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Method of lines  
A popular approach for the discretization of 
the unsteady incompressible Navier-Stokes 
equations is

1. Consistently stabilized finite elements for 
the spatial discretization (Hughes et. al.)

2. Finite difference in time (backward Euler, 
Crank-Nicolson) 



Small time step issues
Recent papers indicate that small time steps 
(relative to the square of the mesh size) give rise to 
poor pressure approximations

1. On inf-sup stabilized finite element methods for 
transient problems, Bochev, Gunzburger and 
Shadid, CMAME 2004

2. On stabilized finite element methods for transient 
problems with varying time scales, Bochev, 
Gunzburger, and Lehoucq, Proceedings ECOMASS 
2004



• Previous two papers focused on the fully 
discrete equations

1. Sufficiency of a lower bound on the time step 

• Present work focuses on the semi-discrete 
equations 

1. Source of the problem is that the semi-
discrete pressure operator is unstable

2. Lower bound on the time step is also 
necessary

3. Sufficiently large time step stabilizes the fully 
discrete pressure equation

Summary of new work



Why small time steps?

• Multi-physics computations. For example, in 
reacting flow simulations (MPSalsa, Shadid et 
al) chemistry demands small time steps.

• Low order finite difference in time 
combined with quadratic and higher order 
finite element methods

• Because the pressure operator instability is 
intrinsic, incompressible Stokes flow is all we 
need consider



Overview

• Consistently stabilized methods

• Motivating examples

• Semi-discrete pressure operator and analysis

• fully discrete pressure operator and analysis

• conclusion
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structures and local mass conservation. As an additional benefit, stabilization often leads to
linear systems that are easier to solve, relative to (5), by iterative methods; see [2].

In this paper we consider only consistently stabilized methods for (1); these are formulations
that are exactly satisfied by the solutions of the Stokes problem (1). They are also the ones
that are in most common use because they retain the formal approximation order of (2).
Consistently stabilized methods have the following general form: seek (uh, ph) ∈ Vh×Ph such
that

G({uh, ph}, {vh, qh}) + 〈Rm(uh, ph),Wm(vh, qh)〉m
+ 〈Rc(uh, ph),Wc(vh, qh)〉c = (f ,vh) (8)

for all (vh, qh) ∈ Vh × Ph, where

Rm(uh, ph)
∣∣∣
K

= −&uh +∇ph − f and Rc(uh, ph)
∣∣∣
K

= ∇ · uh

are element residuals of the Stokes equations (1), Wm(vh, qh) and Wc(vh, qh) are weighting
functions, and 〈·, ·〉m and 〈·, ·〉c are discrete inner products. To avoid technical complications
that are irrelevant to our study, in what follows we restrict attention to equal order C0 velocity-
pressure pairs. A common choice for such pairs is to set

Wc(vh, qh) = 0, Wm(vh, qh) = γ&vh −∇qh, and 〈uh,vh〉m =
∑

K∈Th

τK(uh,vh)K ,

where γ can take on the values ±1 or 0 and τK are positive, real stabilization parameters.
Noting that 〈·, ·〉m is a “broken” L2 inner product (broken into a sum of inner products over
the individual elements), the weak equation (8) takes the form: seek (uh, ph) ∈ Vh × Ph such
that

G
(
{uh, ph}, {vh, qh}

)
−

∑

K∈Th

τK (−&uh +∇ph − f ,−γ&vh +∇qh)K = (f ,vh) (9)

for all (vh, qh) ∈ Vh × Ph. For γ = 1, 0,−1, the method (9) is respectively known as the
Galerkin-least-squares [25], the pressure-Poisson stabilized Galerkin [26], and the Douglas-
Wang [18] method; see [2] for a review. A standard choice of stabilization parameters is

τK = δh2
K , (10)

where hK is a measure of the element size and δ > 0 is a real parameter that is independent
of hK but whose values may be restricted in order to guarantee the stability of the discrete
problem (9); see [2, 20].

3. Stabilized semi-discrete formulations of the unsteady Stokes equations

The time-dependent Stokes equations are given by

∂u
∂t

−&u +∇p = f in Ω× (0, T )
∇ · u = 0 in Ω× (0, T )

u = 0 on Γ× (0, T )
u|t=0 = u0 in Ω

(11)
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Semi-discretization
ON STABILIZED METHODS IN THE SMALL TIME STEP LIMIT 1

uh(x, t) =
N∑

j=1

Uj(t)ξh
j (x), ph(x, t) =

M∑

j=1

Pj(t)χh
j (x),

Span{ξh
i }N

i=1 ≡ Vh ⊂ H1
0(Ω), Span{χh

i }N
i=1 ≡ Ph ⊂ L2

0(Ω)

uh(·, t) ∈ Vh, ph(·, t) ∈ Ph

(u̇h(·, t),vh) + G
(
{uh(·, t), ph(·, t)}, {vh, qh}

)
= (f(·, t),vh)

(uh(·, 0),vh) = (u0,vh)

∀(vh, qh) ∈ Vh × Ph, ∀t ∈ (0, T )

G
(
{uh, ph}, {vh, qh}

)
= (∇uh,∇vh)− (ph,∇ · vh)− (qh,∇ · uh)

inf
qh∈Ph, qh "=0

sup
vh∈Vh, vh "=0

(qh,∇ · vh)
‖vh‖1‖qh‖0

= κh ≥ κmin
h > 0 ,

κ2
h = min

z

zT BA−1BT z
zT Mpz

, (Mp)ij = (χh
i ,χh

j )

−
∑

K∈Th

τ (u̇h(·, t)−*uh(·, t) +∇ph(·, t)− f(·, t),−γ*vh +∇qh)K

(
M U̇

0

)
+

(
A BT

B 0

) (
U
P

)
=

(
F
0

)

Aij = (∇ξh
i ,∇ξh

j ), Bij = −(χh
i ,∇ · ξh

j ) Mij = (ξh
i , ξh

j ), Fi = (f , ξh
i )

(
M U̇
τB U̇

)
+

(
A BT

−B− τS τK

) (
U
P

)
=

(
F
τG

)

Kij = (∇χh
j ,∇χh

i ), Sij = (∆ξh
j ,∇χh

i ), Gi = (f ,∇ξh
i ).

(
K− BM−1BT

)
P = G− BM−1F +

(
1
τ

B + S + BM−1A
)

U.

Theorem 1.

QT
(
K− BM−1BT

)
Q ≤ (1− µ2

min)‖Q‖2K ∀Q ∈ (Ker(BT ))⊥

QT
(
K− BM−1BT

)
Q ≥ (1− µ2

max)‖Q‖2K ∀Q ∈ RM ,

0 < µ2
min ≤ µ2

max ≤ 1 .

BM−1BT Q = KQµ2 .
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Index 2 differential algebraic equation

ON STABILIZED METHODS IN THE SMALL TIME STEP LIMIT 1
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inf-sup compatibility

inf
qh∈Ph, qh "=0

sup
vh∈Vh, vh "=0

(qh,∇ · vh)

‖vh‖1‖qh‖0

= κh ≥ κ
min
h > 0 ,
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(qh,∇ · vh)
‖vh‖1‖qh‖0

= κh ≥ κmin
h > 0

κ2
h = min

Z

ZT BA−1BT Z

ZT MpZ
, (Mp)ij = (χh

i ,χh
j )

−
∑

K∈Th

τ (u̇h(·, t)−"uh(·, t) +∇ph(·, t)− f(·, t),−γ"vh +∇qh)K
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γ = −1
γ = 1

(
M U̇

0

)
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(
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B 0
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P
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(
F
0
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U
P
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=
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F
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Kij = (∇χh
j ,∇χh

i ), Sij = (∆ξh
j ,∇χh

i ), Gi = (f ,∇ξh
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(
K− BM−1BT

)
P = G− BM−1F +

(
1
τ

B + S + BM−1A
)

U
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Consistently stabilized methods

Residual stabilization enables equal order polynomial 
interpolation for velocity and pressure 
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This results in the following modified semi-discrete equation: seek uh(·, t) ∈ Vh and ph(·, t) ∈ Ph

such that (??) and

(u̇h(·, t),vh) + G
(
{uh(·, t), ph(·, t)}, {vh, qh}

)
− (f(·, t),vh)

−
∑

K∈Th

τK (u̇h(·, t)−#uh(·, t) +∇ph(·, t)− f(·, t),−γ#vh +∇qh)K = 0 (18)

hold for all (vh, qh) ∈ Vh × Ph and t ∈ (0, T ). The modified problem (??) is consistent in
the sense that any sufficiently smooth solution (u(x, t), p(x, t)) of (??) satisfies (??). The
consistency requirement is fulfilled by the inclusion of the weighted time derivative term

−
∑

K∈Th

τK (u̇h,−γ#vh +∇qh)K (19)

in (??). Our main concern, however, lies with the well-posedness of this equation. While

−
∑

K∈Th

τK (−#uh +∇ph − f ,−γ#vh +∇qh)K (20)

contributes the same terms that were sufficient to stabilize the steady mixed Galerkin equation
(??), it is not clear whether or not the combination of (??) and (??) makes the modified semi-
discrete equation (??) uniformly stable with respect to h.

Our studies in [?, ?] suggest that (??) may not be well-behaved. We found that the fully-
discrete equations become unstable when the time step ∆t is sufficiently small compared to
the mesh size h. However, analyses based on the fully-discrete problem only allowed us to
show that ∆t > αh2, where α is sufficiently large, is a sufficient stability condition. In this
paper, we take a different approach and base our analysis on the semi-discrete problem. We
are motivated by the fact that in the limit ∆t → 0, a fully-discrete formulation approaches
(??). Therefore, stability problems observed through the fully-discrete equations at the small
time step limit may in fact be due to the inherent instability of (??) itself.

4. Motivating computational experiments

We now provide a sample of the experiments that motivated us to consider the behavior of
stabilized finite element methods for the unsteady Stokes equations in the small time step
limit. We plot the pressure field obtained after a single step of the backward-Euler method
applied to (??) with γ = 0, i.e., we consider the extension of the Pressure-Poisson stabilization
to the time-dependent setting. The initial data u0 and source term f are generated by the time
independent exact solution

u =

(
sin(πx− 0.7) sin(πy + 0.2)
cos(πx− 0.7) cos(πy + 0.2)

)
and p = sin(x) cos(y) + (cos(1)− 1) sin(1) . (21)

If (uh, ph) is a solution of the steady state stabilized Stokes problem (??) with γ = 0, then
(uh, ph) is also a solution of the fully discrete problem obtained from (??) (with the same value
of γ). Therefore, if u0

h is computed by (??), after one time step, the unsteady approximation
(u1

h, p1
h) is an O(∆t) perturbation of the steady state solution (uh, ph). Thus, for small ∆t,
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2D pressure plots

• Uniform grid on the unit square

• 200 triangles (121 vertices)

• Cubic nodal elements for the velocity and pressure
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Consider the pressure-Poisson case
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= (∇uh,∇vh)− (ph,∇ · vh)− (qh,∇ · uh)
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=
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We also have an upper bound (see paper) but let’s
keep things simple
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max)‖Q‖2K ∀Q ∈ RM

0 < µ2
min ≤ µ2

max ≤ 1

BM−1BT Q = KQµ2

(1− µ2
max)QT KQ ≤ QT

(
K− BM−1BT

)
Q ∀Q ∈ RM

µ2
max ≡ max

Q

QT BM−1BT Q

QT KQ
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QT BV
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QT BV
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N h = {qh ∈ Ph | (∇qh,vh) = 0 ∀vh ∈ Vh} ,

Theorem 2.
1− ωh + O(h2) ≤ µmax ≤ 1

ω =






2
3

Q1 −Q1

4
15

Q2 −Q2

16
105

Q3 −Q3

∃Q * QT
(
K− BM−1BT

)
Q ≤

(
2ωh + O(h2)

)
‖Q‖2K
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Previous work and our contribution

• Codina, Vazquez, and Zienkiewicz, IJNMF, 
1998 demonstrate that the semi-discrete 
pressure operator is positive semi-definite

• We refine this result to show that the 
eigenvalues (Rayleigh-quotients) are within 
the unit interval and provide a variational 
characterization



Variational characterization of 
the smallest and largest singular 
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M + ∆tA ∆tBT

(τ −∆t)B− τ∆tS τ∆tK

) (
Uk+1

P k+1

)
=

(
M 0
τB 0

) (
Uk

P k

)
+ ∆t

(
F k+1

τGk+1

)

(K + NBT )P k+1 =
[

1
∆t

(
NM + B

)
Uk + NF k+1 + Gk+1

]

NBT =
(

∆tS + (
∆t

τ
− 1)B
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(M + ∆tA)−1BT
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The norms are reversed 
with respect to the
inf-sup stability constant 
associated with Stokes!

ON STABILIZED METHODS IN THE SMALL TIME STEP LIMIT 1
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ON STABILIZED METHODS IN THE SMALL TIME STEP LIMIT 1

uh(x, t) =
N∑

j=1

Uj(t)ξh
j (x), ph(x, t) =

M∑

j=1

Pj(t)χh
j (x),

Span{ξh
i }N

i=1 ≡ Vh ⊂ H1
0(Ω), Span{χh

i }N
i=1 ≡ Ph ⊂ L2

0(Ω)

uh(·, t) ∈ Vh, ph(·, t) ∈ Ph

(u̇h(·, t),vh) + G
(
{uh(·, t), ph(·, t)}, {vh, qh}

)
= (f(·, t),vh)

(uh(·, 0),vh) = (u0,vh)

∀(vh, qh) ∈ Vh × Ph, ∀t ∈ (0, T )

G
(
{uh, ph}, {vh, qh}

)
= (∇uh,∇vh)− (ph,∇ · vh)− (qh,∇ · uh)

inf
qh∈Ph, qh "=0

sup
vh∈Vh, vh "=0

(qh,∇ · vh)
‖vh‖1‖qh‖0

= κh ≥ κmin
h > 0 ,

κ2
h = min

z

zT BA−1BT z
zT Mpz

, (Mp)ij = (χh
i ,χh

j )

−
∑

K∈Th

τ (u̇h(·, t)−*uh(·, t) +∇ph(·, t)− f(·, t),−γ*vh +∇qh)K

(
M U̇

0

)
+

(
A BT

B 0

) (
U
P

)
=

(
F
0

)

Aij = (∇ξh
i ,∇ξh

j ), Bij = −(χh
i ,∇ · ξh

j ) Mij = (ξh
i , ξh

j ), Fi = (f , ξh
i )

(
M U̇
τB U̇

)
+

(
A BT

−B− τS τK

) (
U
P

)
=

(
F
τG

)

Kij = (∇χh
j ,∇χh

i ), Sij = (∆ξh
j ,∇χh

i ), Gi = (f ,∇ξh
i ).

(
K− BM−1BT

)
P = G− BM−1F +

(
1
τ

B + S + BM−1A
)

U.

Theorem 1.

QT
(
K− BM−1BT

)
Q ≤ (1− µ2

min)‖Q‖2K ∀Q ∈ (Ker(BT ))⊥

QT
(
K− BM−1BT

)
Q ≥ (1− µ2

max)‖Q‖2K ∀Q ∈ RM ,

0 < µ2
min ≤ µ2

max ≤ 1 .

BM−1BT Q = KQµ2 .
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goes to zero as the mesh size does!

Recall the semi-discrete pressure 
operator (pressure-Poisson case)
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that the semi-discrete pressure operator associated with such methods is not uniformly coercive. We
prove that for sufficiently large (relative to the square of the spatial grid size) time steps, implicit
time discretizations contribute terms that stabilize this operator. However, we also prove that if the
time step is sufficiently small, then the fully discrete problem necessarily leads to unstable pressure
approximations. The semi-discrete pressure operator studied in the paper also arises in pressure-
projection methods, thereby making our results potentially useful in other settings. Copyright c©
2000 John Wiley & Sons, Ltd.

key words: Stabilized finite element methods, unsteady Stokes equations, small time step limit,

SVD, inf-sup

∆t > αh2

∆t > δh2

τ = δh2

∗Correspondence to: Sandia National Laboratories, Mail Stop 1110, Albuquerque, New Mexico, 87185-1110.

Contract/grant sponsor: Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-
Martin Company, for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC-94AL85000. The work of M. Gunzburger was supported in part by the Computer
Science Research Institute, Sandia National Laboratories, under contract 18407.



ON STABILIZED METHODS IN THE SMALL TIME STEP LIMIT 1

uh(x, t) =
N∑

j=1

Uj(t)ξh
j (x), ph(x, t) =

M∑

j=1

Pj(t)χh
j (x),

Span{ξh
i }N

i=1 ≡ Vh ⊂ H1
0(Ω), Span{χh

i }N
i=1 ≡ Ph ⊂ L2

0(Ω)

uh(·, t) ∈ Vh, ph(·, t) ∈ Ph

(u̇h(·, t),vh) + G
(
{uh(·, t), ph(·, t)}, {vh, qh}

)
= (f(·, t),vh)

(uh(·, 0),vh) = (u0,vh)

∀(vh, qh) ∈ Vh × Ph, ∀t ∈ (0, T )

G
(
{uh, ph}, {vh, qh}

)
= (∇uh,∇vh)− (ph,∇ · vh)− (qh,∇ · uh)

inf
qh∈Ph, qh "=0

sup
vh∈Vh, vh "=0

(qh,∇ · vh)
‖vh‖1‖qh‖0

= κh ≥ κmin
h > 0 ,

κ2
h = min

z

zT BA−1BT z
zT Mpz

, (Mp)ij = (χh
i ,χh

j )

−
∑

K∈Th

τ (u̇h(·, t)−*uh(·, t) +∇ph(·, t)− f(·, t),−γ*vh +∇qh)K

(
M U̇

0

)
+

(
A BT

B 0

) (
U
P

)
=

(
F
0

)

Aij = (∇ξh
i ,∇ξh

j ), Bij = −(χh
i ,∇ · ξh

j ) Mij = (ξh
i , ξh

j ), Fi = (f , ξh
i )

(
M U̇
τB U̇

)
+

(
A BT

−B− τS τK

) (
U
P

)
=

(
F
τG

)

Kij = (∇χh
j ,∇χh

i ), Sij = (∆ξh
j ,∇χh

i ), Gi = (f ,∇ξh
i ).

(
K− BM−1BT

)
P = G− BM−1F +

(
1
τ

B + S + BM−1A
)

U.

Theorem 1.

QT
(
K− BM−1BT

)
Q ≤ (1− µ2

min)‖Q‖2K ∀Q ∈ (Ker(BT ))⊥

QT
(
K− BM−1BT

)
Q ≥ (1− µ2

max)‖Q‖2K ∀Q ∈ RM ,

0 < µ2
min ≤ µ2

max ≤ 1 .

BM−1BT Q = KQµ2 .

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:0–0
Prepared using fldauth.cls

Unstable! The smallest eigenvalue 
goes to zero as the mesh size does!

Recall the semi-discrete pressure 
operator (pressure-Poisson case)

On stabilized finite element methods for the Stokes problem in
the small time-step limit

Pavel B. Bochev1,∗, Max D. Gunzburger2 and Richard B. Lehoucq1

1 Computational Mathematics and Algorithms Department, Sandia National Laboratories, Mail Stop 1110,
Albuquerque, New Mexico, 87185-1110 ({pbboche,rblehou}@sandia.gov)

2 School of Computational Science, Florida State University, Tallahassee FL 32306-4120
(gunzburg@csit.fsu.edu).

SUMMARY

Recent studies indicate that consistently stabilized methods for unsteady incompressible flows,
obtained by a method of lines approach, may experience difficulty when the time step is small
relative to the spatial grid size. Using as a model problem the unsteady Stokes equations, we show
that the semi-discrete pressure operator associated with such methods is not uniformly coercive. We
prove that for sufficiently large (relative to the square of the spatial grid size) time steps, implicit
time discretizations contribute terms that stabilize this operator. However, we also prove that if the
time step is sufficiently small, then the fully discrete problem necessarily leads to unstable pressure
approximations. The semi-discrete pressure operator studied in the paper also arises in pressure-
projection methods, thereby making our results potentially useful in other settings. Copyright c©
2000 John Wiley & Sons, Ltd.

key words: Stabilized finite element methods, unsteady Stokes equations, small time step limit,

SVD, inf-sup

∆t > αh2

∆t > δh2

τ = δh2

∗Correspondence to: Sandia National Laboratories, Mail Stop 1110, Albuquerque, New Mexico, 87185-1110.

Contract/grant sponsor: Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-
Martin Company, for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC-94AL85000. The work of M. Gunzburger was supported in part by the Computer
Science Research Institute, Sandia National Laboratories, under contract 18407.

On stabilized finite element methods for the Stokes problem in
the small time-step limit

Pavel B. Bochev1,∗, Max D. Gunzburger2 and Richard B. Lehoucq1

1 Computational Mathematics and Algorithms Department, Sandia National Laboratories, Mail Stop 1110,
Albuquerque, New Mexico, 87185-1110 ({pbboche,rblehou}@sandia.gov)

2 School of Computational Science, Florida State University, Tallahassee FL 32306-4120
(gunzburg@csit.fsu.edu).

SUMMARY

Recent studies indicate that consistently stabilized methods for unsteady incompressible flows,
obtained by a method of lines approach, may experience difficulty when the time step is small
relative to the spatial grid size. Using as a model problem the unsteady Stokes equations, we show
that the semi-discrete pressure operator associated with such methods is not uniformly coercive. We
prove that for sufficiently large (relative to the square of the spatial grid size) time steps, implicit
time discretizations contribute terms that stabilize this operator. However, we also prove that if the
time step is sufficiently small, then the fully discrete problem necessarily leads to unstable pressure
approximations. The semi-discrete pressure operator studied in the paper also arises in pressure-
projection methods, thereby making our results potentially useful in other settings. Copyright c©
2000 John Wiley & Sons, Ltd.

key words: Stabilized finite element methods, unsteady Stokes equations, small time step limit,

SVD, inf-sup

∆t > αh2

τ = δh2

∂u
∂t
−"u +∇p = f in Ω× (0, T )

∇ · u = 0 in Ω× (0, T )
u = 0 on Γ× (0, T )

u|t=0 = u0 in Ω

∗Correspondence to: Sandia National Laboratories, Mail Stop 1110, Albuquerque, New Mexico, 87185-1110.

Contract/grant sponsor: Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-
Martin Company, for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC-94AL85000. The work of M. Gunzburger was supported in part by the Computer
Science Research Institute, Sandia National Laboratories, under contract 18407.

origin of the time step restriction



Fully discrete equations (backward 
Euler) 
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‖Q‖2K = QT KQ, ‖V ‖2M = V T MV

µmin ≡ min
Q∈(Ker(BT ))⊥

max
V ∈(Ker(B))⊥

QT BV

‖V ‖M‖Q‖K
= min

Q∈(Ker(BT ))⊥
max

V ∈RN

QT BV

‖V ‖M‖Q‖K

µmax ≡ max
Q∈(Ker(BT ))⊥

max
V ∈(Ker(B))⊥

QT BV

‖V ‖M‖Q‖K
= max

Q∈RM
max

V ∈RN

QT BV

‖V ‖M‖Q‖K

µmin = inf
qh∈(Nh)⊥, qh "=0

sup
vh∈Vh, vh "=0

(∇qh,vh)
|qh|1‖vh‖0

= min
Q∈(Ker(BT ))⊥

max
V ∈RN

QT BV

‖V ‖M‖Q‖K

µmax = sup
qh∈Ph, qh "=0

sup
vh∈Vh, vh "=0

(∇qh,vh)
|qh|1‖vh‖0

,= max
Q∈RM

max
V ∈RN

QT BV

‖V ‖M‖Q‖K
,

N h = {qh ∈ Ph | (∇qh,vh) = 0 ∀vh ∈ Vh} ,

Theorem 2.
1− ωh + O(h2) ≤ µmax ≤ 1

ω =






2
3

for the Q1–Q1 element pair

4
15

for the Q2–Q2 element pair

16
105

for the Q3–Q3 element pair .

∃Q, QT
(
K− BM−1BT

)
Q ≤

(
2ωh + O(h2)

)
‖Q‖2K ,

(
M + ∆tA ∆tBT

(τ −∆t)B− τ∆tS τ∆tK

) (
Uk+1

P k+1

)
=

(
M 0
τB 0

) (
Uk

P k

)
+ ∆t

(
F k+1

τGk+1

)

(K + NBT )P k+1 =
[

1
∆t

(
NM + B

)
Uk + NF k+1 + Gk+1

]

NBT =
(

∆tS + (
∆t

τ
− 1)B

)
(M + ∆tA)−1BT

Theorem 3.

QT
(
K + NBT

)
Q = QT

(
K +

(
∆t

τ
− 1

) (
BM−1BT + O(∆t)

))
Q + O(∆t)

QT
(
K + NBT

)
Q ≥ 1

2
min{1,α}‖Q‖2K,

∆t

τ
≥ α > 0

K + NBT → K− BM−1BT ∆t

τ
→ 0, ∆t → 0
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Velocity approximation when 
using backward Euler

(
(M + γτC) U̇

τB U̇

)
+

(
A− γτD BT + γτST

−B− τS τK

) (
U
P

)
=

(
F + γτH

τG

)

Cij = τ
∑

K∈Th

(
ξh

j ,∆ξh
i

)

K
Dij = τ

∑

K∈Th

(
∆ξh

j ,∆ξh
i

)

K
(H)i = τ

∑

K∈Th

(
f ,"ξh

i

)

K
.

Lemma 4

U ∈ RN =⇒ 1− η ≤ UT (M + γτC)U
UT MU

≤ 1 + η

h2 ‖∆uh‖0,K
‖uh‖0,K

≤ η < 1 =⇒ M + γτC

‖∆uh‖0,K
‖uh‖0,K

≤ δh−2CI

K− (B + γτS)(M + γτC)−1BT ∼ K− BM−1B

Uk+1 = Uk + O(∆t)

τ = δh2, γ = 0,±1

As a result, the Galerkin-least-squares (γ = 1) and the Douglas-Wang (γ =
−1) semi-discrete pressure operators are qualitatively equivalent to the Pressure-
Poisson (γ = 0) semi-discrete operator.

−BU + ∆t(K− BM−1BT )P = 0

c1h
r ≈ c2(∆t)s =⇒ hr ≈ c2

c1
(
α

δ
)s(δh2)s

4

Hence, no problems over one time step



Differential algebraic equations 
associated with the other approaches

ON STABILIZED METHODS IN THE SMALL TIME STEP LIMIT 3
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U ∈ RN =⇒ 1− δCI ≤
UT (M + γτC)U
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≤ 1 + δCI

h2 ‖∆uh‖0
‖uh‖0

≤ δCI < 1 =⇒ M + γτC

K− B(M + γτC)−1(B + γτS)T ∼ K− BM−1B .

As a result, the Galerkin-least-squares (γ = 1) and the Douglas-Wang (γ = −1) semi-discrete
pressure operators are qualitatively equivalent to the Pressure-Poisson (γ = 0) semi-discrete
operator.

−BU + ∆t(K− BM−1BT )P = 0
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ON STABILIZED METHODS IN THE SMALL TIME STEP LIMIT 1

∂u
∂t
−"u +∇p = f in Ω× (0, T )

∇ · u = 0 in Ω× (0, T )
u = 0 on Γ× (0, T )

u|t=0 = u0 in Ω

uh(x, t) =
N∑

j=1

Uj(t)ξh
j (x), ph(x, t) =

M∑

j=1

Pj(t)χh
j (x),

Span{ξh
i }N

i=1 ≡ Vh ⊂ H1
0(Ω), Span{χh

i }N
i=1 ≡ Ph ⊂ L2

0(Ω)

uh(·, t) ∈ Vh, ph(·, t) ∈ Ph

(u̇h(·, t),vh) + G
(
{uh(·, t), ph(·, t)}, {vh, qh}

)
= (f(·, t),vh)

(uh(·, 0),vh) = (u0,vh)

∀(vh, qh) ∈ Vh × Ph, ∀t ∈ (0, T )

G
(
{uh, ph}, {vh, qh}

)
= (∇uh,∇vh)− (ph,∇ · vh)− (qh,∇ · uh)

inf
qh∈Ph, qh "=0

sup
vh∈Vh, vh "=0

(qh,∇ · vh)
‖vh‖1‖qh‖0

= κh ≥ κmin
h > 0

κ2
h = min

z

zT BA−1BT z
zT Mpz

, (Mp)ij = (χh
i ,χh

j )

−
∑

K∈Th
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A BT
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P = G− BM−1F +

(
1
τ

B + S + BM−1A
)

U
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On stabilized finite element methods for the Stokes problem in
the small time-step limit
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SUMMARY

Recent studies indicate that consistently stabilized methods for unsteady incompressible flows,
obtained by a method of lines approach, may experience difficulty when the time step is small
relative to the spatial grid size. Using as a model problem the unsteady Stokes equations, we show
that the semi-discrete pressure operator associated with such methods is not uniformly coercive. We
prove that for sufficiently large (relative to the square of the spatial grid size) time steps, implicit
time discretizations contribute terms that stabilize this operator. However, we also prove that if the
time step is sufficiently small, then the fully discrete problem necessarily leads to unstable pressure
approximations. The semi-discrete pressure operator studied in the paper also arises in pressure-
projection methods, thereby making our results potentially useful in other settings. Copyright c©
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Theorems

• Galerkin least-squares and Douglas-Wang are 
equivalent to Pressure-Poisson stabilization

• We have explicit equivalency constants (see paper)
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pressure operator
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Selecting the time step in practice
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Roughly, the order of the time integrator needs
to be twice the order of the finite elements
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(M + γτC) U̇

τB U̇

)
+

(
A− γτD BT + γτST

−B− τS τK

) (
U
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)
=
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Cij = τ
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∆ξh
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)

K
(H)i = τ
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f ,"ξh

i

)

K
.

Lemma 4

U ∈ RN =⇒ 1− η ≤ UT (M + γτC)U
UT MU

≤ 1 + η

h2 ‖∆uh‖0,K
‖uh‖0,K

≤ η < 1 =⇒ M + γτC

‖∆uh‖0,K
‖uh‖0,K

≤ δh−2CI

K− (B + γτS)(M + γτC)−1BT ∼ K− BM−1B

Uk+1 = Uk + O(∆t)

τ = δh2, γ = 0,±1

As a result, the Galerkin-least-squares (γ = 1) and the Douglas-Wang (γ =
−1) semi-discrete pressure operators are qualitatively equivalent to the Pressure-
Poisson (γ = 0) semi-discrete operator.
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Conclusions

• Lower bound on the time step is necessary

• If this is an issue

1. use space-time formulation

2. stable element pairing (mixed order 
interpolation)

3. non residual based stabilization method

• Connection with pressure projection methods 
(didn’t discuss)



For more details, see On stabilized 
finite element for the Stokes 
problem in the small time step 
limit, under revision for IJNMF
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