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Outline

•

 

Motivation
•

 

Background
–

 

Sensitivity Analysis & Uncertainty Quantification (UQ)
•

 

Intro to Sensitivity Analysis and UQ
–

 

Cantilever Beam Sensitivity Analysis
–

 

UQ Example #1: probabilistic uncertainty
–

 

UQ Example #2: lack of knowledge uncertainty
•

 

Summary
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Goals for this Briefing

•

 

Understand the connection between verification & 
validation (V&V), sensitivity analysis (SA), and uncertainty 
quantification (UQ).
–

 

And the basic SA and UQ methods & software tools.

•

 

Understand the difference between aleatory

 

(probabilistic) 
uncertainty and epistemic

 

(lack of knowledge) uncertainty.
–

 

And how this impacts what you can and cannot learn from a 
UQ study.

•

 

Know where to go for more info:
–

 

SNL staff resources
–

 

Key documents
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Example of Analysis w/o UQ: 
Space Shuttle Solid Rocket Booster Skirt

Take home messages:
1.The best deterministic analysis 

can yield only limited insight.
2.Neglecting or overlooking 

uncertainty invites problems.
(NASA: O-rings, foam debris,...)

•

 

Deterministic analysis indicates 
stress within allowable limit

•

 

Skirt sometimes yields at launch

•

 

Probabilistic analysis reveals high 
probability of plastic deformation 
due to scatter in loads and 
material strength



5

Sensitivity Analysis & UQ 
Terminology & Issues

•

 

Sensitivity Analysis (SA):
–

 

How do my code outputs vary due to changes in my code inputs?
–

 

Need both “local sensitivity”

 

and “global sensitivity”

 

information.

–

 

Local sensitivity: code output gradient data for a specific set of 
code input parameter values

–

 

Global sensitivity: the general trends of the code outputs over the 
full range of code input parameter values (linear, quadratic, etc.)

•

 

Uncertainty Quantification (UQ):
–

 

What are the probability distributions on my code outputs, given

 
the probability distributions on my code inputs? (aleatoric UQ)

•

 

Estimate Probability[f > f*], i.e., the probability that the system will fail
–

 

What are the possible/plausible code outputs? (epistemic UQ)

•

 

Quantification of margins and uncertainties (QMU):
–

 

How “close”

 

are my code output predictions (incl. UQ) to the 
system’s required performance level?
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Examples of Sensitivity Analysis
 Local vs. Global Sensitivity 

x1

f(x1

 

)

•

 

Sensitivity analysis examines variations in f(x1

 

) due to 
perturbations in x1

–

 

Local sensitivities are typically partial derivatives.
•

 

Given a specific x1

 

, what is the slope at that point?
–

 

Global sensitivities are typically found via least squares.
•

 

What is the trend of the function over all values of x1

 

?

local

x1

f(x1

 

) local
local

global

global



7

Getting Started with
 Sensitivity Studies and UQ Studies

•

 

Make a list of the relevant parameters:
–

 

Experimental conditions and parameters
–

 

Physics parameters 
–

 

Code algorithm parameters

•

 

The next step is to identify what is known about each parameter:
–

 

Bounds?, Discrete or continuous?, Probabilistic?

•

 

Initial sensitivity analysis

 

studies can identify:
–

 

High impact parameters
–

 

Where to focus resources ($, people, simulations, tests, etc.)

•

 

Goal: Out of the O(10-100) parameters going into a simulation 
code, identify the most important parameters & their interactions.



8

Sensitivity Analysis Methods

•

 

An abridged list of sensitivity analysis methods:
–

 

Simple 1-parameter and multi-parameter studies*
–

 

Importance factors*
–

 

Scaled sensitivity coefficients
–

 

Design of experiments and data analysis*
–

 

Random sampling and correlation analysis*
–

 

Variance based decomposition*
–

 

Many others....

•

 

Software tools:
–

 

DAKOTA
–

 

Minitab statistics package (SNL site license)
–

 

JMP statistics package (~80 licenses around SNL)
–

 

Mathematica
–

 

Matlab with Statistics Toolbox
–

 

Others (Origin, etc.)

Workhorse 
methods

* SA capability in SNL’s DAKOTA software toolkit
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Sensitivity Analysis Example 

•
 

Let’s use a simple cantilever beam example to 
illustrate some of these sensitivity analysis 
concepts.
–

 
Sensitivity analysis with gradients

–
 

Sensitivity analysis with DAKOTA’s sampling 
methods and correlation analysis
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Example: Cantilever Beam
 Deterministic Analysis

•

 

L = Length = 1 m
•

 

W = Width = 1 cm, H = Height = 2 cm
•

 

I = Area Moment of Inertia = (1/12)WH^3
•

 

P = load = 100 N
•

 

Material = Aluminum 6061-T6:
•

 

E = Elastic Modulus = 69 GPa, Yield Stress = 255 MPa (from a handbook)

Beam theory: (assumes: elastic, isotropic, neglects beam mass, etc.)
•

 

Deflection = (PL^3)/(3EI), stress = My/I (y = distance from neutral axis) 
•

 

Deflection ~ 7.2 cm for P = 100 N
•

 

Yield Load = 170 N, Deflection at Yield Load ~ 12.3 cm

P
Goal:
We want to understand 
how deflection varies 
with respect to the 
length, width, height, 
load, and elastic 
modulus.

x

y
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Example: Cantilever Beam 
Sensitivity Analysis with Gradients

•L = Length = 1 m
•Width = 1 cm, Height = 2 cm
•P = load = 100 N
•Material = Aluminum 6061-T6:
•E = Elastic Modulus = 69 GPa
•Deflection = PL^3/(3EI)

Sensitivity Analysis of 
deflection (δ)vs. P, L, and E

P Scaled Sensitivity Coefficients
μx

 

*(∂δ/∂x)
μP

 

*(∂δ/∂P) =  0.0724
μL

 

*(∂δ/∂L)  =  0.217  
μE

 

*(∂δ/∂E) = -0.0724

Notes:
1. Gradients typically computed via finite 
difference estimates (4-7 code runs).
2. Be wary of extrapolating trends.
3. No interaction data from this approach, 
but still useful.
4. For a follow-on UQ study, maybe I’d 
freeze P and E at nominal values, and 
focus resources to study uncertainty in L.
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Example: Cantilever Beam 
Sensitivity Analysis with DAKOTA

•L = Length = 1 m
•Width = 1 cm, Height = 2 cm
•P = load = 100 N
•Material = Aluminum 6061-T6:
•E = Elastic Modulus = 69 GPa
•Deflection = PL^3/(3EI)

Sensitivity Analysis of deflection 
(δ)vs. P, L, and E

 

via random 
sampling over +/-

 

5% bounds 
around nominal values.

P Correlation Analysis Method
1.

 

Use DAKOTA to generate 20 random 
samples of L, P, E within +/-5% bounds.

2.

 

Compute deflection for each random sample.
3.

 

Look at partial correlation results generated 
by DAKOTA software.

4.

 

Result: “L”

 

most important parameter, but all 
have about equal impact.

Load
Length
Modulus
Deflection

.
-0.1177
-0.0753
0.2624

-0.1177
.

0.2146
0.3251

-0.0753
0.2146

.
-0.3088

0.2624
0.3251

-0.3088
.

Load Length Modulus Deflection
Partial Correlation Table
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Moving from 
Sensitivity Analysis to UQ Studies

•

 

The remaining parameters of interest will probably have some 
uncertainty associated with them, e.g.:
–

 

Lower and upper bounds (not necessarily uniform probabilities!!!)
–

 

Probabilistic data (vague or well-substantiated)

•

 

UQ is the process of propagating this uncertainty through a 
simulation model, and assessing the resulting uncertainty on the 
simulation output data.
–

 

Recall, typically we want to compute something like Probability(f > f*)

•

 

Issues:
–

 

There are many methods to propagate uncertainty –

 

all requiring 
multiple code runs (actual time/expense are problem dependent)

–

 

Special methods needed for UQ with epistemic parameters
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Uncertainty Quantification Methods
•

 

An abridged list of UQ methods:
–

 

Exact analytic methods
–

 

(Structural) reliability methods*
–

 

Monte Carlo-type sampling methods*
–

 

Polynomial chaos methods*
–

 

Dempster-Shafer evidence theory*
–

 

Bayesian methods
–

 

Many others....

•

 

Reliability methods are simple and cheap, but can have 
limited accuracy and applicability.

•

 

Sampling methods are simple and can be expensive, but 
are more generally applicable.
–

 

Latin hypercube sampling

 

is my method of choice, 
–

 

Sampling methods can be used when there is a mix of aleatory 
and epistemic uncertain parameters

Workhorse methods

Research methods

* UQ capability in SNL’s DAKOTA software toolkit
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Uncertainty Quantification Example #1 

•
 

Let’s return to the simple cantilever beam 
example to illustrate some of these UQ concepts.
–

 
Aleatory

 
(probabilistic) uncertainty
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Example: Cantilever Beam
 Deterministic Analysis

•

 

L = Length = 1 m
•

 

W = Width = 1 cm, H = Height = 2 cm
•

 

I = Area Moment of Inertia = (1/12)WH^3
•

 

P = load = 100 N
•

 

Material = Aluminum 6061-T6:
•

 

E = Elastic Modulus = 69 GPa, Yield Stress = 255 MPa (from a handbook)

Beam theory: (assumes: elastic, isotropic, neglects beam mass, etc.)
•

 

Deflection = (PL^3)/(3EI), stress = My/I (y = distance from neutral axis) 
•

 

Deflection ~ 7.2 cm for P = 100 N
•

 

Yield Load = 170 N, Deflection at Yield Load ~ 12.3 cm

P
Goal:
We want to understand 
how deflection varies 
with respect to the 
length, width, height, 
load, and elastic 
modulus.

x

y
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Example: Cantilever Beam UQ
 Analytical Approach

•

 

Length = 1 m
•

 

Width = 1 cm, Height = 2 cm
•

 

P = load = 100 N
•

 

Material = Aluminum 6061-T6:
•

 

E = Elastic Modulus
–

 

Mean = μ

 

= 69 GPa
–

 

Std Deviation = σ

 

= 6.9 GPa

•

 

Deflection = PL^3/(3EI)
•

 

E is Normal[μ, σ]

•

 

Exact PDF of E
•

 

Exact PDF of deflection

P

40 60 80 100 120
E HGPaL

0.01
0.02
0.03
0.04
0.05
0.06

Probability
Density

Probability Density Functions 
(aka PDFs)

6 8 10 12 deflection HcmL

0.1
0.2
0.3
0.4
0.5

Probability
Density

Note: PDF for 
deflection is slightly 
non-Normal due to 
nonlinearity of 
deflection w.r.t. E
(look closely at tails).
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6 7 8 9 10
deflection HcmL

0.2

0.4

0.6

0.8

1

Cumulative
Probability

50 60 70 80 90 100
E HGPaL

0.2

0.4

0.6

0.8

1

Cumulative
Probability

Example: Cantilever Beam UQ
 Analytical Approach

•

 

Length = 1 m
•

 

Width = 1 cm, Height = 2 cm
•

 

P = load = 100 N
•

 

Material = Aluminum 6061-T6:
•

 

E = Elastic Modulus
–

 

Mean = μ

 

= 69 GPa
–

 

Std Deviation = σ

 

= 6.9 GPa

•

 

Deflection = PL^3/(3EI)
•

 

E is Normal[μ, σ]

•

 

Exact CDF of E
•

 

Exact CDF of deflection

P Cumulative Distribution Functions 
(aka CDFs)
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6 7 8 9 10
deflection HcmL

20
40
60
80

100
120

Num per Bin

50 60 70 80 90
E HGPaL

10

20

30

40

50

60

Num per Bin

Example: Cantilever Beam UQ 
Monte Carlo Sampling –

 
Single Parameter

•

 

Length = 1 m
•

 

Width = 1 cm, Height = 2 cm
•

 

P = load = 100 N
•

 

Material = Aluminum 6061-T6:
•

 

E = Elastic Modulus
–

 

Mean = μ

 

= 69 GPa
–

 

Std Deviation = σ

 

= 6.9 GPa

•

 

Deflection = PL^3/(3EI)
•

 

E is Normal[μ, σ]

•

 

1000 random samples of E
•

 

1000 computed deflections

P Histograms
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5 7.5 10 12.5 15 17.5
Deflection , cm

20
40
60
80

100
120

Num Per Bin

Example: Cantilever Beam UQ 
Monte Carlo Sampling –

 
Multiple Parameters

•

 

Now make several 
parameters uncertain:

•

 

Deflection = PL^3/(3EI)
•

 

E is Normal[69,13.8] GPa
•

 

P is Normal[100,5] N
•

 

L is Normal[1.0m, 1cm]

•

 

1000 random samples of E, 
P, and L (top –

 

for E & P)
•

 

1000 computed deflections 
(bottom)

P

70 80 90 100 110 120 130
Load , N

20

40

60

80

Num Per Bin

40 60 80 100
Modulus , GPa

20

40

60

Num Per Bin

Normal distributions on 
inputs, but
non-normal distribution 
on output!

Histograms
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5 7.5 10 12.5 15 17.5
Deflection , cm

20
40
60
80

100
120

Num Per Bin

Example: Cantilever Beam UQ 
Monte Carlo Sampling –

 
Multiple Parameters

•

 

Now make several 
parameters uncertain:

•

 

Deflection = PL^3/(3EI)
•

 

E is Normal[69,13.8] GPa
•

 

P is Normal[100,5] N
•

 

L is Normal[1.0m, 1cm]

•

 

1000 random samples of E, 
P, and L (top –

 

for E & P)
•

 

1000 computed deflections 
(bottom)

P

70 80 90 100 110 120 130
Load , N

20

40

60

80

Num Per Bin

40 60 80 100
Modulus , GPa

20

40

60

Num Per Bin

So what do we do with 
this histogram???

Histograms
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5 7.5 10 12.5 15 17.5
Deflection , cm

20
40
60
80

100
120

Num Per Bin

Example: Cantilever Beam UQ 
Monte Carlo Sampling –

 
Multiple Parameters

•

 

Now make several 
parameters uncertain:

•

 

Deflection = PL^3/(3EI)
•

 

E is Normal[69,13.8] GPa
•

 

P is Normal[100,5] N
•

 

L is Normal[1.0m, 1cm]

•

 

1000 random samples of E, 
P, and L

•

 

1000 computed deflections
•

 

DAKOTA computes these 
simple statistics

P

Estimate failure probability as # of 
samples with deflection > 11 cm , e.g.
Pfail

 

~ 52/1000 = 0.052
(plus, can also estimate Pfail

 

uncertainty)

What if few or no points exceed limit?

Example: “Critical”

 

deflection 
amount is 11 cm
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0.05

0.15

0.25

P
ro

ba
bi

lit
y

.1 .2
Deflection (m)

 LogNormal(-2.6086,0.2288)

Example: Cantilever Beam UQ 
Monte Carlo Sampling –

 
Multiple Parameters

•

 

Now make several 
parameters uncertain:

•

 

Deflection = PL^3/(3EI)
•

 

E is Normal[69,13.8] GPa
•

 

P is Normal[100,5] N
•

 

L is Normal[1.0m, 1cm]

•

 

1000 random samples of E, 
P, and L

•

 

1000 computed deflections
•

 

Use JMP, Minitab, or other 
statistics software

P

Fit a probability distribution function to 
the histogram & estimate Pfail

 

values:
Prob( δ

 

> 11 cm) ~ 0.04 
Prob( δ

 

> 21.8 cm) ~ 1.0e-6

(note: there is uncertainty on the 
lognormal parameters!)

Scale
Shape

Type
µ
s

Parameter
-2.608611
0.2288009

Estimate
-2.622806
0.2191282

Lower 95%
-2.594416
0.2392066

Upper 95%

Parameter Estimates



24

Uncertainty Quantification Example #2

•

 

What happens in the UQ study if some or all of the parameters 
have epistemic

 

(lack of knowledge) uncertainty?

•

 

This is an active research area:
–

 

Bayesian methods
–

 

Dempster-Shafer methods
–

 

Interval methods, etc.

•

 

Approach used in WIPP and Nuclear Reg. Comm. studies: 
–

 

“2nd

 

order sampling”

 

methods
–

 

Epistemic parameters define “possible”

 

scenarios.
–

 

Aleatoric parameters give probability estimates within each 
scenario.

–

 

Result: yields a collection of failure probability estimates, but user 
cannot know which scenario is most likely.
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Example: Cantilever Beam UQ 
Monte Carlo Sampling –

 
Multiple Parameters

•

 

Now make two parameters 
have epistemic

 

uncertainty:

•

 

Deflection = PL^3/(3EI)
•

 

E is Normal[69, 13.8] GPa
•

 

L is in [0.97, 1.03] m
•

 

P is in [85, 115] N

•

 

1000 random samples of E 
for each

 

instance of P and L

•

 

Report range of failure 
probability estimates to 
decision maker, including 
the worst-case failure 
probability.

P
Approach:
1. Randomly choose a Load and a Length from 
their respective intervals.
2. Perform Monte Carlo (or Latin hypercube) 
sampling over the Elastic Modulus PDF
3. Compute probability deflection > 11 cm
4. Return to step 1 and repeat until computational 
budget limit reached.

7.5 10 12.5 15 17.5 20
deflection HcmL

20
40
60
80

100
120
140

Num per Bin

Run #1: Pfail

 

~ 0.043

Run #1

6 8 10 12 14 16
deflection HcmL

20
40
60
80

100
120
140

Num per Bin

Run #2: Pfail

 

~ 0.055

Etc....

Run #2
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What are the Issues for 
Real World Sensitivity Analysis and UQ Studies?

•

 

Constrained resources -

 

time, test/simulation budget.
•

 

Combo of aleatory, epistemic, and mixed aleatory/epistemic 
uncertain parameters.

•

 

What to do:
–

 

Get a knowledgeable engineer-stats person involved early.
–

 

If you can do more than one test/simulation, you probably can get 
some statistical data.

–

 

Rules of thumb for # of test/simulations needed:
•

 

Sensitivity analysis: ~[n+1, n2/2] (where n=# of uncertain parameters)

•

 

UQ for mean response: ~[n+1, n2/2]
•

 

UQ for low-probability events: ~10*(1/desired probability level) (see note)

•

 

Note: There are special stats/math methods to do SA & UQ when you 
can’t afford a large # of tests or simulations!
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Conclusion Slides

•
 

Summary
•

 
Points of contact



28

Summary: UQ Applications
 in Sandia Mission Areas

•

 

Sandia’s engineering practices are evolving to include UQ concepts to 
enable risk-informed design.

•

 

Risk-informed design leverages past work on analysis of low-

 
probability and high-consequence systems:

–

 

Waste Isolation Pilot Plant (WIPP)
–

 

Nuclear Regulatory Commission (NRC) studies on reactor safety

•

 

Programmatic front:
–

 

Partner statisticians with engineers on projects.
–

 

Educate engineers on basic statistical methods and relevant topics, e.g., 
V&V, sensitivity analysis, UQ, QMU.

•

 

Technical front:
–

 

Employ UQ methods that accommodate both probabilistic (aleatoric) and 
lack of knowledge (epistemic) uncertainty.

–

 

Employ existing software tools: both in-house (DAKOTA) and commercial.
–

 

Perform UQ within the time/simulation run budget of the study.
–

 

Produce “best estimate + quantified

 

uncertainty”

 

for our customers.
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Closing Remarks

•

 

Sensitivity analysis and UQ are key components of ASC 
verification & validation studies:
–

 

Also, SA and UQ have much utility outside of ASC applications
–

 

Must discriminate between epistemic

 

(lack of knowledge) 
uncertainty and aleatory

 

(probabilistic) uncertainty.
–

 

Just assuming that every uncertain parameter has a normal or 
uniform probability distribution is not good engineering 
practice. 

•

 

Sandia has software tools (DAKOTA, JMP, Minitab, etc.) for 
SA and UQ studies.
–

 

Training in these software tools is available --

 

by SNL staff, 
online “webinars”, multi-day courses, etc.

–

 

In my experience, the most productive SA/UQ studies involve a 
collaboration

 

between engineering experts and SA/UQ experts
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Points of Contact

•
 

There is a growing cadre of SNL managers and staff 
with V&V/UQ/QMU knowledge.

•
 

SNL/NM:
–

 

Tony Giunta, Channy Wong, Hal Morgan (1500), Jim Stewart 
(1400), David Womble (1400), Marty Pilch (1200), Kathleen 
Diegert (12300), Janet Sjulin (12300), Sheryl Hingorani (2900), 
Bob Paulsen (2100), et al.

•

 

SNL/CA:
–

 

Mike Hardwick and Heidi Ammerlahn (8900)
–

 

Artie Ortega (8200)
–

 

et al.

My apologies to those I’ve inadvertently left off this list!
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V&V/UQ/QMU Reading List

•

 

Ideas underlying quantification of margins and uncertainties (QMU): a 
white paper.

 

SAND2006-5001
–

 

Tim Trucano, Martin Pilch, Jon Helton Unclassified Unlimited Release

•

 

V&V 10 -

 

2006 Guide for Verification and Validation in Computational 
Solid Mechanics
–

 

ASME Publication ($42)
–

 

http://catalog.asme.org/Codes/PrintBook/VV_10_2006_Guide_Verificati

 
on.cfm

•

 

SNL Integrated Stockpile Evaluation Program website:
–

 

http://ise.sandia.gov/

•

 

Probability, Reliability, and Statistical Methods in Engineering Design
–

 

Achintya Haldar and Sankaran Mahadevan 

http://catalog.asme.org/Codes/PrintBook/VV_10_2006_Guide_Verification.cfm
http://catalog.asme.org/Codes/PrintBook/VV_10_2006_Guide_Verification.cfm
http://ise.sandia.gov/
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Extensive Reference List
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Extra Vugraphs
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Common UQ Pitfall:
 (Cannot have PDF on results if no PDFs on inputs!)

Fr
eq

ue
nc

y

probability

[assuming any value in 
the A and B intervals is 
possible]
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