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e Introduction and Examples
— Introduction: Sequential linear systems
— Motivating example problems
— Krylov subspace methods crash course (Why recycle?)
— Meet the family of recycling methods (How to select a recycle space? )
e Convergence analysis: Deflated restarting
— Effect of recycling approximate invariant subspaces?
— Do we achieve deflation?
— Symmetric case
— Nonsymmetric case
— Numerical examples
— Results
e Software
e Light Reading
e Conclusions
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Introduction and Examples
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Solvers for SEQUENCES of Linear Systems

e Consider sequence of linear systems

A''x' -b" =123

e Matrix is (non) symmetric, possibly ill-conditioned

e Applications:
— Newton/Broyden method for nonlinear equations

Materials science and computational physics
Transient circuit simulation

Fatigue and fracture

Crack propagation

Optical tomography

Topology optimization

Large-scale fracture in disordered materials
Electronic structure calculations

Stochastic finite element methods rew @ Sandia
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Example #1: Crack Propagation®

* Finite element crack propagation model
— P. Geubelle (AE/UIUC), S. Maiti, (ME/Michigan Tech.)
e Thousands of loading steps (thousands of linear systems)
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Sandia
"MLP, E. de Sturler, G. Mackey, D.D. Johonson, and S. Maiti, Recycling Krylov Subspaces for Sequences of Linear National :
Systems, SIAM Journal on Scientific Computing, Vol. 28, Issue 5, pp. 1651—1674, 2006. Laboratories
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Example #2: Topology Optimization

e Optimize material distribution, p, in design domain
e Minimize compliance u'K(p)u, where K(p)u=f

Initial guess

r

Finite Element Analysis
Sensitivity Analysis
Filtering Techniques

!

Optimization Process
(Optimality Criteria)

4

Update Design Variables

|

|p;"*™ — p,°¥| < tolerance

False
True

r

Plot Optimal Topology

Iteration 106

(Final iteration) Sandia
’S. Wang, E. de Sturler, and G. H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods| I.Naal}mal :
with recycling, International Journal for Numerical Methods in Engineering, Vol. 69, Issue 12, pp. 2441—2468, 2007. oratories
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e Stochastic elliptic equation
-V -(a(x,0))Vu(x,0) =f(x) xeD,0eQ
u(x,m) =0 XeoD,neQ

e KL expansion + double orthogonal basis + discretization

Example #3: Stochastic PDEs”

— Separate deterministic and stochastic components
— Yield sequence of uncoupled equations
Alix = pt =123
e Preprocess for recycling Krylov solver

— Use reordering scheme to minimize change in spectra of linear
system

Sandia
"C. Jin, X-C. Cai, and C. Li, Parallel Domain Decomposition Methods for Stochastic Elliptic Equations, SIAM Journal on @ ?aabt'o“al -
Scientific Computing, Vol. 29, Issue 5, pp. 2069—2114, 2007. oratories



Solvers for SEQUENCES of Linear Systems

e Must solve thousands of linear systems!
 How to speed up solution of sequence of systems?

e Iterative (Krylov) methods build search space and select
optimal solution from that space

e Building search space is dominant cost

e For sequences of systems, get fast convergence rate and good
initial guess immediately by recycling selected search spaces
from previous systems
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Krylov Subspace Methods Crash Course

e Consider: Ax=b (A is general nonsingular matrix)
e Given X, r, = b — Ax,, compute optimal update
zcK"(A,r,) = span{ro,Aro,Azro,...,A"“1ro}
by solving

,min_|r, ~Az],
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e Solve with least-squares

Krylov Subspace Methods Crash Course

elet K = [ro,Aro,Azro,. : .,A"“1ro] . Then, z = K.,y for somey.

e We must solve
AK y~r, < [Aro,Azro,...,A"‘ro]y ~r,
e Do so accurately and efficiently using Arnoldi
AV,=V__H Vv, =1, |,

m+1" "m

ViV .=l range(V_ . ,)=range(K .,)

m+1 " m

o — Az| = [, — AV, y| = Hro - Vm+1I:ImyH = HHro e - I:ImyH
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e Typically, a dominant subspace exists such that almost
any Krylov space (from any starting vector) has large
components in that space (why restarting is bad)

Why Recycle?

log({Irll)

-10 \ \ \
1 26 51 76
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e Typically, a dominant subspace exists such that almost
any Krylov space (from any starting vector) has large
components in that space (why restarting is bad)

Why Recycle?

e Optimality derives from orthogonal projection

— new search directions should be far from this dominant
subspace for fast convergence

o If such a dominant subspace persists (approximately)
from one system to the next, it can be recycled

— Typically true when changes to problem are small and/or
highly localized

e Family of “recycling” solvers: GCRO-DR, RMINRES
GCROT/Recycle (differ in how they define the dominant

subspace) ot
@ laiimorlal?ories



Structure of Recycling Solver

Solve
Syis_t: m / Solve System i \

AU=C
(I-CCT)AV=VH

Recycle
Space

Solve
System
i+1
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Structure of Recycling Solver

Choice of Method:
Solve GMRES, MINRES,
System CG, etc.
. / Solve System i

AU=C
(I-CCT)AV=VH

Recycle
Space

Solve

System
i+1
Sandia
National
Laboratories
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e In (nearly) symmetric problems, convergence delays caused
by invariant subspace associated with small eigenvalues

— corresponds to smooth modes that change little for small localized
changes in the problem

e Remove them to improve convergence!
— Recycle space = approximate eigenspace

GCRO-DR / RMINRES

Zem(iAI?ro)Hro . Az”z - PI:(‘()i)Ei |pm (A)rOHZ

<K (V)[ro[, min max|p,, (A)
o If «(V) is not large (normality assumption) we can improve
bound by removing select eigenvalues

e RMINRES is specialization of GCRO-DR to symmetric
(but not definite) case @ Sandia
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GCROT/Recycle

e Approximate b using 2 search spaces, range(C) & range(V)
where C'C=I, V'V=I, but C'V = 0

e Typically V generated after C
e Optimal approximation (one step)
r,=(1-QQ")b where QR =qr([CV])
e Suboptimal approximation (two steps)
r=(1-CC")b
r,=(1-VVT)r
e Improve by taking into account "most relevant” parts of C

[ry—r,f => v cos(£(C,V))

National _
Laboratories

e Method measures “locally dominant” subspace @ Sandia



e IC(0) preconditioner
e GMRES - full recurrence
e All Others — Max subspace size 40

— CG/GMRES == GCRODR (Recycle)

—

o
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Example #1 Results: Crack Propagation
e IC(0) preconditioner

e GMRES - full recurrence
e All Others — Max subsp
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Example #2 Results: Topology Optimization™

M Z_»
-

I
|
- <
i
Size Num. DOFs Direct Solve Time Recycling Solve Time
Small 9,360 0.96 1.68
Medium 107,184 179.30 50.41
Large 1,010,160 26154.00 1196.30

Recycling Solve = RMINRES + IC(0) PC

Direct Solve = multifrontal, supernodal Cholesky factorization from TAUCS

Sandia
’S. Wang, E. de Sturler, and G. H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods with @ raal}m“al c
recycling, International Journal for Numerical Methods in Engineering, Vol. 69, Issue 12, pp. 2441—2468, 2007. oratories



Example #2 Results: Topology Optimization
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Example #3 Results: Stochastic PDEs™

en
=

e Scheme #1: No Krylov recycling
e Scheme #4: Recycle Krylov spaces using reordering
e Many systems require zero iterations!

ra (=) [~ = PN
= 51 = & = o

o

iteration maumber for system @

n =

§ Ten

One-Level ASM

scheme 1
-+ sohema 4

'..F s I“.

E‘m-““ W ST f"“l'-U“'MLME'EﬂTm' LENEN |

5000 6000 7000

system ¢, 1 <1< 9216

1]
P R w [~ PN 2}
= wn = & = o =

=

=
B T

iteration mumber for system @

= o

Two-Level ASM

I_I_r.ll III !‘ Iﬁ[‘]‘lﬂh” Maan H.I.llllll\‘lll IJﬂIﬂﬂl‘l" I'Pf.l'l lu:'n'é I,

|
3000 4000

TABLE 4.1
Running time for different schemes and preconditioning (seconds).

Scheme
Preconditioner 1 3 4
One-level ASM 12030 4205 3882
Two-level ASM | 20980 10740 | 8476

"C. Jin, X-C. Cai, and C. Li, Parallel Domain Decomposition Methods for Stochastic Elliptic Equations, SIAM Journal on
Scientific Computing, Vol. 29, Issue 5, pp. 2069—2114, 2007.
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e Methods need to satisfy three main requirements

— Identify and converge to effective recycle space (invariant
subspaces, dominant subspace) in modest number of iterations
and do so over solution of multiple (changing) systems

— Yield significant convergence improvement for recycle space of
modest dimension

— Converge quickly to perturbed recycle space for updated
matrix, effective mechanism for cheaply updating recycle space
to reflect changes

What makes a good recycling method?

» Use knowledge of application to tune the recycling
(dominant subspace, invariant subspace, solution space)
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Convergence Analysis: Deflated Restarting
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GCRO-DR

» Deflated Restarting within context of GCRO

e At end of cycle, GCRO-DR retains subspace spanned by k
columns of U

elet AU=C
EEe—

e GCRO-DR generates Arnoldi relation

(I-CC")AV, =V, H

m+1="

e RMINRES is specialization of algorithm for symmetric case
— Will consider convergence of symmetric case separately
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e We can rewrite GCRO-DR relation as

AU V,|=[C vmﬂ]{I B}

GCRO-DR

O H
where

B=C"AV,

e Comments:
— U arbitrary (harmonic Ritz vectors, Ritz vectors, etc.)
— Focus on removing eigenvalues of smallest magnitude
- V,,+1 orthogonal to C
— Designed for sequences of linear systems
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e For the symmetric case, convergence depends on spectrum

Analysis: Symmetric Case

(I-CC")A(I-CC*)V, =V, T

m+l1_—

— Let C be k-dimensional matrix (recycle space)
— Let R(Q) be ¢-dimensional invariant subspace of A, t <k

e Let Il be orthogonal projector onto iR(C)
e Let P, be spectral projector onto R(Q)

eLet 5(Q,C)=|(I-N)M,| <1

e § is maximum component of unit vector in invariant subspace
sticking out of recycle space

e We assume 5(Q,C) <1 (Desire 5(Q,C) << 1) @ Naiora

Laboratories
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e For the symmetric case, convergence depends on spectrum

Analysis: Symmetric Case

(I-CC")A(I-CC* )V, =V, T

m+l1_—

— Let C be k-dimensional matrix (recycle space)
— Let R(Q) be ¢-dimensional invariant subspace of A, t <k

elLet[Q Y, Y,] be unitary, where

A=[Q Y, Yz] AY,1 [Q Y, Yz]*

e Assume R(C) c R(Q,Y,)
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o After tedious analysis...

Analysis: Symmetric Case

(I-N)A(I-N,)= wr{wI }r*w*

Av,z

o Let

1
a= E(Amax (AY,l) + Amin (AY,1))

rl i Amin (AY,I)

e Then
Ain(M)>a-n-8°(a+n+A ., (Ay))

@ Sandia
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Analysis: Symmetric Case

&-1]j

e For A HPD, residual norm bound ~
’ (JE +1

A
* For original matrix, k(A) = A—"
1
An

Ak+1

* For projected operator, k((I-M_.)A(I-M.))>

e Numerical example
— Let eigenvalues be {0.1, 0.2, 0.3,0.4,5, 6, ... 100}

K(A) = 1000 [Tooiter. >|r|~ 0.8187

K((I-N()A(I-M,)) ~ 20 Hooiter. > [r| ~ 4.5023x10°°
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cy [i/2]
e For A indefinite, residual norm bound ~ [ ]
d +1
o If only a few negative eigenvalues, they may be
eliminated by deflation

Analysis: Symmetric Case

d _ J
residual norm bound ~ [ d% 1 ]
%+ 1

e Removes “squaring of condition number” effect
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Example: Crack Propagation

» We assumed 5(Q,C)=|(I-N)M,| <1

100
90
80
70

40 -

—— P e N S N

System 401 402 403 404 405
Before 0.9994 | 0.2380 | 0.0464 | 0.0607 | 0.0794
Cycle 1

After 0.9180 | 0.1448 | 0.0463 | 0.0606 | 0.0787
Cycle 1

After 0.2446 | 0.0302 | 0.0416 | 0.0568 | 0.0690
Cycle 2

After 0.2331 | 0.0302 | 0.0415 | 0.0567 | 0.0684
Cycle 3

= CG/GMRES == GCRODR (Recyck) === GCROT (Recyck)

4

60 -
. JWM@MM@

v

30
400

450

550
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Example: Crack Propagation

e Max/Min eigenvalues and condition number

System

}"max ((I'HC)A(I'HC))

400 401 402 403
1.389687 1.389687 1.389687 1.389687

1.389687

1.387698

1.389677

1.389687

404

1.389687

1.389687

Amin(A) 0.002732 0.002732 0.002732 | 0.002732 | 0.002732
Amin (I-TIQA(I-TI)) | 0.002732 0.074453 0.148986 | 0.147848 | 0.149206
x(A) 508.61 508.61 508.61 508.62 508.63
x((I-TI)A(I-TI.)) 508.61 18.63 9.33 9.40 9.31

(&)
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Example: Crack Propagation

e Max/Min eigenvalues and condition number

System 400 401 402 403 404
Amax(A) 1.389687 1.389687 1.389687 1.389687 1.389687
Amax ((T-TI)A(I-TIE)) 1.389687 1.387698 1.389677 1.389687 1.389687

0.002732 0.002732 m 0.002732 | 0.002732

Amin (I-TI)A(I-TIC)) | 0.002732 0.074453 0.148986 | 0.147848 | 0.149206

k(A) 508.61 508.61 508.61 508.62 508.63

k((I-T1)A(I-T1c)) 508.61 18.63 9.33 9.40 9.31
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Example: Crack Propagation

e Max/Min eigenvalues and condition number

System 400 401 402 403 404

Amax(A) 1.389687 1.389687 1.389687 1.389687 | 1.389687
Amax ((I-TI)A(I-TIL)) 1.389687 1.387698 1.389677 1.389687 | 1.389687

Amin(A) 0.002732 0.002732 0.002732 0.002732 0.002732
Amin ((I-TI)A(I-TI)) | 0.002732 0.074453 0.148986 0.147848 | 0.149206

508.61

508.61

508.61

508.62
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e Let v(Q,C)=|(I-N¢)Py|.

Analysis: Nonsymmetric Case

+ Note 7 = |(I- I )MgPy |, <[(I-Nc)M, [Py,
=5(Q,C)[Pq|,

e § is maximum component of unit vector in invariant
subspace sticking out of recycle space

e We again assume §(Q,C) < 1 (Desire §(Q,C) << 1)

@ Sandia
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e First bound:

Analysis: Nonsymmetric Case

dlgg(i\,'),c)ll"o =

HI -Py )1, - dH

juv L lr-m)el,

m
<R((I-P
+(y
1

where r, =(I-M¢)r,

V; is j-dimensional Krylov space (GCRO-DR)

@ Sandia
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e Second bound:

Analysis: Nonsymmetric Case

min |r, -d,|, <|(I-N;)(I-Py)r, -d,|

d, <R(V;,C)
'vj = (I'PQ)VJ'
e Free to choose Q (select for best bound)
* Good bound if || Py ||, not large
5 need not be very small (unless | Py |, very large)

s |IPal, +0(3)

@ Sandia
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e Second bound:

Analysis: Nonsymmetric Case

min Hro 'd1H H(I -nV)(I = PQ)r1 -dsz

d, <R (V;,C)
+( 15 ol + 003

e Must analyze Krylov process that generates space

V. =(I-P.)V,

@ Sandia
National
Laboratories



\"

e Second bound:

Analysis: Nonsymmetric Case

min Hr = 1H H(I-nV)(I-PQ)rl-dsz

d, <R (V;,C)
+( L5 ol + 003

* Following spirit of [Stewart, 2002], we observe
(I-P )(I -1 JA(L 11 (1 - =Py )+}

e Second operator is small perturbation of first
— Consider spectrum of first @ Sandia

VVH
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* Need additional assumptions...
— cos(Z£(R(Q),%(Y))) U 1

Analysis: Nonsymmetric Case

o After similar tedious analysis, expect similar result:

(I-P)(I-N)A(I-N)(I-P,)= Z{M ) }z*

where
Amin (M) > Amin (A)

@ Sandia
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GCRO-DR: Numerical Examples

e Main bound:

BOUND

dl",}('\,“c [ro - .|,

where r, =(I-M¢)r,
V; is j-dimensional Krylov space (GCRO-DR)

Sandia
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GCRO-DR: Numerical Examples

e Main bound: DEFLATED

dlgg(i\,'jjc)llro 1,

HI -Py )1, - dH

juv Lla-n)el,

m
<R((1-P
Y

2

where r, =(I-M¢)r,
V; is j-dimensional Krylov space (GCRO-DR)

@ Sandia
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GCRO-DR: Numerical Examples

e Numerical Experiment”

— 100 x 100 matrices
— AD = SOA(S® )'1
- k(SW)=1 k(s?)=10°

A = diag(0.1,0.2,0.3,0.4,5,6,7,...,100)

e Does GCRO-DR select and remove four small
eigenvalues?

e Run GCRO-DR
— twice on same problem

@i
* Simoncini & Szyld, 2005 la%oorg?ories
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Numerical Examples: «(S) =1

e GMRES - full recurrence
e GCRO-DR(24,4) — Max subspace size 24

— GMRES — GCRODR (First) - GCRODR (Second)
O BOUND + DEFLATED
0§
-2 -
-4 |
-6
| Q = 4 smallest
-8 eigenvectors
-10 \ \— N

26

51 76 @ ﬁaa%dia :
Iteration b




'},'

logsol Irl |

Numerical Examples: «(S) = 106

e GMRES - full recurrence
e GCRO-DR(68,1) — Max subspace size 68

— GMRES — GCRODR (First) - GCRODR (Second)
O BOUND + DEFLATED
4
2 EE: AX P+
0 a}%@%@ Y]
-2
-4
-6
Q = smallest
-8 eigenvector
'10 \ \ \

26 51 76 @ ﬁan_dia :
Iteration {eonadss
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Numerical Examples: «(S) = 106

e GMRES - full recurrence
e GCRO-DR(68,1) — Max subspace size 68

— GMRES — GCRODR (First) - GCRODR (Second)
O BOUND + DEFLATED
4
2 - EX i ?
0 a}%@%@ Y]
|Pgl| ~ 102
-2
GCRO-DR better
-4 than DEFLATED!
-6
Q = smallest
-8 eigenvector
'10 \ \ \

26 51 76 @ ﬁan_dia :
Iteration {eonadss
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e Krylov recycling overview
— GCRO-DR, RMINRES
— Numerical example

Summary

e Convergence result (Symmetric case)
— Improve conditioning if 5(Q,C) small

e Convergence result (Nonsymmetric case)
— Less successful if | Py ||, large

— Less successful if highly nonnormal

 Numerical examples

@ Sandia
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Software

e Matlab GCRO-DR

— Publicly available for download
(www.sandia.gov/~mlparks)

— Click on “software”

e Fortran 90 GCRO-DR (serial)
— Limited release; Ask me

e Matlab, PETSc RMINRES (ask EdS)

e Trilinos/Belos GCRO-DR (parallel)
— Available in Trilinos v8.0 public release
— trilinos.sandia.gov

(&)
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Recommended Reading

e MLP, EdS, Greg Mackey, Duane D. Johnson, and Spandan Maiti,
Recycling Krylov Subspaces for Sequences of Linear Systems,
SIAM Journal on Scientific Computing, Vol. 28, No. 5, pp.
1651-1674, 2006.

— GCRO-DR, GCROT/Recycle

e Shun Wang, EdS, and Glaucio H. Paulino, Large-Scale Topology
Optimization using Preconditioned Krylov Subspace Methods
with Recycling, International Journal for Numerical Methods in
Engineering, Vol. 69, Issue 12, pp. 2441—2468, 2007.

— RMINRES

e Available at
— http://www.sandia.gov/~mlparks/
— http://www.math.vt.edu/people/sturler/
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