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' Goals for this Briefing

* Understand the connection between verification &
validation (V&V), sensitivity analysis (SA), and uncertainty
quantification (UQ).

— And the basic SA and UQ methods & software tools.

* Understand the difference between aleatory (probabilistic)
uncertainty and epistemic (lack of knowledge) uncertainty.

— And how this impacts what you can and cannot learn from a
uQ study.

 Know where to go for more info:
— SNL staff resources
— Key documents
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Example of Analysis w/o UQ:
Space Shuttle Solid Rocket Booster Skirt

« Deterministic analysis indicates
stress within allowable limit Bending Moment
M ?"%/_ o

. I

v
f 1

» Skirt sometimes yields at launch

» Probabilistic analysis reveals high
probability of plastic deformation
due to scatter in loads and
material strength

Take home messages:

1.The best deterministic analysis
can yield only limited insight.

2.Neglecting or overlooking
uncertainty invites problems.
(NASA: O-rings, foam debiris,...)
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Sensitivity Analysis & UQ

Terminology & Issues

» Sensitivity Analysis (SA):
— How do my code outputs vary due to changes in my code inputs?
— Need both “local sensitivity” and “global sensitivity” information.

— Local sensitivity: code output gradient data for a specific set of
code input parameter values

— Global sensitivity: the general trends of the code outputs over the
full range of code input parameter values (linear, quadratic, etc.)

« Uncertainty Quantification (UQ):

— What are the probability distributions on my code outputs, given
the probability distributions on my code inputs? (aleatoric UQ)

- Estimate Probability[f > f*], i.e., the probability that the system will fail
— What are the possible/plausible code outputs? (epistemic UQ)

« Quantification of margins and uncertainties (QMU):

— How “close” are my code output predictions (incl. UQ) to the
system’s required performance level?
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' Examples of Sensitivity Analysis
Local vs. Global Sensitivity

f(X1) local global

~

» Sensitivity analysis examines variations in f(x,) due to
perturbations in x,

— Local sensitivities are typically partial derivatives.
 Given a specific x,, what is the slope at that point?

— Global sensitivities are typically found via least squares.
« What is the trend of the function over all values of x,?
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i Getting Started with

Sensitivity Studies and UQ Studies

* Make a list of the relevant parameters:
— Experimental conditions and parameters
— Physics parameters
— Code algorithm parameters

* The next step is to identify what is known about each parameter:
— Bounds?, Discrete or continuous?, Probabilistic?

* Initial sensitivity analysis studies can identify:
— High impact parameters
— Where to focus resources ($, people, simulations, tests, etc.)

* Goal: Out of the O(10-100) parameters going into a simulation
code, identify the most important parameters & their interactions.
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Sensitivity Analysis Methods

* An abridged list of sensitivity analysis methods:
— Simple 1-parameter and multi-parameter studies*
— Importance factors*
— Scaled sensitivity coefficients >~ Workhorse
— Design of experiments and data analysis* methods
— Random sampling and correlation analysis*
— Variance based decomposition*
— Many others....

* SA capability in SNL's DAKOTA software toolkit

» Software tools:
— DAKOTA
— Minitab statistics package (SNL site license)
— JMP statistics package (~80 licenses around SNL)
— Mathematica
— Matlab with Statistics Toolbox Sani
— Others (Origin, etc.) @ National

Laboratories
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Sensitivity Analysis Example

* Let’s use a simple cantilever beam example to
illustrate some of these sensitivity analysis
concepts.

— Sensitivity analysis with gradients

— Sensitivity analysis with DAKOTA'’s sampling
methods and correlation analysis
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Example: Cantilever Beam
Deterministic Analysis

P

Goal:
) We want to understand
t) how deflection varies
’ with respect to the
- L=Length=1m length, width, height,

e W=Width=1cm,H= He|ght =2cm load, and elastic

| = Area Moment of Inertia = (1/12)WHA3 modulus.

* P=load =100 N

* Material = Aluminum 6061-T6:

« E = Elastic Modulus = 69 GPa, Yield Stress = 255 MPa (from a handbook)

Beam theory: (assumes: elastic, isotropic, neglects beam mass, etc.)
 Deflection = (PL”*3)/(3El), stress = My/l (y = distance from neutral axis)
» Deflection ~7.2cm forP =100 N

* Yield Load = 170 N, Deflection at Yield Load ~12.3 cm
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}' Example: Cantilever Beam

Sensitivity Analysis with Gradients
P Scaled Sensitivity Coefficients

U, *(95/0x)
Up*(88/0P) = 0.0724
U *(85/8L) = 0.217
uc*(98/9E) = -0.0724

‘L=Length=1m
Width =1 cm, Height =2 cm
Notes:

*P =load =100 N 1. Gradients typically computed via finite
*Material = Aluminum 6061-T6: difference estimates (4-7 code runs).

E = Elastic Modulus = 69 GPa 2- Be wary of extrapolating trends.
] 3. No interaction data from this approach,
° — A
Deflection = PL*3/(3ElI) but still useful.

4. For a follow-on UQ study, maybe I'd
Sensitivity Analysis of freeze P and E at nominal values, and
deflection (d)vs. P, L, and E focus resources to study uncertainty in L.
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National
11 Laboratories




12

Example: Cantilever Beam

Sensitivity Analysis with DAKOTA
P

Correlation Analysis Method

1.Use DAKOTA to generate 20 random

samples of L, P, E within +/-5% bounds.
2. Compute deflection for each random sample.
3. Look at partial correlation results generated
L = Length=1m by DAKOTA software.

i _ ] _ 4.Result: “L” most important parameter, but all
*Width =1 cm, Height =2 cm :

have about equal impact.

‘P=load =100 N
Material = Aluminum 6061-T6:

*E = Elastic Modulus = 69 GPa Partial Correlation Table

Deflection = PLA3/(3E|) Load Length  Modulus; Deflection :
Load : -0.1177  -0.0753I 0.2624 |
Length -0.1177 . 02146]  0.3251 |
Sensitivity Analysis of deflection Modulus -0.0753  0.2146 1 -0.3088 I
(0)vs. P, L, and E via random Deflection 0.2624 0.3251 -0.3088 .
sampling over +/- 5% bounds
around nominal values. @ Sandia
National
Laboratories



Moving from
Sensitivity Analysis to UQ Studies

* The remaining parameters of interest will probably have some
uncertainty associated with them, e.g.:

— Lower and upper bounds (not necessarily uniform probabilities!!!)
— Probabilistic data (vague or well-substantiated)

« UOQ is the process of propagating this uncertainty through a
simulation model, and assessing the resulting uncertainty on the
simulation output data.

— Recall, typically we want to compute something like Probability(f > f*)

* I[ssues:

— There are many methods to propagate uncertainty — all requiring
multiple code runs (actual time/expense are problem dependent)

— Special methods needed for UQ with epistemic parameters
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| Uncertainty Quantification Methods

« An abridged list of UQ methods:
— Exact analytic methods

— (Structural) reliability methods* Workhorse methods
— Monte Carlo-type sampling methods* }

— Polynomial chaos methods* } Research methods
— Dempster-Shafer evidence theory*

— Bayesian methods

* UQ capability in SNL’s DAKOTA software toolkit

— Many others....

* Reliability methods are simple and cheap, but can have
limited accuracy and applicability.

« Sampling methods are simple and can be expensive, but
are more generally applicable.
— Latin hypercube sampling is my method of choice,

— Sampling methods can be used when there is a mix of aleatory
Sandia

and epistemic uncertain parameters @ National
Laboratories
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';,7
: Uncertainty Quantification Example #1

» Let’s return to the simple cantilever beam
example to illustrate some of these UQ concepts.

— Aleatory (probabilistic) uncertainty
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National
15 Laboratories



Example: Cantilever Beam
Deterministic Analysis

P

Goal:
) We want to understand
t) how deflection varies
’ with respect to the
- L=Length=1m length, width, height,

e W=Width=1cm,H= He|ght =2cm load, and elastic

| = Area Moment of Inertia = (1/12)WHA3 modulus.

* P=load =100 N

* Material = Aluminum 6061-T6:

« E = Elastic Modulus = 69 GPa, Yield Stress = 255 MPa (from a handbook)

Beam theory: (assumes: elastic, isotropic, neglects beam mass, etc.)
 Deflection = (PL”*3)/(3El), stress = My/l (y = distance from neutral axis)
» Deflection ~7.2cm forP =100 N

* Yield Load = 170 N, Deflection at Yield Load ~12.3 cm
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Example: Cantilever Beam UQ
Analytical Approach

P

Probability Density Functions
(aka PDFs)

Probability

026651
 Length=1m 3:82
* Width =1 cm, Height =2 cm 0.03
- P =load =100 N 0 o2

Material = Aluminum 6061-T6:

40 60 80 100 120

« E = Elastic Modulus E (GPa)
— Mean = y =69 GPa Probabi lity Note: PDF for
— Std Deviation = o = 6.9 GPa penstty deflection is slightly
0.5 non-Normal due to
0.4 nonlinearity of
* Deflection = PL*3/(3El) 0.3 deflection w.rt E
* E is Normal[p, o] g'i (look closely at tails).

Exact PDF of E / 6 8 10 12 Gofrection (cm)
Exact PDF of deflection

PR Ratiora
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Example: Cantilever Beam UQ

AL

v

 Material = Aluminum 6061-T6:
 E = Elastic Modulus

* Deflection = PL*3/(3El)
* E is Normal[p, o]

« Exact CDF of E
+ Exact CDF of deflection

* Length=1m
* Width =1 cm, Height =2 cm
=load =100 N

— Mean = y =69 GPa
— Std Deviation = 0 = 6.9 GPa

/

Analytical Approach
P Cumulative Distribution Functions
g:mn;ta;ct:viy (aka CDFS)

1

0.8

0.6

0.4

0.2

Cunulative
Probability
1
0.8
0.6
0.4

0.2

deflection (am)

6 7 8 9 10

URY [
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Example: Cantilever Beam UQ

R
i Monte Carlo Sampling — Single Parameter

 Material = Aluminum 6061-T6:
 E = Elastic Modulus

* 1000 random samples of E

P

Histograms
Num per Bin
60
50
40
0
* Length=1m -
* Width =1 cm, Height =2 cm 0
* P=load=100 N

Nun per BiIn
— Mean = y =69 GPa 0
— Std Deviation = 0 = 6.9 GPa 100
80
* Deflection = PL*3/(3El) &0
* E is Normal[p, o] ;?

deflection (am)

* 1000 computed deflections

CB2J Laboratories
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#‘ Example: Cantilever Beam UQ
o

nte Carlo Sampling — Multiple Parameters

P

* Now make several
parameters uncertain:

» Deflection = PLA3/(3EIl)

* E is Normal[69,13.8] GPa
* Pis Normal[100,5] N

* L is Normal[1.0m, 1cm]

* 1000 random samples of E,
P, and L (top — for E & P)

* 1000 computed deflections
(bottom)

20

Num Per Bin

Histograms

Num Per Bin

&

&0
40
20

Modullus , GPa

D 8 90O 100 10 120 10

Num Per BIn

120 .

0 Normal distributions on
0 inputs, but o
&0 non-normal distribution
40 on output!

20
Deflection , am

5 75 10 125 15 1/.5
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#‘ Example: Cantilever Beam UQ
o

nte Carlo Sampling — Multiple Parameters

P

* Now make several
parameters uncertain:

» Deflection = PLA3/(3EIl)

* E is Normal[69,13.8] GPa
* Pis Normal[100,5] N

* L is Normal[1.0m, 1cm]

* 1000 random samples of E,
P, and L (top — for E & P)

* 1000 computed deflections
(bottom)

21

Num Per Bin

40

Histograms

Num Per Bin

&

&0
40
20

Modullus , GPa
a0 D

D 8 90O 100 10 120 10

Num Per Bin
120 :
So what do we do with
100 L.
0 this histogram???
60
40
20
Deflection , an

5 75 10 125 15 1/.5
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V
#‘ Example: Cantilever Beam UQ
o

nte Carlo Sampling — Multiple Parameters

P

* Now make several

parameters uncertain:

» Deflection = PLA3/(3EIl)

* E is Normal[69,13.8] GPa
P is Normal[100,5] N

* L is Normal[1.0m, 1cm]

* 1000 random samples of E,

P,and L

* 1000 computed deflections
« DAKOTA computes these

simple statistics

_ Example: “Critical” deflection
Nm Per BN amount is 11 cm

Na888R

Deflection , am
5 75 10 125 15 175

Estimate failure probability as # of
samples with deflection > 11 cm , e.qg.
P, ~52/1000 = 0.052

(plus, can also estimate P,,, uncertainty)

What if few or no points exceed limit?

Sandia
National
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i Example: Cantilever Beam UQ
onte Carlo Sampling — Multiple Parameters

P

* Now make several

parameters uncertain:

» Deflection = PLA3/(3El)
 E is Normal[69,13.8] GPa
P is Normal[100,5] N

* L is Normal[1.0m, 1cm]

* 1000 random samples of E,

P,and L

* 1000 computed deflections
 Use JMP, Minitab, or other

statistics software

Parameter Estimates

Type Parameter Estimate Lower 95% Upper 95%

\ Scale p -2.608611 -2.622806 -2.594416< 0 . 25 _'Z\
/ N Shape s 0.2288009 0.2191282 0.2392066_ =
\ e
—0.15 o
\ o
‘ o
r[ N -0.05
L) ﬁﬁ llllll ' 1
A 2

Deflection (m)

— LogNormal(-2.6086,0.2288)

Fit a probability distribution function to
the histogram & estimate P, values:
Prob(d > 11cm) ~ 0.04

Prob( 6 > 21.8 cm) ~ 1.0e°

(note: there is uncertainty on the
lognormal parameters!) @ Sandia

National
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Uncertainty Quantification Example #2

 What happens in the UQ study if some or all of the parameters
have epistemic (lack of knowledge) uncertainty?

* This is an active research area:
— Bayesian methods
— Dempster-Shafer methods
— Interval methods, etc.

» Approach used in WIPP and Nuclear Reg. Comm. studies:
— “2nd order sampling” methods
— Epistemic parameters define “possible” scenarios.

— Aleatoric parameters give probability estimates within each
scenario.

— Result: yields a collection of failure probability estimates, but user
cannot know which scenario is most likely.

Sandia
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* Now make two parameters

i Example: Cantilever Beam UQ
onte Carlo Sampling — Multiple Parameters

P

Approach:

1. Randomly choose a Load and a Length from
their respective intervals.

_ 2. Perform Monte Carlo (or Latin hypercube)
sampling over the Elastic Modulus PDF

3. Compute probability deflection > 11 cm

.
_

have epistemic uncertainty:

- Deflection = PLA3/(3El) 4. Return to step 1 and repeat until computational

E is Normal[69, 13.8] GPa budget limit reached.
Lisin[0.97,1.03] m

- Pisin[85, 115] N wm per Bin - Run #1 wmper B0 RUN #2
s .
" 10 Etc....
1000 random samples of E © €0
for each instance of P and L 428 gg
75 10 125 15 7.5 20 corect 6 8 10 12 14 15 Conection  (an)

 Report range of failure

probability estimates to Run #1: P, ~ 0.043 Run #2: P, ~ 0.055
decision maker, including a _
the worst-case failure @ Sanda

— National
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What are the Issues for
Real World Sensitivity Analysis and UQ Studies?

« Constrained resources - time, test/simulation budget.

« Combo of aleatory, epistemic, and mixed aleatory/epistemic
uncertain parameters.

 What to do:
— Get a knowledgeable engineer-stats person involved early.

— If you can do more than one test/simulation, you probably can get
some statistical data.
— Rules of thumb for # of test/simulations needed:
« Sensitivity analysis: ~[n+1, n?/2] (where n=# of uncertain parameters)
« UQ for mean response: ~[n+1, n?/2]
« UQ for low-probability events: ~10*(1/desired probability level) (see note)

* Note: There are special stats/math methods to do SA & UQ when you

can’t afford a large # of tests or simulations! @ Sandia

National
Laboratories
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Conclusion Slides

 Summary
* Points of contact
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Summary: UQ Applications
in Sandia Mission Areas

« Sandia’s engineering practices are evolving to include UQ concepts to
enable risk-informed design.

* Risk-informed design leverages past work on analysis of low-
probability and high-consequence systems:

— Waste Isolation Pilot Plant (WIPP)
— Nuclear Regulatory Commission (NRC) studies on reactor safety

* Programmatic front:
— Partner statisticians with engineers on projects.

— Educate engineers on basic statistical methods and relevant topics, e.g.,
V&YV, sensitivity analysis, UQ, QMU.

 Technical front:

— Employ UQ methods that accommodate both probabilistic (aleatoric) and
lack of knowledge (epistemic) uncertainty.

— Employ existing software tools: both in-house (DAKOTA) and commercial.
— Perform UQ within the time/simulation run budget of the study.
— Produce “best estimate + quantified uncertainty” for our customers.

Sandia
National
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Closing Remarks

» Sensitivity analysis and UQ are key components of ASC
verification & validation studies:
— Also, SA and UQ have much utility outside of ASC applications

— Must discriminate between epistemic (lack of knowledge)
uncertainty and aleatory (probabilistic) uncertainty.

— Just assuming that every uncertain parameter has a normal or
uniform probability distribution is not good engineering
practice.

« Sandia has software tools (DAKOTA, JMP, Minitab, etc.) for
SA and UQ studies.

— Training in these software tools is available -- by SNL staff,
online “webinars”, multi-day courses, etc.

— In my experience, the most productive SA/UQ studies involve a
collaboration between engineering experts and SA/UQ experts

Sandia
National
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’ Points of Contact

* There is a growing cadre of SNL managers and staff
with V&V/UQ/QMU knowledge.

* SNL/NM:

— Tony Giunta, Channy Wong, Hal Morgan (1500), Jim Stewart
(1400), David Womble (1400), Marty Pilch (1200), Kathleen
Diegert (12300), Janet Sjulin (12300), Sheryl Hingorani (2900),
Bob Paulsen (2100), et al.

« SNL/CA:
— Mike Hardwick and Heidi Ammerlahn (8900)
— Artie Ortega (8200)
— et al.

My apologies to those I’'ve inadvertently left off this list!

Sandia
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V&V/UQ/QMU Reading List

 Ideas underlying quantification of margins and uncertainties (QMU): a
white paper. SAND2006-5001

— Tim Trucano, Martin Pilch, Jon Helton Unclassified Unlimited Release

* V&V 10 - 2006 Guide for Verification and Validation in Computational
Solid Mechanics

— ASME Publication ($42)

— http://catalog.asme.org/Codes/PrintBook/VV 10 2006 Guide Verificati
on.cfm

 SNL Integrated Stockpile Evaluation Program website:
— http://ise.sandia.gov/

* Probability, Reliability, and Statistical Methods in Engineering Design
— Achintya Haldar and Sankaran Mahadevan

Sandia
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Common UQ Pitfall:
(Cannot have PDF on results if no PDFs on inputs!)

The “Model” Y =A® Indisputable
A =[0,2] Only Bounds Are Known
B-[1,3] OnlyBounds Are Known
How do you interpret the results?
(a) Y as a probability distribution? |(b) Y bounded by (0,8)?
0.3

0.25 Jl---------------------- Monte Carlo Results

[assuming any value in
the A and B intervals is
0.15 g---------------- - possible]

Frequency

_ Sandi
Y=A"B @ Hﬂl';il]:?ﬂ
38 Laboratories
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