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Introduction and Examples



• Consider sequence of linear systems

• Matrix is  (non) symmetric, possibly ill-conditioned

• Applications:
– Newton/Broyden method for nonlinear equations

– Materials science and computational physics

– Transient circuit simulation

– Fatigue and fracture

– Crack propagation

– Optical tomography

– Topology optimization

– Large-scale fracture in disordered materials

– Electronic structure calculations

– Stochastic finite element methods

Solvers for SEQUENCES of Linear Systems

(i) (i) (i)A x b                i=1,2,3, 



Example #1: Crack Propagation*

Loading force

Symmetric 
about x-axis

Crack growth directionCrack 
Start

• Finite element crack propagation model

– P. Geubelle (AE/UIUC), S. Maiti, (ME/Michigan Tech.)

• Thousands of loading steps (thousands of linear systems) 

*MLP, E. de Sturler, G. Mackey, D.D. Johonson, and S. Maiti, Recycling Krylov Subspaces for Sequences of Linear 
Systems, SIAM Journal on Scientific Computing, Vol. 28, Issue 5, pp. 1651—1674, 2006.



Example #2: Topology Optimization*

• Optimize material distribution, , in design domain

• Minimize compliance uTK()u, where K()u=f

*S. Wang, E. de Sturler, and G. H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods 
with recycling, International Journal for Numerical Methods in Engineering, Vol. 69, Issue 12, pp. 2441—2468, 2007.



• Stochastic elliptic equation

• KL expansion + double orthogonal basis + discretization

– Separate deterministic and stochastic components

– Yield sequence of uncoupled equations

• Preprocess for recycling Krylov solver

– Use reordering scheme to minimize change in spectra of linear 
system

 a(x, ) u(x, ) f(x) x D,

u(x, ) 0 x D,

       

   

Example #3: Stochastic PDEs*

*C. Jin, X-C. Cai, and C. Li, Parallel Domain Decomposition Methods for Stochastic Elliptic Equations, SIAM Journal on 
Scientific Computing, Vol. 29, Issue 5, pp. 2069—2114, 2007.

(i) (i) (i)A x b                i=1,2,3, 



• Must solve thousands of linear systems!

• How to speed up solution of sequence of systems?

• Iterative (Krylov) methods build search space and select 
optimal solution from that space

• Building search space is dominant cost

• For sequences of systems, get fast convergence rate and good 
initial guess immediately by recycling selected search spaces 
from previous systems

Solvers for SEQUENCES of Linear Systems



• Consider: Ax=b (A is general nonsingular matrix)

• Given x0, r0 = b – Ax0, compute optimal update

by solving

Krylov Subspace Methods Crash Course

 m 2 m 1
0 0 0 0 0z K (A,r ) span r ,Ar ,A r , ,A r  

m
0

0 2z K (A,r )
min r Az






• Solve with least-squares

• Let                                                  . Then, z = Kmy for some y.

• We must solve

• Do so accurately and efficiently using Arnoldi 

Krylov Subspace Methods Crash Course

2 m
m 0 0 0 0 0AK y r       Ar ,A r , ,A r y r    

m m 1 mAV =V H

2 m 1
m 0 0 0 0K r ,Ar ,A r , ,A r   

1 0 0v r / r

T
m+1 m+1 m 1V V I  m 1 m+1range(V )=range(K )

0 0 m 0 m 1 m 0 1 mr Az r AV y r V H y r e H y      



• Typically, a dominant subspace exists such that almost 
any Krylov space (from any starting vector) has large 
components in that space (why restarting is bad) 

Why Recycle?
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• Typically, a dominant subspace exists such that almost 
any Krylov space (from any starting vector) has large 
components in that space (why restarting is bad) 

• Optimality derives from orthogonal projection

– new search directions should be far from this dominant 
subspace for fast convergence

• If such a dominant subspace persists (approximately) 
from one system to the next, it can be recycled

– Typically true when changes to problem are small and/or 
highly localized

• Family of “recycling” solvers: GCRO-DR, RMINRES 
GCROT/Recycle (differ in how they define  the dominant 
subspace)

Why Recycle?



Structure of Recycling Solver

Solve System i

Krylov 
Space

Recycle 
Space

Create new 
recycle space

Cycle

AU=C

(I-CCT)AV=VH

Solve 

System 

i+1

Converged? Recycle 
Space

Solve 
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i-1

Recycle 
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Y
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Structure of Recycling Solver

Solve System i

Krylov 
Space

Recycle 
Space

Create new 
recycle space

Cycle

AU=C

(I-CCT)AV=VH

Solve 

System 

i+1

Converged? Recycle 
Space

Solve 

System 

i-1

Recycle 
Space

Y

N

Choice of Method: 
GMRES, MINRES, 

CG, etc.

“Dominant” 
subspace selection



• In (nearly) symmetric problems, convergence delays caused 
by invariant subspace associated with small eigenvalues

– corresponds to smooth modes that change little for small localized 
changes in the problem 

• Remove them to improve convergence!

– Recycle space = approximate eigenspace 

• If (V) is not large (normality assumption) we can improve 
bound by removing select eigenvalues 

• RMINRES is specialization of GCRO-DR to symmetric             
(but not definite) case

GCRO-DR / RMINRES

   
 

 
   

 






m
m0

m

0 m 02 2P 0 =1z K A,r

0 m2 P 0 =1 λ Λ A

min r - Az = min p A r

κ V r min max p λ



• Approximate b using 2 search spaces, range(C) & range(V)  
where CTC=I, VTV=I, but CTV  0

• Typically V generated after C

• Optimal approximation (one step)

• Suboptimal approximation (two steps)

• Improve by taking into account “most relevant” parts of C

• Method measures “locally dominant” subspace

GCROT/Recycle

T
1r (I QQ )b  QR qr([CV])

T

T
2

r (I CC )b

r (I VV )r

 

 





2 2
1 2 i2 i

i

r r cos( (C,V))   

where
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• GMRES – full recurrence

• All Others – Max subspace size 40 



Example #1 Results: Crack Propagation

• IC(0) preconditioner

• GMRES – full recurrence

• All Others – Max subspace size 40 



Size Num. DOFs Direct Solve Time Recycling Solve Time

Small 9,360 0.96 1.68

Medium 107,184 179.30 50.41

Large 1,010,160 26154.00 1196.30

Example #2 Results: Topology Optimization*

Recycling Solve = RMINRES + IC(0) PC

Direct Solve = multifrontal, supernodal Cholesky factorization from TAUCS

*S. Wang, E. de Sturler, and G. H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods with 
recycling, International Journal for Numerical Methods in Engineering, Vol. 69, Issue 12, pp. 2441—2468, 2007.



Example #2 Results: Topology Optimization



Example #3 Results: Stochastic PDEs*

• Scheme #1: No Krylov recycling

• Scheme #4: Recycle Krylov spaces using reordering 

• Many systems require zero iterations!

Two-Level ASM

*C. Jin, X-C. Cai, and C. Li, Parallel Domain Decomposition Methods for Stochastic Elliptic Equations, SIAM Journal on 
Scientific Computing, Vol. 29, Issue 5, pp. 2069—2114, 2007.

One-Level ASM



• Methods need to satisfy three main requirements

– Identify and converge to effective recycle space (invariant 
subspaces, dominant subspace) in modest number of iterations 
and do so over solution of multiple (changing) systems

– Yield significant convergence improvement for recycle space of 
modest dimension

– Converge quickly to perturbed recycle space for updated 
matrix, effective mechanism for cheaply updating recycle space 
to reflect changes

• Use knowledge of application to tune the recycling 
(dominant subspace, invariant subspace, solution space)

What makes a good recycling method?



Convergence Analysis: Deflated Restarting



• Deflated Restarting within context of GCRO

• At end of cycle, GCRO-DR retains subspace spanned by k 
columns of U

• Let 

• GCRO-DR generates Arnoldi relation

• RMINRES is specialization of algorithm for symmetric case 

– Will consider convergence of symmetric case separately 

GCRO-DR

 H
m m+1I-CC AV = V H

H

AU=C

C C=I



• We can rewrite GCRO-DR relation as

where                      

• Comments:

– U arbitrary (harmonic Ritz vectors, Ritz vectors, etc.)

– Focus on removing eigenvalues of smallest magnitude

– Vm+1 orthogonal to C

– Designed for sequences of linear systems

   
 
 
 

m m+1

I B
A U V = C V  

0 H

GCRO-DR

H
mB=C AV



• For the symmetric case, convergence depends on spectrum 

– Let C  be k-dimensional matrix (recycle space)

– Let (Q) be ℓ-dimensional invariant subspace of A, ℓ  k 

• Let C be orthogonal projector onto (C) 

• Let PQ be spectral projector onto (Q) 

• Let  

•  is maximum component of unit vector in invariant subspace 
sticking out of recycle space

• We assume (Q,C) < 1       (Desire (Q,C) << 1)

Analysis: Symmetric Case

   H H
m m+1I-CC A I-CC V = V T

    C Q 2
δ Q, C = I -Π Π 1



• For the symmetric case, convergence depends on spectrum 

– Let C  be k-dimensional matrix (recycle space)

– Let (Q) be ℓ-dimensional invariant subspace of A, ℓ  k 

• Let [Q  Y1 Y2] be unitary, where

• Assume (C)  (Q,Y1) 

Analysis: Symmetric Case

   
 
 
 
 
 

Q
*

1 2 Y,1 1 2

Y,2

Λ

A = Q Y Y Λ Q Y Y

Λ

   H H
m m+1I-CC A I-CC V = V T



• After tedious analysis…

• Let

• Then

Analysis: Symmetric Case

 
 
 

* *
C C

Y,2

M
(I - Π )A(I - Π ) = WΓ Γ W

Λ

 2
min max Qλ (M) α - η - δ (α+η+ λ (Λ ))

 max Y,1 min Y,1

1
α = λ (λ )+ λ (λ )

2

� min Y,1η λ (λ )



• For A HPD, residual norm bound  ~ 

• For original matrix,

• For projected operator,   

• Numerical example

– Let eigenvalues be  {0.1, 0.2, 0.3, 0.4, 5, 6, … 100}

Analysis: Symmetric Case

 
  
 

j

κ -1

κ +1

n

1

λ
κ(A) =

λ

 n
C C

k+1

λ
κ((I - Π )A(I - Π ))

λ

κ(A) = 1000

C Cκ((I -Π )A(I - Π )) 20  -5r ~ 4.5023 10

100 iter r ~ 0.8187

100 iter



• For A indefinite, residual norm bound ~

• If only a few negative eigenvalues, they may be 
eliminated by deflation

residual norm bound ~ 

• Removes “squaring of condition number” effect 

Analysis: Symmetric Case
 

 
 
 
 

j 2
d -1

c
d +1

c

 
 
 
 

j
d -1

c
d +1

c



Example: Crack Propagation

• We assumed 

System 401 402 403 404 405

Before

Cycle 1
0.9994 0.2380 0.0464 0.0607 0.0794

After

Cycle 1
0.9180 0.1448 0.0463 0.0606 0.0787

After

Cycle 2
0.2446 0.0302 0.0416 0.0568 0.0690

After 

Cycle 3
0.2331 0.0302 0.0415 0.0567 0.0684

30

40

50

60

70

80

90

100

110

400 450 500 550

CG/GMRES GCRODR (Recycle) GCROT (Recycle)

   C Q 2
δ Q,C = I -Π Π <1



Example: Crack Propagation

• Max/Min eigenvalues and condition number 

System 400 401 402 403 404

max(A) 1.389687 1.389687 1.389687 1.389687 1.389687

max ((I-C)A(I-C)) 1.389687 1.387698 1.389677 1.389687 1.389687

min(A) 0.002732 0.002732 0.002732 0.002732 0.002732

min ((I-C)A(I-C)) 0.002732 0.074453 0.148986 0.147848 0.149206

(A) 508.61 508.61 508.61 508.62 508.63

((I-C)A(I-C)) 508.61 18.63 9.33 9.40 9.31
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• Let

• Note

•  is maximum component of unit vector in invariant 
subspace sticking out of recycle space

• We again assume (Q,C) < 1 (Desire (Q,C) << 1)

Analysis: Nonsymmetric Case

    C Q 2
Q,C I -Π P

   

 

C Q Q C Q Q2 2 2

Q 2

= I -Π Π P I -Π Π P

= δ Q, C P





• First bound:

Analysis: Nonsymmetric Case

Vj is j-dimensional Krylov space (GCRO-DR)

where

    
 

 

 


 
 
 

1 j 2 Q j

0 1 Q 1 22 2d R V ,C d R I-P V

Q V 1 22

min r - d min I - P r - d

+ P I - Π r
1 - δ



 1 C 0r = I - Π r



• Second bound:

•

• Free to choose Q (select for best bound)

• Good bound if ║PQ║2 not large

•  need not be very small (unless ║PQ║2 very large)

Analysis: Nonsymmetric Case

 
  




 
 
 


1 j

0 1 Q 1 2V2 2d R V ,C

2
Q 2

min r - d I - Π I - P r - d

+ P + O(δ )
1 - δ



 j Q jV I - P V



• Second bound:

• Must analyze Krylov process that generates space 

Analysis: Nonsymmetric Case

 
j C jV I - P V

 
  




 
 
 


1 j

0 1 Q 1 2V2 2d R V ,C

2
Q 2

min r - d I - Π I - P r - d

+ P + O(δ )
1 - δ





• Second bound:

• Following spirit of [Stewart, 2002], we observe 

• Second operator is small perturbation of first

– Consider spectrum of first 

 
 
  

 
  

Q C C Q

j j+1 jH -1
Q C Q j j j j

(I - P )(I - Π )A(I - Π )(I - P )+
V = V H

(I - P )A P V (V V ) V

Analysis: Nonsymmetric Case

 
  




 
 
 


1 j

0 1 Q 1 2V2 2d R V ,C

2
Q 2

min r - d I - Π I - P r - d

+ P + O(δ )
1 - δ





Analysis: Nonsymmetric Case

• Need additional assumptions…

–

• After similar tedious analysis, expect similar result:

where

 
 
 

*
Q C C Q

Y

M
(I - P )(I - Π )A(I - Π )(I - P ) = Z Z

L

min minλ (M) > λ (A)

   �cos( ( (Q), (Y))) 1



• Main bound:

GCRO-DR: Numerical Examples

BOUND

    
 

 

 


 
 
 

1 j 2 Q j

0 1 Q 1 22 2d R V ,C d R I-P V

Q V 1 22

min r - d min I - P r - d

+ P I - Π r
1 - δ



Vj is j-dimensional Krylov space (GCRO-DR)

where  1 C 0r = I - Π r



• Main bound:

GCRO-DR: Numerical Examples

DEFLATED

    
 

 

 


 
 
 

1 j 2 Q j

0 1 Q 1 22 2d R V ,C d R I-P V

Q V 1 22

min r - d min I - P r - d

+ P I - Π r
1 - δ



Vj is j-dimensional Krylov space (GCRO-DR)

where  1 C 0r = I - Π r



• Numerical Experiment*

– 100 × 100 matrices 

–

– ,   

• Does GCRO-DR select and remove four small 
eigenvalues?

• Run GCRO-DR 

– twice on same problem

GCRO-DR: Numerical Examples

* Simoncini & Szyld, 2005

 (1)κ S = 1  (2) 6κ S = 10

 
-1

(i) (i) (i)A = S Λ S

 Λ = diag 0.1, 0.2, 0.3, 0.4,5,6,7, ...,100

 

 ˆ

κ A = 1000

κ A = 20
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BOUND DEFLATED

• GMRES – full recurrence

• GCRO-DR(24,4) – Max subspace size 24 
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• GMRES – full recurrence
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Numerical Examples: (S) = 106

Q = smallest 
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• Krylov recycling overview

– GCRO-DR, RMINRES

– Numerical example

• Convergence result (Symmetric case)

– Improve conditioning if (Q,C) small

• Convergence result (Nonsymmetric case)

– Less successful if ║PQ║2 large

– Less successful if highly nonnormal

• Numerical examples

Summary



• Matlab GCRO-DR

– Publicly available for download 
(www.sandia.gov/~mlparks)

– Click on “software”

• Fortran 90 GCRO-DR (serial)

– Limited release; Ask me

• Matlab, PETSc RMINRES (ask EdS)

• Trilinos/Belos GCRO-DR (parallel)

– Available in Trilinos v8.0 public release

– trilinos.sandia.gov

Software



• MLP, EdS, Greg Mackey, Duane D. Johnson, and Spandan Maiti, 
Recycling Krylov Subspaces for Sequences of Linear Systems, 
SIAM Journal on Scientific Computing, Vol. 28, No. 5, pp. 
1651-1674, 2006.

– GCRO-DR, GCROT/Recycle

• Shun Wang, EdS, and Glaucio H. Paulino, Large-Scale Topology 
Optimization using Preconditioned Krylov Subspace Methods 
with Recycling, International Journal for Numerical Methods in 
Engineering, Vol. 69, Issue 12, pp. 2441—2468, 2007.

– RMINRES

• Available at 

– http://www.sandia.gov/~mlparks/

– http://www.math.vt.edu/people/sturler/

Recommended Reading


