

An Overview of Sensitivity Analysis and Uncertainty Quantification Methods

**Anthony A. Giunta, Ph.D.
Manager, Validation and Uncertainty Quantification Dept.
Sandia National Laboratories*
Albuquerque, NM**

**Presentation to Sandia Staff and Managers
August 2007**

Outline

- **Motivation**
- **Background**
 - **Sensitivity Analysis & Uncertainty Quantification (UQ)**
- **Intro to Sensitivity Analysis and UQ**
 - **Cantilever Beam Sensitivity Analysis**
 - **UQ Example #1: probabilistic uncertainty**
 - **UQ Example #2: lack of knowledge uncertainty**
- **Summary**



Goals for this Briefing

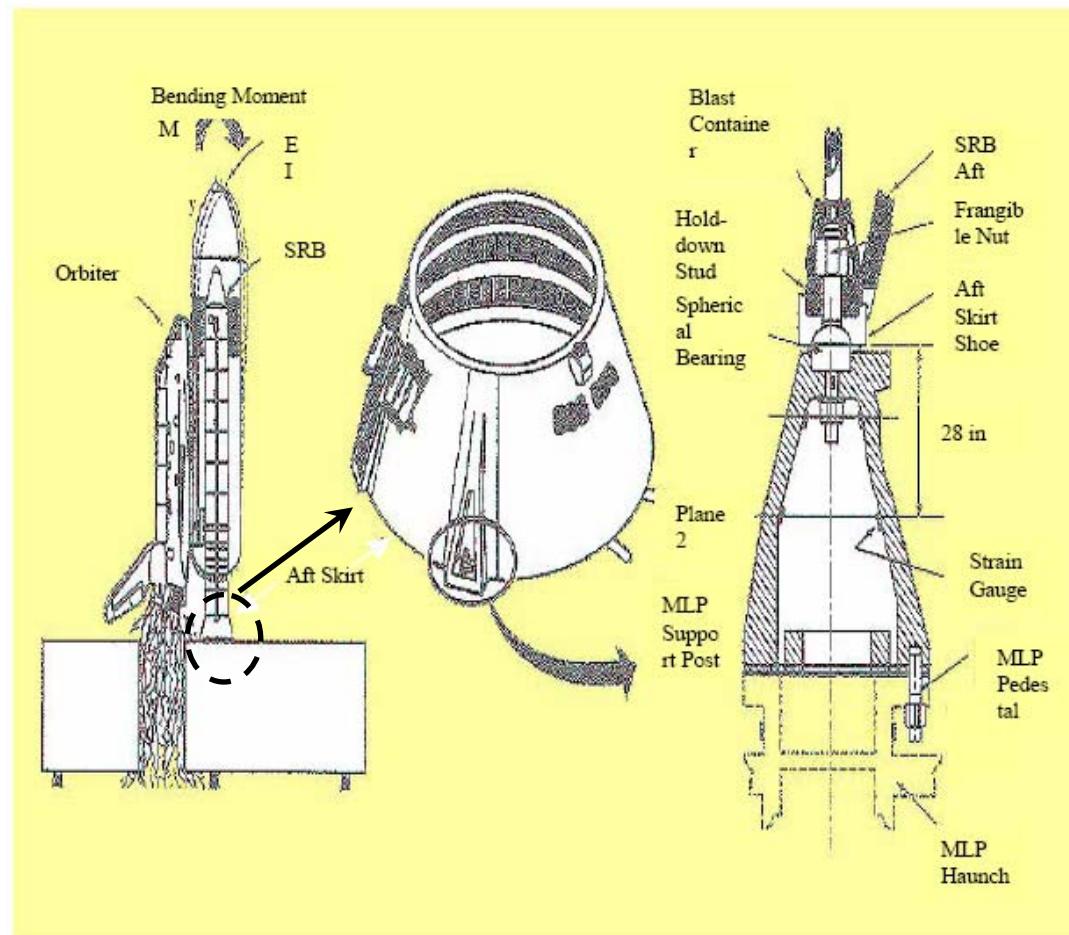
- Understand the connection between verification & validation (V&V), sensitivity analysis (SA), and uncertainty quantification (UQ).
 - And the basic SA and UQ methods & software tools.
- Understand the difference between **aleatory** (probabilistic) uncertainty and **epistemic** (lack of knowledge) uncertainty.
 - And how this impacts what you can and cannot learn from a UQ study.
- Know where to go for more info:
 - SNL staff resources
 - Key documents

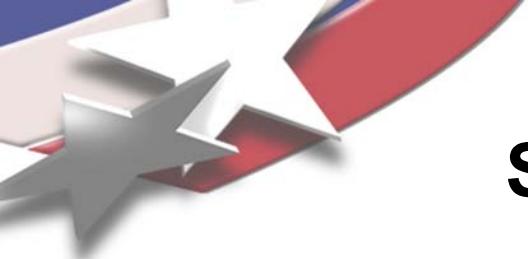
Example of Analysis w/o UQ: Space Shuttle Solid Rocket Booster Skirt

- Deterministic analysis indicates stress within allowable limit
- Skirt sometimes yields at launch
- Probabilistic analysis reveals high probability of plastic deformation due to scatter in loads and material strength

Take home messages:

1. The best deterministic analysis can yield only limited insight.
2. Neglecting or overlooking uncertainty invites problems.
(NASA: O-rings, foam debris,...)

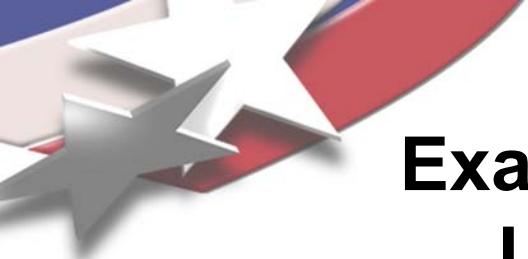




Sensitivity Analysis & UQ

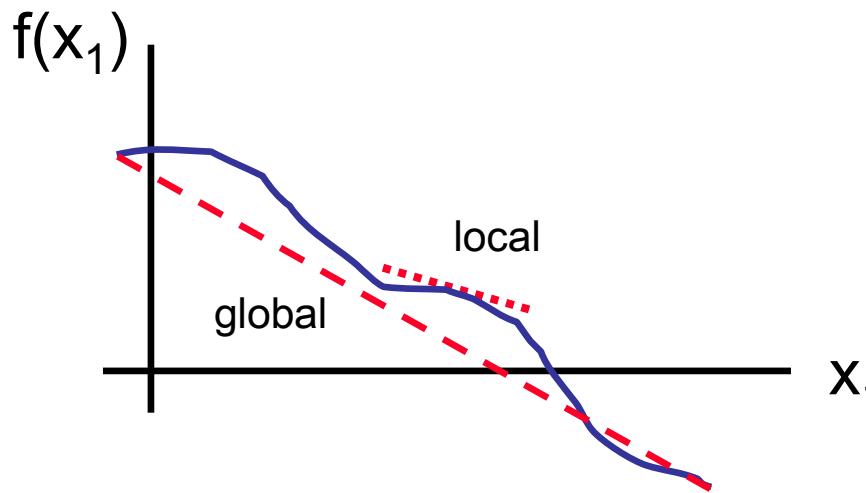
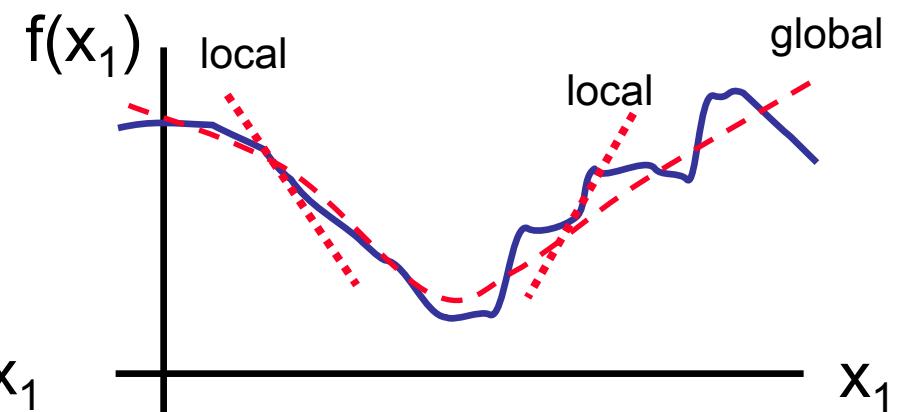
Terminology & Issues

- **Sensitivity Analysis (SA):**
 - How do my code outputs vary due to changes in my code inputs?
 - Need both “local sensitivity” and “global sensitivity” information.
 - Local sensitivity: code output gradient data for a specific set of code input parameter values
 - Global sensitivity: the general trends of the code outputs over the full range of code input parameter values (linear, quadratic, etc.)
- **Uncertainty Quantification (UQ):**
 - What are the probability distributions on my code outputs, given the probability distributions on my code inputs? (**aleatoric UQ**)
 - Estimate Probability[$f > f^*$], i.e., the probability that the system will fail
 - What are the possible/plausible code outputs? (**epistemic UQ**)
- **Quantification of margins and uncertainties (QMU):**
 - How “close” are my code output predictions (incl. UQ) to the system’s required performance level?



Examples of Sensitivity Analysis

Local vs. Global Sensitivity



- Sensitivity analysis examines variations in $f(x_1)$ due to perturbations in x_1
 - Local sensitivities are typically partial derivatives.
 - Given a specific x_1 , what is the slope at that point?
 - Global sensitivities are typically found via least squares.
 - What is the trend of the function over all values of x_1 ?

Getting Started with Sensitivity Studies and UQ Studies

- Make a list of the relevant parameters:
 - Experimental conditions and parameters
 - Physics parameters
 - Code algorithm parameters
- The next step is to identify what is known about each parameter:
 - Bounds?, Discrete or continuous?, Probabilistic?
- Initial sensitivity analysis studies can identify:
 - High impact parameters
 - Where to focus resources (\$, people, simulations, tests, etc.)
- *Goal: Out of the O(10-100) parameters going into a simulation code, identify the most important parameters & their interactions.*

Sensitivity Analysis Methods

- An abridged list of sensitivity analysis methods:

- Simple 1-parameter and multi-parameter studies*
- Importance factors*
- Scaled sensitivity coefficients
- Design of experiments and data analysis*
- Random sampling and correlation analysis*
- Variance based decomposition*
- Many others....

Workhorse
methods

* SA capability in SNL's DAKOTA software toolkit

- Software tools:

- DAKOTA
- Minitab statistics package (SNL site license)
- JMP statistics package (~80 licenses around SNL)
- Mathematica
- Matlab with Statistics Toolbox
- Others (Origin, etc.)

Sensitivity Analysis Example

- Let's use a simple cantilever beam example to illustrate some of these sensitivity analysis concepts.
 - Sensitivity analysis with gradients
 - Sensitivity analysis with DAKOTA's sampling methods and correlation analysis



Example: Cantilever Beam Deterministic Analysis

- $L = \text{Length} = 1 \text{ m}$
- $W = \text{Width} = 1 \text{ cm}$, $H = \text{Height} = 2 \text{ cm}$
- $I = \text{Area Moment of Inertia} = (1/12)WH^3$
- $P = \text{load} = 100 \text{ N}$
- **Material = Aluminum 6061-T6:**
- **E = Elastic Modulus = 69 GPa, Yield Stress = 255 MPa (from a handbook)**

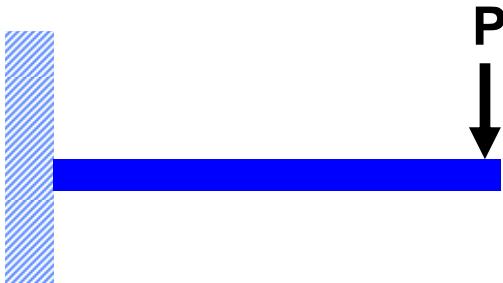
Goal:

We want to understand how deflection varies with respect to the length, width, height, load, and elastic modulus.

Beam theory: (assumes: elastic, isotropic, neglects beam mass, etc.)

- Deflection = $(PL^3)/(3EI)$, stress = My/I (y = distance from neutral axis)
- Deflection $\sim 7.2 \text{ cm}$ for $P = 100 \text{ N}$
- Yield Load = 170 N, Deflection at Yield Load $\sim 12.3 \text{ cm}$

Example: Cantilever Beam Sensitivity Analysis with Gradients



- **L = Length = 1 m**
- **Width = 1 cm, Height = 2 cm**
- **P = load = 100 N**
- **Material = Aluminum 6061-T6**
- **E = Elastic Modulus = 69 GPa**
- **Deflection = $PL^3/(3EI)$**

Sensitivity Analysis of deflection (δ) vs. P, L, and E

Scaled Sensitivity Coefficients

$$\underline{\mu_x}^*(\partial\delta/\partial x)$$

$$\mu_P^*(\partial\delta/\partial P) = 0.0724$$

$$\mu_L^*(\partial\delta/\partial L) = 0.217$$

$$\mu_E^*(\partial\delta/\partial E) = -0.0724$$

Notes:

1. Gradients typically computed via finite difference estimates (4-7 code runs).
2. Be wary of extrapolating trends.
3. No interaction data from this approach, but still useful.
4. *For a follow-on UQ study, maybe I'd freeze P and E at nominal values, and focus resources to study uncertainty in L.*

Example: Cantilever Beam Sensitivity Analysis with DAKOTA

- **L = Length = 1 m**
- **Width = 1 cm, Height = 2 cm**
- **P = load = 100 N**
- **Material = Aluminum 6061-T6:**
- **E = Elastic Modulus = 69 GPa**
- **Deflection = $PL^3/(3EI)$**

Sensitivity Analysis of deflection
(δ) vs. P, L, and E via random sampling over +/- 5% bounds around nominal values.

Correlation Analysis Method

1. Use DAKOTA to generate 20 random samples of L, P, E within +/-5% bounds.
2. Compute deflection for each random sample.
3. Look at partial correlation results generated by DAKOTA software.
4. Result: "L" most important parameter, but all have about equal impact.

Partial Correlation Table

	Load	Length	Modulus	Deflection
Load	.	-0.1177	-0.0753	0.2624
Length	-0.1177	.	0.2146	0.3251
Modulus	-0.0753	0.2146	.	-0.3088
Deflection	0.2624	0.3251	-0.3088	.

Moving from Sensitivity Analysis to UQ Studies

- The remaining parameters of interest will probably have some uncertainty associated with them, e.g.:
 - Lower and upper bounds (not necessarily uniform probabilities!!!)
 - Probabilistic data (vague or well-substantiated)
- *UQ is the process of propagating this uncertainty through a simulation model, and assessing the resulting uncertainty on the simulation output data.*
 - Recall, typically we want to compute something like Probability($f > f^*$)
- Issues:
 - There are many methods to propagate uncertainty – all requiring multiple code runs (actual time/expense are problem dependent)
 - Special methods needed for UQ with epistemic parameters

Uncertainty Quantification Methods

- An abridged list of UQ methods:

- Exact analytic methods
- (Structural) reliability methods*
- Monte Carlo-type sampling methods*
- Polynomial chaos methods*
- Dempster-Shafer evidence theory*
- Bayesian methods
- Many others....

} Workhorse methods

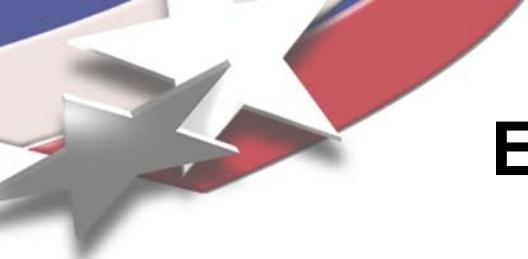
} Research methods

*** UQ capability in SNL's DAKOTA software toolkit**

- Reliability methods are simple and cheap, but can have limited accuracy and applicability.
- Sampling methods are simple and can be expensive, but are more generally applicable.
 - Latin hypercube sampling is my method of choice,
 - Sampling methods can be used when there is a mix of aleatory and epistemic uncertain parameters

Uncertainty Quantification Example #1

- Let's return to the simple cantilever beam example to illustrate some of these UQ concepts.
 - Aleatory (probabilistic) uncertainty



Example: Cantilever Beam Deterministic Analysis



- $L = \text{Length} = 1 \text{ m}$
- $W = \text{Width} = 1 \text{ cm}$, $H = \text{Height} = 2 \text{ cm}$
- $I = \text{Area Moment of Inertia} = (1/12)WH^3$
- $P = \text{load} = 100 \text{ N}$
- **Material = Aluminum 6061-T6:**
- **E = Elastic Modulus = 69 GPa, Yield Stress = 255 MPa (from a handbook)**

Goal:

We want to understand how deflection varies with respect to the length, width, height, load, and elastic modulus.

Beam theory: (assumes: elastic, isotropic, neglects beam mass, etc.)

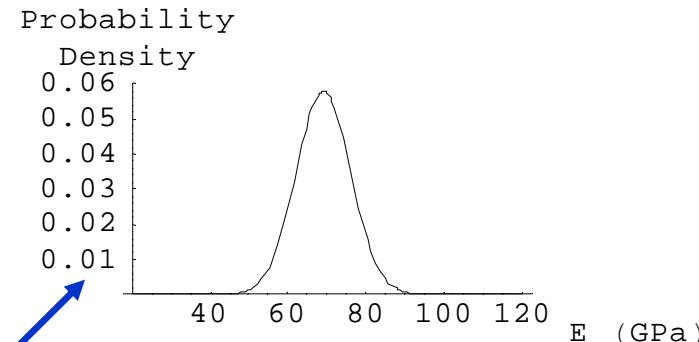
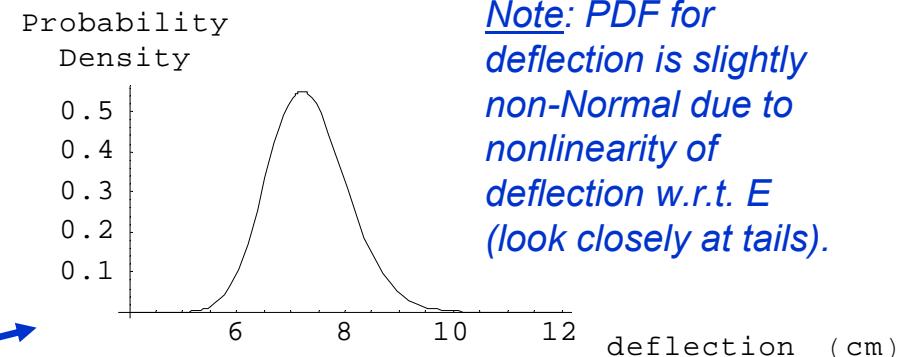
- Deflection = $(PL^3)/(3EI)$, stress = My/I (y = distance from neutral axis)
- Deflection $\sim 7.2 \text{ cm}$ for $P = 100 \text{ N}$
- Yield Load = 170 N, Deflection at Yield Load $\sim 12.3 \text{ cm}$

Example: Cantilever Beam UQ

Analytical Approach

- Length = 1 m
- Width = 1 cm, Height = 2 cm
- P = load = 100 N
- Material = Aluminum 6061-T6:
- E = Elastic Modulus
 - Mean = $\mu = 69$ GPa
 - Std Deviation = $\sigma = 6.9$ GPa
- Deflection = $PL^3/(3EI)$
- E is Normal[μ, σ]
- Exact PDF of E
- Exact PDF of deflection

Probability Density Functions
(aka PDFs)



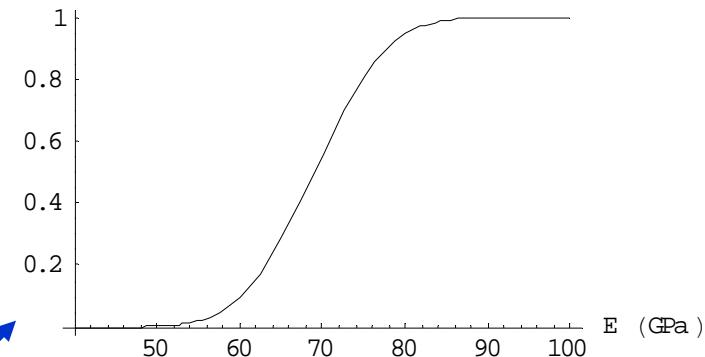
Note: PDF for deflection is slightly non-Normal due to nonlinearity of deflection w.r.t. E (look closely at tails).

Example: Cantilever Beam UQ Analytical Approach

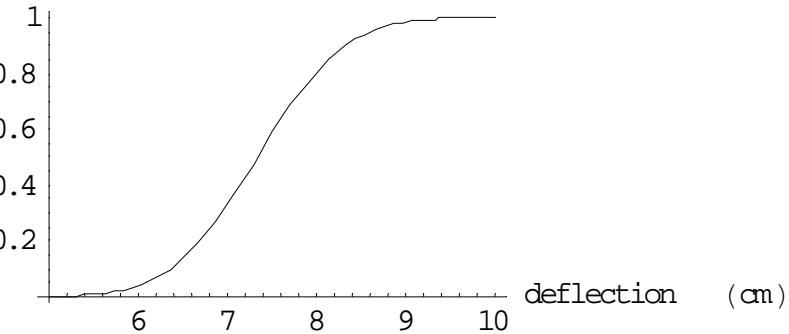
- Length = 1 m
- Width = 1 cm, Height = 2 cm
- P = load = 100 N
- Material = Aluminum 6061-T6:
- E = Elastic Modulus
 - Mean = $\mu = 69$ GPa
 - Std Deviation = $\sigma = 6.9$ GPa
- Deflection = $PL^3/(3EI)$
- E is Normal[μ, σ]
- Exact CDF of E
- Exact CDF of deflection

Cumulative Distribution Functions (aka CDFs)

Cumulative
Probability



Cumulative
Probability

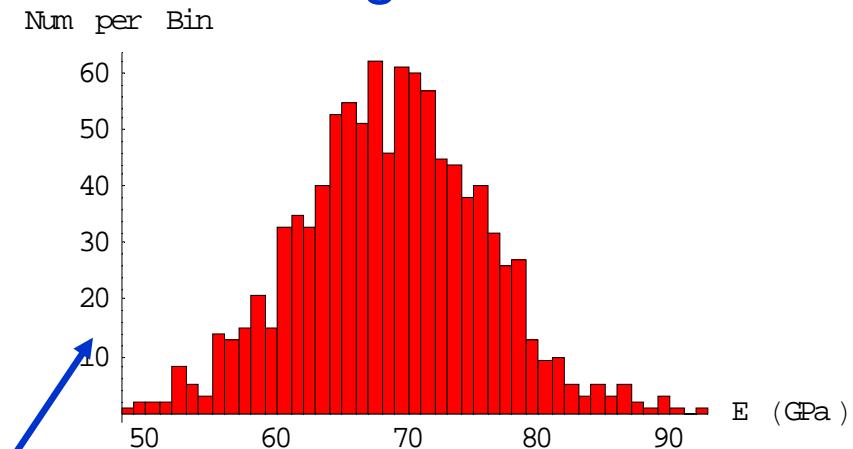


Example: Cantilever Beam UQ

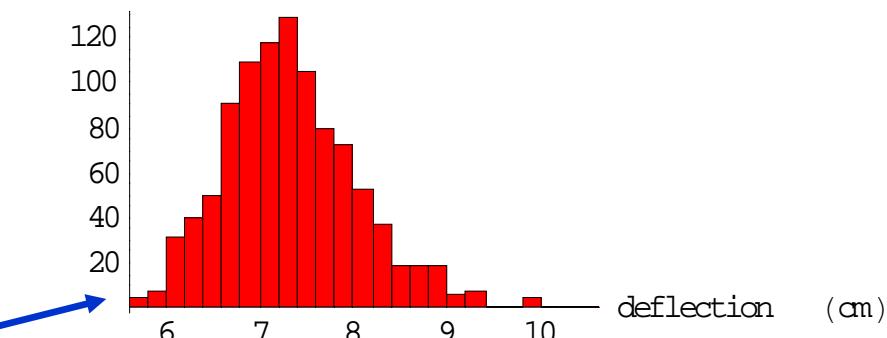
Monte Carlo Sampling – Single Parameter

- Length = 1 m
- Width = 1 cm, Height = 2 cm
- P = load = 100 N
- Material = Aluminum 6061-T6:
- **E = Elastic Modulus**
 - Mean = $\mu = 69$ GPa
 - Std Deviation = $\sigma = 6.9$ GPa
- Deflection = $PL^3/(3EI)$
- **E is Normal[μ, σ]**
- **1000 random samples of E**
- **1000 computed deflections**

Histograms



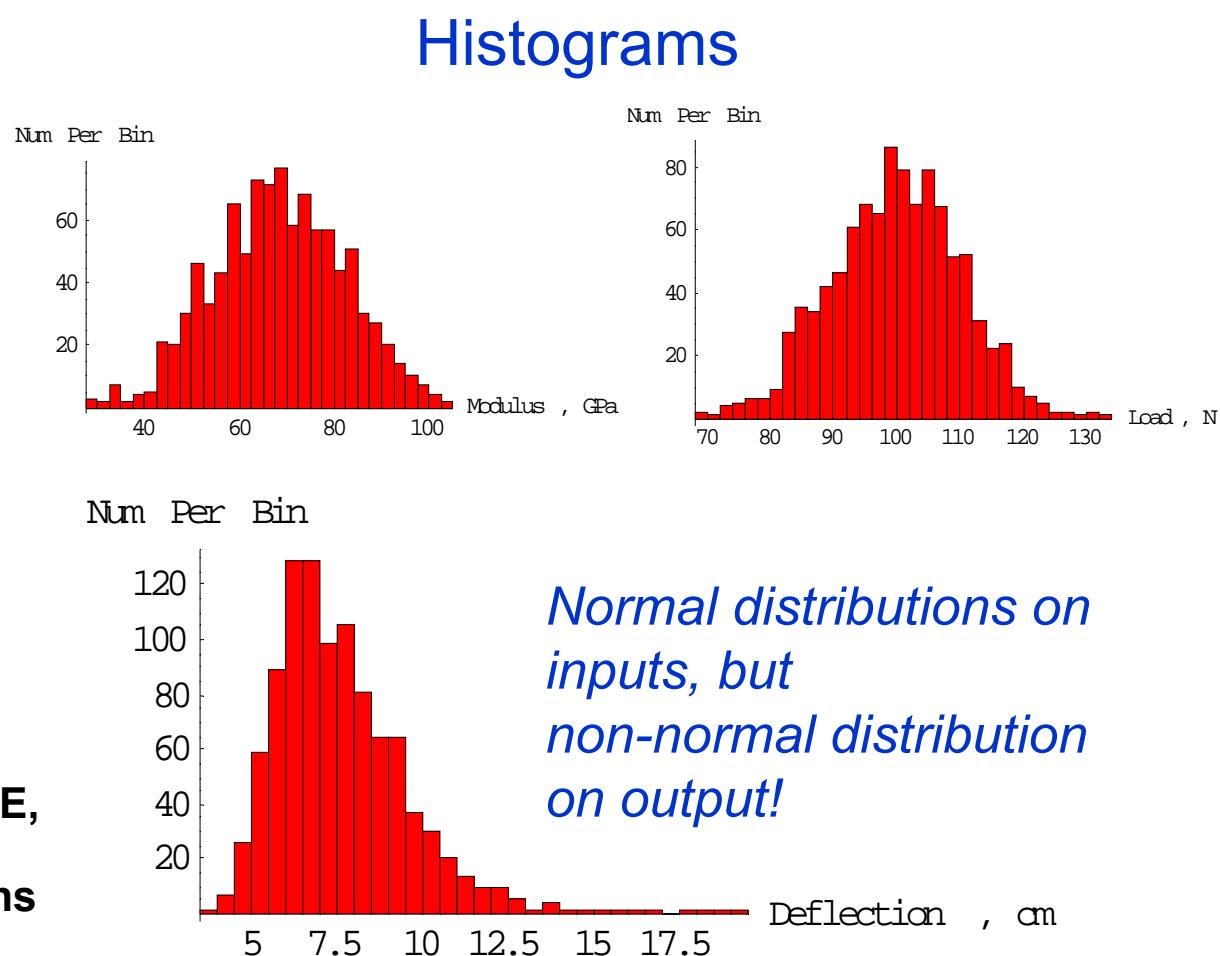
Num per Bin



Example: Cantilever Beam UQ

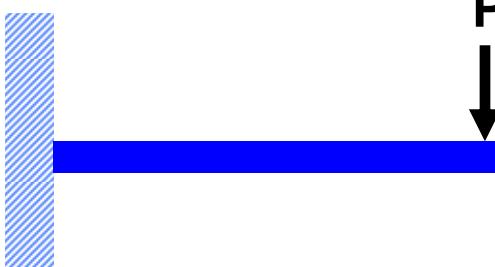
Monte Carlo Sampling – Multiple Parameters

- Now make several parameters uncertain:
- Deflection = $PL^3/(3EI)$
- E is Normal[69,13.8] GPa
- P is Normal[100,5] N
- L is Normal[1.0m, 1cm]
- 1000 random samples of E, P, and L (top – for E & P)
- 1000 computed deflections (bottom)

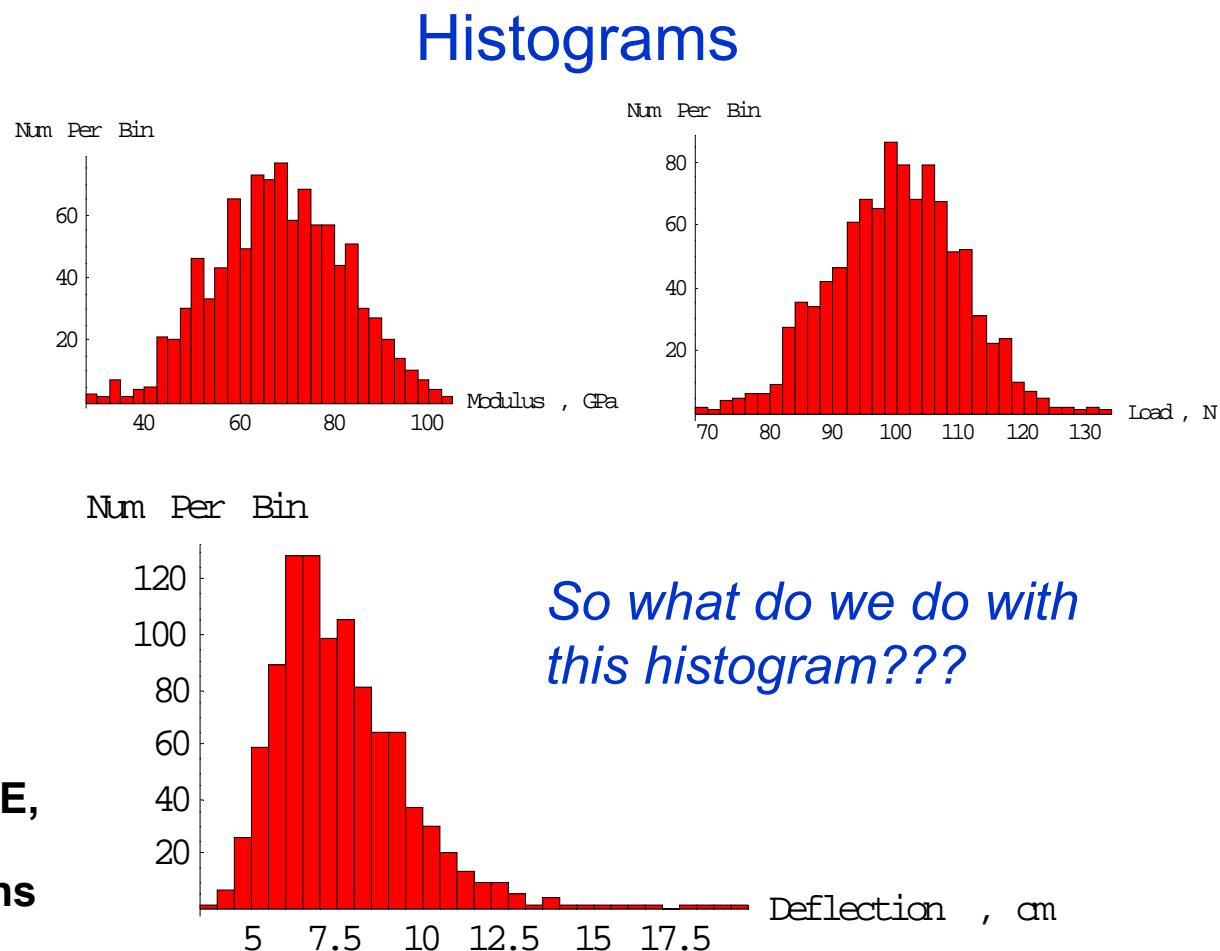


Example: Cantilever Beam UQ

Monte Carlo Sampling – Multiple Parameters

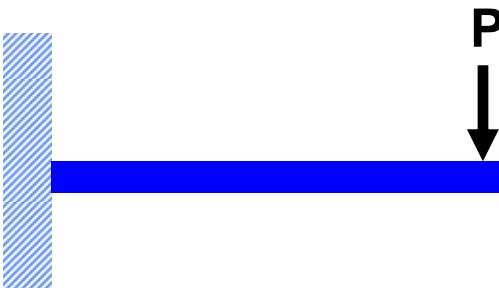


- Now make several parameters uncertain:
- Deflection = $PL^3/(3EI)$
- E is Normal[69,13.8] GPa
- P is Normal[100,5] N
- L is Normal[1.0m, 1cm]
- 1000 random samples of E, P, and L (top – for E & P)
- 1000 computed deflections (bottom)

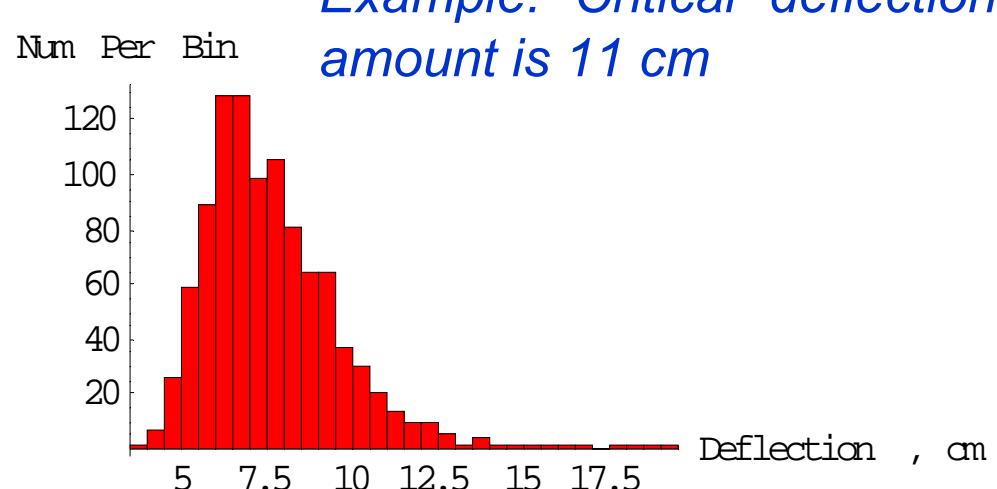


Example: Cantilever Beam UQ

Monte Carlo Sampling – Multiple Parameters



- Now make several parameters uncertain:
- Deflection = $PL^3/(3EI)$
- E is Normal[69,13.8] GPa
- P is Normal[100,5] N
- L is Normal[1.0m, 1cm]
- 1000 random samples of E, P, and L
- 1000 computed deflections
- DAKOTA computes these simple statistics

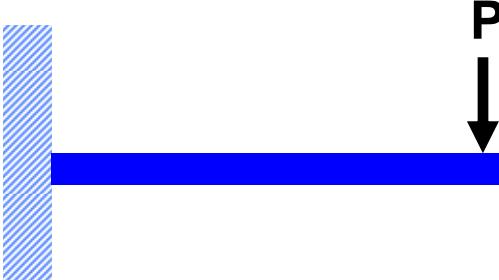


Estimate failure probability as # of samples with deflection > 11 cm , e.g.
 $P_{fail} \sim 52/1000 = 0.052$
(plus, can also estimate P_{fail} uncertainty)

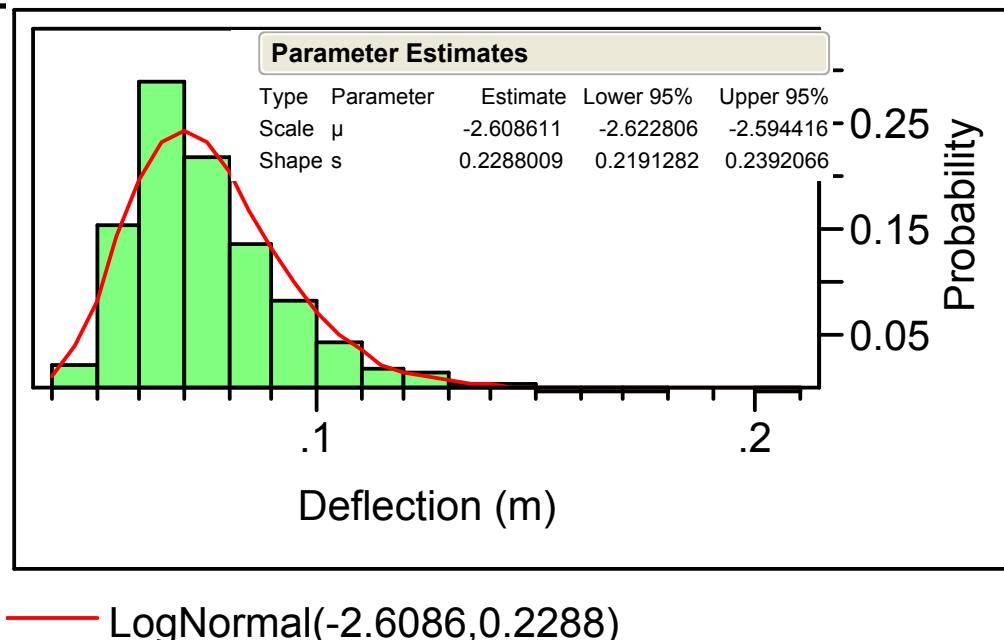
What if few or no points exceed limit?

Example: Cantilever Beam UQ

Monte Carlo Sampling – Multiple Parameters



- Now make several parameters uncertain:
- Deflection = $PL^3/(3EI)$
- E is Normal[69,13.8] GPa
- P is Normal[100,5] N
- L is Normal[1.0m, 1cm]
- 1000 random samples of E, P, and L
- 1000 computed deflections
- Use JMP, Minitab, or other statistics software



Fit a probability distribution function to the histogram & estimate P_{fail} values:

Prob($\delta > 11$ cm) ~ 0.04

Prob($\delta > 21.8$ cm) $\sim 1.0e^{-6}$

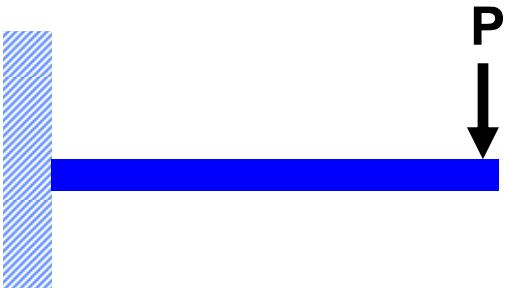
(note: there is uncertainty on the lognormal parameters!)

Uncertainty Quantification Example #2

- What happens in the UQ study if some or all of the parameters have epistemic (lack of knowledge) uncertainty?
- This is an active research area:
 - Bayesian methods
 - Dempster-Shafer methods
 - Interval methods, etc.
- Approach used in WIPP and Nuclear Reg. Comm. studies:
 - “2nd order sampling” methods
 - Epistemic parameters define “possible” scenarios.
 - Aleatoric parameters give probability estimates within each scenario.
 - Result: yields a collection of failure probability estimates, but user cannot know which scenario is most likely.

Example: Cantilever Beam UQ

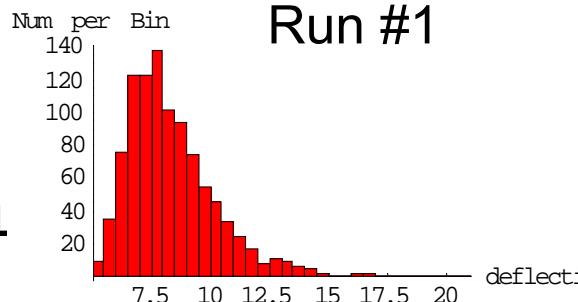
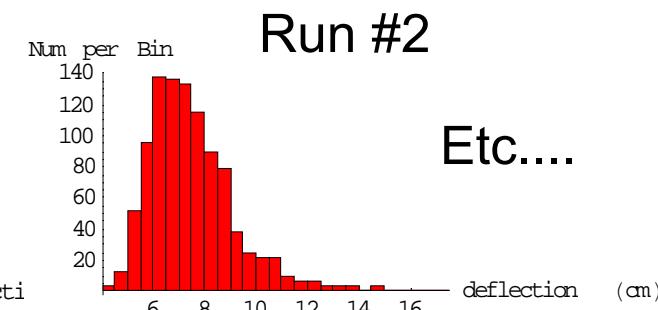
Monte Carlo Sampling – Multiple Parameters



- Now make two parameters have epistemic uncertainty:
- Deflection = $PL^3/(3EI)$
- E is Normal[69, 13.8] GPa
- L is in [0.97, 1.03] m
- P is in [85, 115] N
- 1000 random samples of E for each instance of P and L
- Report range of failure probability estimates to decision maker, including the worst-case failure probability.

Approach:

1. Randomly choose a Load and a Length from their respective intervals.
2. Perform Monte Carlo (or Latin hypercube) sampling over the Elastic Modulus PDF
3. Compute probability deflection > 11 cm
4. Return to step 1 and repeat until computational budget limit reached.



Etc....

Run #1: $P_{fail} \sim 0.043$

Run #2: $P_{fail} \sim 0.055$

What are the Issues for Real World Sensitivity Analysis and UQ Studies?

- Constrained resources - time, test/simulation budget.
- Combo of aleatory, epistemic, and mixed aleatory/epistemic uncertain parameters.
- What to do:
 - Get a knowledgeable engineer-stats person involved early.
 - If you can do more than one test/simulation, you probably can get some statistical data.
 - Rules of thumb for # of test/simulations needed:
 - Sensitivity analysis: $\sim[n+1, n^2/2]$ (where n=# of uncertain parameters)
 - UQ for mean response: $\sim[n+1, n^2/2]$
 - UQ for low-probability events: $\sim 10^*(1/\text{desired probability level})$ (see note)
- Note: There are special stats/math methods to do SA & UQ when you can't afford a large # of tests or simulations!

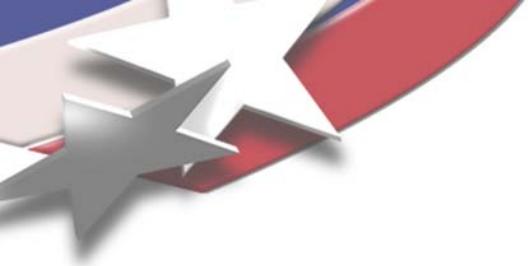


Conclusion Slides

- **Summary**
- **Points of contact**

Summary: UQ Applications in Sandia Mission Areas

- Sandia's engineering practices are evolving to include UQ concepts to enable risk-informed design.
- Risk-informed design leverages past work on analysis of low-probability and high-consequence systems:
 - Waste Isolation Pilot Plant (WIPP)
 - Nuclear Regulatory Commission (NRC) studies on reactor safety
- Programmatic front:
 - Partner statisticians with engineers on projects.
 - Educate engineers on basic statistical methods and relevant topics, e.g., V&V, sensitivity analysis, UQ, QMU.
- Technical front:
 - Employ UQ methods that accommodate both probabilistic (aleatoric) and lack of knowledge (epistemic) uncertainty.
 - Employ existing software tools: both in-house (DAKOTA) and commercial.
 - **Perform UQ within the time/simulation run budget of the study.**
 - **Produce “best estimate + quantified uncertainty” for our customers.**



Closing Remarks

- Sensitivity analysis and UQ are key components of ASC verification & validation studies:
 - Also, SA and UQ have much utility outside of ASC applications
 - Must discriminate between **epistemic** (lack of knowledge) uncertainty and **aleatory** (probabilistic) uncertainty.
 - *Just assuming that every uncertain parameter has a normal or uniform probability distribution is not good engineering practice.*
- Sandia has software tools (DAKOTA, JMP, Minitab, etc.) for SA and UQ studies.
 - Training in these software tools is available -- by SNL staff, online “webinars”, multi-day courses, etc.
 - In my experience, the most productive SA/UQ studies involve a collaboration between engineering experts and SA/UQ experts

Points of Contact

- There is a growing cadre of SNL managers and staff with V&V/UQ/QMU knowledge.
- **SNL/NM:**
 - **Tony Giunta, Channy Wong, Hal Morgan (1500), Jim Stewart (1400), David Womble (1400), Marty Pilch (1200), Kathleen Diegert (12300), Janet Sjulin (12300), Sheryl Hingorani (2900), Bob Paulsen (2100), et al.**
- **SNL/CA:**
 - **Mike Hardwick and Heidi Ammerlahn (8900)**
 - **Artie Ortega (8200)**
 - **et al.**

My apologies to those I've inadvertently left off this list!

V&V/UQ/QMU Reading List

- Ideas underlying quantification of margins and uncertainties (QMU): a white paper. **SAND2006-5001**
 - Tim Trucano, Martin Pilch, Jon Helton Unclassified Unlimited Release
- **V&V 10 - 2006 Guide for Verification and Validation in Computational Solid Mechanics**
 - ASME Publication (\$42)
 - http://catalog.asme.org/Codes/PrintBook/VV_10_2006_Guide_Verification.cfm
- **SNL Integrated Stockpile Evaluation Program website:**
 - <http://ise.sandia.gov/>
- ***Probability, Reliability, and Statistical Methods in Engineering Design***
 - Achintya Haldar and Sankaran Mahadevan

Extensive Reference List



References

- AIAA (1998), "Guide for the Verification and Validation of Computational Fluid Dynamics Simulations," American Institute of Aeronautics and Astronautics, AIAA-G-077-1998, Reston, VA.
- Box, G. E. P., W. G. Hunter and J. S. Hunter (1978), *Statistics for Experimenters*, John Wiley, New York.
- Coleman, H. W. and W. G. Steele, Jr. (1999), *Experimentation and Uncertainty Analysis for Engineers*, John Wiley, New York.
- Cullen, A. C. and H. C. Frey (1999), *Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs*, Plenum Press, New York.
- Ditlevsen, O. and H. O. Madsen (1996), *Structural Reliability Methods*, John Wiley.
- Dowding, K. (2001), "Quantitative Validation of Mathematical Models," ASME International Mechanical Engineering Congress Exposition, New York.

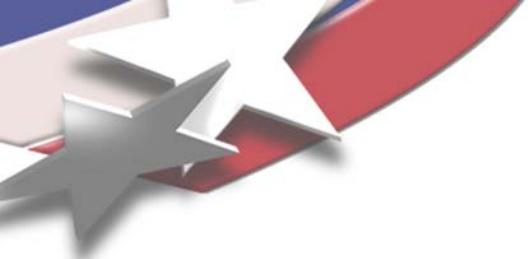


References (continued)

- Easterling, R. G. (2001), "Measuring the Predictive Capability of Computational Models: Principles and Methods, Issues and Illustrations," Sandia National Laboratories, SAND2001-0243, Albuquerque, NM.
- Hasselman, T. K. (2001), "Quantification of Uncertainty in Structural Dynamic Models," *Journal of Aerospace Engineering*, Vol. 14, No. 4, 158-165.
- Helton, J. C., and F. J. Davis (2001), "Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems," Sandia National Laboratories, SAND2001-0417, Albuquerque, NM.
- Helton, J. C., and F. J. Davis (1999), "Sampling-Based Methods for Uncertainty and Sensitivity Analysis," Sandia National Laboratories, SAND99-2240, Albuquerque, NM.
- Hills, R. G. and T. G. Trucano (2002), "Statistical Validation of Engineering and Scientific Models: A Maximum Likelihood Based Metric," Sandia National Laboratories, SAND2001-1783, Albuquerque, NM.
- Montgomery, D. C. (2000), *Design and Analysis of Experiments*, John Wiley.

References (continued)

- Morgan, M. G. and M. Henrion (1990), *Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis*, Cambridge University Press, Cambridge, UK.
- Oberkampf, W. L., S. M. DeLand, B. M. Rutherford, K. V. Diegert and K. F. Alvin (2002), "Error and Uncertainty in Modeling and Simulation," *Reliability Engineering and System Safety*, Vol. 75, No. 3, 333-357.
- Oberkampf, W. L. and T. G. Trucano (2002), "Verification and Validation in Computational Fluid Dynamics," *Progress in Aerospace Sciences*, Vol. 38, No. 3, 209-272.
- Oberkampf, W. L., T. G. Trucano, and C. Hirsch (2003), "Verification, Validation, and Predictive Capability," Sandia National Laboratories, SAND2003-3769, Albuquerque, NM (to appear in *ASME Applied Mechanics Reviews*).
- Oberkampf, W. L. and M. F. Barone (2004), "Measures of Agreement Between Computation and Experiment: Validation Metrics," 34th AIAA Fluid Dynamics Conference, AIAA Paper No. 2004-226, Portland, OR.



References (continued)

- Rutherford, B. M. and K. J. Dowding (2003), "An Approach to Model Validation and Model-Based Prediction--Polyurethane Foam Case Study," Sandia National Laboratories, SAND2003-2336, Albuquerque, NM.
- Taylor, J. R. (1997), *An Introduction to Error Analysis: The study of uncertainties in physical measurements*, University Science Books, Sausalito, CA.
- Trucano, T. G., M. L. Pilch, and W. L. Oberkampf (2002), "General Concepts for Experimental Validation of ASCI Code Applications," Sandia National Laboratories, SAND2002-0341, Albuquerque, NM.
- Urbina, A. and T. L. Paez (2001), "Statistical Validation of Structural Dynamics Models," Annual Technical Meeting & Exposition of the Institute of Environmental Sciences and Technology, Phoenix, AZ.
- Wilson, G. E. and B. E. Boyack (1998), "The Role of the PIRT in Experiments, Code Development and Code Applications Associated With Reactor Safety Analysis," *Nuclear Engineering and Design*, Vol. 186, No. 1-2, pp. 23-37

Extra Vugraphs

Common UQ Pitfall: (Cannot have PDF on results if no PDFs on inputs!)

The “Model”

$$Y = A^B$$

Indisputable

$$A = [0,2]$$

Only Bounds Are Known

$$B = [1,3]$$

Only Bounds Are Known

How do you interpret the results?

(a) Y as a probability distribution?

(b) Y bounded by (0,8)?

