

Joint Modeling of Degradation and Failure Rate Occurrence Using Bayesian Networks

Open PSA Workshop

October 3rd, 2007

**Bobby Middleton
Sandia National Laboratories**

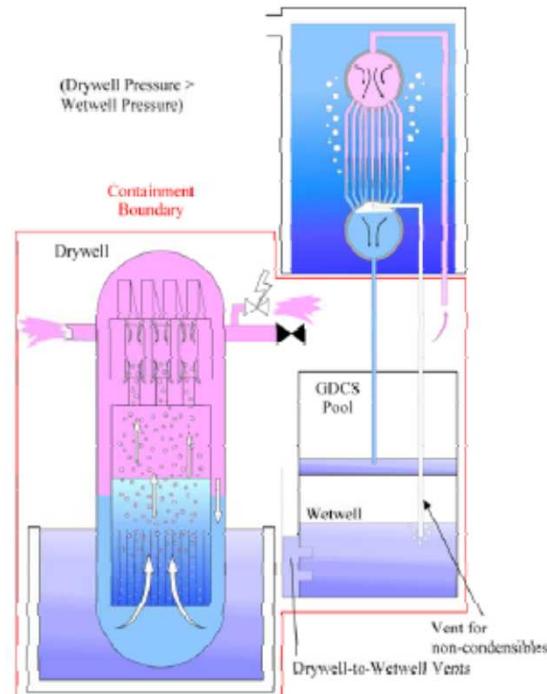
Outline

- Motivation
- Technologies involved
 - Bayesian network background
 - MCMC sampling
- The process
 - Using available data
 - The model
 - The results
- Path forward

Motivation for Research

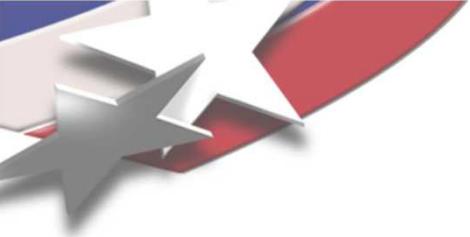
- Gen III/III+ Nuclear Reactors
 - Incorporate passive system designs
 - As many as 30+ COLs planned
 - At least one COL submitted (South Texas Project)
- Next Generation Nuclear Reactors
 - Will rely heavily on passive systems
 - No consensus methodology pertaining to PRA for passive systems

Passive Containment Cooling



Motivation for Using Bayesian Networks

- Technique inherently uses all available information
 - Physical models
 - Expert judgment
 - Data
- Technique inherently produces results that quantify uncertainties
 - Accounts for measurement uncertainties
 - Accounts for model uncertainties
 - Accounts for variability among “individuals” in a population
- Allows hierarchical structure to account for different levels of model “importance”



Bayesian Networks

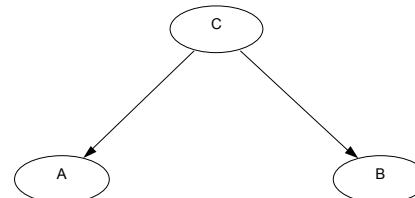
- **Based on Bayes' Rule**

$$P(B|C) = \frac{P(C|B) \times P(B)}{P(C)}$$

$$P'(\theta) = \frac{P'(X|\theta) \times P'(\theta)}{\int_{\text{all } \theta} P'(X|\theta) \times P'(\theta) d\theta}$$

- **Utilizes concept of conditional independence**

$$P(A \cap B | C) = P(A | C) \times P(B | C)$$



MC Sampling

- Suppose we want to evaluate the integral of $h(x)dx$.
- Choose a probability distribution, $w(x)$. Then:

$$I \equiv \int h(x)dx = \int \frac{h(x)}{\omega(x)} \omega(x)dx$$

$$I \approx I_N \equiv \frac{1}{N} \sum_{t=0}^{N-1} \frac{h(x_t)}{\omega(x_t)}$$

Pseudo-random Sampling

- **Pseudo-Monte Carlo**

- developed in nuclear weapons programs in the 1940's
 - let $I^s = [0,1]^s$ be a s -dimensional cube and let $f(t)$ be defined on I^s
 - let (x_1, \dots, x_N) be a *pseudo-random* sample of N points from I^s where

$$x_n = ax_{n-1} \bmod(m)$$

$$\text{e.g., } x_n = 16807x_{n-1} \bmod(2^{31} - 1)$$

- x/m is a *pseudo-random number* on the interval $[0,1]$

- **PROS:**

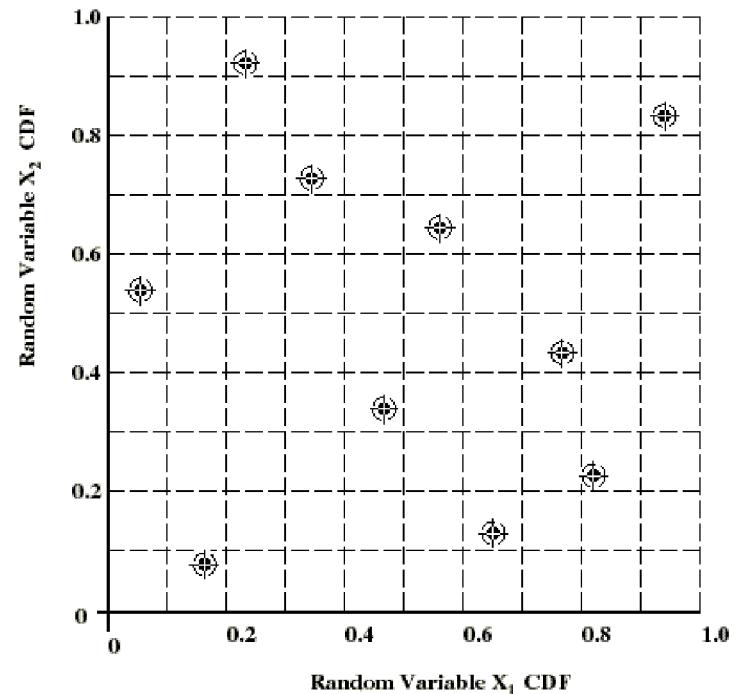
- sampling can be conducted sequentially (easy to add new samples)
 - error bounds not dependent on dimension s

- **CONS:**

- Probabilistic error bounds depend on equidistribution of sample points in sample space $O(n^{-1/2})$
 - no methodical means of constructing sample to achieve error bound, therefore rate of convergence is very slow

Latin Hypercube Sampling

- Latin Hypercube Sampling
- also based on pseudo-random sampling
- form of stratified sampling in which the samples are 'forced' to be dispersed across the support space
- number of samples dictates the number of regions
- PROS:
 - significant reduction in number of samples compared to traditional MC
- CONS:
 - samples do not provide good uniformity across
 - samples can not be generated sequentially



Quasi-random Monte Carlo (MCMC)

- A Quasi-random sample is commonly referred to as a low-discrepancy sequence.
- Low discrepancy sequence is one that places sample points nearly uniformly in the sample space of interest.
- Low-discrepancy → low integration error
- Deterministic error bounds – $O(N^{-1}(\log N))$
- Variety of sequences
 - Halton (simple, leaped, RR2)
 - Hammersley
 - Fauer
 - Sobol

MCMC Applied to Bayes'

- Suppose we have a model defined by:

$$Y \sim N(\mu, \tau)$$

$$\mu = ax + bt + \varepsilon$$

$$\tau \sim G(\alpha, \beta)$$

$$a \sim N(\mu_a, \tau_a)$$

$$b \sim N(\mu_b, \tau_b)$$

$$\varepsilon \sim N(0, \tau_\varepsilon)$$

Gibbs Sampler (MCMC Sampler)

$$P(a^{t1} | b^{t0}, \varepsilon^{t0}, \tau^{t0}, y) = \frac{P(b^{t0}, \varepsilon^{t0}, \tau^{t0}, y | a^{t0}) P(a^{t0})}{\int P(b^{t0}, \varepsilon^{t0}, \tau^{t0}, y | a^{t0}) P(a^{t0}) da^{t0}}$$

$$P(b^{t1} | a^{t1}, \varepsilon^{t0}, \tau^{t0}, y) = \frac{P(a^{t1}, \varepsilon^{t0}, \tau^{t0}, y | b^{t0}) P(b^{t0})}{\int P(a^{t1}, \varepsilon^{t0}, \tau^{t0}, y | b^{t0}) P(b^{t0}) db^{t0}}$$

.

.

.

$$P(\tau^{t1} | a^{t1}, b^{t1}, \varepsilon^{t1}, y) = \frac{P(a^{t1}, b^{t1}, \varepsilon^{t1}, y | \tau^{t0}) P(\tau^{t0})}{\int P(a^{t1}, b^{t1}, \varepsilon^{t1}, y | \tau^{t0}) P(\tau^{t0}) d\tau^{t0}}$$

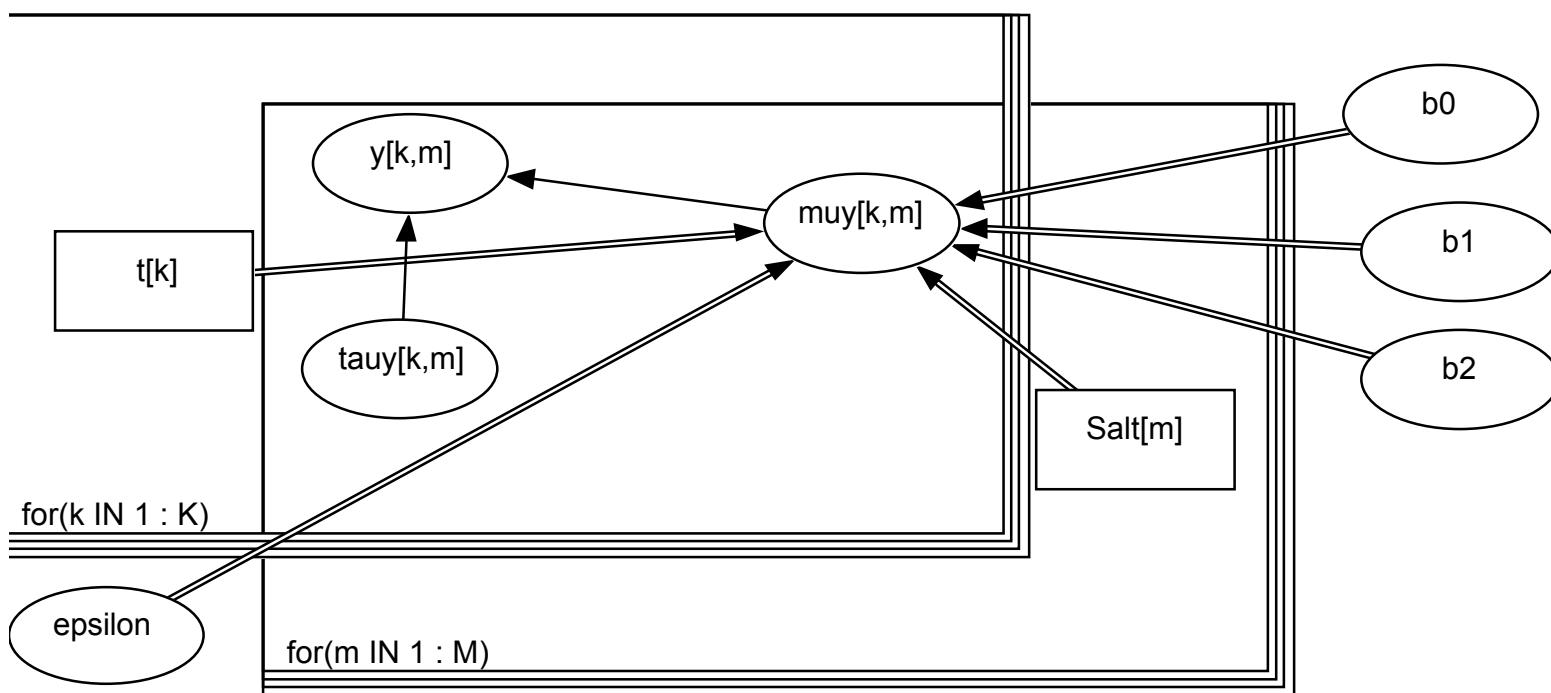
Our Problem

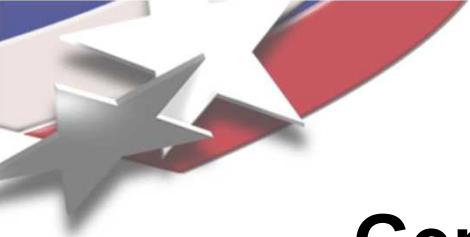
- Used available data...
- Multiple resistors placed in various environments:
 - Temperature
 - Salt content
 - Humidity
- Measurements of resistance recorded over time
- Failure time recorded
- Want model to:
 - Predict degradation state
 - Predict probability of failure at time t_1 given no failure at time t_0

General Approach for Degradation

- Due to time constraints, limit model to time (t_k) and single time-independent covariate (Salt content)
- Assume measurements are Gaussian distributed with a mean equivalent to the “true” value and measurement error determined by a precision that is Gamma distributed
- Assumed “true” value is linear in time and salt content with model noise that is normally distributed
- Assumed coefficients are normally distributed

DAC for Degradation Model





General Approach for Failure Rate

- Assume failure is Bernoulli distributed
- Define:
 - $d_{km} \sim \text{Bern}(PI(0,t))$
 - $d_{km} = 0$ if mth resistor is working at time t_k
 - $d_{km} = 1$ if mth resistor is not working at time t_k , but was working at time t_{k-1}
 - $d_{km} = NA$ otherwise
- Assume proportional hazards model of failure

$$PI(t) \equiv 1 - \int_0^t e^{-\lambda u} du$$

Failure Rate Model, cont.

- Assume failure rate of mth component is equal to a “population” failure rate multiplied by a factor that is specific to the mth component

$$\lambda_{km} = \lambda_{k0} e^{a_0 + a_1 * my_{km} + a_2 * Salt_m}$$

- Define

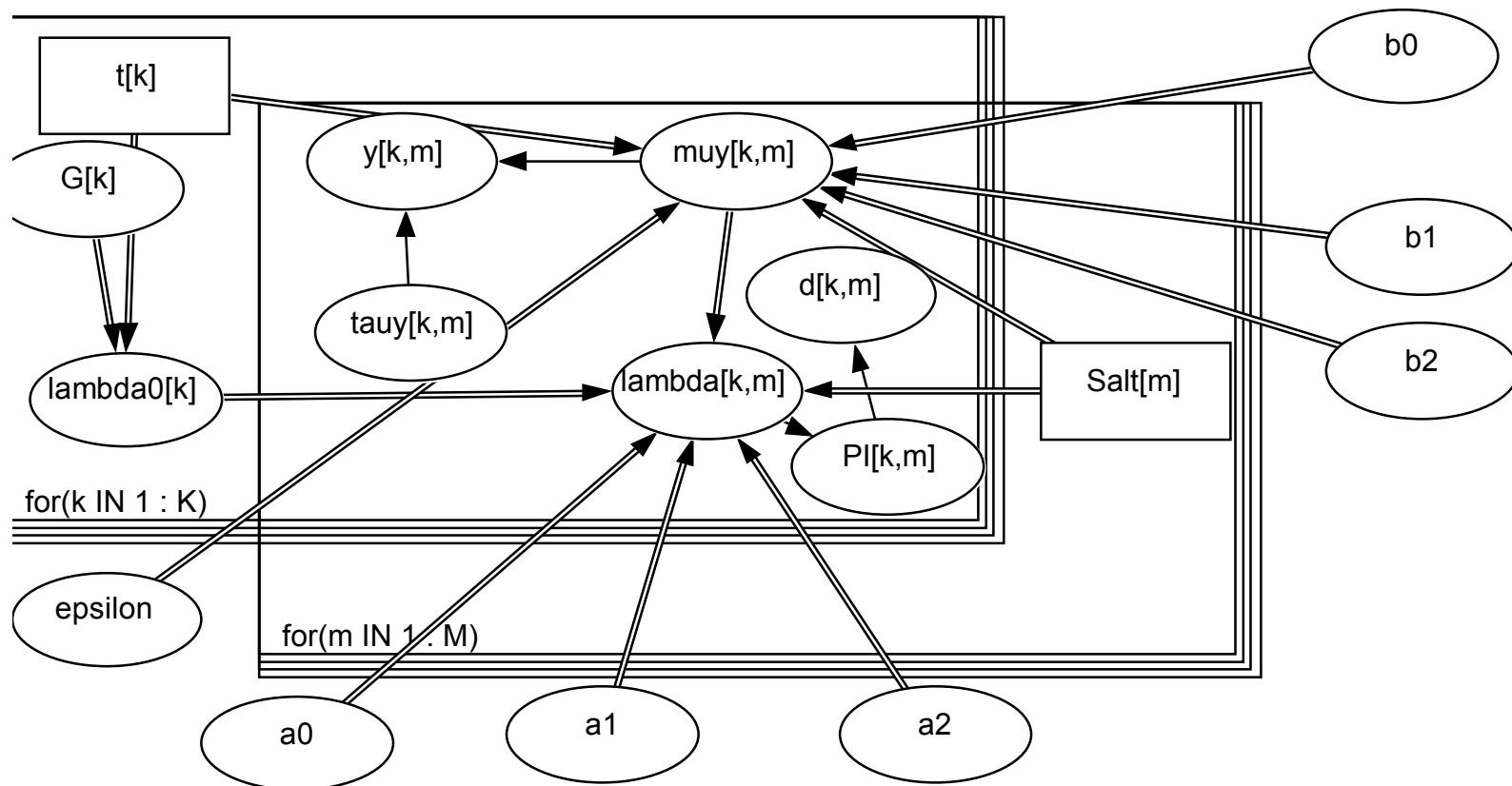
$$G = \int_0^t \lambda_0(u) du$$

$$\frac{dG}{dt} \sim Gamma(\alpha, \beta)$$

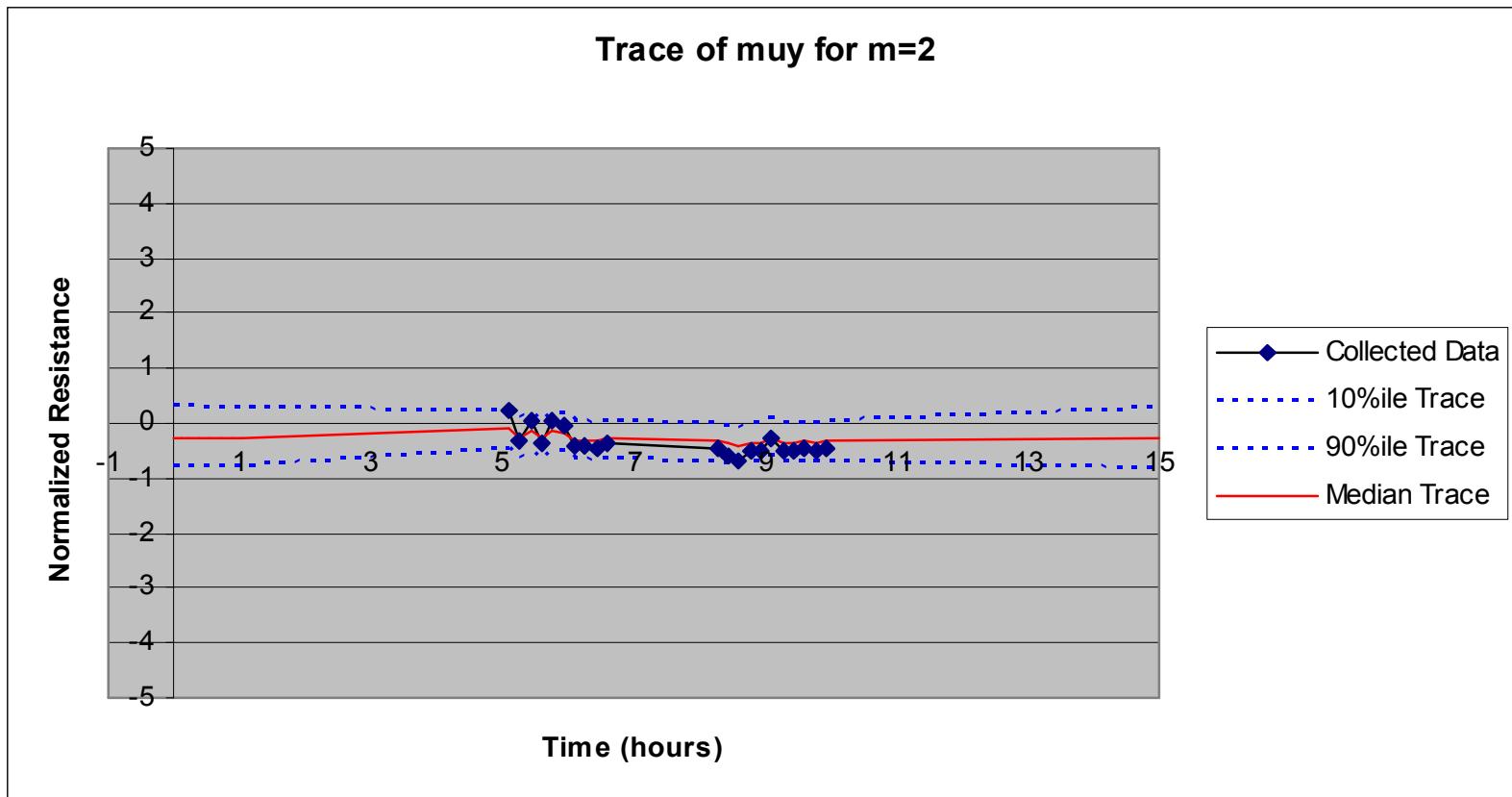
Technique Wrap-up

- Note that the assumed “true” value of the resistance is used in the failure rate model
- So, we have a joint model of degradation and failure rate
- Prior distributions can be input for all unknown parameters
- Data can be used to update the parameters using Bayes’ rule
- Hierarchies can be built to account for different levels of parameter interaction
 - “Population” failure rate
 - Component specific factor

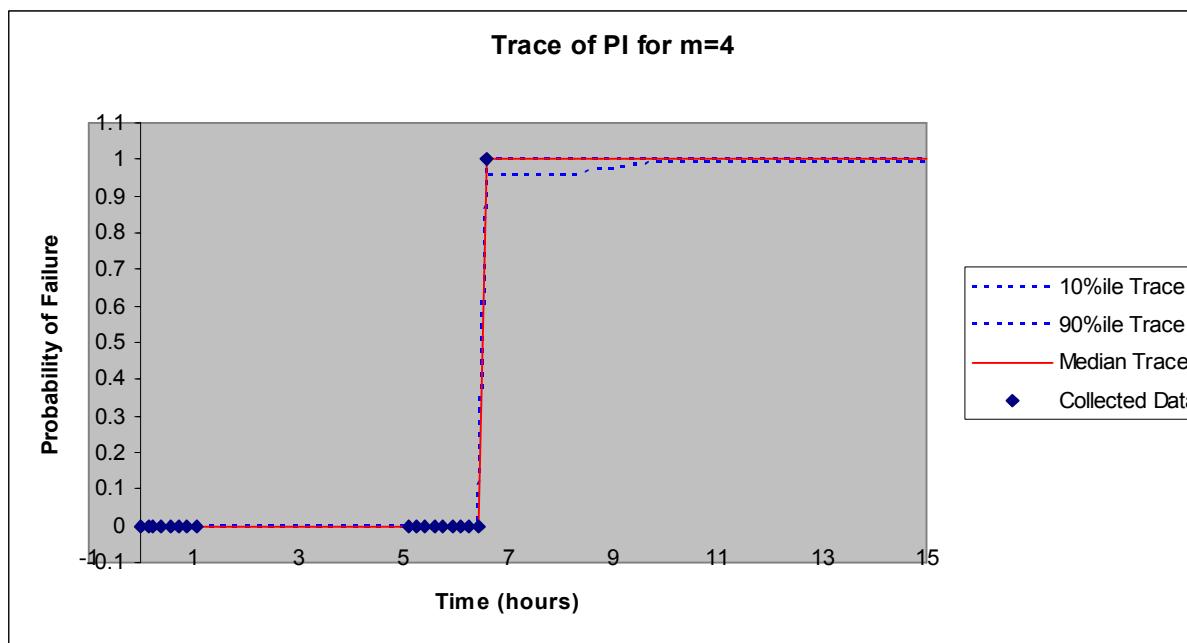
Joint Model



Degradation Results



Failure Rate Results



Path Forward

- **STILL PRODUCING AND EVALUATING RESULTS**
- Refine model to include all covariates
- Calculate mutual information of input parameters and output in order to assess coverage of model
- Develop real-time capability
- Currently working to adapt to Digital I&C applications