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Abstract 
 
The original goal of this project was to diagnose and improve CLUBB, the turbulence and cloud 
fraction parameterization used in DOE’s E3SM model. For this purpose, we planned to use 
large-eddy simulation (LES) and ARM observations from the NE Pacific Ocean and the SGP 
site, in coordination with ARM’s LASSO program.  It was determined that for these cloud 
regimes, many of the turbulent ‘moment closures’ which underlie CLUBB’s mathematical 
formulation are inconsistent with LES, which is an appropriate benchmark for testing this. The 
research assistant found that these closures could be more accurately formulated using machine 
learning using the LES as a training dataset.  However the resulting parameterization proved to 
quickly drift away from physical plausibility.  A novel machine-learning based boundary layer 
parameterization called MARBLE based on matching the time evolution of a parameterized 
cloud-topped boundary layer to reanalysis was then developed and published. 
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Summary of major results 
 
Our plan at the start of (CM)4 was to diagnose and improve CLUBB, the turbulence and cloud 
fraction parameterization used in E3SM. For this purpose, we planned to use large-eddy 
simulation (LES) and ARM observations from the NE Pacific Ocean during the MAGIC 
program and from the SGP site during RACORO and ongoing shallow convection episodes, in 
coordination with LASSO.   
 
Graduate research assistant Jeremy McGibbon, the primary contributor working with PI 
Bretherton on the UW component of the (CM)4 project, started work on this.  To predict 
atmospheric boundary layer and cloud evolution, CLUBB prognoses 11 turbulent moments in 
each grid cell (grid-means of temperature, humidity and horizontal wind components, 6 
variances and covariances of temperature, humidity and vertical velocity, and the third power of 
vertical velocity).  The prognostic equations for these equations contain numerous other high-
order turbulence moments that must be related to these 11 variables via human-designed 
‘closure’ assumptions.   Jeremy quickly found that many of CLUBB’s closure assumptions do 
not hold very well in LES.  He lost confidence that incremental improvement of CLUBB was a 



good road to progress.  This led to the first thrust of our research, CHOMP, which used machine 
learning to derive more accurate closure assumptions using LES as a training dataset.  However, 
despite considerable effort, implementing these closure assumptions did not yield a version of 
CLUBB that produced physical plausible results for more than a couple of hours of simulation.  
This work is described in Section 1. 
 
A year ago, we abandoned CHOMP and began work on a completely different machine learning 
boundary layer parameterization, MARBLE, which is trained exclusively on a high-resolution 
global reanalysis, ERA5.  This parameterization has shown very promising results in a single-
column setting, discussed in Section 2 and described in a paper to appear shortly in Geophys. 
Res. Lett.  Usama Anber of BNL, part of Andy Vogelmann’s group has been implementing it in 
the WRF model to see if it also produces good results when run as part of a regional 
weather/climate model with 50 km grid resolution.  This is perhaps the most seminal 
achievement of our (CM)4 work at the University of Washington. 
 
Lastly, Jeremy, while working on this project, developed a collaboration with Joy Monteiro at U. 
Stockholm to develop a Python-based framework for hierarchical climate modeling called 
CliMT/Sympl.  This work was published in GMD.  For brevity, it will not be discussed in this 
report since it is tangential to the overall thrust of (CM)4 even though it has attracted some 
outside interest from the climate model development community. 
 
The (CM)4 funding helped support Jeremy’s PhD dissertation, completed in July 2019.  The 
dissertation includes a comprehensive discussion of the CHOMP work, CliMT/Sympl, and 
MARBLE and is attached along with the two published paper as a resource/reference to all of 
these efforts.  It describes a successful application of MARBLE to the SGP region that is not 
included in the published papers and gives technical details of the equations, machine learning 
schemes, technical implementation, etc. 
 
 
1. CHOMP/CLUBB 
 
CHOMP (Closure of Higher Orders by Machine-learning Parameterization) uses the same set of 
11 prognostic higher-order turbulence closure equations as E3SM’s boundary layer scheme 
CLUBB.  CHOMP uses machine learning (ML) based on a suite of large-eddy simulations of 
cloud-topped boundary layers to ‘close’ unknown terms in these equation in terms of the 
prognosed moments.  This is in contrast to CLUBB, which closes these terms with several 
assumptions involving the shape of the joint probability distribution between temperature, 
humidity and vertical velocity, as well as the correlations between joint moments of vertical 
velocity, buoyancy and vertical pressure gradient.   
 
As described in Jeremy’s thesis, CHOMP’s approach more accurately represents the unknown 
terms in the equations compared to CLUBB.  The primary testing and training dataset was an 
extensive suite of LES outputs for the MAGIC campaign, simulating about 1200 hours of marine 
stratocumulus and shallow cumulus in diverse weather conditions (McGibbon and Bretherton 
2017).  The LES was found to match the ship-observed cloud and boundary layer conditions for 
this suite of cases quite well, with little systematic bias.  We have also tried training our ML 



scheme on RACORO and LASSO data for SGP shallow convection cases.  The few days of 
model outputs proved too short to be a robust training dataset.   
 
After much trial and error, we developed a customized polynomial regression approach to 
learning the needed turbulent moments from the LES that has the accuracy of a random forest 
but with outputs that are smooth functions of the inputs. This is a highly desirable feature for a 
parameterization, especially since we needed to take vertical derivatives of some moments.   Fig. 
1 compares error statistics from this scheme, a random forest, and using the CLUBB closures for 
the 12 moments that must be diagnosed within CLUBB.  These errors are based on  LES-
diagnosed values over a range of initial profiles for one of the MAGIC cruises.   The upper panel 
shows mean bias and the bottom panel shows the correlation coefficient with the LES results.  In 
the upper panel, values near zero are desirable, and the two machine learning schemes clearly 
achieve this much better than CLUBB.  In the lower panel, a high R2 (fraction of variance 
explained in the LES-diagnosed moment) is best; again, the two machine learning schemes 
outperform CLUBB on almost all moments.  Thus, we were hopeful that CHOMP would yield a 
more accurate version of CLUBB in a prognostic setting as well. 
 

 
Fig. 1: Bias and squared correlation coefficient for CLUBB, random forest, and polynomial fit 
over Leg 15A. Evaluation is performed on values normalized such that their mean is zero and 
variance is 1 over the MAGIC training legs. Equal weighting is given to each model level.  
 
CHOMP runs stably for periods of an hour or more when initialized starting with LES estimates 
of all its prognostic moments, but some of the prognostic moments that slowly drift away from 
their LES reference values, as illustrated in Fig. 1.   Higher-order moments drift far worse, as 
shown in Figs. 3.8 and 3.9 of Jeremy’s thesis.  Despite a year of effort, we were unable to get 
CHOMP to converge to a quasi-steady equilibrium state given typical NE Pacific boundary layer 
thermodynamic profiles and forcings, so we decided to abandon this approach. 
 



 
Fig. 2: CHOMP simulations of liquid water content (rl, in kg/kg) and vertical velocity variance 
(w2, in m2/s2) a stratocumulus layer from MAGIC Leg 15A over a 4000 s period. 
Ideally, the simulations should stay very close to their initial profile (at left edge of the plots), but 
both quantities systematically drift away from this state toward a thinner cloud with much less 
vertical velocity variance.   
 
With E3SM single-column model simulations of RACORO, CLUBB’s turbulence lengthscale 
fluctuates alarmingly between time steps, a symptom that CLUBB also has problems settling into 
a reasonable state.   CLUBB commonly hits artificial limiters (e. g. on this lengthscale) that 
prevent it from giving unphysical results despite what its underlying equations try to do.  We 
hypothesize that these limiters (not included in CHOMP) may be vital to CLUBB’s stability.  We 
also suspect CHOMP might have worked better with a more extensive LES training dataset. 
 
2. MARBLE 
 
An artificial neural network is trained to reproduce thermodynamic tendencies and boundary 
layer properties from 8 years of ERA5 HIRES reanalysis data over the summertime Northeast 
Pacific stratocumulus to trade cumulus transition region (Fig. 3). The network (Fig. 4) is trained 
prognostically using 7-day forecasts rather than using diagnosed instantaneous tendencies alone. 
The resulting model, Machine Assisted Reanalysis Boundary Layer Emulation (MARBLE), 
skillfully reproduces the boundary layer structure and cloud properties of the reanalysis data in 7-
day single-column prognostic simulations over withheld testing periods. Radiative heating 
profiles are well-simulated (Fig. 5), and the mean climatology and variability of the 
stratocumulus to cumulus transition are accurately reproduced (Fig. 6). MARBLE more closely 
tracks the reanalysis than does a comparable configuration of the underlying forecast model. 
 
MARBLE learns not only to reproduce the effects of the physical parameterizations in the 
underlying weather forecast model but also to add the systematic impacts of analysis increments 
from data assimilation on the reanalysis. This serves as a natural form of model bias correction. 
In this study, MARBLE was trained and applied to a particular region and season. We have also 
successfully trained a version of MARBLE for summertime boundary layer parameterization 
over the southern U. S. Great Plains, and it is being tested as the lower tropospheric diabatic 
process parameterization for regional boundary-forced three-dimensional simulations with a 
mesoscale model. 



 
 
Fig. 3:  NE Pacific and SGP study regions used for MARBLE training and evaluation 
 

 
Fig. 4:  Artificial neural network (ANN) structure and training approach, showing a) how 
components are connected in the first timestep, b) the internal structure of the ANN component, 
and c) how those components are chained together to train over multiple timesteps. Orange 
represents operations with trainable weights, grey represents static operations without trainable 
weights, purple represents output vectors whose values are included in the optimized loss 
function, green represents internal vectors used by the model, and blue represents data collected 
from ERA5 used as input to the model. At each timestep in c) the ANN uses the same weights. 
Network tendencies include both clear-sky radiative heating and residual tendencies. 
 



 

 
Fig. 5:  Randomly selected seven-day single-column prognostic simulation showing time-height 
sections of humidity, liquid static energy (like potential temperature) and cloud fraction from 
MARBLE using withheld testing data,  compared to ERA5. Initialized 0700 UTC June 11, 2016 
at 30 N, 133.5 W. 

 
Fig. 6:  Horizontally-resolved time-mean values of cloud fraction averaged across the last 3.5 
days of 7-day MARBLE simulations for the Northeast Pacific in the testing period, JJA 2016. 
 
 
In conclusion, we did not follow our intended research plan.  We nevertheless produced a novel 
machine learning parameterization that is a promising prototype for future global boundary layer 
schemes, and we showed that LES are a useful training dataset for machine learning of turbulent 
statistics in atmospheric boundary layers, even though our resulting scheme proved an intractable 
modification to CLUBB.   
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New software: 

sympl  (System for Modelling Planets):  A general Python-based framework for earth system 
modeling.  Components contain all the information about the kinds of inputs they expect and 
outputs that they provide. Components can be used interchangeably, even when they rely on 
different units or array configurations. sympl provides basic functions and objects which could 
be used by any type of Earth system model.  Available at: 

   https://github.com/mcgibbon/sympl 

climt  (Climate Modelling and diagnostics Toolkit):   

An Earth system modelling toolkit that contains scientific components built over the sympl base 
objects. Components can be written in any language accessible from Python, and Fortran/C 
libraries are accessed via Cython. climt aims to provide different user APIs which trade-off 



simplicity of use against flexibility of model building, thus appealing to a wide audience.  Model 
building, configuration and execution is through a Python script (or Jupyter Notebook), enabling 
researchers to build an end-to-end Python based pipeline along with popular Python based 
data analysis tools.  Available at:  

   https://github.com/CliMT/climt 
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