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Machine Learning (ML) methods

I Supervised ML: learns everything from data
⇒ requires big training datasets
⇒ highly impacted by noise

I Physics-informed ML: learns from data but includes preconceived knowledge about
the governing processes
⇒ requires smaller training datasets
⇒ produces better predictability with lower uncertainty
⇒ robust to data noise

I Unsupervised ML: extracts features from data that can be applied for categorization
and prediction
⇒ unbiased analyses not impacted by data labeling, subject-matter-expert opinions,
and physics assumptions⇒ however, physics constraints can be added

ML PIML NMFk/NTFk ML for Oil/Gas Summary



Machine Learning (ML) methods

I Supervised ML: learns everything from data
⇒ requires big training datasets
⇒ highly impacted by noise

I Physics-informed ML: learns from data but includes preconceived knowledge about
the governing processes
⇒ requires smaller training datasets
⇒ produces better predictability with lower uncertainty
⇒ robust to data noise

I Unsupervised ML: extracts features from data that can be applied for categorization
and prediction
⇒ unbiased analyses not impacted by data labeling, subject-matter-expert opinions,
and physics assumptions⇒ however, physics constraints can be added

ML PIML NMFk/NTFk ML for Oil/Gas Summary



Machine Learning (ML) methods

I Supervised ML: learns everything from data
⇒ requires big training datasets
⇒ highly impacted by noise

I Physics-informed ML: learns from data but includes preconceived knowledge about
the governing processes
⇒ requires smaller training datasets
⇒ produces better predictability with lower uncertainty
⇒ robust to data noise

I Unsupervised ML: extracts features from data that can be applied for categorization
and prediction
⇒ unbiased analyses not impacted by data labeling, subject-matter-expert opinions,
and physics assumptions⇒ however, physics constraints can be added

ML PIML NMFk/NTFk ML for Oil/Gas Summary



Why unsupervised Machine Learning (ML)?

I Supervised ML: requires “labeling” (prior categorization (knowledge) about the
processed data)
Example: Recognizes images of cats and dogs after extensive training; but cannot
recognize horses if not trained
Cannot discover something that we do not know already

I Unsupervised ML: extracts hidden features (signals) in the processed data without
any prior information (exploratory analysis; data-driven science)
Example: Identifies features that distinguish images of animals (e.g., cats, dogs,
horses, etc.)
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Why not supervised Machine Learning (ML)

I Supervised ML
I introduces subjectivity (through the labeling process)
I does not provide insights why horses are different from dogs / cats
I cannot make predictions (that we do not know already)
I requires huge training (labeled) datasets
I we do not know why it works
I is impacted by “adversarial examples”

⇒ major limitations of the supervised ML methods for science applications
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Unsupervised Machine Learning Applications: Data Analytics / Model Diagnostics

I Feature extraction (FE)
I Blind source separation (BSS)
I Detection of disruptions / anomalies
I Image recognition
I Separate physics processes
I Discover unknown dependencies and phenomena
I Develop reduced-order/surrogate models
I Identify dependencies between model inputs and outputs
I Guide development of physics models representing the data
I Make predictions
I Optimize data acquisition
I “Label” datasets for supervised ML analyses
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Nonnegative Matrix/Tensor Factorization

I Novel LANL-patented, open-source, unsupervised Machine Learning (ML) methods
and computational techniques

I Based in matrix/tensor factorization coupled with custom k-means clustering and
nonnegativity/sparsity constraints:
• NMFk: Nonnegative Matrix Factorization
• NTFk: Nonnegative Tensor Factorization
• https://github.com/TensorDecompositions

I Capable to efficiently process large datasets (TB’s) utilizing GPU’s, TPU’s & FPGA’s

⇒ , Flux.jl, AutoOffLoad.jl, TensorFlow, PyTorch, MXNet
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Why nonnegativity?

I NMF vs PCA (Lee &
Seung, 1999)

I NMF: Nonnegative
Matrix Factorization

I PCA: Principal
Component Analysis

Nonnegativity constraints provide meaningful and interpretable results (+sparsity)
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Why tensors?

I Tensors (multi-dimensional/multi-modal/multi-way datasets) are everywhere:

I observational data are typically a 5-D tensor (x, y, z, t, attributes)

I model outputs are typically a 5-D tensor (x, y, z, t, attributes)

I data dependency to N parameters will form a (N + 5)-D tensor
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NMF: Nonnegative Matrix Factorization
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NTF: Nonnegative Tensor Factorization

ML PIML NMFk/NTFk ML for Oil/Gas Summary



Physics-Informed Machine Learning
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Physics-Informed Machine Learning
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Science research paradigms

I Empirical: observations and
experiments (since the cradle of our
civilization)

I Theoretical: generalizations and
models (since 1600’s)

I Computational: analytical and
numerical simulations (since 1950’s)

I Data-exploration: unify data,
simulations, and theory (since 2000’s)
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Traditional Machine Learning Neural Networks

I it is a black box, ad hoc approach

I no preconceived knowledge about analyzed problem (general)

I all the neurons are relu(Ax+ b); A and b have no physical meaning;
relu() does not impose physics constraints

I neural networks needs to be very deep and wide to represent complex physics
ML PIML NMFk/NTFk ML for Oil/Gas Summary



Physics-Informed Machine Learning Neural Networks

I include preconceived knowledge about analyzed problem (problem specific)

I neurons can represent PhysicsModel(Ax+ b); A and b have physical interpretation;
PhysicsModel() imposes physics constraints (e.g. conservation of mass/species)

I PIML models can be trained (optimized) faster and with less training data
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Physics-Informed Machine Learning Neural Networks

I physics-informed layers (“fat” neurons) capture important governing processes (e.g.,
flow, stress, deformation, and displacement)

I can be done efficiently only through differentiable programming in
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Physics-Informed Machine Learning (PIML): Cartpole
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NMFk: data matrix

X
[20× 5]

X – data matrix
[attributes × observations]
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NMFk: matrix factorization

X = W ×H
[20× 5] = [20× 2]× [2× 5]

X – data matrix
[attributes × observations]

W – feature (signal) matrix
[attributes × features]

H – mixing matrix
[features × observations]
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NMFk: true matrix factors

X = W ×H
[20× 5] = [20× 2]× [2× 5]

X – data matrix
[attributes × observations]

W – feature (signal) matrix
[attributes × features]

H – mixing matrix
[features × observations]

ML PIML NMFk/NTFk ML for Oil/Gas Summary



NMFk: true data matrix

X = W ×H
[20× 5] = [20× ?]× [?× 5]

⇒ 100 knowns

⇒ unknown number of features
(2 or more)

⇒ unknown matrix elements of W and H
(50 or more)
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NMFk: true vs. estimated matrix factorization
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Tensor Decomposition (3D case): Rank-1 tensor

≈

X
[K,M,N ]

λ

H
[1, K]

W
[1, N ]

V
[1,M ]

X ≈ λ(H ⊗W ⊗ V )
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Tensor Decomposition (3D case): Rank-4 tensor

≈

X
[K,M,N ]

D
[k, k, k]

H
[k,K]

W
[k,N ]

V
[k,M ]

X ≈ D ⊗H ⊗W ⊗ V
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Tensor Decomposition (3D case): Rank-64 / Multirank-(4,4,4) tensor

≈

X
[K,M,N ]

G
[k, k, k]

H
[k,K]

W
[k,N ]

V
[k,M ]

X ≈ G⊗H ⊗W ⊗ V
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Tucker Tensor Decomposition (3D case): Rank-7 Multirank-(3,3,4)

≈

X
[K,M,N ]

D
[k, k, k]

H
[k,K]

W
[k,N ]

V
[k,M ]

X ≈ D ⊗H ⊗W ⊗ V
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NMFk / NTFk Analyses

I Field Data:
I Contamination
I Climate
I Geothermal
I Seismic
I Oil/gas production

I Lab Data:
I X-ray Spectroscopy
I UV Fluorescence Spectroscopy
I Microbial population analyses
I Isotope fractionation

I Operational Data:
I LANSCE: Los Alamos Neutron

Accelerator
I Oil/gas production

I Model Outputs:
I Reactive mixing A+B → C
I Phase separation of co-polymers
I Molecular Dynamics of proteins
I Climate modeling
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Oil/Gas Production

I Oil/Gas production from unconventional
reservoirs extracts a small portion of the
available resources (<10%)

I Oil/Gas production is challenging to
predict and optimize

I Physics processes during well
development (including hydrofracking)
and extraction are poorly understood
and challenging to simulate

I Alternative is to learn to predict system
behavior based on the observed oil/gas
production at existing wells
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Oil/Gas Production Data

I Large public datasets are available
representing unconventional oil and gas
production (U.S. and world wide)

I Data represent monthly production
rates (oil, gas, water) + many other well
attributes

I ∼ 2,000,000 wells in U.S.

I > 300,000 wells in Texas

I > 20,000 wells in Eagle Ford Shale Play

I 327 gas wells in Eagle Ford Shale Play
selected for preliminary analyses
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Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells
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ML analysis of Oil/Gas Production Data

I Use all the data up to a given cutoff date (e.g. 2015)

I Apply ML to learn behavior of the “known“ well transients
• Identify and group wells which behave similarly (having similar production

transients)
• Discover the optimal number of master decline curves required to represent

the observed transients
• master decline curves = production features or signatures

I Apply ML to predict blindly the unknown production transients beyond the cutoff

I Prediction is obtained by discovering to which type (group) the wells producing beyond
the cutoff belong

I i.e., discovering what combinations of the master decline curves can represent the
wells producing beyond the cutoff

I ML analyses performed using NMFk/NTFk
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Eagle Ford Shale Play: Monthly production volumes [MCF] of 327 gas wells
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Eagle Ford Shale Play: Wells split into 2 groups

‘Fast” declining (135) ‘Slow” declining (192)
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Eagle Ford Shale Play: Master Decline Curves [over months]
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Eagle Ford Shale Play: Blind predictions beyond 2015
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Eagle Ford Shale Play: Blind predictions beyond 2015
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Eagle Ford Shale Play: Wells split into 2 groups

Monthly rate histograms

‘Fast” declining (135) ‘Slow” declining (192)
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Eagle Ford Shale Play: Wells split into 2 groups

Drilling date histograms

‘Fast” declining (135) ‘Slow” declining (192)
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Eagle Ford Shale Play: Wells split into 2 groups

I Other well attributes also differ between the 2 groups
I For example:

• Operators
• Proppant mass
• Injected fluid volumes
• ...
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Eagle Ford Shale Play: Blind predictions beyond 2015

I 300 wells continue producing beyond
2015

I r2 = 0.96

ML PIML NMFk/NTFk ML for Oil/Gas Summary



Summary

I Developed novel unsupervised and
physics-informed ML methods and
computational tools

I Some of our tools have been recently
patented

I Our ML methods have been used to
solve various real-world problems
(brought breakthrough discoveries
related to human cancer research)

I Several ongoing projects (DOE, ARAP
E, ...)

Model data

Sensor data Experimental data

Robust Unsupervised
Machine Learning
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Machine Learning (ML) Algorithms / Codes developed by our team

I Codes:
NMFk MADS NTFk

I Examples:
http://madsjulia.github.io/Mads.jl/Examples/blind_source_separation
http://tensors.lanl.gov
http://tensordecompositions.github.io
https://github.com/TensorDecompositions
https://hub.docker.com/u/montyvesselinov
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Recent ML Publications

I Vesselinov, Munuduru, Karra, O’Maley, Alexandrov, Unsupervised Machine Learning
Based on Non-Negative Tensor Factorization for Analyzing Reactive-Mixing, Journal of
Computational Physics, Special issue: Machine Learning, 2019.

I Stanev, Vesselinov, Kusne, Antoszewski, Takeuchi, Alexandrov, Unsupervised Phase
Mapping of X-ray Diffraction Data by Nonnegative Matrix Factorization Integrated with
Custom Clustering, Nature Computational Materials, 2018.

I Vesselinov, O’Malley, Alexandrov, Nonnegative Tensor Factorization for Contaminant
Source Identification, Journal of Contaminant Hydrology, 2018.

I O’Malley, Vesselinov, Alexandrov, Alexandrov, Nonnegative/binary matrix factorization
with a D-Wave quantum annealer, PLOS ONE, 2018.

I Vesselinov, O’Malley, Alexandrov, Contaminant source identification using
semi-supervised machine learning, Journal of Contaminant Hydrology, 2017.

I Alexandrov, Vesselinov, Blind source separation for groundwater level analysis based
on nonnegative matrix factorization, WRR, 2014.
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