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Machine Learning (ML) methods

> ML: learns everything from data
= requires big training datasets
= highly impacted by noise

> ML: learns from data but includes preconceived knowledge about
the governing processes

= requires smaller training datasets

= produces better predictability with lower uncertainty
= robust to data noise

> ML: extracts features from data that can be applied for categorization
and prediction
= unbiased analyses not impacted by data labeling, subject-matter-expert opinions,
and physics assumptions = however, physics constraints can be added
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Why unsupervised Machine Learning (ML)?

> ML: requires “labeling” (prior categorization (knowledge) about the
processed data)

Recognizes images of cats and dogs after extensive training; but cannot
recognize horses if not trained

> ML: extracts hidden features (signals) in the processed data without
any prior information ( ; )

Identifies features that distinguish images of animals (e.g., cats, dogs,
horses, etc.)




Why not supervised Machine Learning (ML)

> ML

introduces subijectivity (through the labeling process)

does not provide insights why horses are different from dogs / cats
cannot make predictions (that we do not know already)

requires huge training (labeled) datasets

we do not know why it works

is impacted by “adversarial examples”

vVVvvyvVvyvyy

“panda” “gibbon”

y ler
ence fidence

= major limitations of the ML methods for applications




Unsupervised Machine Learning Applications: Data Analytics / Model Diagnostics

VVYyVYVVVVYVYyVYVYYVYY

Feature extraction (FE)

Blind source separation ( )

Detection of disruptions / anomalies

Image recognition

Separate physics processes

Discover unknown dependencies and phenomena
Develop reduced-order/surrogate models

Identify dependencies between model inputs and outputs
Guide development of physics models representing the data
Make predictions

Optimize data acquisition

“Label” datasets for supervised ML analyses



Nonnegative Matrix/Tensor Factorization

» Novel LANL-patented, open-source, unsupervised Machine Learning (ML) methods
and computational techniques

» Based in matrix/tensor factorization coupled with custom k-means clustering and
nonnegativity/sparsity constraints:

¢ NMFE: Nonnegative Factorization
e NTFE.: Nonnegative Factorization
® https://github.com/TensorDecompositions

» Capable to efficiently process large datasets (TB’s) utilizing GPU’s, TPU’'s & FPGA’s
= julia, Flux.jl, AutoOffLoad.jl, TensorFlow, PyTorch, MXNet

|
NTFk



https://github.com/TensorDecompositions

Why nonnegativity?

» NMF vs PCA (Lee &
Seung, 1999)

» NMF: Nonnegative
Matrix Factorization

» PCA: Principal
Component Analysis

Original

- W

_X
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Why tensors?

> (multi-dimensional/multi-modal/multi-way datasets) are everywhere:
» observational data are typically a 5-D tensor (X, y, z, t, attributes)

» model outputs are typically a 5-D tensor (x, y, z, t, attributes)

» data dependency to N parameters will form a (N + 5)-D tensor
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Physics-Informed Machine Learning
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Physics-Informed Machine Learning

Traditional
Machine
Learning

Experimental
Research

Math,

Statistics,

Computer
Science

PIML
°

Theoretical
Research




Science research paradigms

| 2

| 2

| 2

>

: observations and
experiments (since the cradle of our
civilization)

: generalizations and
models (since 1600’s)

: analytical and
numerical simulations (since 1950’s)

: unify data,
simulations, and theory (since 2000’s)

Traditional
Machine
Learning

Experimental
Research

Math,

Statistics,

Computer
Science

Theoretical
Research

\FK/NTFk



aditional Machine Learning Neural Networ

Permeability N R XM § Pressure

High

» it is a black box, ad hoc approach
» no preconceived knowledge about analyzed problem (general)

» all the neurons are rclu(Axr +b); A and b have no physical meaning;
relu() does not impose physics constraints

» neural networks needs to be very deep and wide to represent complex physics

PIML



Physics-Informed Machine Learning Neural Networks

Physics
model

Lehld &
o o o

» include preconceived knowledge about analyzed problem (problem specific)

Pressure High

High P7e<rmeability

» neurons can represent ; A and b have physical interpretation;
imposes physics constraints (e.g. conservation of mass/species)

> models can be and with

PIML
°



wgn  Permeability - ' v ' '.‘
QU e

Pressure High

Low

ST
> physics informed layers ) capture important governing processes (e.g.,

flow, stress, deformation, and displacement)

» can be done efficiently only through differentiable programming in julia

PIML
°



Physics-Informed Machine Learning (PIML): Cartpole

PIML
°



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




Physics-Informed Machine Learning (PIML): Cartpole

PIML
°



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}



Physics-Informed Machine Learning (PIML): Cartpole

CartPole State
Control Parameters Loss

\ Neural Network /\ Environment /

angle = -3° {left, right}

. - ) ! 2
velocity = 0.5s aa angle

@nputlayer @ Hidden Layer @ Output Layer

PIML
.



var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}



NMF£%: data matrix

X
[20 x 5]

X - matrix

NMFk/NTFk
°



NMF%: matrix factorization

X=WXxH
[20 x 5] = [20 x 2] X [2 x 5]

X — data matrix
[attributes x observations]

W —feature (signal) matrix
[attributes x features]

H — mixing matrix
[features x observations]

NMFk/NTFk
°



NMF£%: true matrix factors

X=WXxH
[20 x 5] = [20 x 2] X [2 x 5]

X - matrix

x [

W - ( ) matrix

Il
™" "Hl =

NMFk/NTFk
°



NMFE%: true data matrix

X=WXxH
[20 x 5] = [20 x ?] X [? x 5]

=100

= number of features

(2 or more)

= matrix elements of W and H

(50 or more)

NMFk/NTFk
°



NMFZ%: true vs. estimated matrix factorization

NMFk/NTFk
°



Tensor Decomposition (3D case): Rank-1 tensor

X |%
(K, M, NJ 1, M]

NMFk/NTFk
°



Tensor Decomposition (3D case): Rank-4 tensor

H

k, K]

% i LITTTITIT]
D [k,%

[k, k, K]

XcDQHIWV

v
[k, M]

NMFk/NTFk
°




Tensor Decomposition (3D case): Rank-64 / Multirank-(4,4 4) tensor

ﬁﬂ

G
k]

44
[k, N

=
ks

X~GQHIWRV

v
[k, M]

NMFK/NTFk
(]




Tucker Tensor Decomposition (3D case): Rank-7 Multirank-(3,3,4)

[K

[k, k, ]

[, N]

XcDQHIWV

NMFk/NTFk
°



NMF% / NTFk Analyses

> :
» Contamination > :
» Climate » LANSCE: Los Alamos Neutron
» Geothermal Accelerator
» Seismic » Oil/gas production
» Qil/gas production > :

> : » Reactive mixing A+ B — C
» X-ray Spectroscopy » Phase separation of co-polymers
» UV Fluorescence Spectroscopy » Molecular Dynamics of proteins
» Microbial population analyses » Climate modeling
» |sotope fractionation

NMFk/NTFk
.



Oil/Gas Production

N -

» Oil/Gas production from unconventional Y e

reservoirs extracts a small portion of the rsfé\"J
a

available resources (<10%) §L—~xﬁ il |
. A . R i ~—Proppant 2 Frr(v;'uerar.:‘s;:h
» Oil/Gas production is challenging to -

predict and optimize S

_MNext o 11l
M i — Wellbore

ﬁaﬁm?
T 1
oy &e=m

» Physics processes during well
development (including hydrofracking)
and extraction are poorly understood
and challenging to simulate

» Alternative is to learn to predict system
behavior based on the observed oil/gas
production at existing wells

ML for Oil/Gas
[ ]



QOil/Gas Production Data
=

Texas

Active Oil and Gas Wells
Surface Wellbores
January 2018

» Large public datasets are available
representing unconventional oil and gas
production (U.S. and world wide)

» Data represent monthly production
rates (oil, gas, water) + many other well
attributes

> ~ 2,000,000 wells in U.S.
» > 300,000 wells in Texas
» > 20,000 wells in Eagle Ford Shale Play

» 327 gas wells in Eagle Ford Shale Play
selected for preliminary analyses

ML for Oil/Gas
L]




Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells

1.0x10°

5.0x10°

2004 2006 2008

ML for Oil/Gas
[ ]




ML analysis of Oil/Gas Production Data

» Use all the data up to a given cutoff date (e.g. 2015)

» Apply ML to learn behavior of the “known® well transients
e |dentify and group wells which behave similarly (having similar production
transients)

e Discover the optimal number of required to represent
the observed transients
° = production or
» Apply ML to predict the unknown production transients beyond the cutoff

» Prediction is obtained by discovering to which type (group) the wells producing beyond
the cutoff belong

» i.e., discovering what combinations of the can represent the
wells producing beyond the cutoff

» ML analyses performed using /

ML for Oil/Gas
o



Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells

1.0x10°

5.0x10°

2004 2006 2008

ML for Oil/Gas
[ ]




Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells

1.0x10°

5.0x10°

 —

=
O = = > ©c 5 O a9 B > 0 O = = > c©c 5 O a9 B > 0
o8 2 T 5 2 5 0o R &0 o o8 2 ¥ S5 3 5 o R 0 0
r=<s>S"2w O =znAa r=<s>=>"2w0=zanAa

Jan 2015

ML for Oil/Gas
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Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells

1.0x10°

100

ML for Oil/Gas
[ ]



Eagle Ford Shale Play: Wells split into 2 groups

(135) (192)

8.0x10° 8.0x10°
6.0x10° 6.0x10°
4.0x10°

4.0x10°

2.0x10° 2.0x10°

ML for Oil/Gas
L]



Eagle Ford Shale Play: Master Decline Curves [over months]

4.0x107
3.0x107
Signal 1
2.0x107 :S:g:; 2
1.0x107
0
0 50 100 150

ML for Oil/Gas
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Well 4247942412 : 2015-2016
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Well 4247942666 : 2015-2016
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Shale Play: Blind predicti

Well 4247940978 : 2015-2016

1.0x10°
u Predicton 2180000
Tth 1820000
5.0x10*
0
o1 2012 2013 2014 2015 2016
Well 4212332547 : 2015-2016
6.0x10*
4.0x10*
= Predicton 2210000
= Truth 190000.0
2.0x10*
0
2013 2014 2015 2016

Well 4247940815 : 2015-2016

1.5x10°
1.0x10°
u Predicton 5800000
= Truth 711000.0
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0
2010 2011 2012 2013 2014 2015 2016
Well 4247941283 : 2015-2016
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Eagle Ford Shale Play: Wells split into 2 groups

Monthly rate histograms
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(192)
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Eagle Ford Shale Play: Wells split into 2 groups

» Other well attributes also differ between the 2 groups
» For example:

e QOperators

e Proppant mass

e Injected fluid volumes

[}

ML for Oil/Gas
[ ]



Eagle Ford Shale Play: Blind predictions beyond 2015

8.0x10°

6.0x10°

» 300 wells continue producing beyond § 4.0x10°
2015 £
> 2 =0.96

2.0x10°

0 2.0x10° 4.0x10° 6.0x10° 8.0x10°

Truth

ML for Oil/Gas
L]



» Developed unsupervised and AL
physics-informed ML methods and )
computational tools

» Some of our tools have been recently l

patented Robust Unsupervised
» Our ML methods have been used to Machine Learning
solve various real-world problems Sensor data = \ Experimentaldata
(brought breakthrough discoveries W .
related to human cancer research)

» Several ongoing projects (DOE, ARAP
E,..)

Summary
L]




Machine Learning (ML) Algorithms / Codes developed by our team

» Codes:
NMFE MADS NTFk

MFk M/ a] %

» Examples:
http://madsjulia.github.io/Mads.jl/Examples/blind_source_separation
http://tensors.lanl.gov
http://tensordecompositions.github.io
https://github.com/TensorDecompositions
httPs://hub.docker.com/u/montyvesselinov

Summary
[ ]



http://madsjulia.github.io/Mads.jl/Examples/blind_source_separation
http://tensors.lanl.gov
http://tensordecompositions.github.io
https://github.com/TensorDecompositions
https://hub.docker.com/u/montyvesselinov

Recent ML Publications

» Vesselinov, Munuduru, Karra, O’Maley, Alexandrov, Unsupervised Machine Learning
Based on Non-Negative Tensor Factorization for Analyzing Reactive-Mixing,
, Special issue: Machine Learning, 2019.
» Stanev, Vesselinov, Kusne, Antoszewski, Takeuchi, Alexandrov, Unsupervised Phase
Mapping of X-ray Diffraction Data by Nonnegative Matrix Factorization Integrated with

Custom Clustering, , 2018.

» Vesselinov, O’'Malley, Alexandrov, Nonnegative Tensor Factorization for Contaminant
Source Identification, , 2018.

» O’Malley, Vesselinov, Alexandrov, Alexandrov, Nonnegative/binary matrix factorization
with a D-Wave quantum annealer, , 2018.

» Vesselinov, O’Malley, Alexandrov, Contaminant source identification using
semi-supervised machine learning, , 2017.

» Alexandrov, Vesselinov, Blind source separation for groundwater level analysis based
on nonnegative matrix factorization, ,2014.

Summary
[ ]
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