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Image Registration

• Image Registration refers to the matching (or alignment) of two 
or more pictures taken, for example, at different times, by 
different sensors, or from different viewpoints.

• Applications of image registration abound:

- In medical diagnostics, pairs of images taken at different times can be used 
to detect new malignancies or track the progress of degenerative diseases.

- In geologic change detection, multi-temporal satellite images are compared 
to identify unstable slopes that are prone to landslides or debris flows.

- In autonomous navigation and tracking, platform (e.g., aircraft or robot) 
motion can be derived from sequences of terrain images.

• In all of these cases, it is essential to properly register the 
images prior to quantifying differences between them.
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Application Example: Area Surveillance

Two frames from a low-resolution digital camera, taken 67 seconds apart.
Can you see what has changed in the scene? 
It is difficult to do so in a timely manner!

Frames from Mammoth Hot Springs Webcam  
http://www.jacksonholewy.net/web_cams/jh_mammoth_web_cam.php
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Area Surveillance, 2

In many surveillance 
applications, it is standard 
practice to generate 
difference frames, by 
subtracting the first image 
from the second.

If the two images are not 
properly registered prior to 
differencing, most of the 
signal seen in the difference 
frame is due to spatial 
gradients in the scene, rather 
than actual change. 
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Area Surveillance, 3

When the images are properly 
registered prior to differencing,
the changes in the scene stand 
out clearly in the difference 
frame.

Here, the motion of each 
person in the scene is easily 
detected. 

A person wearing light clothing 
will show up as a bright 
detection in their current 
position, and a dark detection 
in their previous position.
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Technical Literature

• Thousands of papers on image registration have been published 
in the engineering literature. 

- A SciSearch query on “image <and> registration” for the years 1970 – 2007 
turns up 2,428 articles published by the various journals of the Institute of
Electrical and Electronics Engineers (IEEE). 

• Very few authors have considered the uncertainty associated 
with registration solutions.

- Refining the query to “image <and> registration <and> uncertainty” returns 

only 29 articles.

• However, uncertainty measures are essential for many 
autonomous applications.

- Solutions that are dubious (involving poorly focused imagery or terrain that 

is obscured by clouds or smoke) must be distinguished from those that are 
highly reliable (based on clear images of highly structured scenes).
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Reporting Uncertainty

• Measurement and sampling uncertainty are familiar concepts. 
Suppose we take a random sample of 21 voters’ preferences:

• Based on these poll results, the “best” estimate of candidate 
Lincoln’s support is 12/21 = 57.1429%. But in meaningful terms, 
is this a better estimate than 57.143%? Or 57.14%? Or 57%? 
No one would be well served by a report stating simply: “Lincoln 
has the support of 57% of the population!”

• In statistical terms, Lincoln’s result is “consistent with” support
ranging from 33% to 81%. The responsible media would report 
“The margin of error is ± 24%”, instantly leading the reader 
to the correct conclusion: Based on these data, the race is “Too 
close to call”.

Lincoln: 12

Nixon: 9
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Image Registration Uncertainty

• Our goal is to develop a technique for autonomously measuring 
the uncertainty associated with image registration solutions.

Some image pairs are easy, with 
good focus and resolution. The 
lighting conditions and imaging 
geometry are similar. We expect to 
achieve very precise registration.

http://landsat.usgs.gov/gallery/detail/441/

Other pairs are more difficult,
with contrast reversals and 
lighting differences, along with 
seasonal changes in 
vegetation. Registration to a 
fraction of a pixel is probably 
not feasible.

http://www.paakoridge.com/livecam/largeshot.asp

05-Sep-02 04-Sep-05
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Registration Uncertainty, cont’d

When much of the scene is 
obscured in one or both 
images, registration relies on a 
limited number of matching 
features, and may be imprecise.

http://www.digiwx-sandia.com/default.aspx

When registration is 
not feasible, we want 
the method to fail! 
The user should be 
informed that a 
confident solution 
cannot be achieved.

http://weather.msfc.nasa.gov/GOES/

18-Aug-05 24-Aug-05

Hurricane 
Katrina
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Binary Transformation

• To allow for registration across multiple wavelengths, and improve 
robustness in the presence of contrast reversals and high-frequency 
artifacts, registration is preceded by an edge detection step.

• Greyscale images are converted to binary edge images.

Edge detection algorithms 
identify strong spatial 
gradients in scene intensity. 

We use the Canny edge 
detector [Canny, 1984] and 
the Local edge detector 
[Drescher, 2005].

While greyscale features 
may change, many of the 
edge positions remain 
fixed. Image registration 
takes place in the edge-
detected domain.
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Translation Confidence Regions

• Two images may differ from one another is various ways: 
translations, rotations, affine transformations, warping, etc.     
Our method is limited to solving for translations: (∆row, ∆col).

- It can be used to validate higher-order transformations.
- The user must specify a maximum shift (MAXSHIFT) in each dimension.

• In Statistics, uncertainty is quantified using confidence regions,
which contain the values of the parameter(s) of interest that are 
“consistent with” the available data.

- We compute a 95% confidence region in the 2D space of (∆row, ∆col). 

- The region contains the “best” translation, along with all other candidate 
translations that are consistent with the data.

• Consistency is measured in terms of the probability that the 
region will contain the true parameter values.

- A 95% confidence region should be constructed in such a manner that 

it will have a 95% chance of containing the true shift.
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Three-Step Algorithm

• It is common practice to run registration algorithms on small 
image patches known as “chips” or “blocks”.     

- This enables registration of images containing regions that match poorly 
due to cloud cover, changes in vegetation, or object motion.

- It also reduces the computational burden for large images.

• Our registration algorithm has three basic steps:

1  – Generation of a preliminary list of chips to be tested;

2  – Acceptance testing for single chips; and

3  – Calculation of a joint translation confidence region over the
set of accepted chips.

• Steps 2 and 3 proceed cyclically until certain exit criteria are met. 

- Solutions are rejected if they do not contain enough chips, are imprecise,

or have a low overall edge matching percentage.
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Preliminary Chip List

• First, choose a chip size based on the image dimensions and the 
scene structure. We generally use chips of about 25 × 25 pixels. 

• Now, generate the preliminary list by searching along a coarse 
grid of candidate chip centers. At each point (R, C) on the grid, 
identify the locations of the edge pixels on the first binary image. 

- If there are insufficient edges (less than 40), move on to the next grid point.  

- If there are enough edge pixels, look for matches: At each allowable translation 
(h, k), count the number of edges on the first binary image that are also edges 
on the second binary image, shifted by h rows and k columns.

- If at least 35% of the edge pixels are matched for at least one translation (h, k), 
add chip (R, C) to the preliminary list and test its neighbors (not on the grid) at 
(h,k) as well. Add neighboring chips with edge match percentage at least 35%.

- Move on to the next grid point.

• Sort the preliminary chip list by maximum match percentage, and 
remove chips that are too close to a higher-ranked candidate.
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Candidate Chip Locations

First Binary Image Second Binary Image

Chip 1: Rejected, too few edge pixels on image #1

Chip 2: Rejected, low match percentage between images

Chip 3: Good candidate, added to preliminary chip list.
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Single Chip Acceptance Testing

• Chips from the preliminary list are checked, one at a time, until:

1.  A sufficient number have been “accepted” for inclusion in the final 

registration solution, and:
2. Their joint confidence region is precise enough for the application.

• Acceptance of a chip pair (one from each image) is determined   
by how precisely they can be registered to one another, where   
precision is gauged by the size of a confidence region in 
translation space.

• We consider only full-pixel shifts, so the confidence regions will 
contain one or more integral points in the two-dimensional space 
of ∆row and ∆col. 
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Matching Edges

• To test the jth chip pair on the preliminary list, compute the 
registration solution for this pair only. Begin by identifying the    
edge pixels on this chip for the first image. The count is nedgej.

• For translation (h,k), define Vj(h,k) as a binary column vector of   
length nedgej. The ith element of Vj(h,k), denoted vij(h,k), is set    
equal to one if the ith edge on chip j for the first image is matched   
in chip j for the second image, shifted by h rows and k columns.     
Otherwise, vij(h,k) is set to zero.

• Define scalar Sj(h,k) to be the number of edge pixels matched at
translation (h,k). This is simply the sum of the elements of Vj(h,k):

It follows that, for all translations, 0 ≤ Sj(h,k) ≤ nedgej. 


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Best Translation

• The “best” translation is the one matching the largest number of 
edge pixels. Let S*j be the maximum match count, and let (h*j, k*j) be 
the corresponding translation.

• The observed proportion of edges matched at the best translation    
point is given by p*j = S*j/nedgej. If p*j is less than 50%, reject chip j
and move on to the next chip on the preliminary list.

• Otherwise, determine which additional translations are “not 
significantly worse” than (h*j, k*j). This is accomplished using a 
two-sample statistical hypothesis test.
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Statistical Test

• We want to test whether the edge matching performance at 
candidate translation (h,k) is significantly worse than at (h*j, k*j).

• The model underlying our test must anticipate dependencies   
between different translations at the same edge pixel. In statistical   
terms, this is known as a paired data framework. 

• In addition, the model should account for non-constant match 
probabilities across the different edge pixels at the same translation. 
While some edge pixels (e.g., coastlines) should be matched with 
high priority, others (perhaps noise-induced edges on the first 
image) will not likely be found in the second image.
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Null and Alternative Hypotheses

• Denote by Pij(h,k) the true (unknown) probability that the ith edge 
pixel on the jth chip of the first image will be matched in the jth chip 
of the second image, translated by h rows and j columns. 

• The null and alternative hypothesis to be tested are:

• That is, under H0, the average match probabilities are equal at 
translations (h,k) and (h*j, k*j). Under H1, the average match 
probability at (h*j,k*j) exceeds that at (h,k).
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McNemar’s Statistic

• Acceptance or rejection of H0 is determined based the McNemar 
statistic, which is appropriate for testing hypotheses about paired 
binary data. Define the random indicator variables Aij and Bij:

• The sum of the Aij over all nedgej edge pixels is the number of edges 
matched at translation (h*j, k*j) but not (h,k). The sum of the Bij is the 
number matched at (h,k) but not (h*j, k*j).

• If the sum of the Aij is much larger than the sum of the Bij, this 
provides evidence against the null hypothesis. If the two sums are 
close, we conclude that translation (h,k) is not significantly worse 
that the “best” translation (h*j, k*j) : “Too close to call”.

otherwise.0,
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McNemar’s Statistic, cont’d

• The test statistic is given by (McNemar, 1947):

• The distribution of Rj can be computed using the exact distribution 
or a normal approximation. The test is one-sided, with the null 
hypothesis rejected for large Rj. 

• For chip j, a 95% confidence region for the true translation contains 
the “best” translation, (h*j, k*j), along with any other candidate 
translations for which the null hypothesis was not rejected.
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Chip Acceptance

• Once the translation confidence region for chip j has been 
computed, the chip is accepted or rejected from the final registration 
solution based on the number of full-pixel translations contained in 
this region.

• We accept chip j if and only if the confidence region contains
eight or fewer translations. 

• Once chip j has been accepted, any chips remaining on the  
candidate list that overlap with chip j (share pixels with it) are 
removed.  
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Joint Confidence Region

• When two or more pairs of non-overlapping chips have been 
selected, a joint confidence region can be constructed from the 
match statistics computed from each pair. 

• Recall that we assume from the outset that the true transformation 
between the two images is a rigid translation; it follows that each 
pair of chips has the same true (but unknown) shift.

• Construction of the joint confidence region across several chips is 
accomplished by concatenating the binary edge vectors, Vj(h,k), 
over each accepted chip j. 

• The processing steps are now the same as for a single chip: 

- Compute the best translation, (h*,k*) over the combined edge pixels,

- Use McNemar’s test to identify other translations that are not 
significantly worse.
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Decision Rule

• A compound decision rule is used to determine when to keep testing 
additional chips, when to stop, and whether the final registration 
solution will be accepted or rejected. 

- The rule saves run time by specifying conditions under which 

processing may cease before testing the entire candidate chip list.

• The rule is as follows:

1. If at least 6 chips have been selected and the confidence region 
contains just one translation, the solution is complete.  

2.  If at least 10 chips have been selected, the solution is complete.
3.  If all chips on the preliminary list have been tested, the solution is 

complete.
4. If the solution is complete, at least 3 chips have been selected, the 

joint confidence region contains no more than 8 translations, and the 
joint match percentage (over all selected chips) exceeds 35%, the 
solution is accepted.

5. If the solution is complete but the conditions of step 5 are not met, 

the solution is rejected.
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Decision Rule, cont’d

• The decision rule ensures that the registration solution will be 
rejected unless it meets several quality criteria:

- Requiring a minimum of three chips ensures that the solution is not 
unduly influenced by a single feature.

- The solution is rejected if the joint confidence region is insufficiently 
precise: that is, if it contains too many translations.

- If the combined match percentage at the best registration point is too 
low, this suggests that the validity of the rigid translation model 
underlying the registration algorithm may be called into question.

• It is better to supply the user with an indication that confident 
registration is not possible than it is to provide false assurance by 
reporting only a “best” solution! This is particularly true for 
autonomous applications, where there is no person in the loop to 
check over the solutions.
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Bottom Line

• Extensive simulation studies confirm that 95% joint confidence    
regions computed using the approach outlined here contain the 
correct translation approximately 95% of the time.

• Reporting only the “best” translation (with the highest match 
percentage) can give accuracy rates as low as 20%, depending on 
the problem at hand.

• For challenging registration problems (poor focus, unstructured 
scenes, significant obstruction), simply reporting a sub-pixel 
translation solution, without uncertainty bounds, is unacceptable. 

This is analogous to reporting that a politician has the support of 
57.1429% of the population based on a sample of 21 voters!
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Example 1: Partial Obscuration

Greyscale Image 1 Greyscale Image 2 Much of the scene structure is 
obscured by raindrops in the 
foreground of the camera.  

Passing chips (shown in green) 
are concentrated near the gas 
pumps, which contain strong 
vertical and horizontal features. 
The 95% region contains a 
single translation.

7 chips, match percent 55.8%

95% Region



32

Example 2: Camera Saturation

Greyscale Image 1 Greyscale Image 2

Successful registration is 
achieved despite the change in 
illumination angle and camera 
saturation in the first image.  

Matching chips are found along 
the treeline and the edge of the 
water hazard.  

6 chips, match percent 52.8%

95% Region
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Example 3:  Horizontal Uncertainty

Greyscale Image 1 Greyscale Image 2

All of the matched chips have 
features that are predominantly 
horizontal. As a result, there is 
uncertainty regarding the best 
column shift. The 95% region 
contains four translations.

4 chips, match percent 47.2%

95% Region
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Example 4:  Registration Failure

Greyscale Image 1 Greyscale Image 2

Only 3 matching chips are 
found, one of which is spurious. 
The 95% region contains 19 
shifts, well above the threshold 
of 8. The solution is rejected.

3 chips, match percent 40.6%

95% Region
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Validating High-Order Transformations, 1

Image 1 Image 2, Original

An alternative algorithm (Lowe, 2004) 
is used to register two images that 
differ by an affine transformation. 
Match points are shown in blue. 

The transformed image (lower left) is 
registered to image 1 using our 
statistical approach. The resulting 
confidence region (based on 4 chips) 
is precise and contains the translation 
(0,0), which reinforces the correctness 
of the Lowe solution.

95% RegionImage 2, Transformed
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Validating High-Order Transformations, 2

Image 1 Image 2, Original
The Lowe solution (based on 
pink match points) for this pair 
of images is incorrect. 

Statistical registration of image 
1 to the transformed version of 
image 2 fails: the 95% 
confidence region, based on 3 
chips, contains 18 translations 
and has a maximum edge match 
percentage of 25.1%, well below 
the threshold of 35%.

The statistical approach 
automatically determines that 
the Lowe solution is invalid.

95% Region

Image 2, Transformed

95% Region
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Conclusion

• The statistical algorithm introduced here is used to register binary 
edge-detected images. It has demonstrated solid performance in a 
number of challenging scenarios: poor image focus, contrast 
reversals, saturation artifacts, etc.

• In addition to estimating the “best” translation between the images, 
the algorithm provides a well defined confidence region in the 
space of the registration parameters. 

• The user is informed when a confident solution cannot be achieved. 
This is particularly important for autonomous operations.

• While the algorithm itself can only solve for translations, it can be 
used to autonomously validate solutions to higher-order 
transformation problems.
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Image Science, 1

• Imaging Science is an exciting technical field, with application in a 
wide range of problem domains:

- Environmental Monitoring

- Biomedical Imaging

- Humanitarian Operations (Darfur, Bande Aceh, Katrina)

- Law Enforcement

- Intelligence, Surveillance, and Reconnaissance (ISR)

- Consumer Products (entertainment, Google Earth, etc)

• Jobs are plentiful, and typically involve working in a team 
environment, with colleagues from multiple disciplines. 

• Depending on the application, the team might include: optical and 
radar engineers, geophysicists, ecologists, radiologists, astronauts, 
military officers, computer programmers, graphical designers, etc.
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Image Science, 2

• Image registration is just one of many active areas of research in 
the general field of imaging science.   

Others include:

- Pattern recognition (facial ID, license plates, digital mammography)

- Material ID, plume characterization (hyperspectral sensors)

- Change detection (Synthetic Aperture Radar, optical, infrared)

- Image formation and focusing (SAR, exploration seismology)

- Image restoration (aged and/or low quality photographs and videos)

- Image compression (limited bandwidth transmission)

- Foliage penetration (VHF/UHF SAR)

- Photogrammetry (3-D model building, camera point-of-view)

- Design tradeoffs (spatial / spectral / temporal resolution;
size, weight, power consumption)
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Image Science, 3

• An undergraduate degree in Mathematics or Computer Science is 
an excellent foundation on which to build expertise in imaging   
science. Be sure to include course work in Statistics. 

• Follow up with an MS or PhD in:

- Electrical Engineering (emphasis on Signal and Image Processing); or

- Statistics (emphasis on Engineering Applications).

- Tuition support through fellowships and internships is readily 
available at most Engineering schools.

• Liberal Arts undergraduates have some natural advantages!

- Superior oral and written communications skills.

- Ability to interact productively with team members having vastly 
different perceptions and areas of expertise.

- Broad academic background enabling fuller integration of technical, 

cultural, legal, moral, practical, and aesthetic issues.



Questions?


