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Method of lines

A popular approach for the discretization of
the unsteady incompressible Navier-Stokes
equations Iis

|. Consistently stabilized finite elements for
the spatial discretization (Hughes et. al.)

2. Finite difference in time (backward Euler,
Crank-Nicolson)




Small time step issues

Recent papers indicate that small time steps
(relative to the square of the mesh size) give rise to
poor pressure approximations

I. On inf-sup stabilized finite element methods for

transient problems, Bochev, Gunzburger and
Shadid, CMAME 2004

2. On stabilized finite element methods for transient

broblems with varying time scales, Bochey,
Gunzburger, and Lehoucq, Proceedings ECOMASS
2004




Summary of new work

® Previous two papers focused on the fully
discrete equations

|. Sufficiency of a lower bound on the time step

® Present work focuses on the semi-discrete
equations

|. Source of the problem is that the semi-
discrete pressure operator is unstable

2. Lower bound on the time step is also
necessary

3. Sufficiently large time step stabilizes the fully
discrete pressure equation




Why small time steps?

® Multi-physics computations. For example, in
reacting flow simulations (MPSalsa, Shadid et
al) chemistry demands small time steps.

Low order finite difference in time
combined with quadratic and higher order
finite element methods

Because the pressure operator instability is
intrinsic, incompressible Stokes flow is all we
need consider




Overview

Consistently stabilized methods

Motivating examples
Semi-discrete pressure operator and analysis
fully discrete pressure operator and analysis

conclusion




Unsteady Stokes

in Qx(0,7T)
in Qx(0,7T)
on T x(0,7)
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Semi-discretization
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Semi-discretization

M

wn(x,t) = ) U;(0E7 (%), palxt) = 3 Pi(t)x;(x),

Span{¢;};L, =V, C Hy(Q), Span{x}}iL, = Pn C Lj(Q)
up(,t) € Vi, pu(-,t) € Py
(an(,t),vi) + G({un (1), pa (- )} {vh, an}) (£(-,2), vn)
(un(:,0),va) (1o, Vi)
V(Vh,qn) € Vi X P, VYVt e (0,T)

G({wn, pr} v, an}) = (Vup, Vvy) — (pr, V- vi) — (qn, V - up,)




Index 2 differential algebraic equation

() ) )= ()

Aj = (V«S?,V«S?), Bi; = —(Xh V- fh)
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inf-sup compatibility

V - v .
inf sup 4n, V- v") =Kp > Ky >0,
Qheph7Qh7éO vhevh,vh;éO HV]’LH:[HQI’LHO




inf-sup compatibility
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inf sup 4n, V- v") =Kp > Ky >0,
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inf-sup compatibility

V - v .
inf sup 4n, V- v") =Kp > Ky >0,
Qheph7Qh7éO vhevh,vh;éO HV]’LH:[HQI’LHO

) . ZTBA™'BTZ
K3 = Mmin

Z Z™,Z

(M) = (xI', x})

rules out equal order interpolation on the same mesh




Consistently stabilized methods

Residual stabilization enables equal order polynomial
interpolation for velocity and pressure

( t), 00 ()} AVhs an}) — (£( 1), va)
Auh( )—|—Vph( ) f( ) ’yAVh—I—VC]h),C:O

/

stabilization parameter test function
0 pressure-Poisson

—1 Galerkin least-squares
1 Douglas-VWang

momentum residual




Recall the sufficient condition

On inf-sup stabilized finite element methods for
transient problems, Bocheyv, Gunzburger and Shadid,
CMAME 2004 demonstrated that a sufficient

condition was

At > §h? 7 = 0h° stabilization parameter

Again, we’'ll show that this is also necessary and so
there is a lower bound on the time step




2D pressure plots

® Uniform grid on the unit square

® 200 triangles (121 vertices)

® Cubic nodal elements for the velocity and pressure

~ By

oY
u = ( 8@ ) p(z,y) = 2°(1 — x)° sin?(my)

p(x,y) = sin(x) cos(y) + (cos(1) — 1) sin(1)




Taylor-Hood At =10"2,10"%10"°,10"°

Taylor-Hood; dt=0.001 Taylor-Hood; dt=0.0001

Taylor-Hood; dt=0.00001 Taylor-Hood; dt=0.000001




Presssure-Poisson stabilized
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Presssure-Poisson bilized
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Presssure-Poisson stabilize
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Presssure-Poisson stab
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Index | differential algebraic equation

Consider the pressure-Poisson case 7 = dh?

(M0)e( e B)(U)-(5)

Semi-discrete pressure operator
(K-BM 'B")P=G-BM 'F+ GIB% +S+ BM‘1A> U.




Theorem

(1 — )QTKQ <Q"(K-BM'B")Q VvVQeRY

:umax

) QTBM—lBTQ
— IMNax

We also have an upper bound (see paper) but let’s
keep things simple




Previous work and our contribution

® Codina,Vazquez, and Zienkiewicz, ||NMF
| 998 demonstrate that the semi-discrete
pressure operator is positive semi-definite

® We refine this result to show that the
eigenvalues (Rayleigh-quotients) are within
the unit interval and provide a variational
characterization




Variational characterization of
the smallest and largest singular

Nmaw -

(VQha Vh)

sup sup = maxX max

QTBV

qh€Ph, qn#0 VR E€Vh, ViR#0 ‘Qh‘lehHO QERM VeRWV ‘

Q% = Q"KQ,

v

Vil @llx
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Variational characterization of
the smallest and largest singular

X = sup sup (th,vh) — maxX max QTBV
e ahEPr, an#0 VRLEV, ViR F#O |Qh|1||VhHO QERM VeRN ‘VHMHQHK

1QIZ = QTKQ, V|3 =VIMV

The norms are reversed
with respect to the
inf-sup stability constant
associated with Stokes!

(Qha V ) Vh)
[vrllillanllo




Sharp estimates on the unit square

1 —wh+ O(h*) < fimaz < 1

(

3 @~@ linear element

4

= @:-@Q: quadratic element

0 - cubic element

> QT(K-BM 'B")Q < (2wh + O(h*))Q'KQ




Recall the semi-discrete pressure
operator (pressure-Poisson case)

1
(K—BM 'B')P=G—-BM 'F+ (—B +S+ BM—1A> U.
T

Unstable! The smallest eigenvalue

_ 2
goes to zero as the mesh size does! T = 0h




Recall the semi-discrete pressure
operator (pressure-Poisson case)

1
(K—BM 'B')P=G—-BM 'F+ <—IPB +S+ BM—1A> U.
T

Unstable! The smallest eigenvalue

_ 2
goes to zero as the mesh size does! T = 0h

origin of the time step restriction
At > ah’




Fully discrete equations (backward
Euler)

M + AtA AtBT Ut (M
(T —At)B —7AtS TAtK prrt o) B




Fully discrete equations (backward
Euler)

M + AtA AtBT Ut N (M 0 U* AL Pkt
(1 —AH)B — 7AtS TAIK P )\ B 0 P* TGrT

1
(K+NB") P! = [K (NM + IB%) U* + NF* + Gk“]

NB! = (AtS - (g = 1)183) (M + AtA) B

T




Theorem

Q" (K+NB")Q =Q" (K + (% —~ 1) (BM~'B" + O(At))) Q + O(At)

1 At
Q" (K+NB')Q > S min{l,a}|Qk,  — >a>0
.

At

T

K + NB! — K — BM'B?




Velocity approximation when
using backward Euler

UM =U" + O(At)

Hence, no problems over one time step




Differential algebraic equations
associated with the other approaches

(M +~47C)U + A—~yrD B +~47ST U\ ( F+ytH
TBU —B—7S 7K P ) G

oK (€0), Duor (o), an-r E (10d),
KKeTy, KeTy, KeTy,
0 pressure-Poisson
—1 Galerkin least-squares 7 = dh”

1 Douglas-Wang




Theorems

~1pT general semi-discrete

K — (B +77S)(M +~7C) pressure operator

T =6h%, ~v=0,=+1

K—B+~yrS) M+ ~7C) " 'B! ~K - BM 'B

e Galerkin least-squares and Douglas-VVang are
equivalent to Pressure-Poisson stabilization
* We have explicit equivalency constants (see paper)




Selecting the time step in practice

At>C¥h2 T:5h2

Co O
c1h” = ca(At)? — A" = §(5)8(5h2)8

Roughly, the order of the time integrator needs
to be twice the order of the finite elements




Conclusions

® | ower bound on the time step is necessary
® |[f this is an issue
. use space-time formulation

. stable element pairing (mixed order
interpolation)

. hon residual based stabilization method

® Connection with pressure projection methods
(didn’t discuss)




For more details, see On stabilized
finite element for the Stokes

pbroblem in the small time step
limit, under revision for |JNMF

Pavel Bochev, Max Gunzburger and Rich Lehoucq




