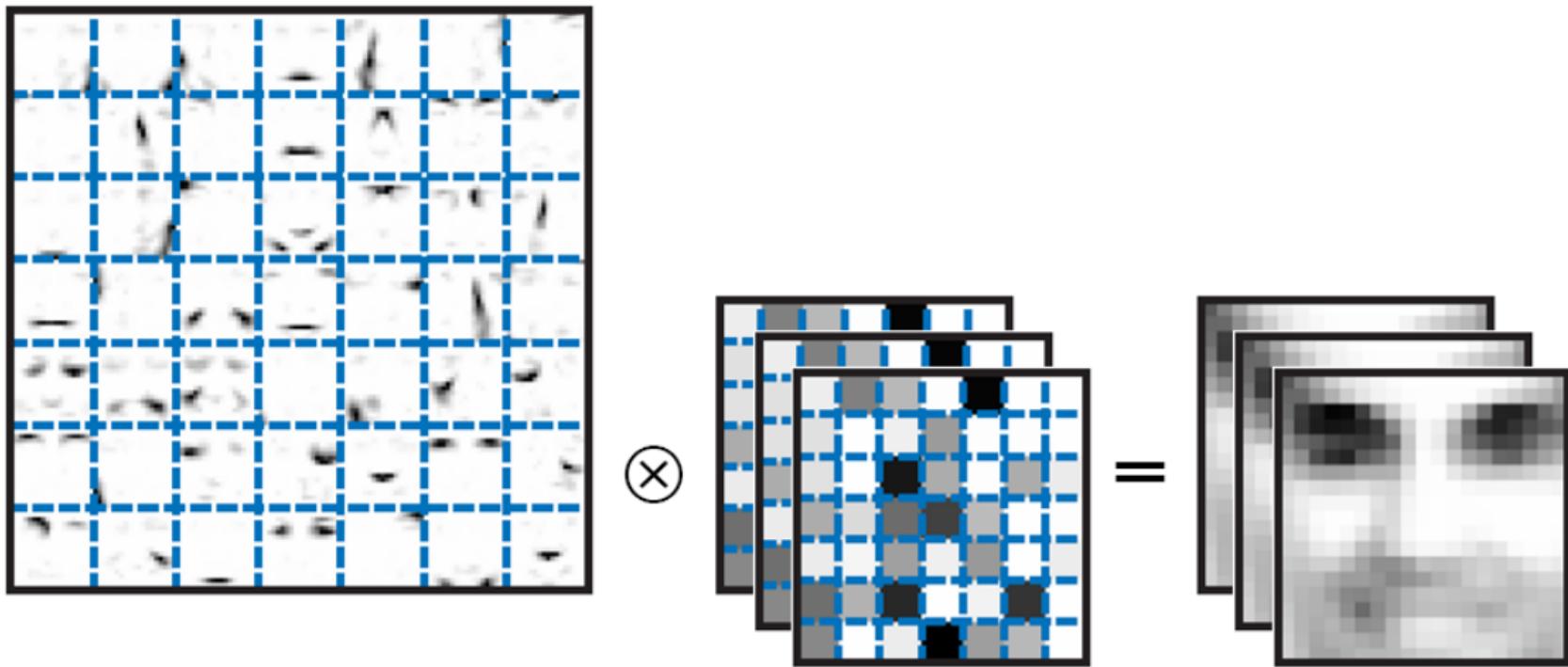


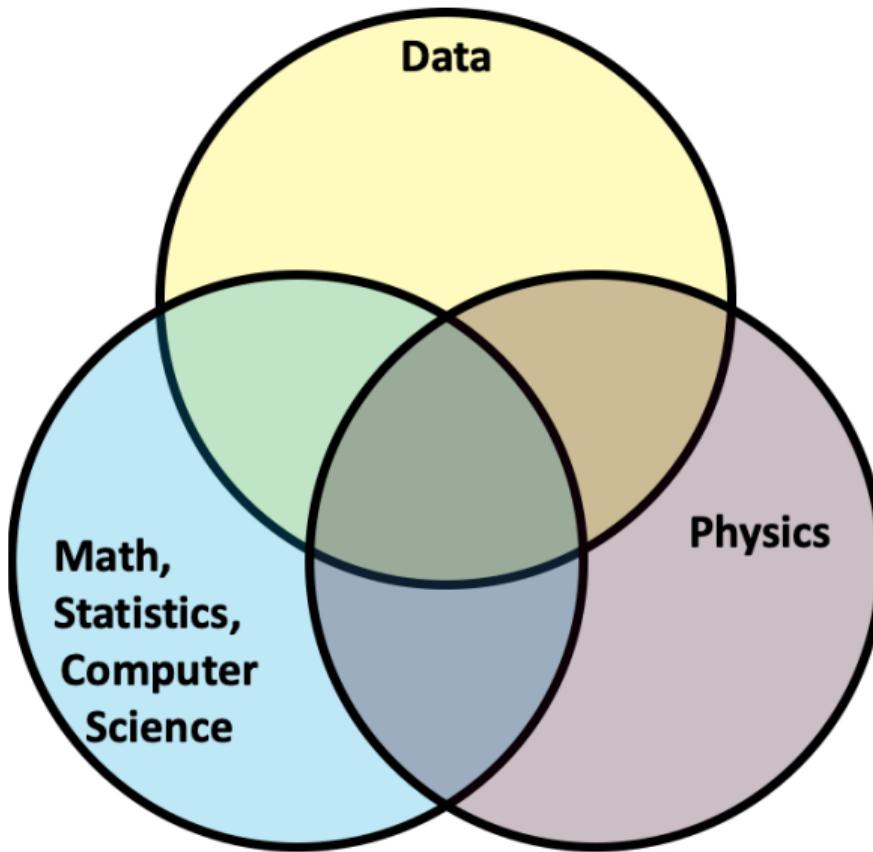
×

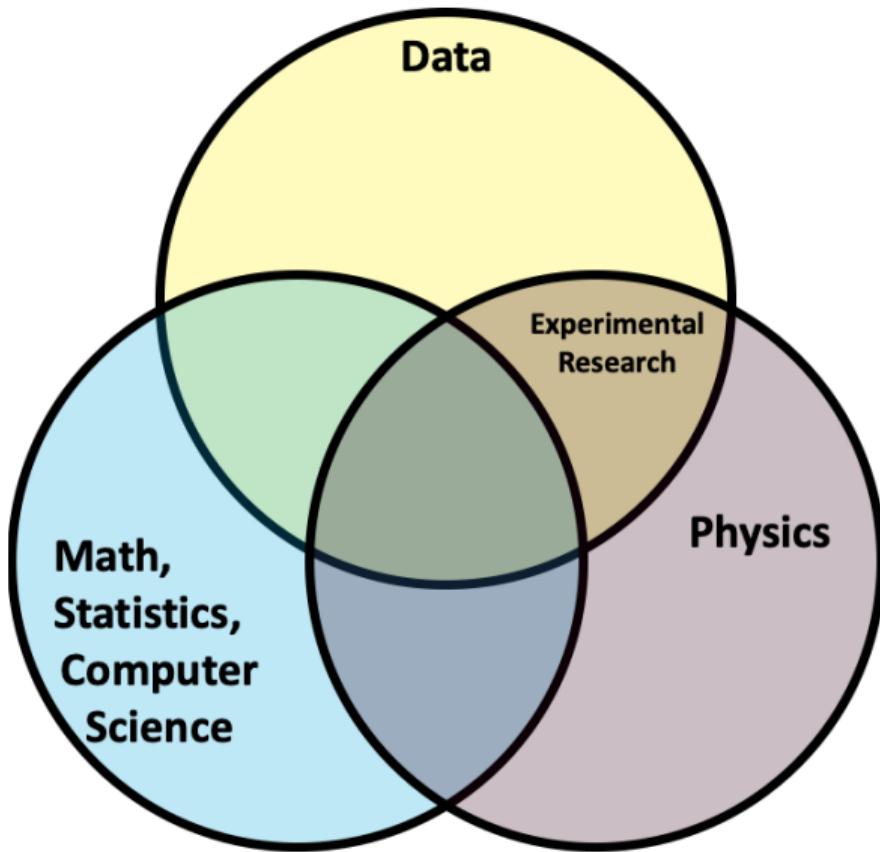


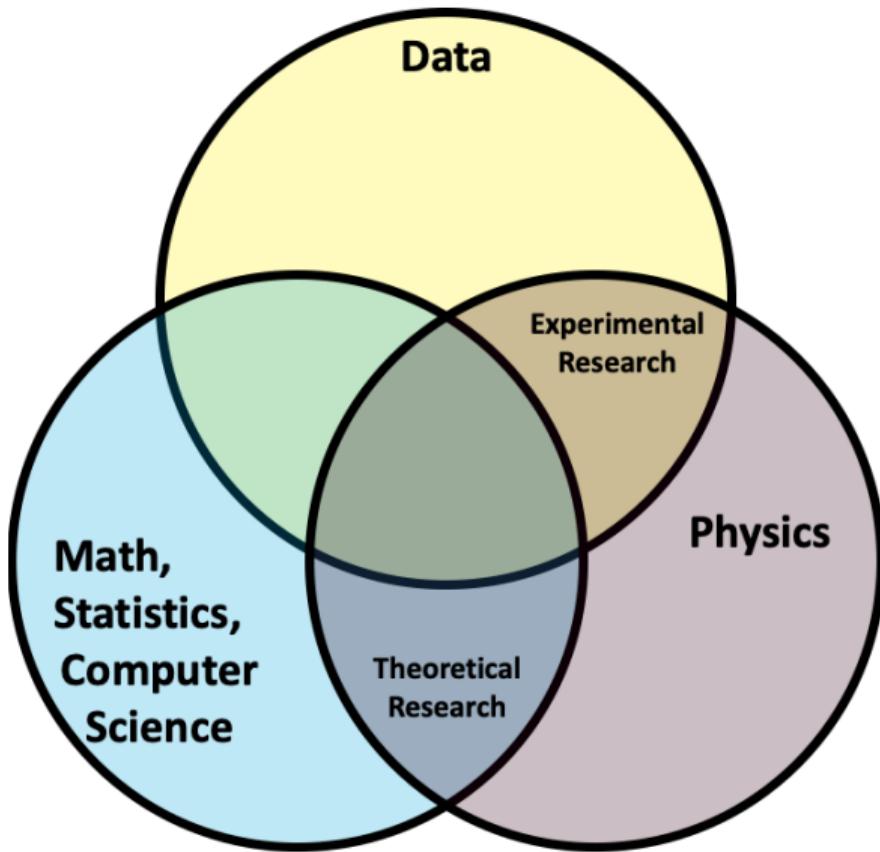
=

NTF: Nonnegative Tensor Factorization

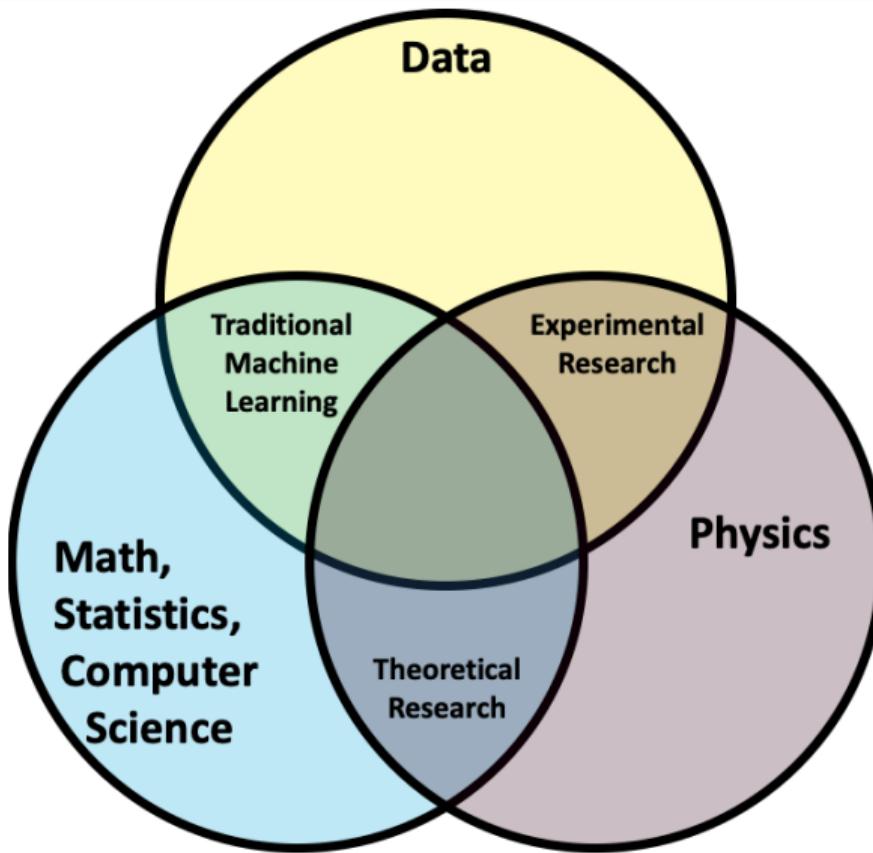




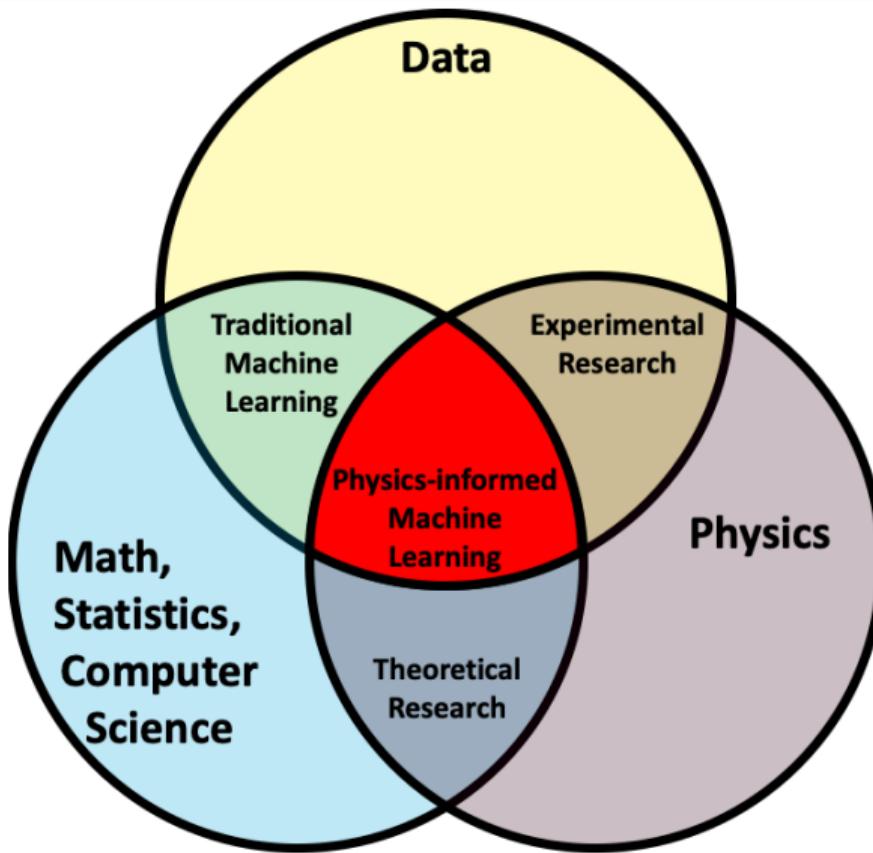




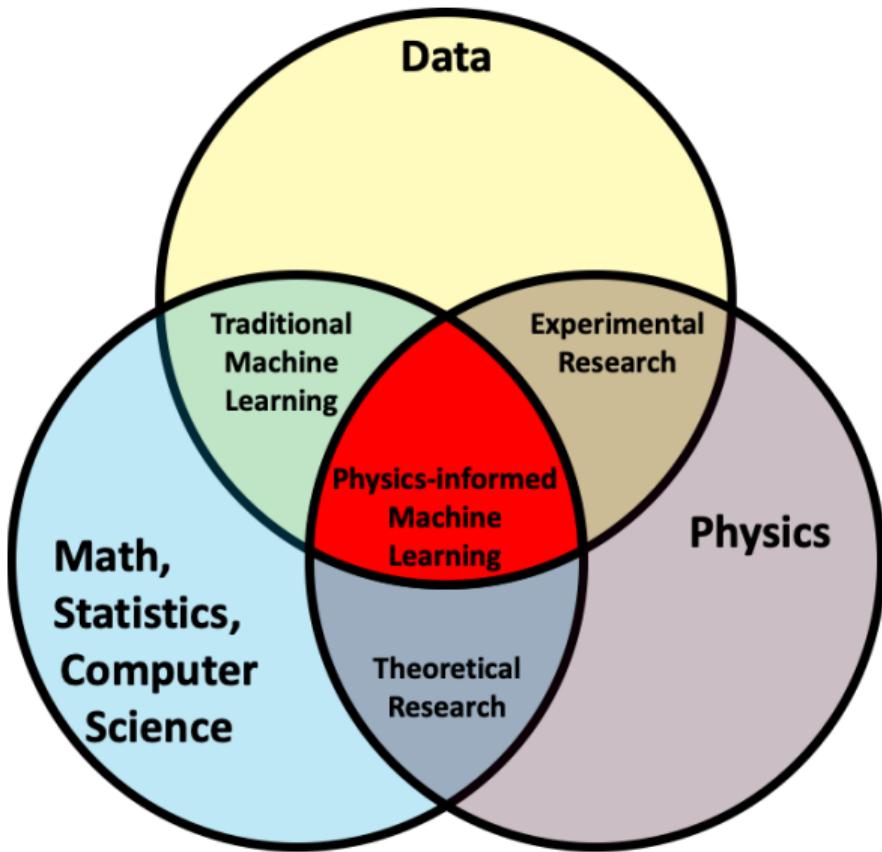
Physics-Informed Machine Learning

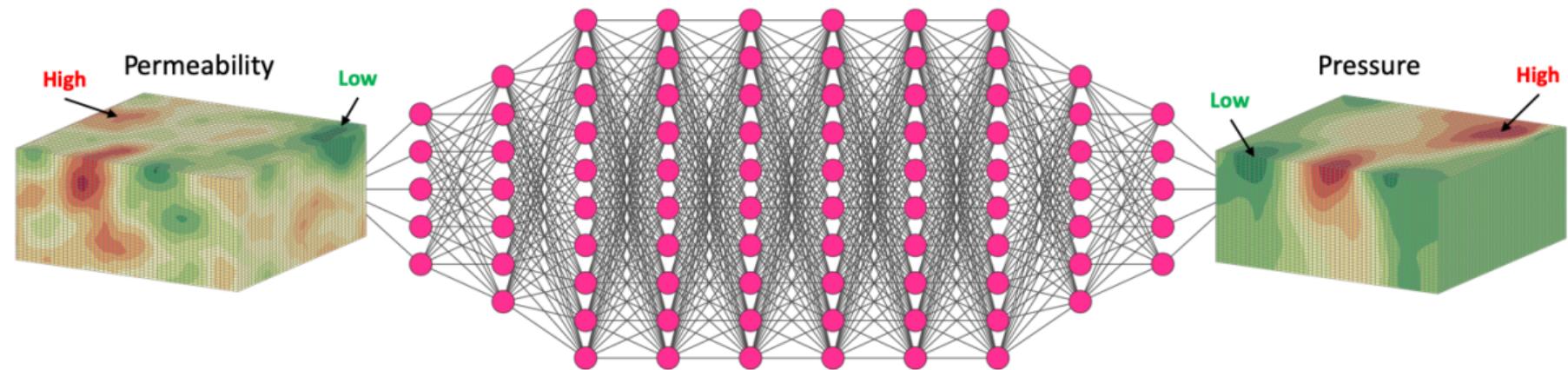


Physics-Informed Machine Learning

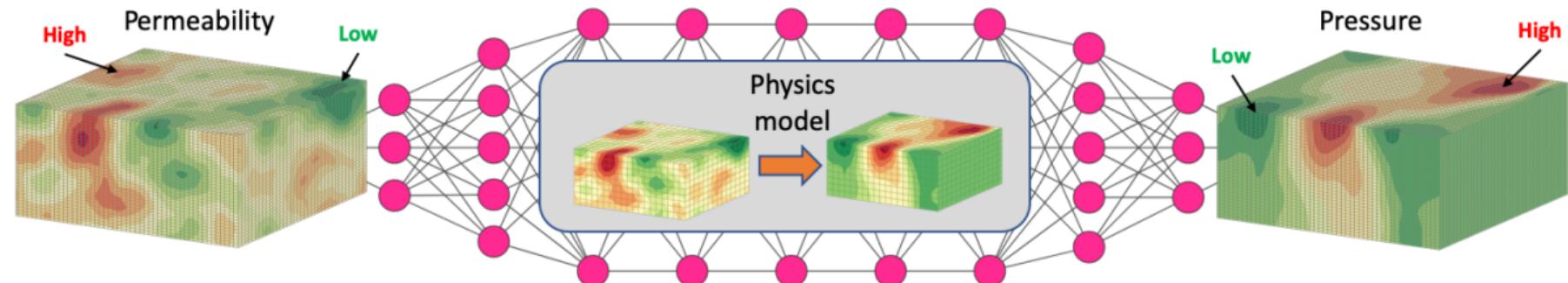


- ▶ **Empirical**: observations and experiments (since the cradle of our civilization)
- ▶ **Theoretical**: generalizations and models (since 1600's)
- ▶ **Computational**: analytical and numerical simulations (since 1950's)
- ▶ **Data-exploration**: unify data, simulations, and theory (since 2000's)



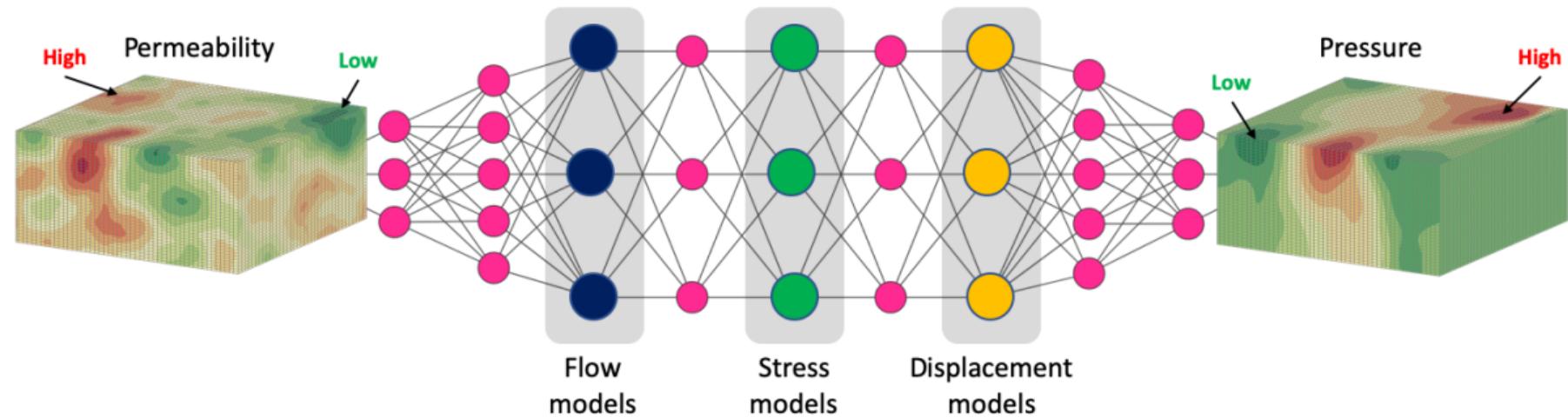


- ▶ it is a **black box, ad hoc** approach
- ▶ no preconceived knowledge about analyzed problem (general)
- ▶ all the neurons are $relu(Ax + b)$; A and b have no physical meaning;
 $relu()$ does not impose physics constraints
- ▶ neural networks needs to be very **deep** and **wide** to represent complex physics



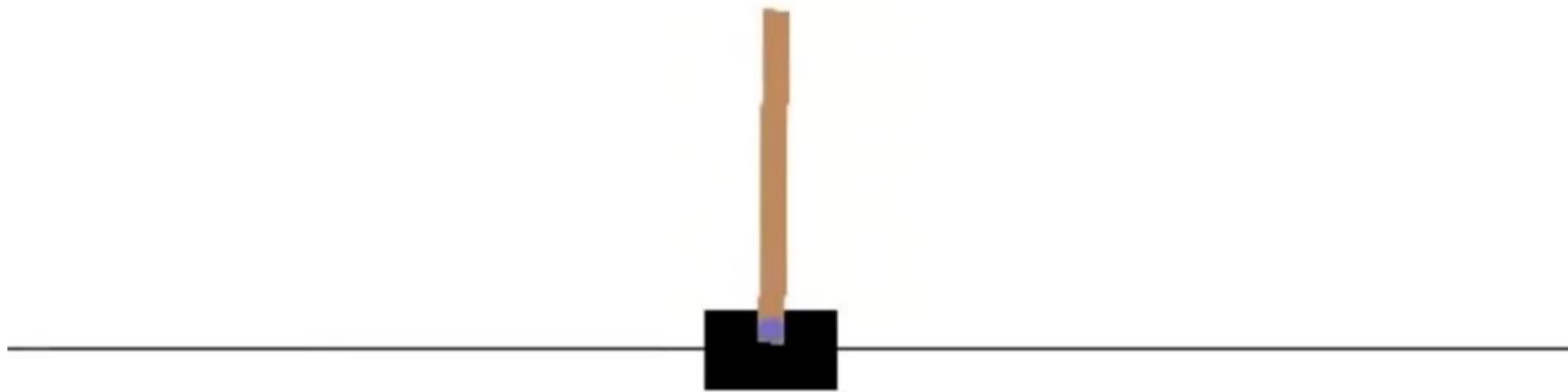
- ▶ include preconceived knowledge about analyzed problem (problem specific)
- ▶ neurons can represent $PhysicsModel(Ax + b)$; A and b have physical interpretation; $PhysicsModel()$ imposes physics constraints (e.g. conservation of mass/species)
- ▶ **PIML** models can be **trained (optimized) faster** and with **less training data**

Physics-Informed Machine Learning Neural Networks



- ▶ physics-informed layers (**“fat” neurons**) capture important governing processes (e.g., flow, stress, deformation, and displacement)
- ▶ can be done efficiently only through differentiable programming in **julia**

Physics-Informed Machine Learning (PIML): Cartpole



ML
oooooooooo

PIML
oooooooooo●oo

NMFk/NTFk
oooooooooooo

ML for Oil/Gas
oooooooooooooooooooo

Summary
ooo

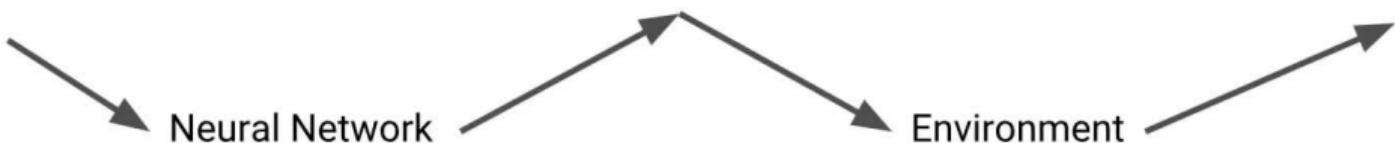
Physics-Informed Machine Learning (PIML): Cartpole

Physics-Informed Machine Learning (PIML): Cartpole

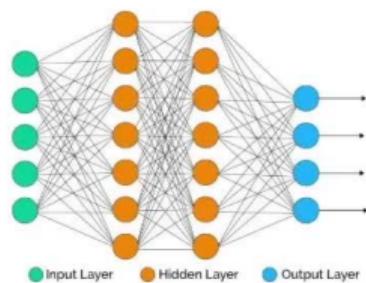
CartPole State

Control Parameters

Loss



$angle = -3^\circ$
 $velocity = 0.5^\circ/s$



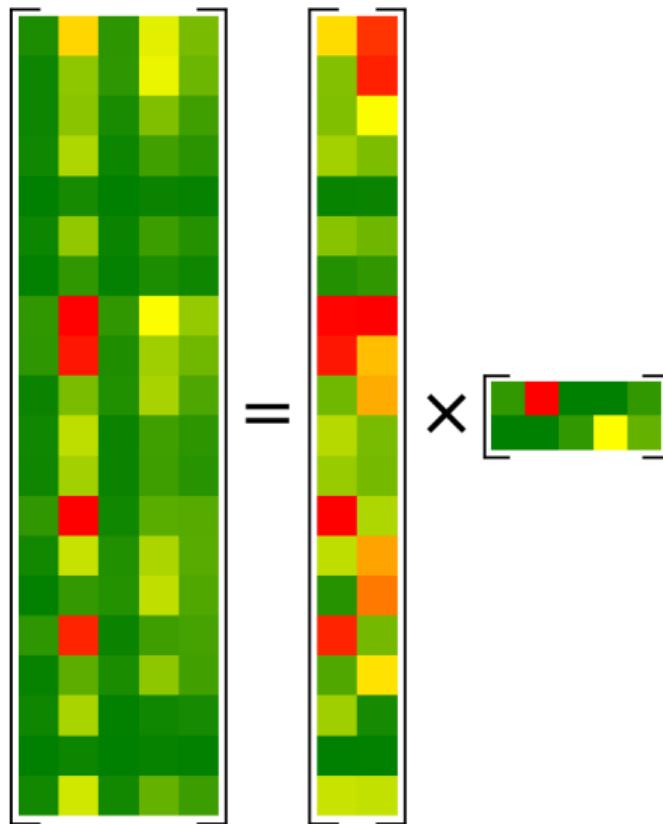
{left, right}



X
 $[20 \times 5]$

X – **data matrix**
[attributes \times observations]

NMF_k: matrix factorization



$$\mathbf{X} = \mathbf{W} \times \mathbf{H}$$

$$[20 \times 5] = [20 \times 2] \times [2 \times 5]$$

\mathbf{X} – **data** matrix

[**attributes** \times **observations**]

\mathbf{W} – **feature (signal)** matrix

[**attributes** \times **features**]

\mathbf{H} – **mixing** matrix

[**features** \times **observations**]

NMF_k: true matrix factors

$$\left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] = \left[\begin{array}{c} \text{yellow} \\ \text{green} \\ \text{green} \\ \text{red} \\ \text{yellow} \end{array} \right] \times \left[\begin{array}{c} \text{red} \\ \text{green} \\ \text{green} \\ \text{yellow} \end{array} \right]$$

$$\mathbf{X} = \mathbf{W} \times \mathbf{H}$$

$$[20 \times 5] = [20 \times 2] \times [2 \times 5]$$

\mathbf{X} – **data** matrix

[attributes \times observations]

\mathbf{W} – **feature (signal)** matrix

[attributes \times features]

\mathbf{H} – **mixing** matrix

[features \times observations]

NMF_k: true data matrix

$$\begin{bmatrix} \text{[20x5 matrix with green background and yellow/red highlights]} \end{bmatrix} = \begin{bmatrix} \text{[20x5 matrix with green background and yellow/red highlights]} \end{bmatrix} \times \begin{bmatrix} \text{[5x5 matrix with green background and yellow/red highlights]} \end{bmatrix}$$

$$\mathbf{X} = \mathbf{W} \times \mathbf{H}$$

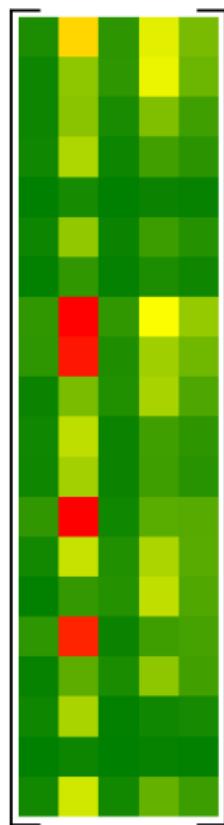
$$[20 \times 5] = [20 \times ?] \times [? \times 5]$$

\Rightarrow 100 **knowns**

\Rightarrow **unknown** number of features
(2 or more)

\Rightarrow **unknown** matrix elements of \mathbf{W} and \mathbf{H}
(50 or more)

NMF k : true vs. estimated matrix factorization



=

\times



=

\times

ML
oooooooooooo

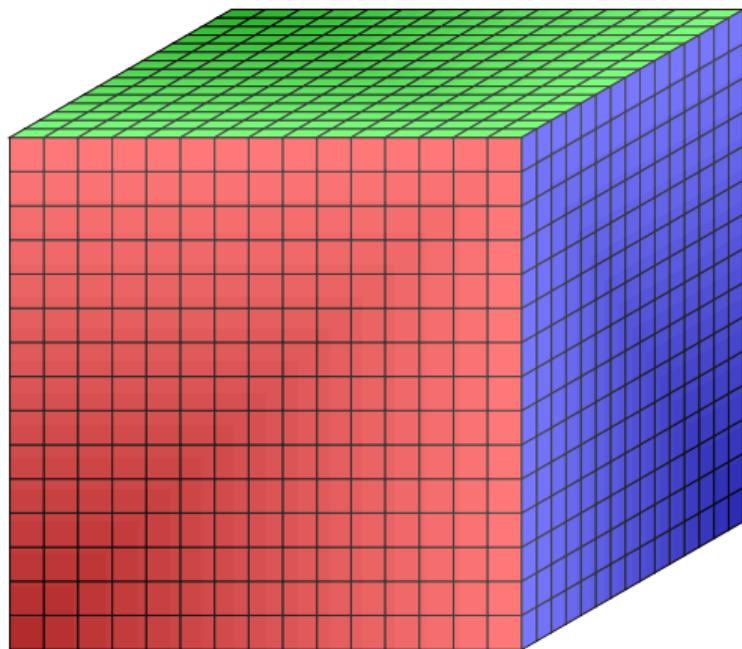
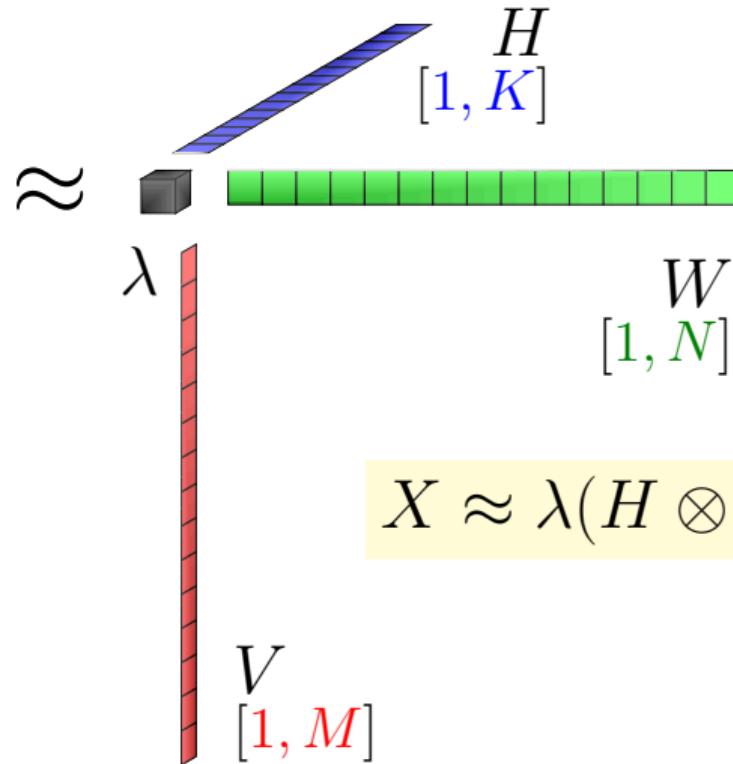
PIML
oooooooooooo

NMF k /NTF k
oooo●oooo

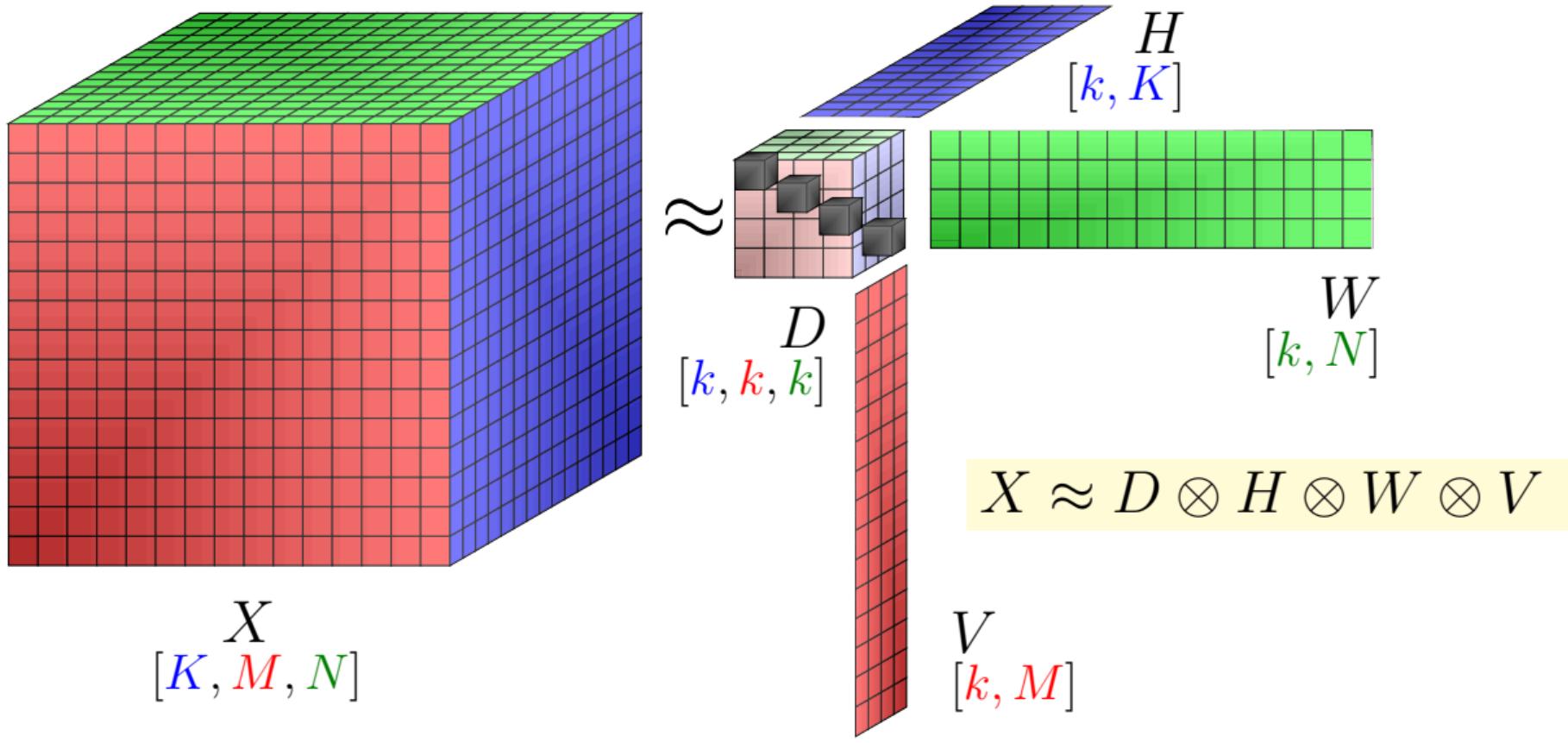
ML for Oil/Gas
oooooooooooo

Summary
ooo

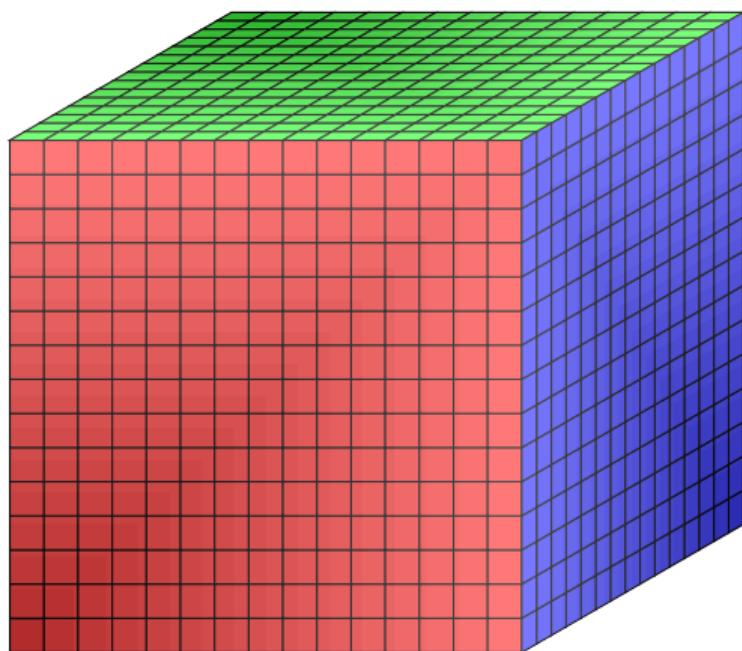
Tensor Decomposition (3D case): Rank-1 tensor



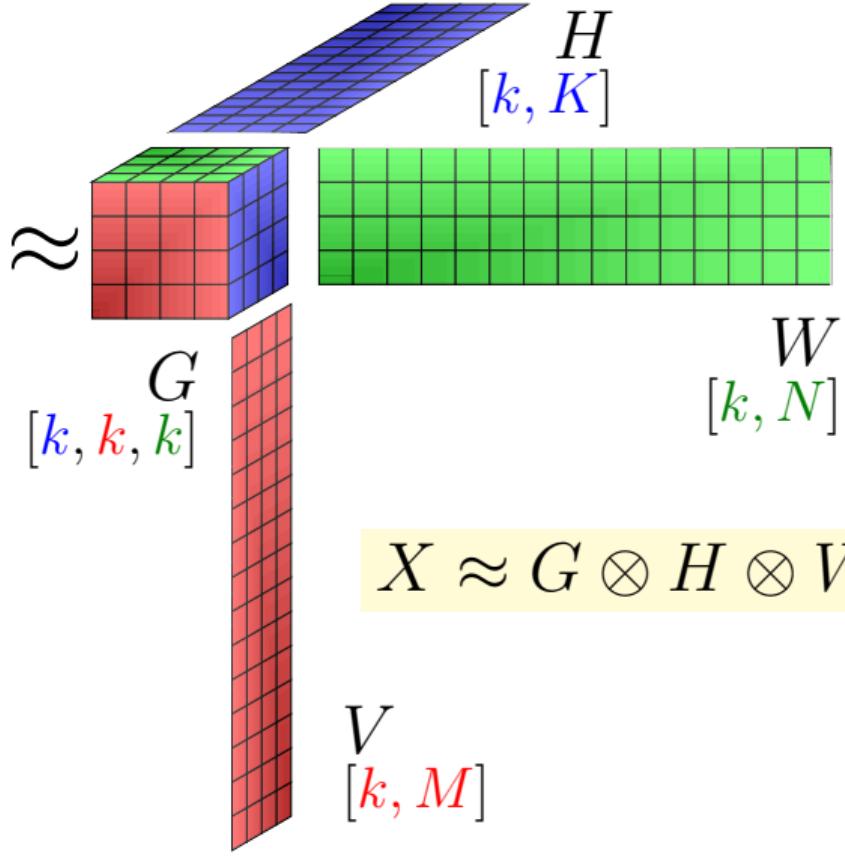
Tensor Decomposition (3D case): Rank-4 tensor



Tensor Decomposition (3D case): Rank-64 / Multirank-(4,4,4) tensor

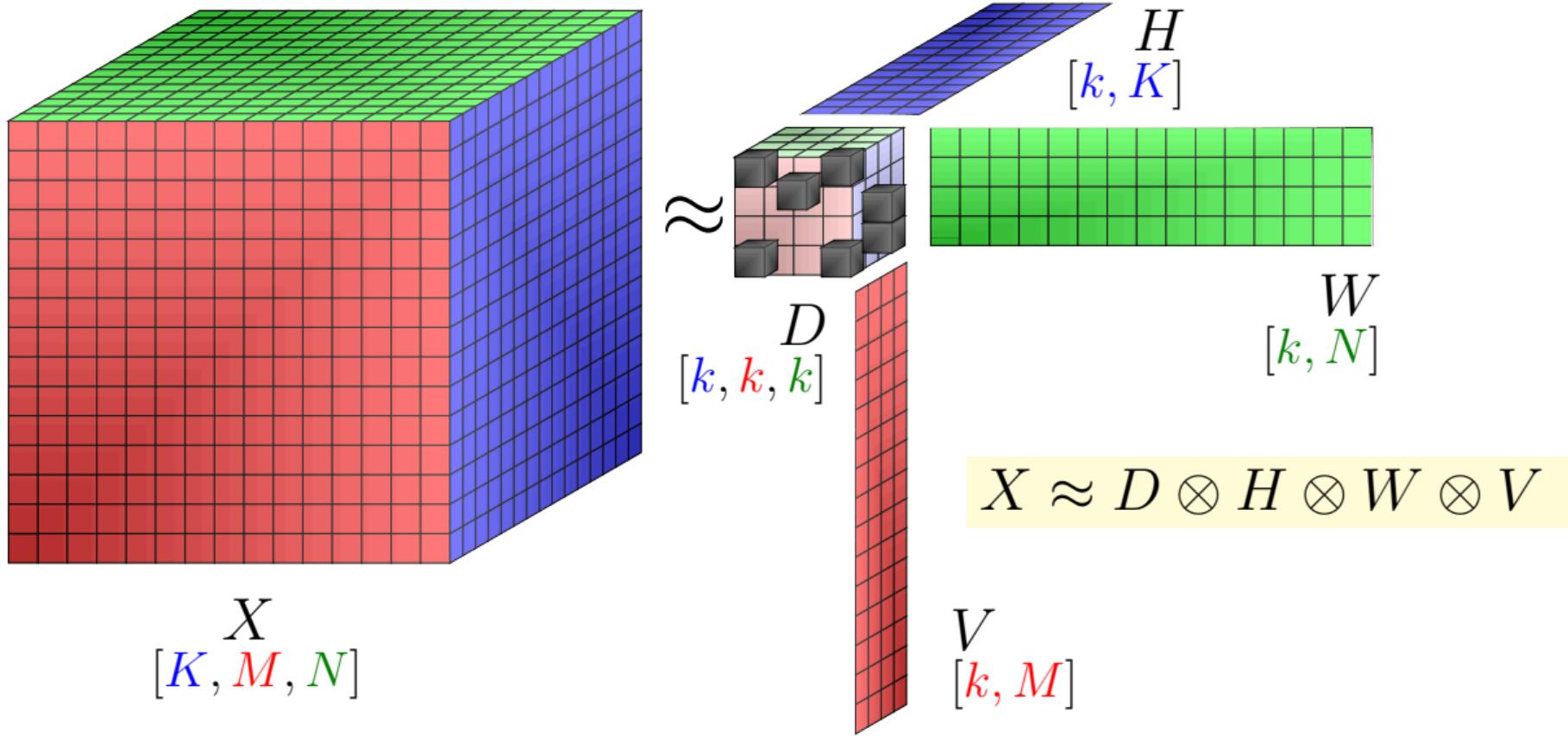


X
 $[K, M, N]$



$$X \approx G \otimes H \otimes W \otimes V$$

Tucker Tensor Decomposition (3D case): Rank-7 Multirank-(3,3,4)



► **Field Data:**

- Contamination
- Climate
- Geothermal
- Seismic
- Oil/gas production

► **Lab Data:**

- X-ray Spectroscopy
- UV Fluorescence Spectroscopy
- Microbial population analyses
- Isotope fractionation

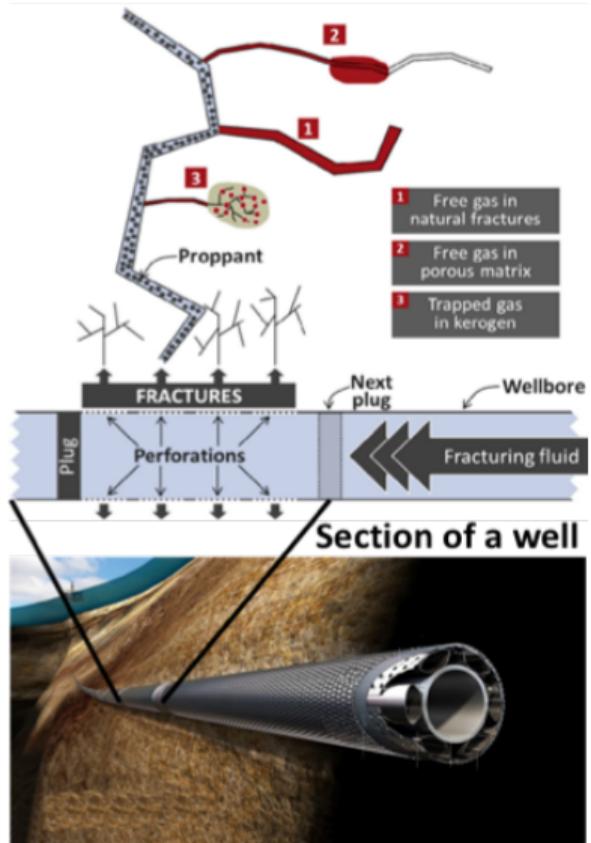
► **Operational Data:**

- LANSCE: Los Alamos Neutron Accelerator
- Oil/gas production

► **Model Outputs:**

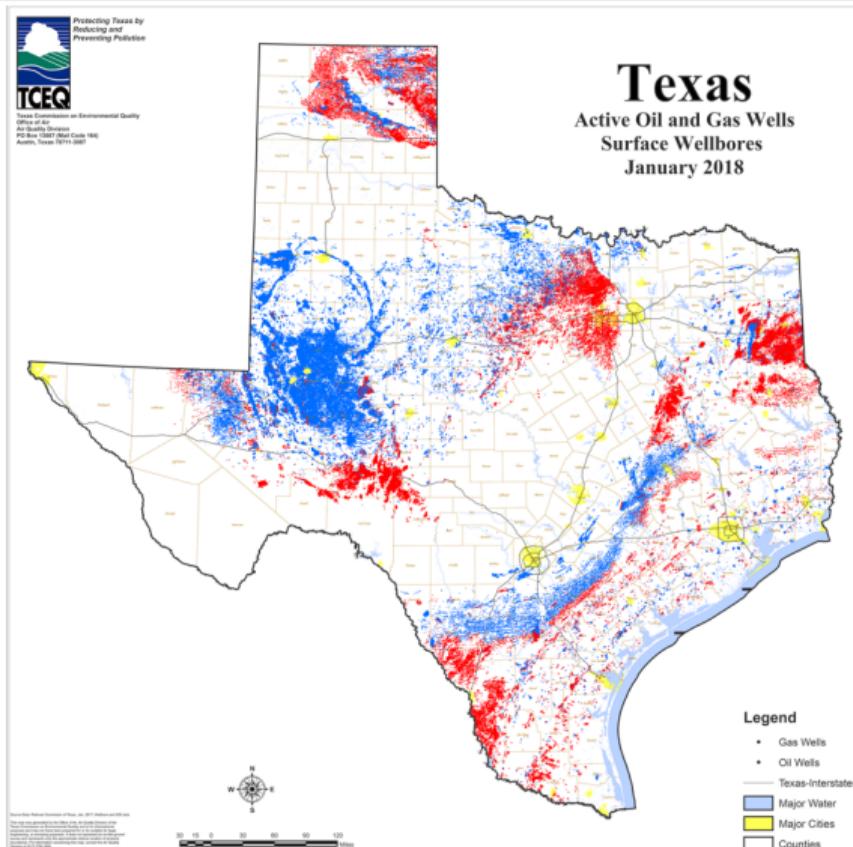
- Reactive mixing $A + B \rightarrow C$
- Phase separation of co-polymers
- Molecular Dynamics of proteins
- Climate modeling

- ▶ Oil/Gas production from unconventional reservoirs extracts a small portion of the available resources (<10%)
- ▶ Oil/Gas production is challenging to predict and optimize
- ▶ Physics processes during well development (including hydrofracking) and extraction are poorly understood and challenging to simulate
- ▶ Alternative is to learn to predict system behavior based on the observed oil/gas production at existing wells

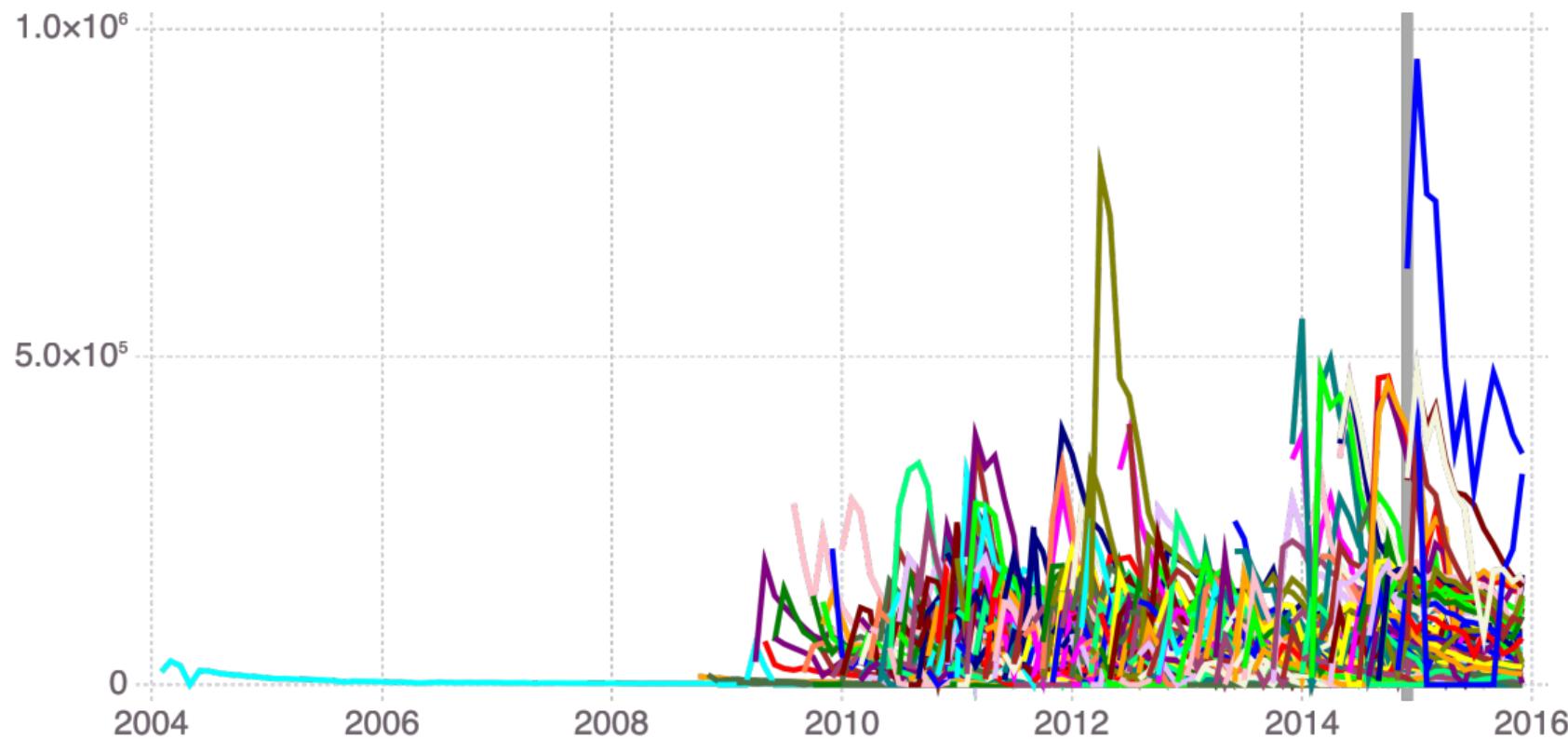


Oil/Gas Production Data

- ▶ Large public datasets are available representing unconventional oil and gas production (U.S. and world wide)
- ▶ Data represent monthly production rates (oil, gas, water) + many other well attributes
- ▶ ~ 2,000,000 wells in U.S.
- ▶ > 300,000 wells in Texas
- ▶ > 20,000 wells in Eagle Ford Shale Play
- ▶ 327 gas wells in Eagle Ford Shale Play selected for preliminary analyses



Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells



ML
999999999

PIML

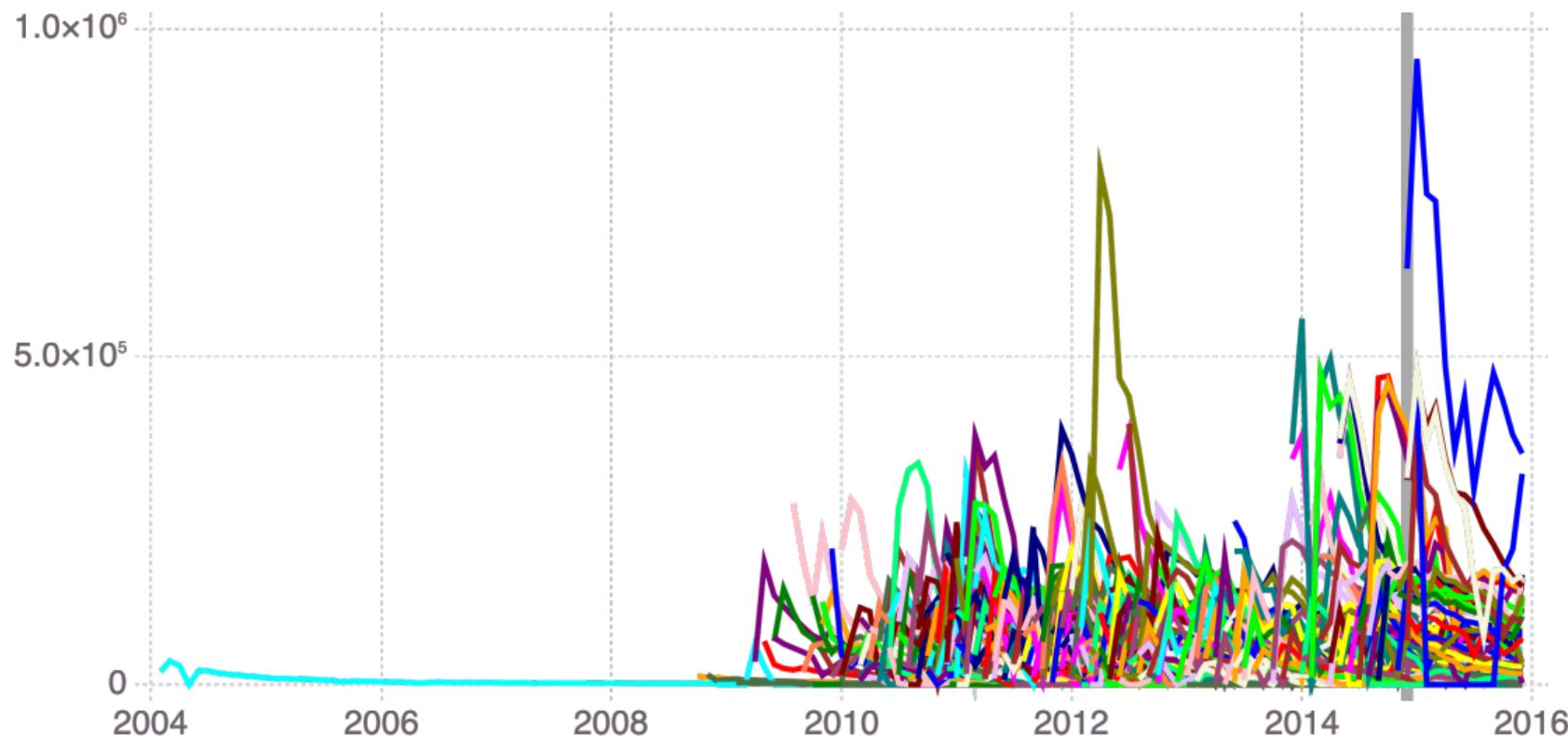
NMFk/NTFk

ML for Oil/Gas

Summary

- ▶ Use all the data up to a given cutoff date (e.g. 2015)
- ▶ Apply ML to learn behavior of the “known” well transients
 - Identify and group wells which behave similarly (having similar production transients)
 - Discover the optimal number of **master decline curves** required to represent the observed transients
 - **master decline curves** = production **features** or **signatures**
- ▶ Apply ML to predict **blindly** the unknown production transients beyond the cutoff
- ▶ Prediction is obtained by discovering to which type (group) the wells producing beyond the cutoff belong
- ▶ i.e., discovering what combinations of the **master decline curves** can represent the wells producing beyond the cutoff
- ▶ ML analyses performed using **NMFk/NTFk**

Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells



ML
oooooooooooo

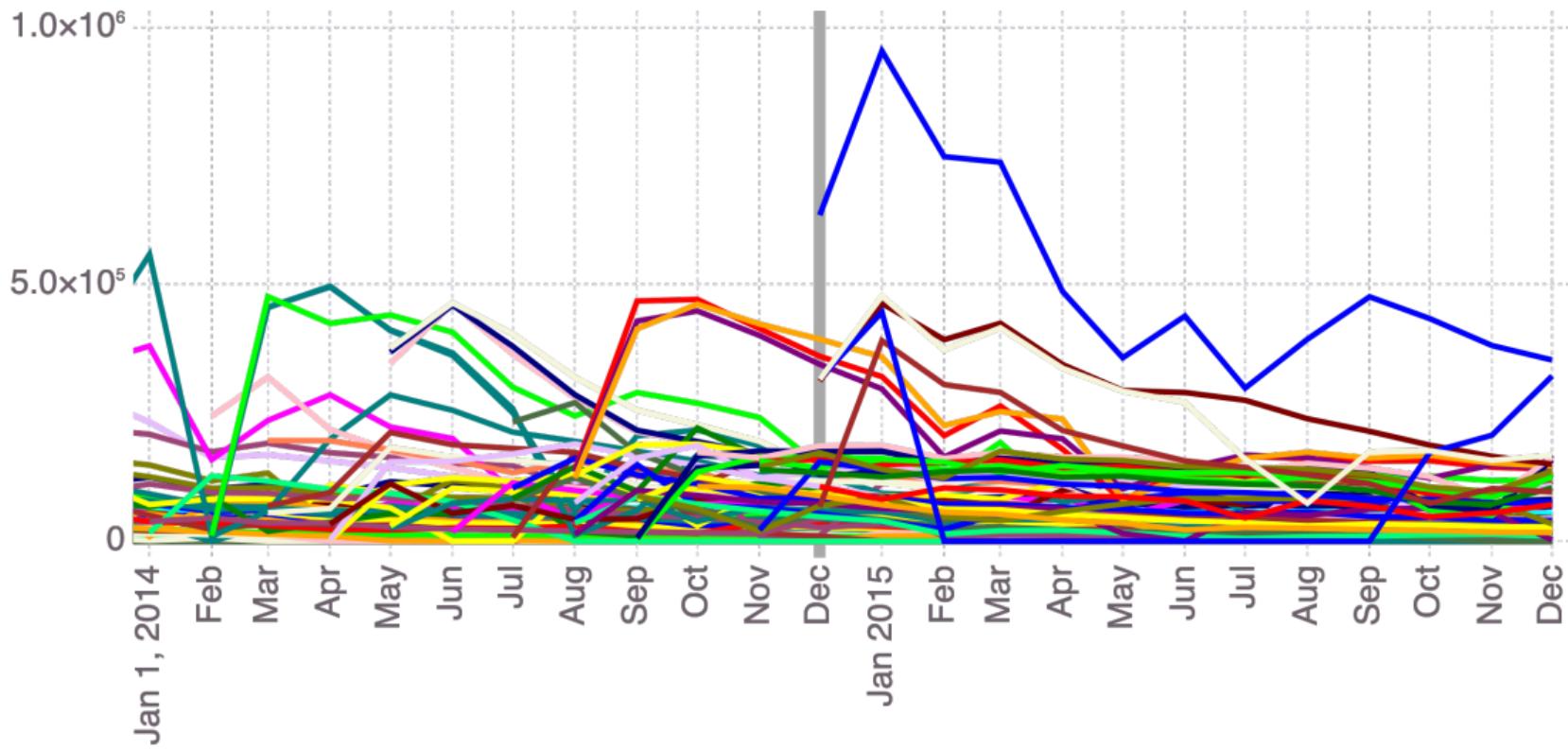
PIML
oooooooooooo

NMFk/NTFk
oooooooooooo

ML for Oil/Gas
oooo●oooooooooooo

Summary
ooo

Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells



ML
oooooooooooo

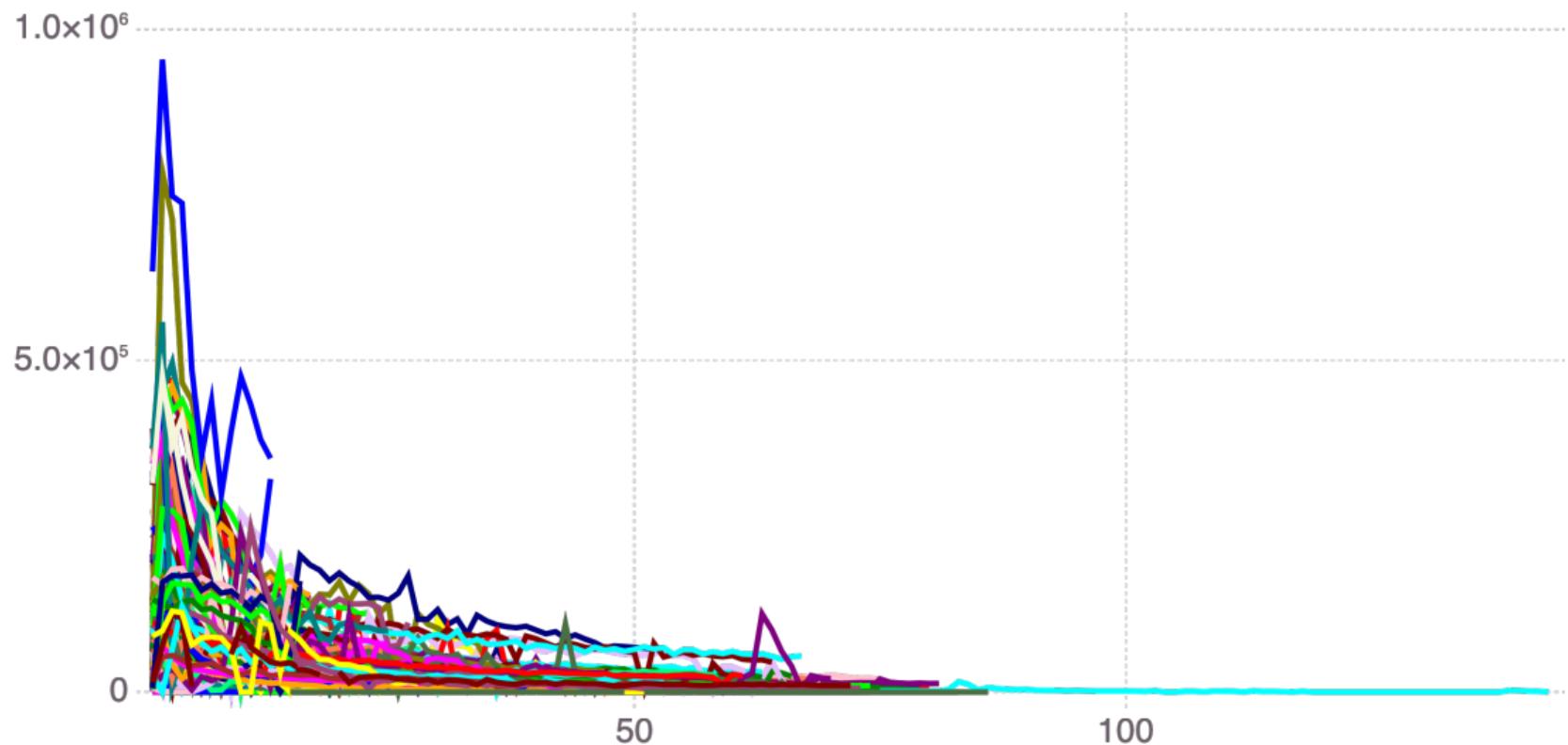
PIML
oooooooooooo

NMFk/NTFk
oooooooooooo

ML for Oil/Gas
oooooooo●oooooooooooo

Summary
ooo

Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells



ML
oooooooooooo

PIML
oooooooooooo

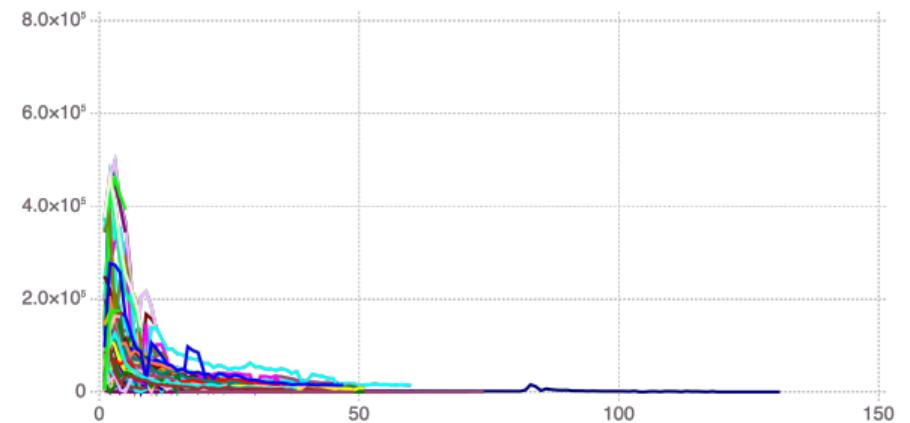
NMFk/NTFk
oooooooooooo

ML for Oil/Gas
oooooooo●oooooooo

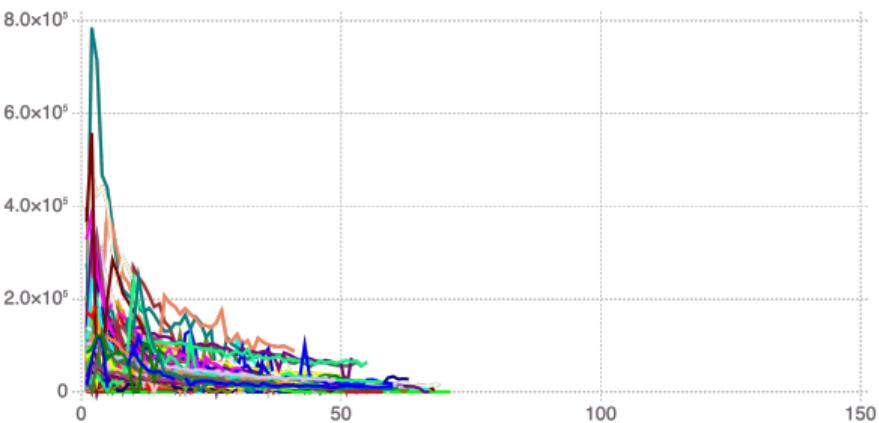
Summary
ooo

Eagle Ford Shale Play: Wells split into 2 groups

‘Fast’ declining (135)



‘Slow’ declining (192)



ML
oooooooooooo

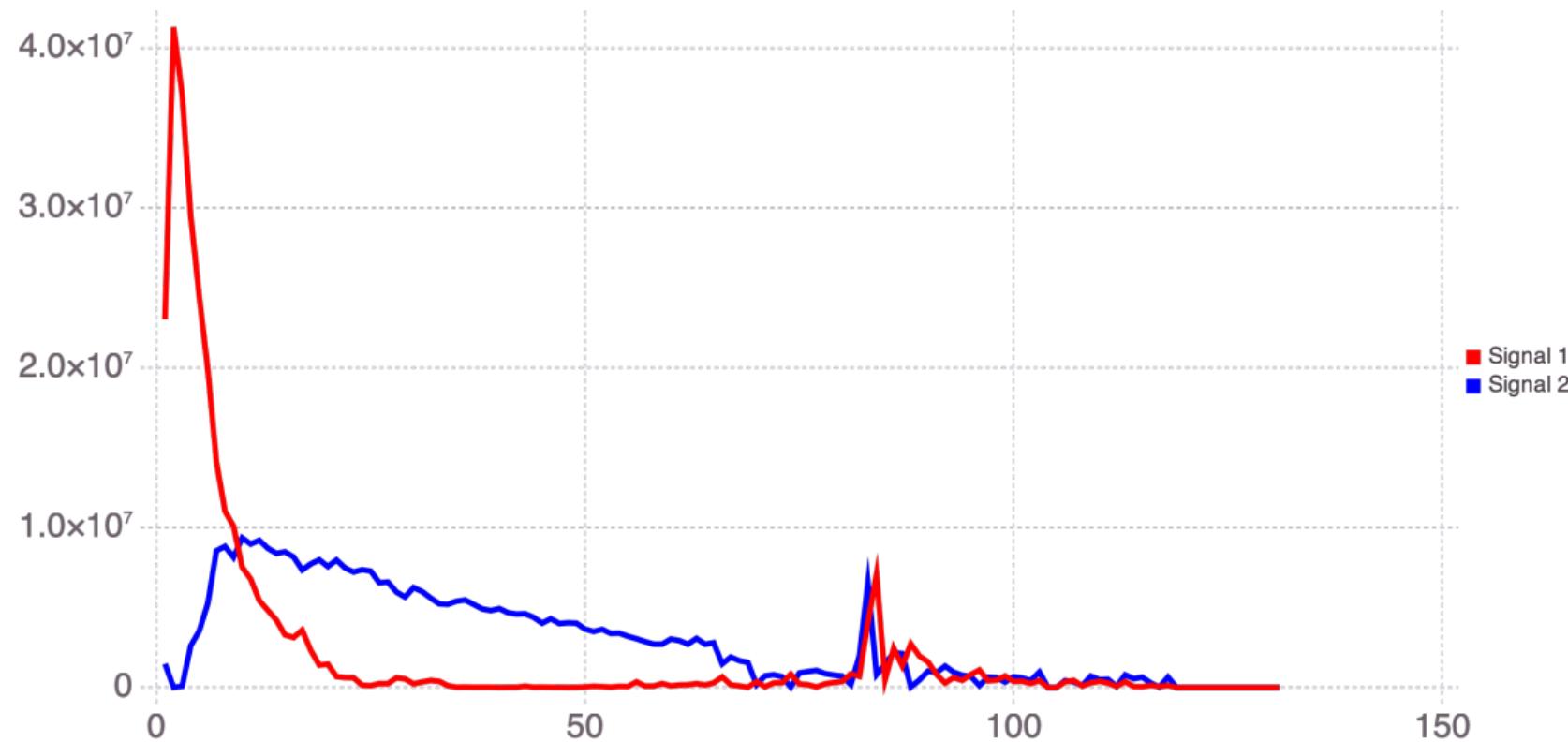
PIML
oooooooooooo

NMFk/NTFk
oooooooooooo

ML for Oil/Gas
oooooooo●oooooooo

Summary
ooo

Eagle Ford Shale Play: Master Decline Curves [over months]



ML
oooooooooooo

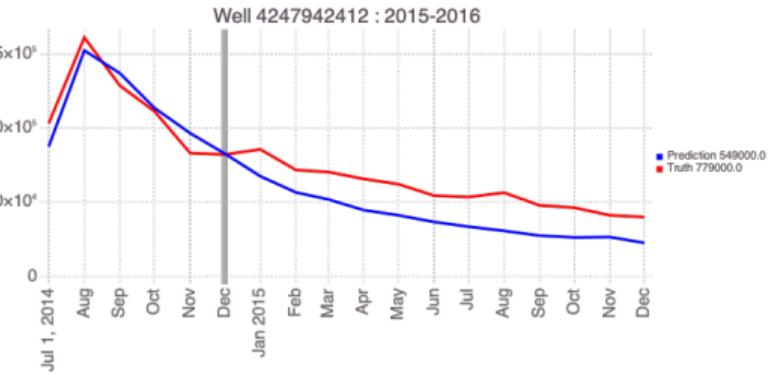
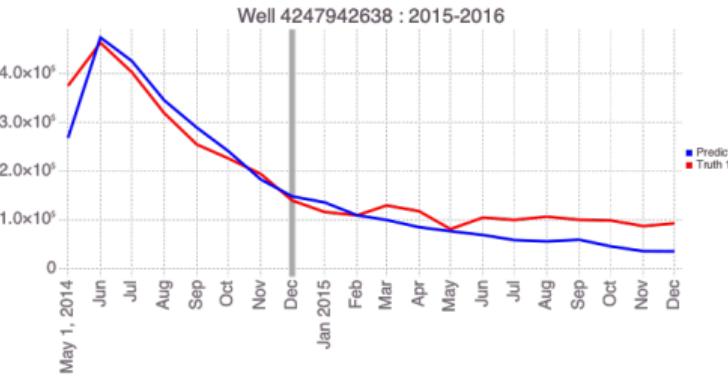
PIML
ooooooooooooooo

NMFk/NTFk
oooooooooooo

ML for Oil/Gas
oooooooo●oooooooo

Summary
ooo

Eagle Ford Shale Play: Blind predictions beyond 2015

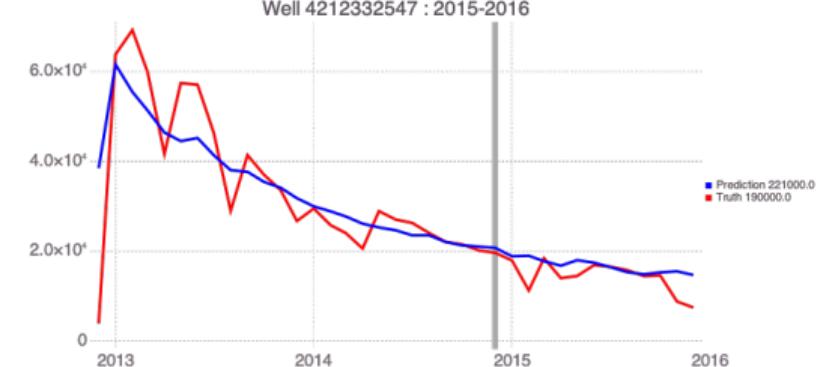


Eagle Ford Shale Play: Blind predictions beyond 2015

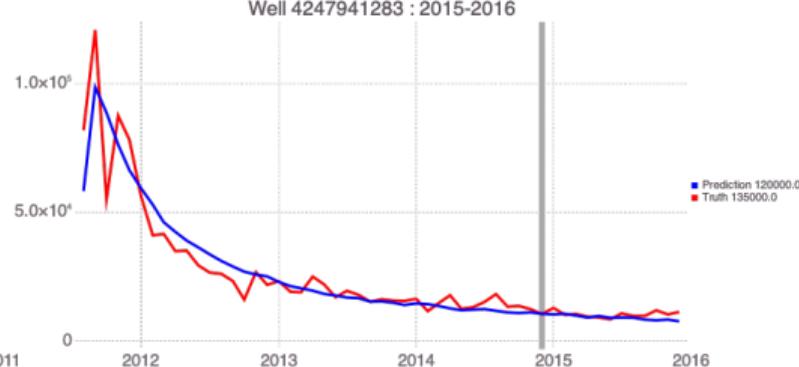
Well 4247940978 : 2015-2016

Well 4247940815 : 2015-2016

Well 4212332547 : 2015-2016



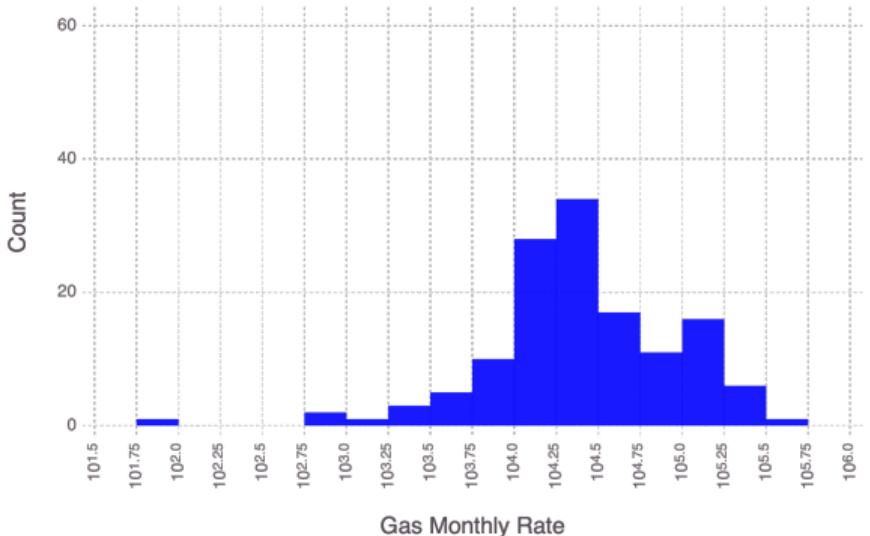
Well 4247941283 : 2015-2016



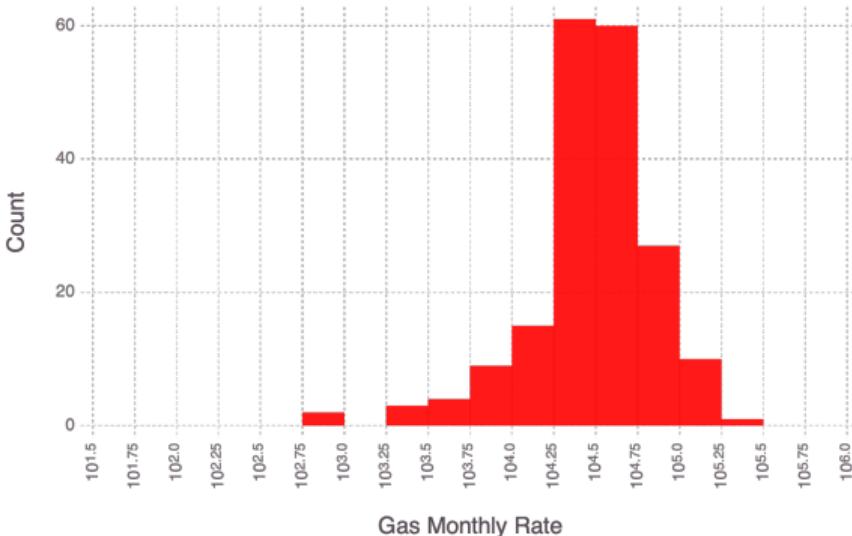
Eagle Ford Shale Play: Wells split into 2 groups

Monthly rate histograms

‘Fast’ declining (135)



‘Slow’ declining (192)



ML
oooooooooooo

PIML
oooooooooooo

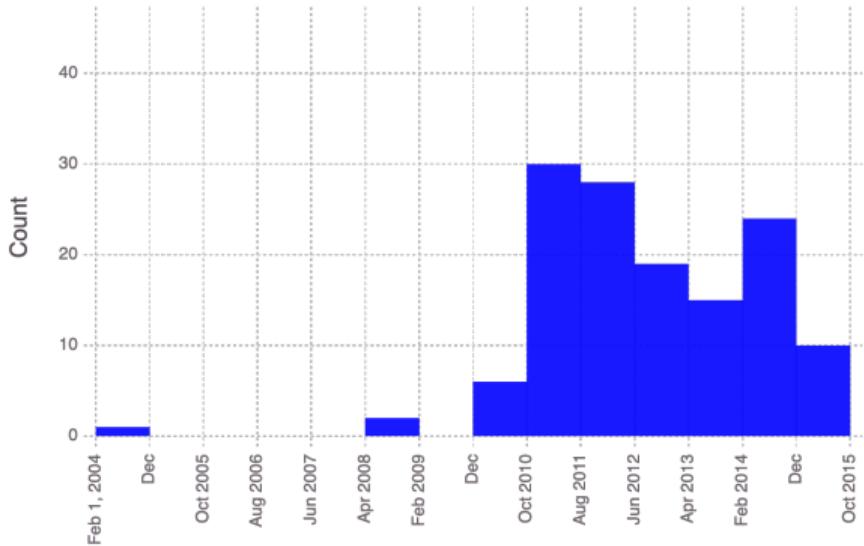
NMFk/NTFk
oooooooooooo

ML for Oil/Gas
oooooooooooo●oooo

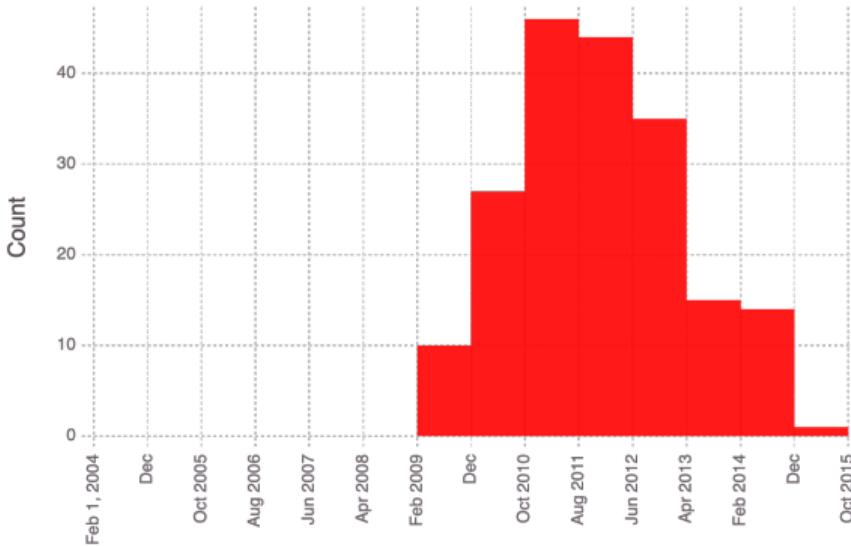
Summary
ooo

Drilling date histograms

‘Fast’ declining (135)



‘Slow’ declining (192)



- ▶ Other well attributes also differ between the 2 groups
- ▶ For example:
 - Operators
 - Proppant mass
 - Injected fluid volumes
 - ...

ML
oooooooooooo

PIML
oooooooooooo

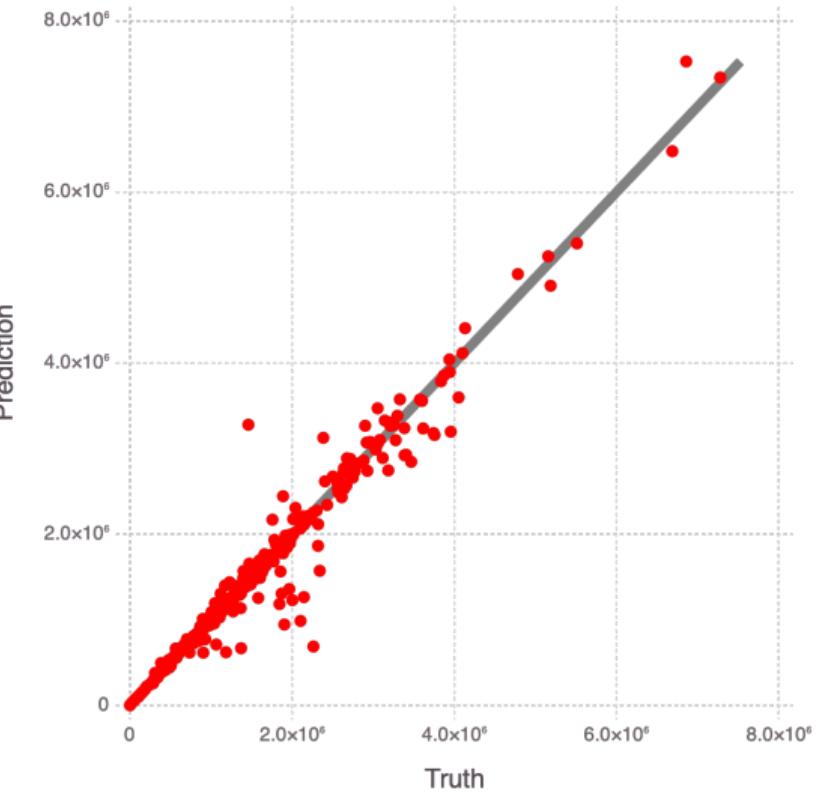
NMFk/NTFk
oooooooooooo

ML for Oil/Gas
oooooooooooo●○

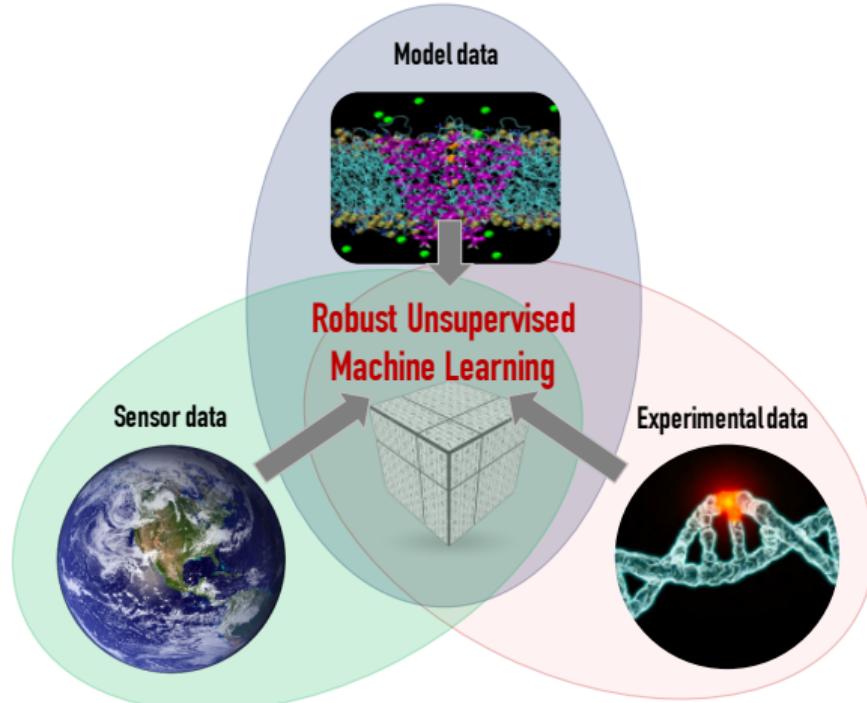
Summary
ooo

Eagle Ford Shale Play: Blind predictions beyond 2015

- ▶ 300 wells continue producing beyond 2015
- ▶ $r^2 = 0.96$

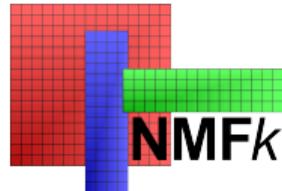


- ▶ Developed **novel** unsupervised and physics-informed ML methods and computational tools
- ▶ Some of our tools have been recently patented
- ▶ Our ML methods have been used to solve various real-world problems (brought breakthrough discoveries related to human cancer research)
- ▶ Several ongoing projects (DOE, ARAP E, ...)



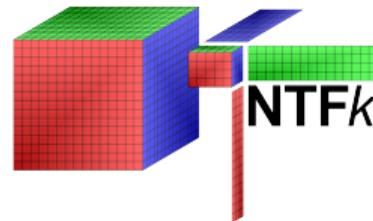
► Codes:

NMF k



MADS

NTF k



► Examples:

http://madsjulia.github.io/Mads.jl/Examples/blind_source_separation

<http://tensors.lanl.gov>

<http://tensordecompositions.github.io>

<https://github.com/TensorDecompositions>

<https://hub.docker.com/u/montyvesselinov>

- ▶ Vesselinov, Munuduru, Karra, O'Malley, Alexandrov, Unsupervised Machine Learning Based on Non-Negative Tensor Factorization for Analyzing Reactive-Mixing, **Journal of Computational Physics**, Special issue: Machine Learning, 2019.
- ▶ Stanev, Vesselinov, Kusne, Antoszewski, Takeuchi, Alexandrov, Unsupervised Phase Mapping of X-ray Diffraction Data by Nonnegative Matrix Factorization Integrated with Custom Clustering, **Nature Computational Materials**, 2018.
- ▶ Vesselinov, O'Malley, Alexandrov, Nonnegative Tensor Factorization for Contaminant Source Identification, **Journal of Contaminant Hydrology**, 2018.
- ▶ O'Malley, Vesselinov, Alexandrov, Alexandrov, Nonnegative/binary matrix factorization with a D-Wave quantum annealer, **PLOS ONE**, 2018.
- ▶ Vesselinov, O'Malley, Alexandrov, Contaminant source identification using semi-supervised machine learning, **Journal of Contaminant Hydrology**, 2017.
- ▶ Alexandrov, Vesselinov, Blind source separation for groundwater level analysis based on nonnegative matrix factorization, **WRR**, 2014.