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Motivation for Research

• Gen III/III+ Nuclear Reactors

– Incorporate passive system 
designs

– As many as 30+ COLs 
planned

– At least one COL submitted 
(South Texas Project)

• Next Generation Nuclear 
Reactors

– Will rely heavily on passive 
systems

– No consensus methodology 
pertaining to PRA for 
passive systems



Motivation for Using Bayesian Networks

• Technique inherently uses all available information

– Physical models

– Expert judgment

– Data

• Technique inherently produces results that quantify 
uncertainties

– Accounts for measurement uncertainties

– Accounts for model uncertainties

– Accounts for variability among “individuals” in a 
population

• Allows hierarchical structure to account for different 
levels of model “importance”



Bayesian Networks

• Based on Bayes’ Rule

• Utilizes concept of conditional independence
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MC Sampling

• Suppose we want to evaluate the integral of h(x)dx.

• Choose a probability distribution, w(x).  Then:
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Pseudo-random Sampling

• Pseudo-Monte Carlo
– developed in nuclear weapons programs in the 1940's

– let Is= [0,1]s be a s -dimensional cube and let f(t) be defined on Is

– let (x1,…,xN) be a pseudo-random sample of N points from Is  where

– xi/m is a pseudo-random number on the interval [0,1]

– PROS: 
• sampling can be conducted sequentially (easy to add new samples)

• error bounds not dependent on dimension s

– CONS: 
• Probabilistic error bounds depend on equidistribution of sample points in 

sample space O(n-1/2)

• no methodical means of constructing sample to achieve error bound, 
therefore rate of convergence is very slow
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• Latin Hypercube Sampling
• also based on pseudo-random sampling

• form of stratified sampling in which
the samples are ‘forced’ to be dispersed 
across the support space

• number of samples dictates the number of 
regions

• PROS: 

– significant reduction in number of 
samples compared to traditional MC

• CONS: 

– samples do not provide good uniformity 
across

– samples can not be generated 
sequentially

Latin Hypercube Sampling



Quasi-random Monte Carlo (MCMC)

• A Quasi-random sample is commonly referred to as a low-
discrepancy sequence.

• Low discrepancy sequence is one that places sample points 
nearly uniformly in the sample space of interest.

• Low-discrepancy   low integration error 

• Deterministic error bounds –O(N-1(logN))

• Variety of sequences 

– Halton (simple, leaped, RR2)

– Hammersley

– Fauer

– Sobol 



MCMC Applied to Bayes’

• Suppose we have a model defined by:
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Gibbs Sampler (MCMC Sampler)
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Our Problem

• Used available data…

• Multiple resistors placed in various 
environments:
– Temperature

– Salt content

– Humidity

• Measurements of resistance recorded over time

• Failure time recorded

• Want model to:
– Predict degradation state

– Predict probability of failure at time t1 given no 
failure at time t0



General Approach for Degradation

• Due to time constraints, limit model to time (tk) 
and single time-independent covariate (Salt 
content)

• Assume measurements are Gaussian distributed 
with a mean equivalent to the “true” value and 
measurement error determined by a precision 
that is Gamma distributed

• Assumed “true” value is linear in time and salt 
content with model noise that is normally 
distributed

• Assumed coefficients are normally distributed



DAC for Degradation Model

for(m IN 1 : M)

for(k IN 1 : K)

tauy[k,m]

epsilon

Salt[m]

t[k]

b2

b1

b0

muy[k,m]

y[k,m]



General Approach for Failure Rate

• Assume failure is Bernoulli distributed

• Define:

– dkm~Bern(PI(0,t))

– dkm=0 if mth resistor is working at time tk

– dkm=1 if mth resistor is not working at time tk, but was 
working at time tk-1

– dkm=NA otherwise

• Assume proportional hazards model of failure
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Failure Rate Model, cont.

• Assume failure rate of mth component is equal to a 
“population” failure rate multiplied by a factor that is specific 
to the mth component

• Define 

mkm Saltamuyaa
kkm e *2*
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Technique Wrap-up

• Note that the assumed “true” value of the resistance is 
used in the failure rate model

• So, we have a joint model of degradation and failure rate

• Prior distributions can be input for all unknown parameters

• Data can be used to update the parameters using Bayes’ 
rule

• Hierarchies can be built to account for different levels of 
parameter interaction

– “Population” failure rate

– Component specific factor



Joint Model

for(k IN 1 : K)

for(m IN 1 : M)

d[k,m]

PI[k,m]

a2a1a0

G[k]

lambda[k,m]

b0

lambda0[k]

tauy[k,m]

epsilon

Salt[m]

t[k]

b2

b1

muy[k,m]y[k,m]



Degradation Results

Trace of muy for m=2
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Failure Rate Results

Trace of PI for m=4
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Path Forward

• STILL PRODUCING AND EVALUATING RESULTS

• Refine model to include all covariates

• Calculate mutual information of input parameters 
and output in order to assess coverage of model

• Develop real-time capability

• Currently working to adapt to Digital I&C 
applications


