
SANDIA REPORT
SAND2020-11534 - Unlimited Release

Printed October 20, 2020

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Sierra/Aria 4.58 Verification Manual
Brian R. Carnes

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any speci�c commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or re�ect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
O�ce of Scienti�c and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

2

ABSTRACT
Presented in this document is a portion of the tests that exist in the Sierra Thermal/Fluids veri�cation
test suite. Each of these tests is run nightly with the Sierra/TF code suite and the results of the test
checked under mesh re�nement against the correct analytic result. For each of the tests presented in this
document the test setup, derivation of the analytic solution, and comparison of the code results to the
analytic solution is provided. This document can be used to con�rm that a given code capability is
veri�ed or referenced as a compilation of example problems.

3

ACKNOWLEDGMENTS

This document’s authors acknowledge the help of the Sierra/TF team in creating and maintaining these
veri�cation tests.

4

CONTENTS

Contents 5

List of Figures 21

List of Tables 23

1. Introduction 27

2. Basic Thermal Tests 28

2.1. Steady Heat Conduction: Hex8 Meshes . 28

2.1.1. Features Tested . 28

2.1.2. Boundary Conditions . 28

2.1.3. Material Parameters . 28

2.1.4. Veri�cation of Solution . 28

2.2. Steady Heat Conduction: Hex20 Meshes . 29

2.2.1. Features Tested . 29

2.2.2. Boundary Conditions . 30

2.2.3. Material Parameters . 30

2.2.4. Veri�cation of Solution . 30

2.3. Steady Heat Conduction: Hex27 Meshes . 30

2.3.1. Features Tested . 31

2.3.2. Boundary Conditions . 31

2.3.3. Material Parameters . 31

2.3.4. Veri�cation of Solution . 32

2.4. Steady Heat Conduction: Tet4 Meshes . 33

2.4.1. Features Tested . 33

5

2.4.2. Boundary Conditions . 33

2.4.3. Material Parameters . 33

2.4.4. Veri�cation of Solution . 33

2.5. Steady Heat Conduction: Tet4Tet10 Meshes . 34

2.5.1. Features Tested . 34

2.5.2. Boundary Conditions . 34

2.5.3. Material Parameters . 34

2.5.4. Veri�cation of Solution . 35

2.6. Steady Heat Conduction: Tet10 Meshes . 35

2.6.1. Features Tested . 36

2.6.2. Boundary Conditions . 36

2.6.3. Material Parameters . 36

2.6.4. Veri�cation of Solution . 36

2.7. Transient Heat Conduction: Hex8 Meshes . 37

2.7.1. Features Tested . 37

2.7.2. Boundary Conditions . 37

2.7.3. Material Parameters . 37

2.7.4. Veri�cation of Solution . 37

2.8. Transient Heat Conduction: Tet4 Meshes . 38

2.8.1. Features Tested . 38

2.8.2. Boundary Conditions . 39

2.8.3. Material Parameters . 39

2.8.4. Veri�cation of Solution . 39

2.9. Transient Heat Conduction: Tet4Tet10 Meshes . 40

2.9.1. Features Tested . 40

2.9.2. Boundary Conditions . 40

2.9.3. Material Parameters . 40

2.9.4. Veri�cation of Solution . 40

2.10. Transient Heat Conduction: Tet10 Meshes . 41

2.10.1. Features Tested . 41

6

2.10.2. Boundary Conditions . 41

2.10.3. Material Parameters . 41

2.10.4. Veri�cation of Solution . 42

2.11. PostProcess Min/Max . 42

2.11.1. Problem Description . 42

2.11.2. Features Tested . 43

2.11.3. Boundary Conditions . 43

2.11.4. Material Parameters . 43

2.11.5. Veri�cation of Solution . 43

2.12. Adaptivity . 43

2.12.1. Features Tested . 44

2.12.2. Boundary Conditions . 44

2.12.3. Material Parameters . 44

2.12.4. Veri�cation of Solution . 44

3. Thermal Boundary Conditions 46

3.1. Radiative Heat Flux . 46

3.1.1. Features Tested . 46

3.1.2. Boundary Conditions . 46

3.1.3. Material Parameters . 46

3.1.4. Veri�cation of Solution . 46

3.2. Radiative Heat Flux From Fortran User Subroutine . 47

3.2.1. Features Tested . 47

3.2.2. Boundary Conditions . 47

3.2.3. Material Parameters . 48

3.2.4. Veri�cation of Solution . 48

3.3. Convective Heat Flux . 48

3.3.1. Features Tested . 48

3.3.2. Boundary Conditions . 48

3.3.3. Material Parameters . 48

7

3.3.4. Veri�cation of Solution . 49

3.4. Thermal Convective Flux (Fortran sub-routine) . 50

3.4.1. Problem Description . 50

3.4.2. Features Tested . 50

3.4.3. Boundary Conditions . 50

3.4.4. Material Parameters . 50

3.4.5. Veri�cation of Solution . 50

3.5. Thermal Convective Flux (User �eld from Exodus read-in) . 51

3.5.1. Problem Description . 51

3.5.2. Features Tested . 51

3.5.3. Boundary Conditions . 51

3.5.4. Material Parameters . 52

3.5.5. Veri�cation of Solution . 52

3.6. Thermal Heat Flux . 53

3.6.1. Thermal Heat Flux (Basic) . 53

3.6.1.1. Problem Description . 53

3.6.1.2. Features Tested . 53

3.6.1.3. Boundary Conditions . 53

3.6.1.4. Material Parameters . 53

3.6.1.5. Veri�cation of Solution . 53

3.6.2. Thermal Heat Flux (Flux node variable user �eld) . 54

3.6.2.1. Problem Description . 54

3.6.2.2. Features Tested . 54

3.6.2.3. Boundary Conditions . 54

3.6.2.4. Material Parameters . 55

3.6.2.5. Veri�cation of Solution . 55

3.6.3. Thermal Heat Flux (Flux node variable user �eld) . 55

3.6.3.1. Problem Description . 55

3.6.3.2. Features Tested . 56

3.6.3.3. Boundary Conditions . 56

8

3.6.3.4. Material Parameters . 56

3.6.3.5. Veri�cation of Solution . 56

3.6.4. Thermal Heat Flux (Fortran Subroutine) . 57

3.6.4.1. Problem Description . 57

3.6.4.2. Features Tested . 57

3.6.4.3. Boundary Conditions . 57

3.6.4.4. Material Parameters . 57

3.6.4.5. Veri�cation of Solution . 58

3.7. Thermal Radiative Heat Flux . 59

3.7.1. Basic Calore-Style BC . 59

3.7.1.1. Problem Description . 59

3.7.1.2. Features Tested . 59

3.7.1.3. Boundary Conditions . 59

3.7.1.4. Material Parameters . 59

3.7.1.5. Veri�cation of Solution . 59

3.7.2. With Fortran Subroutines . 60

3.7.2.1. Problem Description . 60

3.7.2.2. Features Tested . 60

3.7.2.3. Boundary Conditions . 60

3.7.2.4. Material Parameters . 60

3.7.2.5. Veri�cation of Solution . 61

3.7.3. With User Subroutines . 61

3.7.3.1. Problem Description . 61

3.7.3.2. Features Tested . 62

3.7.3.3. Boundary Conditions . 62

3.7.3.4. Material Parameters . 62

3.7.3.5. Veri�cation of Solution . 62

3.8. Advective Bar . 62

3.8.1. Steady Advection-Di�usion . 62

3.8.2. Features Tested . 63

9

3.8.3. Boundary Conditions . 63

3.8.4. Material Parameters . 63

3.8.5. Veri�cation of Solution . 63

3.8.6. Transient Advection-Di�usion . 64

3.8.7. Features Tested . 64

3.8.8. Boundary Conditions . 65

3.8.9. Material Parameters . 65

3.8.10. Veri�cation of Solution . 65

3.8.11. Transient Advection-Di�usion in 2D . 65

3.8.12. Features Tested . 66

3.8.13. Boundary Conditions . 66

3.8.14. Material Parameters . 66

3.8.15. Veri�cation of Solution . 66

3.9. Solution Veri�cation . 67

3.9.1. Features Tested . 67

3.9.2. Material Parameters . 67

3.9.3. Veri�cation of Solution . 67

4. Thermal Contact 70

4.1. 1D Flat Contact . 70

4.1.1. Features Tested . 70

4.1.2. Boundary Conditions . 70

4.1.3. Material Parameters . 70

4.1.4. Veri�cation of Solution . 71

4.1.5. Results: Hex8 Tied . 71

4.1.6. Results: Hex8 Resistance . 71

4.1.7. Results: Tet4 Tied . 73

4.1.8. Results: Tet4 Resistance . 73

4.1.9. Results: Hex8-Tet4 Tied . 75

4.1.10. Results: Hex8-Tet4 Resistance . 75

10

4.2. 3D Curved Contact . 75

4.2.1. Features Tested . 76

4.2.2. Boundary Conditions . 76

4.2.3. Material Parameters . 76

4.2.4. Veri�cation of Solution . 77

4.2.5. Results: Hex8-Hex8 Contact . 77

4.2.6. Results: Tet4-Tet4 Contact . 79

4.2.7. Results: Hex8-Tet4 Contact . 80

4.3. Steady Hex8 Contact . 80

4.3.1. Features Tested . 80

4.3.2. Boundary Conditions . 81

4.3.3. Material Parameters . 81

4.3.4. Veri�cation of Solution . 81

4.4. Steady Hex20 Contact . 81

4.4.1. Features Tested . 82

4.4.2. Boundary Conditions . 82

4.4.3. Material Parameters . 82

4.4.4. Veri�cation of Solution . 83

4.5. Steady Hex27 Contact . 84

4.5.1. Features Tested . 84

4.5.2. Boundary Conditions . 84

4.5.3. Material Parameters . 84

4.5.4. Veri�cation of Solution . 84

4.6. Steady Tet4 Contact . 85

4.6.1. Features Tested . 85

4.6.2. Boundary Conditions . 85

4.6.3. Material Parameters . 86

4.6.4. Veri�cation of Solution . 86

4.7. Steady Tet4Tet10 Contact . 86

4.7.1. Features Tested . 87

11

4.7.2. Boundary Conditions . 87

4.7.3. Material Parameters . 87

4.7.4. Veri�cation of Solution . 87

4.8. Steady Tet10 Contact . 88

4.8.1. Features Tested . 88

4.8.2. Boundary Conditions . 88

4.8.3. Material Parameters . 88

4.8.4. Veri�cation of Solution . 88

4.9. Steady Tet10 Dash Contact . 89

4.9.1. Features Tested . 89

4.9.2. Boundary Conditions . 89

4.9.3. Material Parameters . 89

4.9.4. Veri�cation of Solution . 90

4.10. Transient Tet4Tet10 Contact . 90

4.10.1. Features Tested . 90

4.10.2. Boundary Conditions . 91

4.10.3. Material Parameters . 91

4.10.4. Veri�cation of Solution . 91

4.11. Transient Tet10 Contact . 92

4.11.1. Features Tested . 92

4.11.2. Boundary Conditions . 92

4.11.3. Material Parameters . 92

4.11.4. Veri�cation of Solution . 92

4.12. Transient Hex8 Tied Contact . 93

4.12.1. Features Tested . 93

4.12.2. Boundary Conditions . 93

4.12.3. Material Parameters . 94

4.12.4. Veri�cation of Solution . 94

4.13. Transient Tet4 Tied Contact . 95

4.13.1. Features Tested . 95

12

4.13.2. Boundary Conditions . 95

4.13.3. Material Parameters . 95

4.13.4. Veri�cation of Solution . 95

5. Element Death 97

5.1. CDFEM Element Death (Heat Flux) . 97

5.1.1. Features Tested . 97

5.1.2. Boundary Conditions . 97

5.1.3. Material Parameters . 97

5.1.4. Veri�cation of Solution . 97

5.1.5. Results: Tri3 . 98

5.1.6. Results: Tet4 . 98

5.2. 3D Spherical Shell Enclosure . 99

5.2.1. Problem Description . 99

5.2.2. Features Tested . 99

5.2.3. Boundary and Initial Conditions . 99

5.2.4. Material Parameters . 100

5.2.5. Veri�cation of Solution . 100

5.2.6. Results . 101

5.3. Standard Element Death (Heat Flux) . 102

5.3.1. Features Tested . 102

5.3.2. Boundary Conditions . 102

5.3.3. Material Parameters . 103

5.3.4. Veri�cation of Solution . 103

5.3.5. Results: 1D Hex8 . 103

5.3.6. Results: 1D Quad4 . 104

5.3.7. Results: 1D Tri3 . 104

5.3.8. Results: 2D Quad4 . 104

5.3.9. Features Tested . 105

5.3.10. Boundary Conditions . 105

13

5.3.11. Material Parameters . 105

5.3.12. Veri�cation of Solution . 105

5.3.13. Results: 3D Hex8 . 106

5.3.14. Features Tested . 106

5.3.15. Boundary Conditions . 107

5.3.16. Material Parameters . 107

5.3.17. Veri�cation of Solution . 107

6. Time Integration 109

6.1. Adaptive Time Integration . 109

6.1.1. Features Tested . 109

6.1.2. Boundary Conditions . 109

6.1.3. Material Parameters . 109

6.1.4. Veri�cation of Solution . 109

6.1.5. Results: First Order Fixed . 110

6.1.6. Results: First Order Adaptive . 110

6.1.7. Results: Second Order Fixed . 112

6.1.8. Results: Second Order Adaptive . 112

6.1.9. Results: BDF2 Fixed . 114

6.1.10. Results: BDF2 Adaptive . 114

7. Enclosure Radiation 116

7.1. 2D Cylindrical Shell Enclosure . 116

7.1.1. Problem Description . 116

7.1.2. Features Tested . 116

7.1.3. Boundary Conditions . 116

7.1.4. Material Parameters . 116

7.1.5. Veri�cation of Solution . 117

7.1.6. Results . 117

7.2. 2D Annular Enclosure . 118

7.2.1. Problem Description . 118

14

7.2.2. Features Tested . 118

7.2.3. Boundary Conditions . 118

7.2.4. Material Parameters . 119

7.2.5. Veri�cation of Solution . 119

7.3. 3D Spherical Shell Enclosure . 120

7.3.1. Problem Description . 120

7.3.2. Features Tested . 120

7.3.3. Boundary Conditions . 121

7.3.4. Material Parameters . 121

7.3.5. Veri�cation of Solution . 121

7.3.6. Results . 123

7.4. 3D Spherical Shell Partial Enclosure . 124

7.4.1. Problem Description . 124

7.4.2. Features Tested . 124

7.4.3. Boundary Conditions . 124

7.4.4. Material Parameters . 124

7.4.5. Veri�cation of Solution . 125

8. Chemistry 126

8.1. First Order Reaction (Spatially Varying Temperature) . 126

8.1.1. Features Tested . 126

8.1.2. Boundary Conditions . 126

8.1.3. Material Parameters . 126

8.1.4. Veri�cation of Solution . 126

8.2. First Order Reaction . 127

8.2.1. Features Tested . 127

8.2.2. Boundary Conditions . 128

8.2.3. Material Parameters . 128

8.2.4. Veri�cation of Solution . 128

15

8.3. DAE and Pressure Test . 128

8.3.1. Features Tested . 129

8.3.2. Boundary Conditions . 129

8.3.3. Material Parameters . 129

8.3.4. Veri�cation of Solution . 130

8.4. PMDI Plugin Test . 130

8.4.1. Features Tested . 130

8.4.2. Boundary Conditions . 130

8.4.3. Material Parameters . 130

8.4.4. Veri�cation of Solution . 130

9. Miscellaneous 132

9.1. Thermal Postprocessing . 132

9.1.1. Problem Description . 132

9.1.2. Features Tested . 132

9.1.3. Boundary Conditions . 132

9.1.4. Material Parameters . 132

9.1.5. Veri�cation of Solution . 132

9.2. Local Coordinates: Cartesian . 133

9.2.1. Features Tested . 134

9.2.2. Boundary Conditions . 134

9.2.3. Material Parameters . 134

9.2.4. Veri�cation of Solution . 134

9.3. Local Coordinates: Cylindrical . 134

9.3.1. Features Tested . 135

9.3.2. Boundary Conditions . 135

9.3.3. Material Parameters . 135

9.3.4. Veri�cation of Solution . 135

10.Low-Mach Fluid Flow 137

16

11.How to Build this Document 138

12. Input Decks For Verification Problems 140

12.1. Basic Thermal Tests . 140

12.1.1. Steady Heat Conduction: Hex8 Meshes . 140

12.1.2. Steady Heat Conduction: Hex20 Meshes . 143

12.1.3. Steady Heat Conduction: Hex27 Meshes . 146

12.1.4. Steady Heat Conduction: Tet4 Meshes . 149

12.1.5. Steady Heat Conduction: Tet4Tet10 Meshes . 152

12.1.6. Steady Heat Conduction: Tet10 Meshes . 155

12.1.7. Transient Heat Conduction: Hex8 Meshes . 158

12.1.8. Transient Heat Conduction: Tet4 Meshes . 161

12.1.9. Transient Heat Conduction: Tet4Tet10 Meshes . 165

12.1.10. Transient Heat Conduction: Tet10 Meshes . 168

12.2. Thermal Boundary Conditions . 172

12.2.1. Radiative Heat Flux 3.1 . 172

12.2.2. Radiative Heat Flux From Fortran User Subroutine . 174

12.2.3. Convective Heat Flux 3.3 . 179

12.3. Thermal Contact . 182

12.3.1. 1D Flat Contact 4.1 . 182

12.3.1.1. Hex8 Tied . 182

12.3.1.2. Hex8 Resistance . 184

12.3.1.3. Tet4 Tied . 187

12.3.1.4. Tet4 Resistance . 190

12.3.1.5. Hex8-Tet4 Tied . 192

12.3.1.6. Hex8-Tet4 Resistance . 195

12.3.2. 3D Curved Contact 4.2 . 198

12.3.2.1. Hex8-Hex8 Case . 198

12.3.2.2. Tet4-Tet4 Case . 198

12.3.2.3. Hex8-Tet4 Case . 198

17

12.3.3. Steady Hex8 Contact . 198

12.3.4. Steady Hex20 Contact . 201

12.3.5. Steady Hex27 Contact . 205

12.3.6. Steady Tet4 Contact . 208

12.3.7. Steady Tet4Tet10 Contact . 211

12.3.8. Steady Tet10 Contact . 214

12.3.9. Steady Tet10 Dash Contact . 217

12.3.10. Transient Tet4Tet10 Contact . 221

12.3.11. Transient Tet10 Contact . 224

12.4. Element Death . 228

12.4.1. CDFEM Element Death (Heat Flux) . 228

12.4.1.1. Tri3 . 228

12.4.1.2. Tet4 . 231

12.4.2. 3D Spherical Shell Enclosure . 233

12.5. Time Integration . 239

12.5.1. Adaptive Time Integration . 239

12.5.1.1. First Order Fixed . 239

12.5.1.2. First Order Adaptive . 241

12.5.1.3. Second Order Fixed . 243

12.5.1.4. Second Order Adaptive . 245

12.5.1.5. BDF2 Fixed . 247

12.5.1.6. BDF2 Adaptive . 249

12.6. Enclosure Radiation . 252

12.6.1. 2D Cylindrical Shell Enclosure . 252

12.6.2. 2D Annular Enclosure . 254

12.6.3. 3D Spherical Shell Enclosure . 254

12.6.4. 3D Spherical Shell Partial Enclosure . 254

12.6.5. Fully 2D Enclosure Radiation . 257

12.7. Chemistry . 258

12.7.1. First Order Reaction (Uniform Temperature) . 258

18

12.7.2. First Order Reaction (Spatially Varying Temperature) . 258

12.7.3. First Order Reaction . 260

12.7.4. DAE and Pressure Test . 263

12.7.5. PMDI Plugin Test . 266

12.8. Miscellaneous . 270

12.8.1. Thermal Postprocessing . 270

12.8.2. Postprocess Min/Max . 275

12.8.3. Local Coordinates: Cartesian . 278

12.8.4. Local Coordinates: Cylindrical . 280

19

LIST OF FIGURES

2.1-1. Steady Heat Conduction: Hex8 Meshes . 29

2.2-1. Steady Heat Conduction: Hex20 Meshes . 31

2.3-1. Steady Heat Conduction: Hex27 Meshes . 32

2.4-1. Steady Heat Conduction: Tet4 Meshes . 34

2.5-1. Steady Heat Conduction: Tet4 Solutions on Tet10 Meshes . 35

2.6-1. Steady Heat Conduction: Tet10 Meshes . 36

2.7-1. Transient Heat Conduction: Hex8 Meshes . 38

2.8-1. Transient Heat Conduction: Tet4 Meshes . 39

2.9-1. Transient Heat Conduction: Tet4 Solution on Tet10 Meshes . 41

2.10-1.Transient Heat Conduction: Tet10 Meshes . 42

2.11-1. Min Max Postprocess . 44

2.12-1. Steady Heat Conduction: Tet4 Meshes (Adaptive Mesh Re�nement) 45

3.1-1. Radiative Heat Flux . 47

3.3-1. Convective Heat Flux . 49

3.4-1. Convergence for 3D thermal steady convective �ux BCs. 51

3.5-1. Convergence for 3D thermal steady convective �ux BCs. 52

3.6-1. Thermal Heat Flux BC . 54

3.6-2. Thermal Heat Flux BC . 55

3.6-3. Thermal Heat Flux BC . 57

3.6-4. Thermal Heat Flux BC . 58

3.7-1. Thermal Radiative Flux . 60

3.7-2. Thermal Radiative Flux . 61

3.7-3. Thermal Radiative Flux . 63

3.8-1. Steady Advective Conduction: 3D Bar2 Meshes . 64

21

3.8-2. Transient Heat Conduction: 3D Bar2 Meshes . 65

3.8-3. Transient Heat Conduction: Bar2 Meshes . 67

3.9-1. Mock AFF Solution Veri�cation . 68

3.9-2. The convergence rates can vary over time and between QOIs . 69

4.1-1. 1D Flat Contact: Hex8 Tied . 71

4.1-2. 1D Flat Contact: Hex8 Resistance . 72

4.1-3. 1D Flat Contact: Tet4 Tied . 73

4.1-4. 1D Flat Contact: Tet4 Resistance . 74

4.1-5. 1D Flat Contact: Hex8-Tet4 Tied . 75

4.1-6. 1D Flat Contact: Hex8-Tet4 Resistance . 76

4.2-1. 3D Curved Contact: Hex8-Hex8 Case . 77

4.2-2. 3D Curved Contact: Tet4-Tet4 Case . 79

4.2-3. 3D Curved Contact: Hex8-Tet4 Case . 80

4.3-1. Steady Tied Contact: Hex8 Meshes . 82

4.4-1. Steady Heat Conduction: Hex20 Meshes . 83

4.5-1. Steady Heat Conduction: Hex27 Meshes . 85

4.6-1. Steady Tied Contact: Tet4 Meshes . 86

4.7-1. Steady Tied Contact: Tet4 Meshes . 87

4.8-1. Steady Tied Contact: Tet10 Meshes . 89

4.9-1. Steady Tied Dash Contact: Tet10 Meshes . 90

4.10-1.Transient Tied Contact: Tet10 Meshes . 91

4.11-1. Transient Tied Contact: Tet10 Meshes . 93

4.12-1.Tied Contact Transient Heat Conduction: Hex8 Meshes . 94

4.13-1. Transient Heat Conduction with Tied Contact: Tet4 Meshes . 96

5.1-1. CDFEM Element Death (Heat Flux): Tri3 . 98

5.1-2. CDFEM Element Death (Heat Flux): Tet4 . 99

5.2-1. Evolution of parameters 𝑟2 and 𝐶𝑜. 102

5.3-1. Element Death (Heat Flux): Hex8 . 104

5.3-2. Element Death (Heat Flux): Quad4 . 105

22

5.3-3. Element Death (Heat Flux): Tri3 . 106

5.3-4. Element Death (Heat Flux): Quad4 . 107

5.3-5. Element Death (Heat Flux): Hex8 . 108

6.1-1. Adaptive Time Integration: Errors for First Order Fixed . 110

6.1-2. Adaptive Time Integration: Errors for First Order Adaptive . 111

6.1-3. Adaptive Time Integration: Errors for Second Order Fixed . 112

6.1-4. Adaptive Time Integration: Errors for Second Order Adaptive . 113

6.1-5. Adaptive Time Integration: Errors for BDF2 Fixed . 114

6.1-6. Adaptive Time Integration: Errors for BDF2 Adaptive . 115

7.1-1. Enclosure Radiation 2D . 118

7.2-1. 2D Full Enclosure Radiation . 120

7.3-1. Enclosure Radiation . 124

7.4-1. Partial Enclosure Radiation . 125

8.1-1. First Order Reaction (Spatially Varying Temperature) . 127

8.2-1. First Order Reaction . 129

9.1-1. Thermal Postprocess . 133

9.2-1. Local Cartesian Coordinate System . 135

9.3-1. Local Cylindrical Coordinate System . 136

LIST OF TABLES

2.1-1. Steady Heat Conduction: Convergence Rates for Hex8 Meshes . 29

2.2-1. Steady Heat Conduction: Convergence Rates for Hex20 Meshes . 30

23

2.3-1. Steady Heat Conduction: Convergence Rates for Hex27 Meshes . 32

2.4-1. Steady Heat Conduction: Convergence Rates for Tet4 Meshes . 33

2.5-1. Steady Heat Conduction: Convergence Rates for Tet4Tet10 Meshes 35

2.6-1. Steady Heat Conduction: Convergence Rates for Tet10 Meshes . 37

2.7-1. Transient Heat Conduction: Convergence Rates for Hex8 Meshes 38

2.8-1. Transient Heat Conduction: Convergence Rates for Tet4 Meshes 39

2.9-1. Transient Heat Conduction: Convergence Rates for Tet4 Solution on Tet10 Meshes 40

2.10-1.Transient Heat Conduction: Convergence Rates for Tet10 Meshes 42

2.11-1. Min Max Postprocess: Convergence Rates . 43

3.1-1. Radiative Heat Flux: Convergence Rates for Hex8 Meshes . 47

3.3-1. Convective Heat Flux: Convergence Rates for Hex8 Meshes . 49

3.4-1. Thermal Convective BC: Convergence Rates . 50

3.5-1. Thermal Convective BC: Convergence Rates . 52

3.6-1. Thermal Heat Flux BC: Convergence Rates . 54

3.6-2. Thermal Heat Flux BC: Convergence Rates . 56

3.6-3. Thermal Heat Flux BC: Convergence Rates . 56

3.6-4. Thermal Heat Flux BC: Convergence Rates . 58

3.7-1. Thermal Radiative Flux BC: Convergence Rates . 59

3.7-2. Thermal Radiative Flux BC: Convergence Rates . 61

3.7-3. Thermal Radiative Flux BC: Convergence Rates . 62

3.8-1. Steady Advective Conduction: Convergence Rates for 3D Bar2 Meshes 64

3.8-2. Transient Heat Conduction: Convergence Rates for 3D Bar2 Meshes 66

3.8-3. Transient Heat Conduction: Convergence Rates for 2D Bar2 Meshes 66

4.1-1. 1D Flat Contact: Convergence Rates for Hex8 Tied . 72

4.1-2. 1D Flat Contact: Convergence Rates for Hex8 Resistance . 72

4.1-3. 1D Flat Contact: Convergence Rates for Tet4 Tied . 73

4.1-4. 1D Flat Contact: Convergence Rates for Tet4 Resistance . 74

4.1-5. 1D Flat Contact: Convergence Rates for Hex8-Tet4 Tied . 75

4.1-6. 1D Flat Contact: Convergence Rates for Hex8-Tet4 Resistance . 76

24

4.2-1. 3D Curved Contact: Convergence Rates for Hex8-Hex8 . 78

4.2-2. 3D Curved Contact: Convergence Rates for Tet4-Tet4 . 79

4.2-3. 3D Curved Contact: Convergence Rates for Hex8-Tet4 . 80

4.3-1. Steady Tied Contact: Convergence Rates for Hex8 Meshes . 81

4.4-1. Steady Heat Conduction: Convergence Rates for Hex20 Meshes . 83

4.5-1. Steady Heat Conduction: Convergence Rates for Hex27 Meshes . 85

4.6-1. Steady Tied Contact: Convergence Rates for Tet4 Meshes . 86

4.7-1. Steady Tied Contact: Convergence Rates for Tet4 Meshes . 88

4.8-1. Steady Tied Contact: Convergence Rates for Tet10 Meshes . 88

4.9-1. Steady Tied DASH Contact: Convergence Rates for Tet10 Meshes 90

4.10-1.Transient Tied Contact: Convergence Rates for Tet10 Meshes . 92

4.11-1. Transient Tied Contact: Convergence Rates for Tet10 Meshes . 93

4.12-1.Tied Contact Transient Heat Conduction: Convergence Rates for Hex8 Meshes 95

4.13-1. Transient Heat Conduction with Tied Contact: Convergence Rates for Tet4 Meshes . . . 96

5.1-1. CDFEM Element Death (Heat Flux): Convergence Rates for Tri3 98

5.1-2. CDFEM Element Death (Heat Flux): Convergence Rates for Tet4 98

5.2-1. Dimensions of problem . 100

5.2-2. Material properties . 100

5.2-3. Convergence Rates at 𝑡 = 0.9 . 102

5.3-1. Element Death (Heat Flux): Convergence Rates for Hex8 . 103

5.3-2. Element Death (Heat Flux): Convergence Rates for Quad4 . 104

5.3-3. Element Death (Heat Flux): Convergence Rates for Tri3 . 104

5.3-4. 2D Element Death (Heat Flux): Convergence Rates for Quad4 . 106

5.3-5. Element Death (Heat Flux): Convergence Rates for Hex8 . 108

6.1-1. Adaptive Time Integration: Convergence Rates for First Order Fixed 110

6.1-2. Adaptive Time Integration: Convergence Rates for First Order Adaptive 111

6.1-3. Adaptive Time Integration: Convergence Rates for Second Order Fixed 112

6.1-4. Adaptive Time Integration: Convergence Rates for Second Order Adaptive 113

6.1-5. Adaptive Time Integration: Convergence Rates for BDF2 Fixed . 114

25

6.1-6. Adaptive Time Integration: Convergence Rates for BDF2 Adaptive 115

7.1-1. Dimensions of problem . 116

7.1-2. Material properties . 117

7.1-3. Enclosure Radiation 2D: Convergence Rates . 118

7.2-1. 2D Full Enclosure Radiation: Convergence Rates . 120

7.3-1. Dimensions of problem . 121

7.3-2. Material properties . 121

7.3-3. Enclosure Radiation: Convergence Rates . 123

7.4-1. Partial Enclosure Radiation: Convergence Rates . 125

8.1-1. First Order Reaction (Spatially Varying Temperature): Convergence Rates for Hex8
Meshes . 127

8.2-1. First Order Reaction: Convergence Rates for Hex8 Meshes . 129

8.4-1. PMDI Plugin Test: Initial Conditions . 131

9.1-1. Thermal Postprocess: Convergence Rates . 133

9.2-1. Local Cartesian Coordinate System: Convergence Rates . 134

9.3-1. Local Cylindrical Coordinate System: Convergence Rates . 136

26

1. INTRODUCTION

The Sierra/TF Veri�cation Manual is divided into chapters based on related capabilities. Each section of
a chapter represents a distinct veri�cation test. Some problems that are not yet fully documented are
listed at the end of each chapter.

All of these veri�cation tests are run nightly by the development team to continually verify code
accuracy under mesh re�nement. The graphics and charts in this document are automatically generated
by the nightly test runs.

The test �les for these problems may be found in the Sierra regression test repository. Most are in the
sub-directory called “veri�cation.”

aria_rtest/verification

All tests are assigned the keyword “veri�cation”. Those that appear in this document also have the
keyword “self-documenting”.

For each test, the approximate �nite element solution 𝑇ℎ is compared to the exact solution 𝑇 using
several global norms, and in some cases using response quantities of interest. This is repeated over a
series of uniformly re�ned meshes (not necessarily nested) with mesh sizes {ℎ𝑖}, giving a sequence of
errors {𝐸𝑖}. For each pair of meshes, a convergence rate is estimated using the formula

𝑟𝑖 ≡ log(𝐸𝑖/𝐸𝑖−1)/ log(ℎ𝑖/ℎ𝑖−1). (1.1)

The convergence of 𝑟𝑖 to the expected rate is monitored as the mesh is re�ned. A test passes if all of the
estimated convergence rates on the �nest pair of meshes are within a given tolerance of the expected
rates.

27

2. BASIC THERMAL TESTS

2.1. STEADY HEAT CONDUCTION: HEX8 MESHES

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of di�erent source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

2.1.1. Features Tested

Basic heat conduction on Hex8 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

2.1.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat �ux
condition is prescribed using a sum of a constant heat �ux and a heat �ux from an Encore function
(user subroutine). On surfaces 1 and 2, heat �ux condition is prescribed using a sum of a convective �ux
boundary condition (with constant �ux and convective coe�cient) and a heat �ux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.1.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

2.1.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑧) = 1 + (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2.

The source and heat �ux user subroutines are chosen so that the solution satis�es the heat equation
with the correct boundary conditions.

28

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

Coarse Mesh Error Norms

Figure 2.1-1.. Steady Heat Conduction: Hex8 Meshes

Table 2.1-1.. Steady Heat Conduction: Convergence Rates for Hex8 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

125 0.83 -1.27 0.74
729 2.20 0.98 2.07
4913 2.15 1.05 2.08

35940 2.08 1.03 1.94
274600 2.05 1.02 1.97

For input decks see Appendix 12.1.1.

2.2. STEADY HEAT CONDUCTION: HEX20 MESHES

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of di�erent source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

2.2.1. Features Tested

Basic heat conduction on Hex20 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

29

2.2.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat �ux
condition is prescribed using a sum of a constant heat �ux and a heat �ux from an Encore function
(user subroutine). On surfaces 1 and 2, heat �ux condition is prescribed using a sum of a convective �ux
boundary condition (with constant �ux and convective coe�cient) and a heat �ux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.2.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

2.2.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑧) = 1 + (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2.

The source and heat �ux user subroutines are chosen so that the solution satis�es the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

Table 2.2-1.. Steady Heat Conduction: Convergence Rates for Hex20 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

2673 3.39 2.32 3.52
18780 3.19 2.15 3.13
60620 3.11 2.08 3.04
140500 3.08 2.06 3.01

For input decks see Appendix 12.1.2.

2.3. STEADY HEAT CONDUCTION: HEX27 MESHES

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of di�erent source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

30

Coarse Mesh Error Norms

Figure 2.2-1.. Steady Heat Conduction: Hex20 Meshes

2.3.1. Features Tested

Basic heat conduction on Hex27 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

2.3.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat �ux
condition is prescribed using a sum of a constant heat �ux and a heat �ux from an Encore function
(user subroutine). On surfaces 1 and 2, heat �ux condition is prescribed using a sum of a convective �ux
boundary condition (with constant �ux and convective coe�cient) and a heat �ux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.3.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

31

2.3.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑧) = 1 + (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2.

The source and heat �ux user subroutines are chosen so that the solution satis�es the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

Coarse Mesh Error Norms

Figure 2.3-1.. Steady Heat Conduction: Hex27 Meshes

Table 2.3-1.. Steady Heat Conduction: Convergence Rates for Hex27 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

12170 3.15 2.12 3.03
29790 3.10 2.07 3.01
59320 3.08 2.06 3.02
117600 3.07 2.05 3.01

For input decks see Appendix 12.1.3.

32

2.4. STEADY HEAT CONDUCTION: TET4 MESHES

This problem is identical to the one in Section 2.1 except that unstructured Tet4 meshes are used
instead. The meshes are obtained from Cubit.

2.4.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

2.4.2. Boundary Conditions

Same as in Section 2.1.

2.4.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

2.4.4. Verification of Solution

Same as in Section 2.1.

Unlike the Hex8 case, we have observed in many cases, and in this test, that the convergence rate for the
temperature in the 𝐿∞ norm is somewhat less than 2, in this case about 1.9. The exact reason for this
behavior is unclear.

Table 2.4-1.. Steady Heat Conduction: Convergence Rates for Tet4 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

145 1.21 0.56 1.36
1104 2.45 1.22 2.10
7725 2.07 1.03 2.02

59640 1.99 0.99 1.91

For input decks see Appendix 12.1.4.

33

Coarse Mesh Error Norms

Figure 2.4-1.. Steady Heat Conduction: Tet4 Meshes

2.5. STEADY HEAT CONDUCTION: TET4TET10
MESHES

This problem is identical to the one in Section 2.1 with the exception of constant thermal conductivity
and use of unstructured Tet10 meshes. The meshes are obtained from Cubit.

2.5.1. Features Tested

Basic heat conduction with Tet4 solution on Tet10 meshes; dirichlet, heat �ux, and convective �ux
boundary conditions; constant source terms; heat �ux and source term from Encore user
subroutines.

2.5.2. Boundary Conditions

Same as in Section 2.1.

2.5.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

34

2.5.4. Verification of Solution

Same as in Section 2.1.

Unlike the Hex8 case, we have observed in many cases, and in this test, that the convergence rate for the
temperature in the 𝐿∞ norm is somewhat less than 2, in this case about 1.9. The exact reason for this
behavior is unclear.

Coarse Mesh Error Norms

Figure 2.5-1.. Steady Heat Conduction: Tet4 Solutions on Tet10 Meshes

Table 2.5-1.. Steady Heat Conduction: Convergence Rates for Tet4Tet10 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

865 1.09 0.52 1.22
7831 2.26 1.12 1.90

58210 2.01 1.00 1.90
464400 1.96 0.98 2.05

For input decks see Appendix 12.1.5.

2.6. STEADY HEAT CONDUCTION: TET10 MESHES

This problem is identical to the one in Section 2.1 except that unstructured Tet10 meshes are used
instead. The meshes are obtained from Cubit.

35

2.6.1. Features Tested

Basic heat conduction on Tet10 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

2.6.2. Boundary Conditions

Same as in Section 2.1.

2.6.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

2.6.4. Verification of Solution

Same as in Section 2.1.

Unlike the Hex8 case, we have observed in many cases, and in this test, that the convergence rate for the
temperature in the 𝐿∞ norm is somewhat less than 3, in this case about 2.7. The exact reason for this
behavior is unclear.

Coarse Mesh Error Norms

Figure 2.6-1.. Steady Heat Conduction: Tet10 Meshes

For input decks see Appendix 12.1.6.

36

Table 2.6-1.. Steady Heat Conduction: Convergence Rates for Tet10 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

865 2.65 1.51 2.19
7831 3.32 2.08 3.41

58210 3.04 2.07 2.58
464400 2.80 1.80 2.57

2.7. TRANSIENT HEAT CONDUCTION: HEX8 MESHES

This problem tests basic transient heat conduction in a 3D domain. The geometry consists of a unit
cube.

2.7.1. Features Tested

Basic transient heat conduction on Hex8 meshes; dirichlet, heat �ux, and convective �ux boundary
conditions; constant source terms; heat �ux and source term from Encore user subroutines.

2.7.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat �ux
condition is prescribed using a sum of a constant heat �ux and a heat �ux from an Encore function
(user subroutine). On surfaces 1 and 2, heat �ux condition is prescribed using a sum of a convective �ux
boundary condition (with constant �ux and convective coe�cient) and a heat �ux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

2.7.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

2.7.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = (𝑥− 𝑥2)2 (𝑦 − 𝑦2)2 (𝑧 − 𝑧2)2𝑚(𝑡) + 1,

𝑚(𝑡) = 104 (1− exp(−𝑡) + 𝑡 exp(−(𝑡− 1)2))

The source and heat �ux user subroutines are chosen so that the solution satis�es the heat equation
with the correct boundary conditions.

37

For each mesh, the errors in the temperature solution at �nal time are computed in the 𝐿2 norm of 𝑇
and 𝑇̇ , 𝐿∞ and 𝐻1 norms. The test passes, only if the observed rates of convergence in these norms are
2, 2, 2 and 1, respectively (within a tolerance).

Coarse Mesh Error Norms

Figure 2.7-1.. Transient Heat Conduction: Hex8 Meshes

Table 2.7-1.. Transient Heat Conduction: Convergence Rates for Hex8 Meshes
Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

125 0.12 3.02 -0.89 -0.45
729 2.09 3.28 0.98 1.85
4913 2.09 2.46 1.05 1.86

35940 2.06 2.07 1.04 1.96

For input decks see Appendix 12.1.7.

2.8. TRANSIENT HEAT CONDUCTION: TET4 MESHES

This problem tests basic transient heat conduction in a 3D domain as in Section 2.7. The geometry
consists of a unit cube and a single bulk �uid element.

2.8.1. Features Tested

Basic transient heat conduction on Tet4 meshes; dirichlet, heat �ux, and convective �ux boundary
conditions; constant source terms; bulk �uid element; heat �ux and source term from Encore user
subroutines.

38

2.8.2. Boundary Conditions

Identical to Section 2.7 except one convective �ux boundary condition is now connected to a bulk �uid
element.

2.8.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

2.8.4. Verification of Solution

A manufactured solution is chosen as in Section 2.7.

For each mesh, the errors in the temperature solution at �nal time are computed in the 𝐿2 norm of 𝑇
and 𝑇̇ , 𝐿∞ and 𝐻1 norms. As in Section 2.4, we see convergence rates for 𝐿∞ that are slightly less than
2.

Coarse Mesh Error Norms

Figure 2.8-1.. Transient Heat Conduction: Tet4 Meshes

Table 2.8-1.. Transient Heat Conduction: Convergence Rates for Tet4 Meshes
Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞ 𝐿∞(𝑇𝑏𝑢𝑙𝑘)

146 1.20 2.19 0.57 1.36 2.53
1105 2.45 2.34 1.22 2.11 2.17

7726 2.07 2.16 1.03 2.02 2.26
59640 1.99 2.04 0.99 1.91 2.12

39

For input decks see Appendix 12.1.8.

2.9. TRANSIENT HEAT CONDUCTION: TET4TET10
MESHES

This problem tests basic transient heat conduction in a 3D domain as in Section 2.8. The geometry
consists of a unit cube.

2.9.1. Features Tested

Basic transient heat conduction Tet4 analysis on Tet10 meshes; dirichlet, heat �ux, and convective �ux
boundary conditions; constant source terms; heat �ux and source term from Encore user
subroutines.

2.9.2. Boundary Conditions

Identical to Section 2.8

2.9.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

2.9.4. Verification of Solution

A manufactured solution is chosen as in Section 2.8.

For each mesh, the errors in the temperature solution at �nal time are computed in the 𝐿2 norm of 𝑇
and 𝑇̇ , 𝐿∞ and 𝐻1 norms. As in Section 2.8, we see convergence rates for 𝐿∞ that are slightly less than
2.

Table 2.9-1.. Transient Heat Conduction: Convergence Rates for
Tet4 Solution on Tet10 Meshes

Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

865 1.09 2.03 0.52 1.22
7831 2.26 1.95 1.12 1.90

58210 2.01 2.00 1.00 1.90
464400 1.96 1.98 0.98 2.05

For input decks see Appendix 12.1.9.

40

Coarse Mesh Error Norms

Figure 2.9-1.. Transient Heat Conduction: Tet4 Solution on Tet10 Meshes

2.10. TRANSIENT HEAT CONDUCTION: TET10 MESHES

This problem tests basic transient heat conduction in a 3D domain as in Section 2.7. The geometry
consists of a unit cube.

2.10.1. Features Tested

Basic transient heat conduction on Tet10 meshes; dirichlet, heat �ux, and convective �ux boundary
conditions; constant source terms; heat �ux and source term from Encore user subroutines.

2.10.2. Boundary Conditions

Identical to Section 2.7

2.10.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

41

2.10.4. Verification of Solution

A manufactured solution is chosen as in Section 2.7.

For each mesh, the errors in the temperature solution at �nal time are computed in the 𝐿2 norm of 𝑇
and 𝑇̇ , 𝐿∞ and 𝐻1 norms. As in Section 2.6, we see convergence rates for 𝐿∞ that are slightly less than
2.

Coarse Mesh Error Norms

Figure 2.10-1.. Transient Heat Conduction: Tet10 Meshes

Table 2.10-1.. Transient Heat Conduction: Convergence Rates for Tet10 Meshes
Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

865 2.66 4.15 1.51 2.21
7831 3.32 2.04 2.08 3.40

58210 3.03 2.15 2.07 2.61
464400 2.79 2.02 1.80 2.55

For input decks see Appendix 12.1.10.

2.11. POSTPROCESS MIN/MAX

2.11.1. Problem Description

This problem tests the min/max postprocessors in Aria.

42

2.11.2. Features Tested

min max postprocessors

2.11.3. Boundary Conditions

Dirichlet BCs are speci�ed using the exact solution on surfaces 1-4.

A source term is applied within all blocks based on substituting the exact solution into the heat
conduction operator.

2.11.4. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant.

2.11.5. Verification of Solution

The manufactured solution is
sin(7𝑥) sin(8𝑦).

For each uniformly re�ned mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐻1,
and 𝐿∞ norms and for various postprocessors. Additionally, the nodal maximum and minimum values
on both block 1 and surface 2 are computed using Encore postprocessors and the convergence of these
values is compared as well. Since the maximum and minimums are nodal, the location of the nodes will
re�ect the max/min values produced for a given mesh. Provided that the mesh is uniformly re�ned
(without smoothing that may shift the nodal locations), every mesh re�nement will produce a better
result, dependent on how much closer to the maximum/minimum true solution the new nodes are.

Table 2.11-1.. Min Max Postprocess: Convergence Rates
Num Dofs 𝐿2 𝐻1 𝐿∞ 𝑒𝑟𝑟𝑜𝑟_𝑏1_𝑚𝑎𝑥 𝑒𝑟𝑟𝑜𝑟_𝑏1_𝑚𝑖𝑛 𝑒𝑟𝑟𝑜𝑟_𝑠2_𝑚𝑎𝑥 𝑒𝑟𝑟𝑜𝑟_𝑠2_𝑚𝑖𝑛

625 2.00 1.00 1.89 1.92 0.40 0.46 2.83
37249 2.03 1.02 1.91 1.88 2.37 1.99 2.37

2.12. ADAPTIVITY

This problem is identical to the one in Section 2.4 except that we use adaptive mesh re�nement to re�ne
from a coarse base mesh obtained from Cubit.

43

Coarse Mesh Error Norms

Figure 2.11-1.. Min Max Postprocess

2.12.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines; adaptive mesh
re�nement; local error indicators based on jump in heat �ux.

2.12.2. Boundary Conditions

Same as in Section 2.1.

2.12.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

2.12.4. Verification of Solution

The mesh is adapted using code from Sierra/Percept that re�nes tetrahedral meshes without any
hanging nodes (conformal meshes only). The element error indicator is computed using a
residual-based error indicator in Encore, that computes the integrated jump in the normal heat �ux
across inter-element faces. The input �le is con�gured to re�ne elements so that the sum of the error in
the re�ned elements is approximately 75% of the total error in all elements.

44

Because of variability in the meshes, we expect the error reduction to be noisy. In this case, we use linear
least squares to estimate the slope of the error on a log-log plot against mesh size. Since the solution is
smooth we also expect the meshes to eventually re�ne everywhere. We estimate convergence in the usual
error norms and observe rates close to the theoretical ones (second order convergence for the 𝐿2 and 𝐿∞

norms and �rst order convergence for the 𝐻1 norm). Mesh size is estimated using the formula
ℎ ≈ 𝑁−1/3, where 𝑁 is the number of nodes in the mesh.

Coarse Mesh Error Norms

Figure 2.12-1.. Steady Heat Conduction: Tet4 Meshes (Adaptive Mesh Refinement)

Documentation for the following tests is in progress:

1 nlin_verify1/1dnonlin_verify1.test|np8
2 o_2d/aniso_2d.test|np8
3 o_3d/aniso_3d.test|np8
4 shell_2d/cyl_shell_2d.test|np8
5 shell_3d/cyl_shell_3d.test|np8
6 in_C_fi/nonlin_C_fi.test|np1
7 in_C_trap/nonlin_C_trap.test|np1
8 ce_parab/source_parab.test|np1
9 ce_parab_2d/source_parab_2d.test|np1

10 shell_axi/sph_shell_axi.test|np1
11 rical_shell/spherical_shell.test|np4
12 11_nonlin/x11b11_nonlin.test|np1

45

3. THERMAL BOUNDARY CONDITIONS

3.1. RADIATIVE HEAT FLUX

This problem tests the radiative �ux boundary condition under steady state heat conduction in a 2D
domain. The geometry consists of a unit square.

3.1.1. Features Tested

Basic heat conduction on Quad4 meshes; radiative �ux boundary conditions with constant emissivity
and reference temperature; radiation form factor from C-style user subroutine; temperature boundary
conditions from C-style user subroutine and constant values.

3.1.2. Boundary Conditions

At surface 3, the temperature is prescribed from a C-style user subroutine. On surfaces 2 and 4, a
constant temperatre boundary condition is used. On surface 1, a radiative heat �ux condition is
prescribed. No source term is needed.

3.1.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant.

3.1.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦) = 200 exp(−𝜋𝑦) sin(𝜋𝑥) + 600

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐻1 and 𝐿∞ norms. The
test passes, only if the observed rates of convergence in these norms are 2, 1, and 2, respectively (within a
tolerance).

For input decks see Appendix 12.2.1.

46

Coarse Mesh Error Norms

Figure 3.1-1.. Radiative Heat Flux

Table 3.1-1.. Radiative Heat Flux: Convergence Rates for Hex8 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

121 2.27 1.13 2.34
441 2.14 1.07 2.17
1681 2.07 1.04 2.09

3.2. RADIATIVE HEAT FLUX FROM FORTRAN USER
SUBROUTINE

This test veri�es that a user-supplied subroutine for convective coe�cient and reference temperature
(restricted to a surface patch) produces the same results as the equivalent input syntax with constant
values. The user subroutine is applied to the entire exterior surface, while the case using constant values
must be applied only to speci�c sidesets that span a portion of the exterior surface.

3.2.1. Features Tested

Basic heat conduction on a Hex8 mesh; convective and radiative �ux BCs, Fortran user subroutines.

3.2.2. Boundary Conditions

Convective and radiative �ux BCs are applied to the exterior boundary.

47

3.2.3. Material Parameters

The values of density, thermal conductivity, emissivity and speci�c heat are all constant.

3.2.4. Verification of Solution

The test compares Exodus output between two input �les. The �rst does not use any user subroutines
and instead relies on sidesets to apply the correct convective and radiative boundary conditions with
constant coe�cients. The second uses a single convective boundary condition with user subroutines for
both the convective coe�cient and reference temperature. The two input �les produce results that agree
to the default tolerances in the exodi� script.

For input decks see Appendix 12.2.2.

3.3. CONVECTIVE HEAT FLUX

This problem tests the convective �ux boundary condition under transient heat conduction in a 2D
domain. The geometry consists of a unit square.

3.3.1. Features Tested

Transient heat conduction on Quad4 meshes; convective �ux boundary conditions with user
subroutines for convective coe�cient and reference temperature; temperature boundary conditions
from C-style user subroutine and constant values.

3.3.2. Boundary Conditions

At surface 3, the temperature is prescribed from a C-style user subroutine. On surfaces 2 and 4, a
constant temperature boundary condition is used. On surface 1, a convective heat �ux condition is
prescribed. No source term is needed. The initial condition is provided by a C-style user subroutine

3.3.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant.

48

3.3.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑡) = 100 exp(−2𝜋2𝑡) sin(𝜋𝑥) (cos(𝜋𝑦) + sin(𝜋𝑦))

Because the solution is based on eigenfunctions, it satis�es the heat equation with no source term.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

Coarse Mesh Error Norms

Figure 3.3-1.. Convective Heat Flux

Table 3.3-1.. Convective Heat Flux: Convergence Rates for Hex8 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

121 2.22 1.21 2.22
441 2.13 1.09 2.12
1681 2.07 1.04 2.07

For input decks see Appendix 12.2.3.

49

3.4. THERMAL CONVECTIVE FLUX (FORTRAN
SUB-ROUTINE)

3.4.1. Problem Description

This problem tests the convective �ux boundary condition with a convective coe�cient Fortran
subroutine for a steady thermal problem in a 3D domain whose geometry consists of a unit-sized
cube.

3.4.2. Features Tested

Convective Flux BC, Convective Coe�cient Fortran Subroutine, user subroutine, integrated �ux,
integrated power

3.4.3. Boundary Conditions

Convective �ux boundary conditions are imposed on surfaces 1 and 2. Dirichlet BCs are speci�ed using
the exact solution on surfaces 3-6. A source term is applied within all blocks based on substituting the
exact solution into the heat conduction operator.

3.4.4. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant.

3.4.5. Verification of Solution

The manufactured solution is

𝑇 (𝑥, 𝑦, 𝑧) = (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2 + (𝑧 + 𝑧2).

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐻1, and 𝐿∞ norms.

Table 3.4-1.. Thermal Convective BC: Convergence Rates
Num Dofs 𝐿2 𝐻1 𝐿∞

125 2.71 1.36 2.71
729 2.36 1.18 2.36
4913 2.18 1.09 2.18

35940 2.09 1.04 2.09

50

Coarse Mesh Error Norms

Figure 3.4-1.. Convergence for 3D thermal steady convective flux BCs.

3.5. THERMAL CONVECTIVE FLUX (USER FIELD
FROM EXODUS READ-IN)

3.5.1. Problem Description

This problem evalutates a convective �ux boundary condition with a convective coe�cient and a
reference temperature from an exodus �le for a steady thermal problem in a 3D domain whose geometry
consists of a unit-sized cube.

3.5.2. Features Tested

Convective Flux BC, Convective Coe�cient, transfers, user subroutine, integrated �ux, integrated
power

3.5.3. Boundary Conditions

Convective �ux boundary conditions are imposed on surfaces 1 and 2. Dirichlet BCs are speci�ed using
the exact solution on surfaces 3-6. A source term is applied within all blocks based on substituting the
exact solution into the heat conduction operator.

51

3.5.4. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant.

3.5.5. Verification of Solution

The manufactured solution is

𝑇 (𝑥, 𝑦, 𝑧) = (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2 + (𝑧2 + 𝑧).

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐻1, and 𝐿∞ norms.

Coarse Mesh Error Norms

Figure 3.5-1.. Convergence for 3D thermal steady convective flux BCs.

Table 3.5-1.. Thermal Convective BC: Convergence Rates
Num Dofs 𝐿2 𝐻1 𝐿∞

125 2.74 1.36 2.71
729 2.36 1.18 2.36
4913 2.18 1.09 2.18

35940 2.09 1.05 2.09
274600 2.05 1.02 2.05

52

3.6. THERMAL HEAT FLUX

3.6.1. Thermal Heat Flux (Basic)

3.6.1.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat �ux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

3.6.1.2. Features Tested

Basic heat conduction, Calore style heat �ux BCs, Integrated Flux Output, Integrated Power Output,
Hex8 meshes, user functions.

3.6.1.3. Boundary Conditions

Dirichlet BCs are speci�ed using the exact solution on surfaces 2-6. On surface 1, a heat �ux BC is
speci�ed, using a heat �ux of 2− exp(1). A source term is applied within all blocks based on
substituting the exact solution into the heat conduction operator. The integrated �ux and power are
calculated and output as global variables, which should both be equal for a surface with area of 1 and
equal to 2− exp(1) for all meshes considered.

3.6.1.4. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant with the same value for
both blocks.

3.6.1.5. Verification of Solution

The manufactured solution is

𝑇 (𝑥, 𝑦, 𝑥) = (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2 + 𝑧2 exp(𝑧).

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐻1, and 𝐿∞ norms. The
test passes, only if the observed rates of convergence are 2 (except for the 𝐿∞ norm, with convergence
order 1).

53

Coarse Mesh Error Norms

Figure 3.6-1.. Thermal Heat Flux BC

Table 3.6-1.. Thermal Heat Flux BC: Convergence Rates
Num Dofs 𝐿2 𝐿∞ 𝐻1

729 2.33 1.15 2.25
4913 2.17 1.08 2.13

35940 2.09 1.04 2.07
274600 2.04 1.02 2.04

3.6.2. Thermal Heat Flux (Flux node variable user field)

3.6.2.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat �ux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

3.6.2.2. Features Tested

Basic heat conduction, Calore style heat �ux BCs, Flux Node Variable, User �eld, Field Scaling, Hex8
meshes, user functions, transfer.

3.6.2.3. Boundary Conditions

Dirichlet BCs are speci�ed using the exact solution on surfaces 1 and 3-6. On surface 2, a heat �ux BC is
speci�ed, using a �ux node variable user �eld. A source term is applied within all blocks based on

54

substituting the exact solution into the heat conduction operator. Transfers are speci�ed at the
surface.

3.6.2.4. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant with the same value for
both blocks.

3.6.2.5. Verification of Solution

The manufactured solution is

𝑇 (𝑥, 𝑦, 𝑥) = (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2 + 20 * (𝑧2 − 𝑧) * (1 + 𝑥+ 𝑦 + 𝑥𝑦).

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐻1, and 𝐿∞ norms. The
test passes, only if the observed rates of convergence are 2 (except for the 𝐿∞ norm, with convergence
order 1).

Coarse Mesh Error Norms

Figure 3.6-2.. Thermal Heat Flux BC

3.6.3. Thermal Heat Flux (Flux node variable user field)

3.6.3.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat �ux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

55

Table 3.6-2.. Thermal Heat Flux BC: Convergence Rates
Num Dofs 𝐿2 𝐿∞ 𝐻1

729 2.36 2.31 1.18
4913 2.18 2.16 1.09

35940 2.09 2.08 1.04
274600 2.05 2.04 1.02

3.6.3.2. Features Tested

Basic heat conduction, Calore style heat �ux BCs, User �eld real nodal vector, Hex8 meshes, user
functions, transfers.

3.6.3.3. Boundary Conditions

Dirichlet BCs are speci�ed using the exact solution on surfaces 1 and 3-6. On surface 2, a heat �ux BC is
speci�ed, using a �ux vector node variable de�ned as a user �eld. A source term is applied within all
blocks based on substituting the exact solution into the heat conduction operator.

3.6.3.4. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant with the same value for
both blocks.

3.6.3.5. Verification of Solution

The manufactured solution is

𝑇 (𝑥, 𝑦, 𝑥) = (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2 + 20 * (𝑧2 − 𝑧) * (1 + 𝑥+ 𝑦 + 𝑥𝑦).

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐻1, and 𝐿∞ norms. The
test passes, only if the observed rates of convergence are 2 (except for the 𝐿∞ norm, with convergence
order 1).

Table 3.6-3.. Thermal Heat Flux BC: Convergence Rates
Num Dofs 𝐿2 𝐿∞ 𝐻1

729 2.36 2.31 1.18
4913 2.18 2.16 1.09

35940 2.09 2.08 1.04
274600 2.05 2.04 1.02

56

Coarse Mesh Error Norms

Figure 3.6-3.. Thermal Heat Flux BC

3.6.4. Thermal Heat Flux (Fortran Subroutine)

3.6.4.1. Problem Description

This problem tests a steady thermal solution on a unit cube with heat �ux boundary conditions
imposed on one of the six surfaces. The mesh uses Hex8 elements.

3.6.4.2. Features Tested

Basic heat conduction, Calore style heat �ux BCs, Integrated Flux Output, Integrated Power Output,
Fortran subroutine, Hex8 meshes, user plugin.

3.6.4.3. Boundary Conditions

Dirichlet BCs are speci�ed using the exact solution on surfaces 3-6. On surfaces 1 and 2, heat �ux BCs
are speci�ed, using Fortran subroutines. A source term is applied within all blocks based on substituting
the exact solution into the heat conduction operator.

3.6.4.4. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant with the same value for
both blocks.

57

3.6.4.5. Verification of Solution

The manufactured solution is

𝑇 (𝑥, 𝑦, 𝑥) = (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2 + (𝑧2 + 𝑧) * (1 + 𝑥+ 𝑦 + 𝑥𝑦).

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐻1, and 𝐿∞ norms. The
test passes, only if the observed rates of convergence are 2 (except for the 𝐿∞ norm, with convergence
order 1).

Coarse Mesh Error Norms

Figure 3.6-4.. Thermal Heat Flux BC

Table 3.6-4.. Thermal Heat Flux BC: Convergence Rates
Num Dofs 𝐿2 𝐿∞ 𝐻1

729 2.36 2.31 1.18
4913 2.18 2.16 1.09

35940 2.09 2.08 1.05
274600 2.05 2.04 1.02

58

3.7. THERMAL RADIATIVE HEAT FLUX

3.7.1. Basic Calore-Style BC

3.7.1.1. Problem Description

This problem evaluates a steady thermal solution with radiative heat �ux boundary conditions on a 3D
unit cube domain.

3.7.1.2. Features Tested

Basic heat conduction, Calore style radiative heat �ux BCs, Integrated Flux Output, Integrated Power
Output, Hex8 meshes.

3.7.1.3. Boundary Conditions

Dirichlet BCs are speci�ed using the exact solution on surfaces 2-6. On surface 1, a radiative heat �ux
BC is speci�ed with constant emissivity and a radiation form factor of 0.2. A source term is applied
within all blocks based on substituting the exact solution into the heat conduction operator.

3.7.1.4. Material Parameters

The values of density, thermal conductivity, speci�c heat, and emissivity are all constant values.

3.7.1.5. Verification of Solution

The manufactured solution is

𝑇 (𝑥, 𝑦, 𝑥) = (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2 + 𝑇 − 𝜕𝑇

𝜕𝑛
(𝑧2 − 𝑧).

For each discretization, the errors in the temperature solution are computed in the 𝐿2, 𝐻1, and 𝐿∞

norms. The observed rates of convergence are 2 (except for the 𝐿∞ norm, with convergence order 1).

Table 3.7-1.. Thermal Radiative Flux BC: Convergence Rates
Num Dofs 𝐿2 𝐿∞ 𝐻1

125 2.71 1.36 2.71
729 2.36 1.18 2.36
4913 2.18 1.09 2.18

35940 2.09 1.04 2.09
274600 2.05 1.02 2.05

59

Coarse Mesh Error Norms

Figure 3.7-1.. Thermal Radiative Flux

3.7.2. With Fortran Subroutines

3.7.2.1. Problem Description

This problem evaluates a steady thermal solution with radiative heat �ux boundary conditions using
Fortran subroutines on a 3D unit cube domain.

3.7.2.2. Features Tested

Basic heat conduction, Calore style radiative heat �ux BCs, Integrated Flux Output, Integrated Power
Output, Hex8 meshes, Fortran subroutines.

3.7.2.3. Boundary Conditions

Dirichlet BCs are speci�ed using the exact solution on surfaces 2-6. On surface 1, a radiative heat �ux
BC is speci�ed with emissivity, reference temperature, and radiation form factor of provided by Fortran
subroutines. A source term is applied within all blocks based on substituting the exact solution into the
heat conduction operator.

3.7.2.4. Material Parameters

The values of density, thermal conductivity, speci�c heat, and emissivity are all constant values.

60

3.7.2.5. Verification of Solution

The manufactured solution is

𝑇 (𝑥, 𝑦, 𝑥) = (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2 + 𝑇 − 𝜕𝑇

𝜕𝑛
(𝑧2 − 𝑧).

For each discretization, the errors in the temperature solution are computed in the 𝐿2, 𝐻1, and 𝐿∞

norms. The observed rates of convergence are 2 (except for the 𝐿∞ norm, with convergence order 1).

Coarse Mesh Error Norms

Figure 3.7-2.. Thermal Radiative Flux

Table 3.7-2.. Thermal Radiative Flux BC: Convergence Rates
Num Dofs 𝐿2 𝐿∞ 𝐻1

125 2.72 1.38 2.59
729 2.36 1.18 2.30
4913 2.18 1.09 2.15

35940 2.09 1.05 2.08

3.7.3. With User Subroutines

3.7.3.1. Problem Description

This problem evaluates a steady thermal solution with radiative heat �ux boundary conditions with
user subroutines on a 3D unit cube domain.

61

3.7.3.2. Features Tested

Basic heat conduction, Calore style radiative heat �ux BCs, Integrated Flux Output, Integrated Power
Output, Hex8 meshes, user subroutines.

3.7.3.3. Boundary Conditions

Dirichlet BCs are speci�ed using the exact solution on surfaces 2-6. On surface 1, a radiative heat �ux
BC is speci�ed with emissivity, reference termperature and radiation form factor provided by user
subroutines. A source term is applied within all blocks based on substituting the exact solution into the
heat conduction operator.

3.7.3.4. Material Parameters

The values of density, thermal conductivity, speci�c heat, and emissivity are all constant values.

3.7.3.5. Verification of Solution

The manufactured solution is

𝑇 (𝑥, 𝑦, 𝑥) = (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2 + 𝑇 − 𝜕𝑇

𝜕𝑛
(𝑧2 − 𝑧).

For each discretization, the errors in the temperature solution are computed in the 𝐿2, 𝐻1, and 𝐿∞

norms. The observed rates of convergence are 2 (except for the 𝐿∞ norm, with convergence order 1).

Table 3.7-3.. Thermal Radiative Flux BC: Convergence Rates
Num Dofs 𝐿2 𝐿∞ 𝐻1

125 2.72 1.38 2.59
729 2.36 1.18 2.30
4913 2.18 1.09 2.15

35940 2.09 1.05 2.08

3.8. ADVECTIVE BAR

Advective bar model veri�cation tests.

3.8.1. Steady Advection-Diffusion

The three dimensional Bar2 meshes of one element block are generated in Cubit.

62

Coarse Mesh Error Norms

Figure 3.7-3.. Thermal Radiative Flux

3.8.2. Features Tested

Steady heat conduction on 3D Bar2 meshes, Dirichlet boundary conditions, constant source term,
advection and SUPG stabilization.

3.8.3. Boundary Conditions

𝑇 (0) = 𝑇 (1) = 0

3.8.4. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in the
block.

3.8.5. Verification of Solution

Solution veri�cation is carried out by computing the error in the numerical solution based upon
comparison with the analytic solution.

𝑇 (𝑥) =
1

𝜌𝐶𝑉

[︂
𝑥− 1− exp(𝑥𝛾)

1− exp(𝛾)

]︂
63

where 𝛾 = 𝜌𝐶𝑉/𝑘 where 𝜌 is the density, 𝐶 is speci�c heat, 𝑘 is the thermal conductivity and 𝑉 is the
advection velocity. In this test, we �nd that the convergence rate for the temperature in the 𝐿∞ and 𝐿2

norms are 2.

Coarse Mesh Error Norms

Figure 3.8-1.. Steady Advective Conduction: 3D Bar2 Meshes

Table 3.8-1.. Steady Advective Conduction: Convergence Rates
for 3D Bar2 Meshes

Num Dofs 𝐿2 𝐿∞

21 2.14 2.11
41 2.07 2.06
81 2.04 2.03
161 2.02 2.01
321 2.01 2.01

3.8.6. Transient Advection-Diffusion

The three dimensional Bar2 meshes of one element block are generated in Cubit.

3.8.7. Features Tested

Transient heat conduction on 3D Bar2 meshes, Dirichlet boundary conditions and Encore function
source term.

64

3.8.8. Boundary Conditions

Dirichlet boundary conditions on the bar ends based upon the manufactured solution 𝑇 (𝑥)

𝑇 (0) = 𝑇 (1) = 𝑇𝑖

3.8.9. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in the bar
block.

3.8.10. Verification of Solution

Solution veri�cation is carried out by computing the error in the numerical solution based upon
comparison with the analytic solution.

𝑇 (𝑥) = 𝑇𝑖 + 𝐴𝑡𝑥(𝑥− 1) exp(−𝐵𝑡) exp(−𝐵𝑥)

In this test, we �nd that the convergence rate for the temperature in the 𝐿∞ and 𝐿2 norms are 2.

Coarse Mesh Error Norms

Figure 3.8-2.. Transient Heat Conduction: 3D Bar2 Meshes

3.8.11. Transient Advection-Diffusion in 2D

The two dimensional Bar2 meshes of one elment block are generated in Cubit.

65

Table 3.8-2.. Transient Heat Conduction: Convergence Rates for 3D Bar2 Meshes
Num Dofs 𝐿2 𝐿∞

21 2.33 2.02
41 2.12 1.97
81 2.05 1.98
161 2.02 1.99

3.8.12. Features Tested

Transient heat conduction on 2D Bar2 meshes, Dirichlet boundary conditions and Encore function
source term.

3.8.13. Boundary Conditions

Dirichlet boundary conditions on the bar ends

𝑇 (0) = 𝑇 (1) = 𝑇𝑖

3.8.14. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in the bar
block.

3.8.15. Verification of Solution

Solution veri�cation is carried out by computing the error in the numerical solution based upon
comparison with the analytic solution.

𝑇 (𝑥) = 𝑇𝑖 + 𝐴𝑡𝑥(𝑥− 1) exp(−𝐵𝑡) exp(−𝐵𝑥)

In this test, we �nd that the convergence rate for the temperature in the 𝐿∞ and 𝐿2 norms are 2.

Table 3.8-3.. Transient Heat Conduction: Convergence Rates for 2D Bar2 Meshes
Num Dofs 𝐿2 𝐿∞

21 2.33 2.02
41 2.12 1.97
81 2.05 1.98
161 2.02 1.99

66

Coarse Mesh Error Norms

Figure 3.8-3.. Transient Heat Conduction: Bar2 Meshes

3.9. SOLUTION VERIFICATION

This test is for a Mock AFF (including a metal case, foam, mock components, and
temperature-dependent properties) that uses extrapolation to determine an approximation to the exact
solution as a function of the results from three levels of meshes.

3.9.1. Features Tested

Extrapolation, Radiative �ux boundary condition

3.9.2. Material Parameters

Constant density, emissivity. Temperature dependent user functions for speci�c hear and thermal
conductivity.

3.9.3. Verification of Solution

Quantities of interest are the maximum, minimum, and average temperatures on both blocks and
points. There is no manufactured solution in this case, instead an extrapolated solution is calculated and
used to measure convergence and approximate the absolute error for a given mesh resolution.

Documentation for the following tests is in progress:

1 nic_material_decomposition/organic_material_decomposition.test|np4

67

Figure 3.9-1.. Mock AFF Solution Verification

68

0 1000 2000 3000 4000 5000 6000
Rate of convergence

0.5

1

1.5

2

2.5

3

Ti
m

e
[s

ec
]

Rates of convergence for QOIs

A---- 2nd Order ---- !

A---- 1st Order ---- !

max(T) on block 3
ave(T) on block 3

min(T) on block 2
ave(T) on block 2
T at point

Figure 3.9-2.. The convergence rates can vary over time and between QOIs

69

4. THERMAL CONTACT

4.1. 1D FLAT CONTACT

This problem tests thermal contact along a �at surface using 3D domains. The geometry consists of two
thick blocks, which are in contact along a common �at surface. The mesh nodes on either side of the
contact surface are not aligned in general.

In this problem we observe sub-optimal convergence rates in the 𝐿∞ norm when using Tet elements.
This is a known issue with unknown cause.

The contact search tolerances are �xed for all meshes, with a zero tangential and normal tolerances.

4.1.1. Features Tested

Basic heat conduction, tied and resistance thermal contact between non-matching meshes (Hex-Hex,
Tet-Tet, Hex-Tet).

4.1.2. Boundary Conditions

The interface between the two blocks is a thermal contact boundary condition. Both tied contact and
resistance contact (with �nite contact resistance) are tested. The left and right boundary conditions are
prescribed using constant values. The remaining boundary conditions are adiabatic. A constant source
term is applied in each block (with di�erent signs).

4.1.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

70

4.1.4. Verification of Solution

A manufactured solution is chosen based on the contact interface at 𝑥 = 0:

𝑇 (𝑥, 𝑦, 𝑧) =

{︂
1
2
(1 + 𝑥)(𝛾 + 𝑥), 𝑥 < 0,

1 + 1
2
(1− 𝑥)(−𝛾 + 𝑥), 𝑥 > 0

where 𝛾 = (2−𝑅)/(2 +𝑅) is a constant depending on the thermal contact resistance 𝑅. Here 𝑅 is
the inverse of the contact conductance that is provided as a code input. In the case of tied contact,
𝑅 = 0 and therefore 𝛾 = 1. We note that when 𝑅 > 0, this exact solution exhibits a jump in
temperature across the contact interface.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These rates are observed for the Hex-Hex case; however, both of the cases involving Tet meshes exhibit a
reduced order of convergence in the 𝐿∞ norms (convergence rate about 1.7).

For input decks see Appendix 12.3.1.

4.1.5. Results: Hex8 Tied

Coarse Mesh Error Norms

Figure 4.1-1.. 1D Flat Contact: Hex8 Tied

4.1.6. Results: Hex8 Resistance

71

Table 4.1-1.. 1D Flat Contact: Convergence Rates for Hex8 Tied
Num Dofs 𝐿2 𝐿∞ 𝐻1

1241 2.45 2.44 1.38
7657 2.17 2.12 1.10

57890 2.11 2.11 1.07
432100 2.04 2.03 1.02

Coarse Mesh Error Norms

Figure 4.1-2.. 1D Flat Contact: Hex8 Resistance

Table 4.1-2.. 1D Flat Contact: Convergence Rates for Hex8 Resistance
Num Dofs 𝐿2 𝐿∞ 𝐻1

1241 2.55 2.70 1.25
7657 2.12 2.04 1.07

57890 2.13 2.17 1.06
432100 2.03 2.01 1.02

72

4.1.7. Results: Tet4 Tied

Coarse Mesh Error Norms

Figure 4.1-3.. 1D Flat Contact: Tet4 Tied

Table 4.1-3.. 1D Flat Contact: Convergence Rates for Tet4 Tied
Num Dofs 𝐿2 𝐿∞ 𝐻1

1348 2.33 2.06 1.18
9102 2.19 1.88 1.06

66620 2.09 1.78 1.03
509200 2.04 1.73 1.01

4.1.8. Results: Tet4 Resistance

73

Coarse Mesh Error Norms

Figure 4.1-4.. 1D Flat Contact: Tet4 Resistance

Table 4.1-4.. 1D Flat Contact: Convergence Rates for Tet4 Resistance
Num Dofs 𝐿2 𝐿∞ 𝐻1

1348 2.22 2.09 1.12
9102 2.08 1.95 1.05

66620 2.04 1.62 1.02
509200 2.01 1.42 1.01

74

4.1.9. Results: Hex8-Tet4 Tied

Coarse Mesh Error Norms

Figure 4.1-5.. 1D Flat Contact: Hex8-Tet4 Tied

Table 4.1-5.. 1D Flat Contact: Convergence Rates for Hex8-Tet4 Tied
Num Dofs 𝐿2 𝐿∞ 𝐻1

1231 2.32 2.10 1.24
8284 2.16 1.82 1.09

60570 2.09 1.78 1.04
462800 2.04 1.82 1.02

4.1.10. Results: Hex8-Tet4 Resistance

4.2. 3D CURVED CONTACT

This problem tests thermal contact along a curved surface in 3D. The geometry consists of two thick
spherical shells, which are in contact along a shared surface. The mesh nodes on either side of the
contact surface are not aligned in general.

In this problem we observe sub-optimal convergence rates in the 𝐿∞ norm when using tet elements.
This is a known issue with unknown cause.

The contact search tolerances are �xed for all meshes, with a zero tangential tolerance and a normal
tolerance large enough to insure a proper contact search on the coarsest mesh.

75

Coarse Mesh Error Norms

Figure 4.1-6.. 1D Flat Contact: Hex8-Tet4 Resistance

Table 4.1-6.. 1D Flat Contact: Convergence Rates for Hex8-Tet4 Resistance
Num Dofs 𝐿2 𝐿∞ 𝐻1

1231 2.28 2.10 1.15
8284 2.12 1.95 1.07

60570 2.05 1.62 1.03
462800 2.02 1.43 1.01

4.2.1. Features Tested

Basic heat conduction, tied thermal contact between non-matching meshes (hex-hex, tet-tet, hex-tet).

4.2.2. Boundary Conditions

The interface between the two blocks is a tied thermal contact boundary condition. The outer and
inner boundary conditions are prescribed at the nodes using the analytic solution.

4.2.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

76

4.2.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑧) = −3𝑥2𝑧 − 3𝑦2𝑧 + 2𝑧3

This solution is harmonic, implying that no source term is needed for the steady state heat equation
with constant conductivity.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These rates are observed for the hex-hex case; however, both of the cases involving tet meshes exhibit a
reduced order of convergence in the 𝐿∞ norms (convergence rate about 1.7).

For input decks see Appendix 12.3.2.

4.2.5. Results: Hex8-Hex8 Contact

Coarse Mesh Error Norms

Figure 4.2-1.. 3D Curved Contact: Hex8-Hex8 Case

77

Table 4.2-1.. 3D Curved Contact: Convergence Rates for Hex8-Hex8
Num Dofs 𝐿2 𝐿∞ 𝐻1

540 3.16 2.60 0.96
3752 2.32 1.93 1.25

21220 2.62 2.66 1.07
150700 2.35 2.05 1.06

78

4.2.6. Results: Tet4-Tet4 Contact

Coarse Mesh Error Norms

Figure 4.2-2.. 3D Curved Contact: Tet4-Tet4 Case

Table 4.2-2.. 3D Curved Contact: Convergence Rates for Tet4-Tet4
Num Dofs 𝐿2 𝐿∞ 𝐻1

674 2.47 2.34 1.00
3881 2.33 2.41 1.11

25010 2.09 1.96 1.04
159100 2.02 1.73 1.04

79

4.2.7. Results: Hex8-Tet4 Contact

Coarse Mesh Error Norms

Figure 4.2-3.. 3D Curved Contact: Hex8-Tet4 Case

Table 4.2-3.. 3D Curved Contact: Convergence Rates for Hex8-Tet4
Num Dofs 𝐿2 𝐿∞ 𝐻1

630 2.34 1.87 1.11
3830 2.40 2.09 1.12

23420 1.98 1.97 1.06
153700 2.06 1.70 1.04

4.3. STEADY HEX8 CONTACT

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube.

4.3.1. Features Tested

Basic heat conduction on Hex8 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

80

4.3.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat �ux
condition is prescribed using a sum of a constant heat �ux and a heat �ux from an Encore function
(user subroutine). On surfaces 1 and 2, heat �ux condition is prescribed using a sum of a convective �ux
boundary condition (with constant �ux and convective coe�cient) and a heat �ux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

4.3.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

4.3.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑧) = 1 + (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2.

The source and heat �ux user subroutines are chosen so that the solution satis�es the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

Table 4.3-1.. Steady Tied Contact: Convergence Rates for Hex8 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

192 0.86 -0.44 0.60
982 2.22 0.97 2.39
6419 2.31 1.07 2.28

46280 2.06 1.04 1.71
350600 1.95 1.02 2.08

For input decks see Appendix 12.3.3.

4.4. STEADY HEX20 CONTACT

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of di�erent source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

81

Coarse Mesh Error Norms

Figure 4.3-1.. Steady Tied Contact: Hex8 Meshes

4.4.1. Features Tested

Basic heat conduction on Hex20 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

4.4.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat �ux
condition is prescribed using a sum of a constant heat �ux and a heat �ux from an Encore function
(user subroutine). On surfaces 1 and 2, heat �ux condition is prescribed using a sum of a convective �ux
boundary condition (with constant �ux and convective coe�cient) and a heat �ux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

4.4.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

82

4.4.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑧) = 1 + (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2.

The source and heat �ux user subroutines are chosen so that the solution satis�es the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

Coarse Mesh Error Norms

Figure 4.4-1.. Steady Heat Conduction: Hex20 Meshes

Table 4.4-1.. Steady Heat Conduction: Convergence Rates for Hex20 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

2898 3.50 2.40 3.64
19620 3.25 2.19 3.19
62450 3.15 2.10 3.08
143700 3.10 2.07 3.04

For input decks see Appendix 12.3.4.

83

4.5. STEADY HEX27 CONTACT

This problem tests basic steady state heat conduction in a 3D domain. The geometry consists of a unit
cube. A variety of di�erent source terms and boundary conditions are simultaneously applied. The
exact solution is a manufactured solution.

4.5.1. Features Tested

Basic heat conduction on Hex27 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

4.5.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat �ux
condition is prescribed using a sum of a constant heat �ux and a heat �ux from an Encore function
(user subroutine). On surfaces 1 and 2, heat �ux condition is prescribed using a sum of a convective �ux
boundary condition (with constant �ux and convective coe�cient) and a heat �ux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine).

4.5.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

4.5.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑧) = 1 + (𝑥− 𝑥2)2(𝑦 − 𝑦2)2(𝑧 − 𝑧2)2.

The source and heat �ux user subroutines are chosen so that the solution satis�es the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

For input decks see Appendix 12.3.5.

84

Coarse Mesh Error Norms

Figure 4.5-1.. Steady Heat Conduction: Hex27 Meshes

Table 4.5-1.. Steady Heat Conduction: Convergence Rates for Hex27 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

13750 3.25 2.18 3.19
28830 3.13 2.10 2.97
63880 3.14 2.09 3.25

120000 3.11 2.07 3.26

4.6. STEADY TET4 CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tet4 meshes are used
instead.

4.6.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

4.6.2. Boundary Conditions

Same as in Section 2.1.

85

4.6.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

4.6.4. Verification of Solution

Same as in Section 2.1.

Coarse Mesh Error Norms

Figure 4.6-1.. Steady Tied Contact: Tet4 Meshes

Table 4.6-1.. Steady Tied Contact: Convergence Rates for Tet4 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

229 1.60 0.76 1.48
1402 2.29 1.09 2.65
8535 1.93 0.98 1.38

51620 2.05 1.02 2.14
291200 1.88 0.94 1.81

For input decks see Appendix 12.3.6.

4.7. STEADY TET4TET10 CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tet4 meshes are used
instead.

86

4.7.1. Features Tested

Basic heat conduction on Tet4 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

4.7.2. Boundary Conditions

Same as in Section 2.1.

4.7.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

4.7.4. Verification of Solution

Same as in Section 2.1.

Coarse Mesh Error Norms

Figure 4.7-1.. Steady Tied Contact: Tet4 Meshes

For input decks see Appendix 12.3.7.

87

Table 4.7-1.. Steady Tied Contact: Convergence Rates for Tet4 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

1364 1.40 0.72 1.13
9663 2.14 1.02 2.46

62720 1.90 0.94 1.27
392000 1.98 1.00 2.16

2250000 1.89 0.93 1.84

4.8. STEADY TET10 CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tet10 meshes are used
instead.

4.8.1. Features Tested

Basic heat conduction on Tet10 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

4.8.2. Boundary Conditions

Same as in Section 2.1.

4.8.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

4.8.4. Verification of Solution

Same as in Section 2.1.

Table 4.8-1.. Steady Tied Contact: Convergence Rates for Tet10 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

1364 2.71 1.51 2.78
9663 3.34 2.14 2.99

62720 2.86 1.92 2.39
392000 3.06 2.05 2.68

For input decks see Appendix 12.3.8.

88

Coarse Mesh Error Norms

Figure 4.8-1.. Steady Tied Contact: Tet10 Meshes

4.9. STEADY TET10 DASH CONTACT

This problem is identical to the one in Section 2.1 except that unstructured Tet10 meshes are used
instead.

4.9.1. Features Tested

Basic heat conduction on Tet10 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

4.9.2. Boundary Conditions

Same as in Section 2.1.

4.9.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

89

Coarse Mesh Error Norms

Figure 4.9-1.. Steady Tied Dash Contact: Tet10 Meshes

Table 4.9-1.. Steady Tied DASH Contact: Convergence Rates for Tet10 Meshes
Num Dofs 𝐿2 𝐻1 𝐿∞

1364 2.80 1.57 2.55
9663 3.34 2.14 3.14

62720 2.59 1.91 2.38
392000 2.70 2.06 2.61

4.9.4. Verification of Solution

Same as in Section 2.1.

For input decks see Appendix 12.3.9.

4.10. TRANSIENT TET4TET10 CONTACT

This problem tests basic transient heat conduction with contact in a 3D domain. The geometry consists
of two halves of a unit cube meshed with Tet10 elements. The problem is solved using Tet4
interpolation and applying thermal contact at the common interface between the two domains.

4.10.1. Features Tested

Basic heat conduction on Tet10 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

90

4.10.2. Boundary Conditions

Using a manufactured solution, Dirichlet boundary conditions are applied on all the non-contact
exposed faces.

4.10.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

4.10.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = (𝑥− 𝑥2)2 (𝑦 − 𝑦2)2 (𝑧 − 𝑧2)2𝑚(𝑡) + 1,

𝑚(𝑡) = 104 [1.− exp(−𝑡) + 𝑡 * exp(−(𝑡− 1.0) * (𝑡− 1.0))] ;

The source and heat �ux user subroutines are chosen so that the solution satis�es the heat equation
with the correct boundary conditions.

Coarse Mesh Error Norms

Figure 4.10-1.. Transient Tied Contact: Tet10 Meshes

For input decks see Appendix 12.3.10.

91

Table 4.10-1.. Transient Tied Contact: Convergence Rates for Tet10 Meshes
Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

1364 1.41 2.85 0.72 1.14
9663 2.13 1.81 1.02 2.46

62720 1.90 1.94 0.94 1.27

4.11. TRANSIENT TET10 CONTACT

This problem tests basic transient heat conduction with contact in a 3D domain. The geometry consists
of two halves of a unit cube meshed with Tet10 elements. The problem is solved by applying thermal
contact at the common interface between the two domains.

4.11.1. Features Tested

Basic heat conduction on Tet10 meshes; dirichlet, heat �ux, and convective �ux boundary conditions;
constant source terms; heat �ux and source term from Encore user subroutines.

4.11.2. Boundary Conditions

Using a manufactured solution, Dirichlet boundary conditions are applied on all the non-contact
exposed faces.

4.11.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

4.11.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = (𝑥− 𝑥2)2 (𝑦 − 𝑦2)2 (𝑧 − 𝑧2)2𝑚(𝑡) + 1,

𝑚(𝑡) = 104 [1.− exp(−𝑡) + 𝑡 * exp(−(𝑡− 1.0) * (𝑡− 1.0))] ;

The source and heat �ux user subroutines are chosen so that the solution satis�es the heat equation
with the correct boundary conditions.

For input decks see Appendix 12.3.11.

92

Coarse Mesh Error Norms

Figure 4.11-1.. Transient Tied Contact: Tet10 Meshes

Table 4.11-1.. Transient Tied Contact: Convergence Rates for Tet10 Meshes
Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

1364 2.73 5.40 1.51 2.81
9663 3.33 2.23 2.14 3.00

62720 2.85 2.30 1.92 2.39

4.12. TRANSIENT HEX8 TIED CONTACT

This problem tests transient heat conduction on a 3D domains with a nonconformal mesh between two
blocks. Tied temperature (generalized contact) is used for matching the energy equation between
nonconformal blocks. The geometry consists of a unit cube.

4.12.1. Features Tested

Transient heat conduction on Hex8 meshes; dirichlet, heat �ux, and convective �ux boundary
conditions, Tied Contact, Nonconformal; constant source terms; heat �ux and source term from
Encore user subroutines.

4.12.2. Boundary Conditions

At surfaces 4 and 6, the temperature is prescribed as a constant value. On surfaces 3 and 5, a heat �ux
condition is prescribed using a sum of a constant heat �ux and a heat �ux from an Encore function
(user subroutine). On surfaces 1 and 2, heat �ux condition is prescribed using a sum of a convective �ux

93

boundary condition (with constant �ux and convective coe�cient) and a heat �ux from an Encore
function (user subroutine). Within the domain a source term is prescribed using a sum of a constant
source and an Encore function (user subroutine). On the two interior surfaces connecting the
nonconformal blocks (surfaces 7 and 8), a contact de�nition is de�ned as tied temperature.

4.12.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

4.12.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = (𝑥− 𝑥2)2 (𝑦 − 𝑦2)2 (𝑧 − 𝑧2)2𝑚(𝑡) + 1,

𝑚(𝑡) = 104 (1− exp(−𝑡) + 𝑡 exp(−(𝑡− 1)2))

The source and heat �ux user subroutines are chosen so that the solution satis�es the heat equation
with the correct boundary conditions.

For each mesh, the errors in the temperature solution at �nal time are computed in the 𝐿2 norm of 𝑇
and 𝑇̇ , 𝐿∞ and 𝐻1 norms. The test passes, only if the observed rates of convergence in these norms are
2, 2, 2 and 1, respectively (within a tolerance).

Coarse Mesh Error Norms

Figure 4.12-1.. Tied Contact Transient Heat Conduction: Hex8 Meshes

94

Table 4.12-1.. Tied Contact Transient Heat Conduction: Conver-
gence Rates for Hex8 Meshes

Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

192 0.88 3.46 -0.44 0.61
982 2.22 1.84 0.97 2.39
6419 2.31 2.30 1.07 2.29

4.13. TRANSIENT TET4 TIED CONTACT

This problem tests transient heat conduction and tied thermal contact in a 3D domain as in Section 2.7.
The geometry consists of a unit cube that is split along the plane at 𝑥 = 0.5.

4.13.1. Features Tested

Basic transient heat conduction on Tet4 meshes; non-conformal tied thermal contact; dirichlet, heat
�ux, and convective �ux boundary conditions; constant source terms; heat �ux and source term from
Encore user subroutines.

4.13.2. Boundary Conditions

Identical to Section 2.7.

4.13.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

4.13.4. Verification of Solution

A manufactured solution is chosen as in Section 2.7.

For each mesh, the errors in the temperature solution at �nal time are computed in the 𝐿2 norm of 𝑇
and 𝑇̇ , 𝐿∞ and 𝐻1 norms. We see convergence rates for 𝑇̇ that are slightly greater than two.

95

Coarse Mesh Error Norms

Figure 4.13-1.. Transient Heat Conduction with Tied Contact: Tet4 Meshes

Table 4.13-1.. Transient Heat Conduction with Tied Contact:
Convergence Rates for Tet4 Meshes

Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

229 1.61 3.22 0.76 1.49
1402 2.29 1.94 1.10 2.64
8535 1.93 1.91 0.98 1.39

51620 2.05 2.12 1.02 2.14

96

5. ELEMENT DEATH

5.1. CDFEM ELEMENT DEATH (HEAT FLUX)

This problem tests transient conduction and CDFEM element death using 2D and 3D domains. The
geometry consists of a thick 1/4 cylindrical or 1/8 spherical shell.

5.1.1. Features Tested

Transient heat conduction, adaptive second order time integration (BDF2), CDFEM element death,
temperature and heat �ux boundary conditions, Tri3 and Tet4 meshes.

5.1.2. Boundary Conditions

On one surface, the exact solution is used to specify a time-varying temperature. At the other surface, an
analytic heat �ux is applied using the exact solution. The erosion of the volume from CDFEM element
death causes the surface with the heat �ux BC to gradually recede as the material is removed.

5.1.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

5.1.4. Verification of Solution

A manufactured solution 𝑇 and exact source term 𝑆 are chosen in 2D to be:

𝑇 (𝑟, 𝑡) =
ln(𝑟)

ln(2− 𝑡)
, 𝑆(𝑟, 𝑡) =

ln(𝑟)

(ln(2− 𝑡))2(2− 𝑡)

and in 3D to be:
𝑇 (𝑟, 𝑡) = (1 + 𝑡)/𝑟, 𝑆(𝑟, 𝑡) = 1/𝑟.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms over
the volume, and in the 𝐿2 and 𝐿∞ norms over the outer surface. The test passes, only if the observed

97

rates of convergence in these norms are one (within a tolerance). First order convergence is expected in
this case, due to the nature of the coupling of the CDFEM mesh decomposition and the heat
conduction solve.

5.1.5. Results: Tri3

Coarse Mesh Error Norms

Figure 5.1-1.. CDFEM Element Death (Heat Flux): Tri3

Table 5.1-1.. CDFEM Element Death (Heat Flux): Convergence Rates for Tri3
Num Dofs 𝐿2 𝐻1 𝐿∞ 𝐿2(surf) 𝐿∞(surf)

103 4.16 1.69 4.30 4.03 3.73
332 1.24 0.64 0.44 0.60 0.98
1163 0.78 0.93 1.01 0.93 0.73

5.1.6. Results: Tet4

Table 5.1-2.. CDFEM Element Death (Heat Flux): Convergence Rates for Tet4
Num Dofs 𝐿2 𝐻1 𝐿∞ 𝐿2(surf) 𝐿∞(surf)

1024 0.63 0.39 0.76 0.60 0.83
5470 1.66 1.40 1.71 1.57 1.68
32588 1.27 1.19 1.34 1.27 1.34

For input decks see Appendix 12.4.1.

98

Coarse Mesh Error Norms

Figure 5.1-2.. CDFEM Element Death (Heat Flux): Tet4

5.2. 3D SPHERICAL SHELL ENCLOSURE

5.2.1. Problem Description

This problem tests transient conduction, enclosure radiation, and CDFEM element death. The initial
geometry of this problem is a hollow sphere (block 2) inside and in contact with a second hollow sphere
(block 1). The geometry is such that the solution maintains radial symmetry. The inner sphere
decomposes at a speci�c failure temperature, resulting in a changing enclosure geometry.

5.2.2. Features Tested

Transient heat conduction, enclosure radiation, CDFEM element death, Tet4 meshes.

5.2.3. Boundary and Initial Conditions

The initial condition is a piecewise steady state temperature distribution de�ned below in (5.1). The
boundary conditions specify the temperature 𝑇4 at the outer surface (4) of the outer sphere and 𝑇1 at
the inner surface (1) of the inner sphere. The inner temperature 𝑇1 will be gradually increased, while 𝑇4

remains constant in time.

An enclosure is de�ned initially using the outer surface of the inner volume (surface 2 of block 2) and the
inner surface of the outer volume (surface 3 of block 1). The erosion of the inner volume (block 2) from
CDFEM element death causes surface 2 to gradually recede as the material within block 2 is removed.

99

Dimensions are de�ned in Table 5.2-1.

Table 5.2-1.. Dimensions of problem
radius of surface_1 𝑟1 0.01
radius of surface_2 𝑟2 0.02
radius of surface_3 𝑟3 0.03
radius of surface_4 𝑟4 0.04

5.2.4. Material Parameters

Material properties are shown in Table 5.2-2.

Table 5.2-2.. Material properties
Thermal conductivity 𝜅 1.0
Density 𝜌 7682.0
Speci�c heat 𝐶𝑝 10.0
emissivity (inner) 𝜖2 0.6
emissivity (outer) 𝜖3 0.7
Stefan-Boltzmann constant 𝜎 5.6704e-8
failure temperature (block 2) 𝑇𝑐 867.011674920813

5.2.5. Verification of Solution

The solution after failure occurs is speci�ed using inner and outer temperature solutions of the form:

𝑇𝑖(𝑟) ≡ 𝑇1 + (𝑇𝑐 − 𝑇1)
1/𝑟 − 1/𝑟1
1/𝑟2 − 1/𝑟1

, 𝑟1 ≤ 𝑟 ≤ 𝑟2, (5.1)

𝑇𝑜(𝑟) ≡ 𝐶𝑜 + (𝑇4 − 𝐶𝑜)
1/𝑟 − 1/𝑟3
1/𝑟4 − 1/𝑟3

, 𝑟3 ≤ 𝑟 ≤ 𝑟4 (5.2)

Here all parameters are known except 𝑟2 and 𝐶𝑜, which will vary with time. The initial value of 𝑟2 is
given in Table 5.2-1; the initial value of 𝐶𝑜 is chosen to satisfy the enclosure radiation equilibrium
equations below.

To complete the solution, we now derive a system of two nonlinear equations to solve for 𝑟2 and 𝐶𝑜.
These are the energy balances on the outer and inner enclosure surfaces, given by

𝑅2 ≡ 𝑞2 − 𝜎𝜖2𝑇
4
2 + 𝜖2(𝐹22𝐽2 + 𝐹23𝐽3) (5.3)

𝑅3 ≡ −𝑞3 − 𝜎𝜖3𝑇
4
3 + 𝜖3(𝐹32𝐽2 + 𝐹33𝐽3) (5.4)

100

where the three terms in each equation represent �uxes from conduction, radiative emission, and
radiative re�ection. The conductive �uxes are de�ned by Fourier’s law as

𝑞2 = −𝜅2
𝜕𝑇𝑖

𝜕𝑟
|𝑟=𝑟2 = 𝜅2

𝑇𝑐 − 𝑇1

𝑟21(1/𝑟2 − 1/𝑟1)
(5.5)

𝑞3 = −𝜅3
𝜕𝑇𝑜

𝜕𝑟
|𝑟=𝑟3 = 𝜅3

𝑇4 − 𝐶𝑜

𝑟23(1/𝑟4 − 1/𝑟3)
(5.6)

The surface temperatures are

𝑇2 ≡ 𝑇𝑖|𝑟=𝑟2 = 𝑇𝑐, 𝑇3 ≡ 𝑇𝑜|𝑟=𝑟3 = 𝐶𝑜

The radiosities are obtained by solving the linear system for enclosure radiation[︂
1− (1− 𝜖2)𝐹22 −(1− 𝜖2)𝐹23

−(1− 𝜖3)𝐹32 1− (1− 𝜖3)𝐹33

]︂ [︂
𝐽2
𝐽3

]︂
=

[︂
𝜎𝜖2𝑇

4
2

𝜎𝜖3𝑇
4
3

]︂
to obtain [︂

𝐽2
𝐽3

]︂
=

1

a

[︂
1− (1− 𝜖3)𝐹33 (1− 𝜖2)𝐹23

(1− 𝜖3)𝐹32 1− (1− 𝜖2)𝐹22

]︂ [︂
𝜎𝜖2𝑇

4
2

𝜎𝜖3𝑇
4
3

]︂
where 𝑎 is the determinant

𝑎 = (1− (1− 𝜖2)𝐹22)(1− (1− 𝜖3)𝐹33)− (1− 𝜖2)𝐹23(1− 𝜖3)𝐹32

The viewfactor coe�cients 𝐹𝑖𝑗 are given by

𝐹22 = 0, 𝐹23 = 1, 𝐹32 = (𝑟2/𝑟3)
2, 𝐹33 = 1− 𝐹32

The speci�c function we choose for 𝑇1(𝑡) is

𝑇1(𝑡) ≡ 𝑇1 + 400(1− cos(𝜋𝑡))/2

The time histories of 𝑟2 and 𝐶𝑜 are shown in Figure 5.2-1.

In order to derive the source term, the time derivatives of 𝑟2 and 𝐶𝑜 are computed once the pair of
nonlinear equations is solved using Newton’s method. Since the spatial part of the piecewise solution is
harmonic, the source terms become just 𝜌𝑐𝑝𝜕𝑡𝑇 , where

𝜕𝑡𝑇𝑖 ≡ 𝑇̇1 + (𝑇𝑐 − 𝑇̇1)
1/𝑟 − 1/𝑟1
1/𝑟2 − 1/𝑟1

+ (𝑇𝑐 − 𝑇1)
𝑟̇2(1/𝑟 − 1/𝑟1)

𝑟22(1/𝑟2 − 1/𝑟1)2
, 𝑟1 ≤ 𝑟 ≤ 𝑟2, (5.7)

𝜕𝑡𝑇𝑜 ≡ 𝐶̇𝑜(1−
1/𝑟 − 1/𝑟3
1/𝑟4 − 1/𝑟3

), 𝑟3 ≤ 𝑟 ≤ 𝑟4 (5.8)

5.2.6. Results

Results are presented running the problem on three meshes up to time 𝑡 = 0.9.

101

𝑟2(𝑡) 𝐶𝑜(𝑡)

Figure 5.2-1.. Evolution of parameters 𝑟2 and 𝐶𝑜.

Table 5.2-3.. Convergence Rates at 𝑡 = 0.9

Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐿∞ 𝐻1

4307 2.11 2.09 0.83 1.03
25590 2.25 1.52 2.15 1.05

For input decks see Appendix 12.4.2.

5.3. STANDARD ELEMENT DEATH (HEAT FLUX)

This problem tests transient conduction with standard element death on a 2D square domain than is
essentially a 1D problem.

5.3.1. Features Tested

Transient heat conduction, adaptive second order time integration (BDF2), standard element death,
temperature and heat �ux boundary conditions, Tri3, Hex8 and Quad4 meshes.

5.3.2. Boundary Conditions

On one surface, the exact solution is used to specify a time-varying temperature. At the other surface, an
analytic heat �ux is applied using the exact solution. The erosion of the volume from element death
causes the surface with the heat �ux BC to recede element by element as the material is removed.

102

Coarse Mesh Error Norms (𝑡 = 0.9)

5.3.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

5.3.4. Verification of Solution

A manufactured solution 𝑇 and exact source term 𝑆 are chosen to be:

𝑇 (𝑟, 𝑡) = exp(𝑡− 𝑥).

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms over
the area. The test passes, only if the observed rates of convergence in these norms are one (within a
tolerance). First order convergence is expected in this case.

5.3.5. Results: 1D Hex8

Table 5.3-1.. Element Death (Heat Flux): Convergence Rates for Hex8
Num Dofs Var1 Var2 Var3

40 nan nan nan
72 1.69 1.59 1.62
144 0.93 0.96 0.93
272 1.21 1.14 1.17

103

Coarse Mesh Error Norms

Figure 5.3-1.. Element Death (Heat Flux): Hex8

5.3.6. Results: 1D Quad4

Table 5.3-2.. Element Death (Heat Flux): Convergence Rates for Quad4
Num Dofs Var1 Var2 Var3

22 1.38 1.38 1.34
36 1.85 1.52 1.66
68 1.16 1.12 1.13
134 1.09 1.09 1.09

5.3.7. Results: 1D Tri3

Table 5.3-3.. Element Death (Heat Flux): Convergence Rates for Tri3
Num Dofs Var1 Var2 Var3

20 nan nan nan
38 1.43 1.44 1.40
73 1.09 1.04 1.04
138 1.19 1.12 1.17

5.3.8. Results: 2D Quad4

This problem tests transient conduction with standard element death on a 2D quarter slice of an
annulus.

104

Coarse Mesh Error Norms

Figure 5.3-2.. Element Death (Heat Flux): Quad4

5.3.9. Features Tested

Transient heat conduction, �xed �rst order time integration, standard element death, Quad4 mesh.

5.3.10. Boundary Conditions

On one surface, the exact solution is used to specify a time-varying temperature. On the other surfaces,
the exact source solution is provided as the �ux boundary condition. The erosion of the volume from
element death is caused by having a minimum nodal value of temperature less than 1.

5.3.11. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

5.3.12. Verification of Solution

A manufactured solution 𝑇 and exact source term 𝑆 are chosen to be:

𝑇 (𝑟, 𝑡) = ln(
√︀

𝑥2 + 𝑦2)(1/ ln(2− 𝑡)).

105

Coarse Mesh Error Norms

Figure 5.3-3.. Element Death (Heat Flux): Tri3

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms over
the area. The test passes, only if the observed rates of convergence in these norms are one (within a
tolerance). First order convergence is expected in this case.

Table 5.3-4.. 2D Element Death (Heat Flux): Convergence Rates for Quad4
Num Dofs Var1 Var2 Var3 Var4 Var5

63 4.53 2.35 3.28 16.25 nan
246 0.79 1.10 0.91 -5.66 nan
810 1.45 1.25 1.32 1.16 1.16

2898 1.12 1.02 1.04 1.10 1.08

5.3.13. Results: 3D Hex8

This problem evaluates transient conduction with standard element death on a 3D quarter of a hollow
sphere geometry.

5.3.14. Features Tested

Transient heat conduction, �xed �rst order time integration, standard element death, Hex8 mesh.

106

Coarse Mesh Error Norms

Figure 5.3-4.. Element Death (Heat Flux): Quad4

5.3.15. Boundary Conditions

On surface 2, the exact solution is used to specify a time-varying temperature. On all remaining surfaces,
a heat �ux boundary condition is imposed with a �ux time function speci�ed. The erosion of the
volume from element death is caused by having a maximum nodal value of temperature greater than 1.

5.3.16. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks.

5.3.17. Verification of Solution

A manufactured solution 𝑇 and exact source term 𝑆 are chosen to be:

𝑇 (𝑟, 𝑡) =
1 + 𝑡√︀

𝑥2 + 𝑦2 + 𝑧2
.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms over
the area. The observed rates of convergence in these norms are one (within a tolerance). First order
convergence is expected in this case.

107

Coarse Mesh Error Norms

Figure 5.3-5.. Element Death (Heat Flux): Hex8

Table 5.3-5.. Element Death (Heat Flux): Convergence Rates for Hex8
Num Dofs 𝐿2 𝐻1 𝐿∞

2382 1.64 1.12 1.80
16214 1.36 1.10 1.00

122892 1.57 1.05 1.08

108

6. TIME INTEGRATION

6.1. ADAPTIVE TIME INTEGRATION

This problem tests the various implicit time integrators using both �xed and adaptive time stepping.
The integrators are �rst order (Backward Euler), second order (Crank-Nicolson) and BDF2. The
geometry is a 2D square.

6.1.1. Features Tested

Transient heat conduction, time integrators, adaptive time stepping, polynomial temperature
dependence of density and thermal conductivity.

6.1.2. Boundary Conditions

The boundary conditions are prescribed at the nodes using the analytic solution. The initial condition
is speci�ed using an Encore function evaluated at the nodes.

6.1.3. Material Parameters

The speci�c heat is constant. The density and thermal conductivity are linear polynomials in the
temperature.

6.1.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥, 𝑦, 𝑡) = sin(𝐶1𝑡) + 2𝑥 cos(𝐶2𝑡) + 3𝑦 sin(𝐶3𝑡) + 4𝑥𝑦 cos(𝐶4𝑡) + 5𝑥2 sin(𝐶5𝑡) + 6𝑦2 cos(𝐶6𝑡)

which requires a source term. This solution is designed to have a non-trivial time-dependence using
constants:

𝐶1 = 𝜋, 𝐶2 = 2𝜋, 𝐶3 = 3𝜋, 𝐶4 = 𝜋, 𝐶5 = 2.5𝜋, 𝐶6 = 0.5𝜋

109

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
𝐿2 error in the temperature time derivative is also computed. The test passes, only if the observed rates
of convergence in these norms are 1 for 𝐻1 and 2 for all other norms (within a tolerance).

Because the adaptive meshes use less time steps, we use time step size instead of mesh size for estimation
of the convergence rates. We also include the 𝐿2 error in the time derivative of the temperature.

For input decks see Appendix 12.5.1.

6.1.5. Results: First Order Fixed

Figure 6.1-1.. Adaptive Time Integration: Errors for First Order Fixed

Table 6.1-1.. Adaptive Time Integration: Convergence Rates for First Order Fixed
Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

20 0.18 1.05 0.89 0.43
40 0.89 1.01 0.94 0.91
80 0.95 1.01 1.01 0.97
160 0.98 1.00 0.99 0.99
320 0.99 1.00 1.00 0.99

6.1.6. Results: First Order Adaptive

110

Figure 6.1-2.. Adaptive Time Integration: Errors for First Order Adaptive

Table 6.1-2.. Adaptive Time Integration: Convergence Rates for
First Order Adaptive

Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

23 0.13 1.13 1.09 0.34
46 0.77 0.68 0.86 0.81
89 1.01 1.04 1.09 1.03
178 0.93 0.95 0.96 0.95
355 0.96 0.81 0.98 0.97

111

6.1.7. Results: Second Order Fixed

Figure 6.1-3.. Adaptive Time Integration: Errors for Second Order Fixed

Table 6.1-3.. Adaptive Time Integration: Convergence Rates for
Second Order Fixed

Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

20 2.59 2.11 1.37 2.46
40 1.90 2.06 0.92 1.90
80 2.13 2.03 1.10 1.85
160 1.98 1.82 0.99 2.22
320 2.03 1.71 1.02 1.75

6.1.8. Results: Second Order Adaptive

112

Figure 6.1-4.. Adaptive Time Integration: Errors for Second Order Adaptive

Table 6.1-4.. Adaptive Time Integration: Convergence Rates for
Second Order Adaptive

Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

12 4.81 4.26 3.24 4.34
19 2.81 2.39 1.41 2.71
26 1.61 4.38 2.38 1.35
41 1.88 2.77 1.51 1.92
70 2.17 1.70 1.34 2.24

113

6.1.9. Results: BDF2 Fixed

Figure 6.1-5.. Adaptive Time Integration: Errors for BDF2 Fixed

Table 6.1-5.. Adaptive Time Integration: Convergence Rates for BDF2 Fixed
Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

20 2.00 1.75 1.36 1.80
40 1.51 1.79 0.92 1.61
80 1.90 1.90 1.10 1.93
160 1.92 1.95 0.99 1.93
320 1.98 1.98 1.02 1.98

6.1.10. Results: BDF2 Adaptive

114

Figure 6.1-6.. Adaptive Time Integration: Errors for BDF2 Adaptive

Table 6.1-6.. Adaptive Time Integration: Convergence Rates for BDF2 Adaptive
Num Dofs 𝐿2(𝑇) 𝐿2(𝑇̇) 𝐻1 𝐿∞

13 4.03 4.12 2.86 3.80
19 0.27 0.65 1.58 0.49
28 1.59 1.73 1.89 1.78
44 1.09 0.90 1.42 1.22
74 2.13 2.37 1.51 2.17

115

7. ENCLOSURE RADIATION

7.1. 2D CYLINDRICAL SHELL ENCLOSURE

7.1.1. Problem Description

This problem tests steady state coupled conduction and enclosure radiation. The geometry of this
problem is a hollow cylinder (block 2) inside a second hollow cylinder (block 1), which is a radially
symmetric problem.

7.1.2. Features Tested

Basic heat conduction, enclosure radiation, Quad4/Tri3 meshes.

7.1.3. Boundary Conditions

The boundary conditions specify the temperature of the outer surface of the outer sphere (𝑇 (𝑟4) = 𝑇4)
and the inner surface of the inner sphere (𝑇 (𝑟1) = 𝑇1).

The problem is steady state but is initialized with a constant temperature of 300 in both blocks. The
inner surface temperature 𝑇1 is set to 300. The outer surface temperature 𝑇4 is set to 1300.

Dimensions are de�ned in Table 7.1-1.

Table 7.1-1.. Dimensions of problem
radius of surface_1 𝑟1 0.01
radius of surface_2 𝑟2 0.02
radius of surface_3 𝑟3 0.03
radius of surface_4 𝑟4 0.04

7.1.4. Material Parameters

Material properties are shown in Table 7.1-2.

116

Table 7.1-2.. Material properties
Thermal conductivity (block_1) 𝜅1 2.0
Thermal conductivity (block_2) 𝜅2 0.35
Density 𝜌 1.0
Speci�c heat 𝐶𝑝 1.0
emissivity (surface_2) 𝜖2 0.50
emissivity (surface_3) 𝜖3 0.55
Stefan-Boltzmann constant 𝜎 5.6704e-8

7.1.5. Verification of Solution

In cylindrical coordinates, the temperature is independent of 𝜃 and 𝑧. Integrating this equation twice
with respect to the radius 𝑟, we obtain the general solution in either hollow cylinder to be

𝑇 (𝑟) = 𝐶1 log(𝑟) + 𝐶2,

for arbitrary constants 𝐶1 and 𝐶2. We will use 𝑟𝑖, 𝑖 = 1, . . . , 4 to denote the location of the four
surfaces of constant 𝑟, numbered from inside to outside. Unless speci�ed otherwise, we will use these
subscripts for other quantities which are evaluated at one of the four surfaces.

Including the boundary conditions into the solution allows us to eliminate two constants and gives

𝑇𝑖𝑛𝑛𝑒𝑟(𝑟) = 𝑇1 + 𝑐𝐼 log(𝑟/𝑟1) for 𝑟1 < 𝑟 < 𝑟2 (7.1)
𝑇𝑜𝑢𝑡𝑒𝑟(𝑟) = 𝑇4 + 𝑐𝑂 log(𝑟/𝑟4) for 𝑟3 < 𝑟 < 𝑟4 (7.2)

To solve for 𝑐𝐼 and 𝑐𝑂 we compute the temperatures at the enclosure surfaces 𝑟2 and 𝑟3, de�ned as
𝑇2 = 𝑇𝑖𝑛𝑛𝑒𝑟(𝑟2) and 𝑇3 = 𝑇𝑜𝑢𝑡𝑒𝑟(𝑟3):

7.1.6. Results

The exact temperatures at the enclosure surfaces (to six digits precision) are 𝑇2 = 444.7977 and
𝑇3 = 956.5915. From these values we can compute the values of 𝑐𝑂 and 𝑐𝐼 and thus the exact
solution.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These optimal rates are observed in this test.

For input decks see Appendix 12.6.1.

117

Coarse Mesh Error Norms

Figure 7.1-1.. Enclosure Radiation 2D

Table 7.1-3.. Enclosure Radiation 2D: Convergence Rates
Num Dofs 𝐿2 𝐿∞ 𝐻1

640 2.54 1.88 1.11
2276 2.50 2.33 1.11
8673 2.10 2.01 1.07
33500 1.90 2.00 1.02

7.2. 2D ANNULAR ENCLOSURE

7.2.1. Problem Description

This problem tests steady state coupled conduction and enclosure radiation. The geometry is an
annulus with a crack.

7.2.2. Features Tested

Basic heat conduction, enclosure radiation, Tri3 mesh.

7.2.3. Boundary Conditions

The outer and crack boundary conditions are prescribed at the nodes using the analytic solution. The
inner boundary uses an enclosure boundary condition.

118

7.2.4. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant.

7.2.5. Verification of Solution

The manufactured solution is

𝐽(𝜃) = 𝑘1 + 𝑘2
√
𝜀 cos

(︂√
𝜀𝜃

2

)︂
/ sin

(︂√︂
𝜀

𝜋
2

)︂
,

𝐻(𝜃) = 𝑘1 + 𝑘2(

√
𝜀

1− 𝜀
)

(︂
cos

(︂√
𝜀𝜃

2

)︂
/ sin

(︂√
𝜀𝜋

2

)︂
−
√
𝜀 cos

(︂
𝜃

2

)︂)︂
,

𝑞(𝜃) = 𝐽(𝜃)−𝐻(𝜃),

𝛽(𝜃) =

(︃
𝑘1 + 𝑘2 cos

(︀
𝜃
2

)︀
𝜎

)︃1/4

,

𝑇 (𝑟, 𝜃) = 𝑟𝛽(𝜃) + (𝑟 − 𝑟cyl)

(︂
𝑞(𝜃)

𝜅
− 𝛽(𝜃)

)︂
,

where 𝐽 is the radiosity, 𝐻 is the irradiance, 𝑞 is the �ux, and

𝜎 = 5.6704× 10−8,

𝜅 = 1,

𝑟cyl = 1,

𝜀 = 0.9,

𝑘1 = 8000,

𝑘2 = 400.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance). Additionally, the errors in the radiosity and irradiance are computed in the 𝐿2 norms and be
1 (within a tolerance).

These optimal rates are observed in this test.

For input decks see Appendix 12.6.2.

119

Coarse Mesh Error Norms

Figure 7.2-1.. 2D Full Enclosure Radiation

Table 7.2-1.. 2D Full Enclosure Radiation: Convergence Rates
Num Dofs 𝐿2 𝐿∞ 𝐻1 𝐿2(𝑅𝑎𝑑) 𝐿2(𝐼𝑟𝑟)

65 2.76 1.31 2.00 2.36 2.46
232 2.38 1.13 2.15 2.10 2.40
734 2.18 1.04 1.27 1.32 1.49

2788 2.26 1.03 2.07 1.32 1.85
10420 2.37 1.03 2.17 1.09 1.18
40530 1.81 1.01 2.08 1.01 1.04

7.3. 3D SPHERICAL SHELL ENCLOSURE

7.3.1. Problem Description

This problem tests steady state coupled conduction and enclosure radiation. The geometry of this
problem is a hollow sphere (block 2) inside a second hollow sphere (block 1), which is a radially
symmetric problem.

7.3.2. Features Tested

Basic heat conduction, enclosure radiation, Hex8 meshes.

120

7.3.3. Boundary Conditions

The boundary conditions specify the temperature of the outer surface of the outer sphere (𝑇 (𝑟4) = 𝑇4)
and the inner surface of the inner sphere (𝑇 (𝑟1) = 𝑇1).

The problem is steady state but is initialized with a constant temperature of 300 in both blocks. The
inner surface temperature 𝑇1 is set to 300. The outer surface temperature 𝑇4 is set to 1300.

Dimensions are de�ned in Table 7.3-1.

Table 7.3-1.. Dimensions of problem
radius of surface_1 𝑟1 0.01
radius of surface_2 𝑟2 0.02
radius of surface_3 𝑟3 0.03
radius of surface_4 𝑟4 0.04

7.3.4. Material Parameters

Material properties are shown in Table 7.3-2.

Table 7.3-2.. Material properties
Thermal conductivity (block_1) 𝜅1 2.0
Thermal conductivity (block_2) 𝜅2 0.35
Density 𝜌 1.0
Speci�c heat 𝐶𝑝 1.0
emissivity (surface_2) 𝜖2 0.50
emissivity (surface_3) 𝜖3 0.55
Stefan-Boltzmann constant 𝜎 5.6704e-8

7.3.5. Verification of Solution

In spherical coordinates, the temperature is independent of 𝜃 and 𝜑. Integrating this equation twice
with respect to the radius 𝑟, we obtain the general solution in either hollow sphere to be

𝑇 (𝑟) = 𝐶1𝑟
−1 + 𝐶2,

for arbitrary constants 𝐶1 and 𝐶2. We will use 𝑟𝑖, 𝑖 = 1, . . . , 4 to denote the location of the four
surfaces of constant 𝑟, numbered from inside to outside. Unless speci�ed otherwise, we will use these
subscripts for other quantities which are evaluated at one of the four surfaces.

121

Including the boundary conditions into the solution allows us to eliminate two constants and gives

𝑇𝑖𝑛𝑛𝑒𝑟(𝑟) = 𝑇1 + 𝑐𝐼

(︂
1

𝑟
− 1

𝑟4

)︂
for 𝑟1 < 𝑟 < 𝑟2 (7.3)

𝑇𝑜𝑢𝑡𝑒𝑟(𝑟) = 𝑇4 + 𝑐𝑂

(︂
1

𝑟
− 1

𝑟1

)︂
for 𝑟3 < 𝑟 < 𝑟4 (7.4)

To solve for 𝑐𝐼 and 𝑐𝑂 we compute the temperatures at the enclosure surfaces 𝑟2 and 𝑟3, de�ned as
𝑇2 = 𝑇𝑖𝑛𝑛𝑒𝑟(𝑟2) and 𝑇3 = 𝑇𝑜𝑢𝑡𝑒𝑟(𝑟3):

𝑇2 = 𝑇1 + 𝑐𝐼

(︂
1

𝑟2
− 1

𝑟4

)︂
(7.5)

𝑇3 = 𝑇4 + 𝑐𝑂

(︂
1

𝑟3
− 1

𝑟1

)︂
(7.6)

The �uxes at the surfaces between the two hollow spheres are

𝑞2 =

(︃
−𝜅

𝜕𝑇

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑟3

)︃
· n =

𝜅1𝑐𝐼
𝑟22

𝑞3 =

(︃
−𝜅

𝜕𝑇

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑟2

)︃
· n =

𝜅2𝑐𝑂
𝑟23

Here we have used 𝜅1 and 𝜅2 to denote the thermal conductivity of the inner and outer blocks,
respectively.

These normal conductive �uxes are included in the total energy balance at the enclosure surfaces using
the radiative transport equations (for grey di�use surfaces):

𝑞2 = 𝜎𝜖2𝑇
4
2 − 𝜖2

∑︁
𝑗

𝐹2𝑗𝐽𝑗

𝑞3 = 𝜎𝜖3𝑇
4
3 − 𝜖3

∑︁
𝑗

𝐹3𝑗𝐽𝑗

where 𝜎 is the Stefan Boltzmann constant, 𝜖 is the emissivity, 𝐹𝑖𝑗 is the geometric viewfactor of surface 𝑖
with respect to surface 𝑗 and 𝐽𝑗 is the radiosity for surface 𝑗.

The viewfactor coe�cient 𝐹𝑖𝑗 is the fraction of energy that leaves surface 𝑖 and arrives at surface 𝑗. For
this geometric setup, no point on the inner surface at 𝑟2 can “see” itself (no straight line can be drawn
from a point on its surface onto itself) and so 𝐹22 = 0. By viewfactor reciprocity∑︁

𝑗

𝐹𝑖𝑗 = 1

122

we must have 𝐹23 = 1. The outer-to-inner view factor 𝐹32 can be computed analytically to be

𝐹32 =
𝑟22
𝑟23

and again by viewfactor reciprocity

𝐹33 = 1− 𝐹32 = 1− 𝑟22
𝑟23

The system of equations that must be solved for the radiosities at the inner and outer surfaces is given
by

𝐽2 = 𝜖2𝜎𝑇
4
2 + (1− 𝜖2)[𝐹22𝐽2 + 𝐹23𝐽3]

𝐽3 = 𝜖3𝜎𝑇
4
3 + (1− 𝜖3)[𝐹32𝐽2 + 𝐹33𝐽3]

Solving this system of equations, we can write 𝐽2 and 𝐽3 in terms of temperature, and plug this back
into the equation for the surface �ux. We then get a system of two nonlinear equations to solve for 𝑇2

and 𝑇3, the temperatures of the adjacent surfaces without Dirichlet boundary conditions. For our given
set of parameters, these equations are solved iteratively in Matlab using the fsolve function.

7.3.6. Results

The exact temperatures at the enclosure surfaces (to six digits precision) are 𝑇2 = 564.783 and
𝑇3 = 1047.825. From these values we can compute the values of 𝑐𝑂 and 𝑐𝐼 and thus the exact
solution.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These optimal rates are observed in this test.

Table 7.3-3.. Enclosure Radiation: Convergence Rates
Num Dofs 𝐿2 𝐿∞ 𝐻1

15590 2.14 2.17 1.06
117600 2.05 2.05 1.03

For input decks see Appendix 12.6.3.

123

Coarse Mesh Error Norms

Figure 7.3-1.. Enclosure Radiation

7.4. 3D SPHERICAL SHELL PARTIAL ENCLOSURE

7.4.1. Problem Description

This problem tests coupled conduction and enclosure radiation with a partial enclosure. The geometry
consists of two thick spherical shells separated by a gap. The outer shell has a section removed so that the
enclosure is only partial.

7.4.2. Features Tested

Basic heat conduction, enclosure radiation with partial enclosure, Hex8 meshes.

7.4.3. Boundary Conditions

The outer and inner boundary conditions are prescribed at the nodes using the analytic solution. The
analytic solution is used to set the boundary conditions on the cutaway face near the opening in the
outer shell.

7.4.4. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant within each element
block; however, the values di�er between blocks.

124

7.4.5. Verification of Solution

The analytic solution is identical to Section 7.3. The area for the partial enclosure is computed
analytically.

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 2, 2, and 1, respectively (within a
tolerance).

These optimal rates are observed in this test.

Coarse Mesh Error Norms

Figure 7.4-1.. Partial Enclosure Radiation

Table 7.4-1.. Partial Enclosure Radiation: Convergence Rates
Num Dofs 𝐿2 𝐿∞ 𝐻1

4338 2.26 2.32 1.13
29690 2.13 2.07 1.06
223200 2.06 2.06 1.03

For input decks see Appendix 12.6.4.

125

8. CHEMISTRY

8.1. FIRST ORDER REACTION (SPATIALLY VARYING
TEMPERATURE)

This problem tests the interface to the CHEMEQ solver under the assumption that the temperature
remains is variable in space but remains constant in time. The geometry consists of a unit cube meshed
with Hex8 elements re�ned only in one direction (𝑥).

8.1.1. Features Tested

CHEMEQ solver; source term from chemistry; nonlinear solver; second order time integrator with
�xed time steps; constant initial temperature; constant temperature boundary condition.

8.1.2. Boundary Conditions

A constant temperature is applied on surface 1. The initial temperature is provided by an Encore user
subroutine and the initial species values are 𝐴 = 1 and 𝐵 = 0.

8.1.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks. The CHEMEQ parameters are chosen to model a single �rst order reaction 𝐴 → 𝐵 with
constant values of pre-exponential factor and activation energy.

8.1.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑥) = 400 (1 + 0.2 cos(𝜋 𝑥)),

𝐴(𝑥, 𝑡) = exp

{︂
− exp(5) exp(− 1000

𝑅𝑇 (𝑥)
) 𝑡

}︂
,

𝐵(𝑥, 𝑡) = 1− 𝐴(𝑥, 𝑡)

126

where 𝑅 = 1.9872 is the ideal gas constant. A source term is used to insure that the temperature does
not vary in time.

For each mesh, the errors in the temperature and species 𝐴 and 𝐵 are computed in the 𝐿2 norm. The
test passes, only if the observed rates of convergence in these norms are 2 (within a tolerance).

Coarse Mesh Error Norms

Figure 8.1-1.. First Order Reaction (Spatially Varying Temperature)

Table 8.1-1.. First Order Reaction (Spatially Varying Tempera-
ture): Convergence Rates for Hex8 Meshes

Num Dofs 𝐿2(𝐴,𝐵) 𝐿2(𝑇)
36 2.37 2.34
68 2.18 2.18
132 2.09 2.09
260 2.04 2.04
516 2.02 2.02

For input decks see Appendix 12.7.2.

8.2. FIRST ORDER REACTION

This problem tests the interface to the CHEMEQ solver under a temperature �eld that is variable in
space and time. The geometry consists of a unit cube meshed with Hex8 elements re�ned only in one
direction.

8.2.1. Features Tested

CHEMEQ solver; source term from chemistry; nonlinear solver; second order time integrator with
�xed time steps; initial temperature from user sub; constant temperature boundary condition.

127

8.2.2. Boundary Conditions

The initial temperature and the temperature boundary condition on surface 1 are provided by an
Encore user subroutine and the initial species values are 𝐴 = 1 and 𝐵 = 0.

8.2.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant, equal to one in both
blocks. The CHEMEQ parameters are chosen to model a single �rst order reaction 𝐴 → 𝐵 with
constant values of pre-exponential factor and activation energy.

8.2.4. Verification of Solution

A manufactured solution is chosen as

𝜑(𝑥, 𝑡) = exp(𝑎− 𝐸/(𝑅𝑇0))(1 + 0.1 sin(𝑥)) exp(𝑡),

Φ(𝑥, 𝑡) = exp(𝑎− 𝐸/(𝑅𝑇0))(1 + 0.1 sin(𝑥))(exp(𝑡)− 1),

𝑇 (𝑥, 𝑡) = (𝐸/𝑅)/(𝑎− ln(𝜑(𝑥, 𝑡))),

𝐴(𝑥, 𝑡) = exp(−Φ(𝑥, 𝑡)),

𝐵(𝑥, 𝑡) = 1− 𝐴(𝑥, 𝑡)

where 𝑎 is the log pre-exponential factor, 𝑅 is the ideal gas constant, 𝐸 is the activation energy, and 𝑇0 is
a reference temperature value. The form of the solution is contrived so that

𝜕𝑡𝐴(𝑥, 𝑡) = −𝜕𝑡𝐵(𝑥, 𝑡) = −𝜑(𝑥, 𝑡)𝐴(𝑥, 𝑡)

𝜑(𝑥, 𝑡) = exp(𝑎) exp(− 𝐸

𝑅𝑇 (𝑥, 𝑡)
)

This allows the chemistry ODEs to be satis�ed exactly, but a source term is needed in the energy
equation.

For each mesh, the errors in the temperature and species 𝐴 and 𝐵 are computed in the 𝐿2 norm. The
test passes, only if the observed rates of convergence in these norms are 1 (within a tolerance). Currently
it is not clear why the convergence rates are only �rst order.

For input decks see Appendix 12.7.3.

8.3. DAE AND PRESSURE TEST

This test runs CHEMEQ with a kinetics model that includes both pressure dependence and distributed
activation energy for a single element mesh with uniform temperature and pressure.

128

Coarse Mesh Error Norms

Figure 8.2-1.. First Order Reaction

Table 8.2-1.. First Order Reaction: Convergence Rates for Hex8 Meshes
Num Dofs 𝐿2(𝐴,𝐵) 𝐿2(𝑇) 𝐿∞(𝑇) 𝐻1(𝑇)

20 1.50 1.15 1.17 1.00
40 1.30 1.08 1.10 1.00
80 1.15 1.04 1.05 1.00
160 1.07 1.02 1.03 1.00
320 1.00 1.01 1.01 1.00
640 0.88 1.01 1.01 1.00

8.3.1. Features Tested

Basic heat conduction on a Hex8 mesh; CHEMEQ solver with pressure dependence and distributed
activation energy.

8.3.2. Boundary Conditions

No boundary conditions are prescribed, resulting in an adiabatic �ux BC.

8.3.3. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant.

129

8.3.4. Verification of Solution

The analytic solution for the concentration of species A as a function of time for the constant values
used in this test case is

𝐴(𝑡) =
1

2
erfc(

1

6
(
√︀
(2)− 6erf−1(1− 45𝑡/(2 exp(

61

18
)))))

The test compares the temperature errors against a gold �le of the error at each time step. The exact
solution for the concentration of A is also output to the exodus �le and a comparison plotting that and
the solved for concentration as a function of time has them lying on top of one another.

For input decks see Appendix 12.7.4.

8.4. PMDI PLUGIN TEST

This test veri�es that the PMDI plugin calculates the correct pressure and e�ective conductivity based
on the auxiliary variable values.

8.4.1. Features Tested

Basic heat conduction on a Hex8 mesh; CHEMEQ solver with pressure dependence and a user plugin
to model a seven-species PDMI foam decomposition reaction.

8.4.2. Boundary Conditions

No boundary conditions are prescribed, resulting in an adiabatic �ux BC.

8.4.3. Material Parameters

The values of density, emissivity and speci�c heat are all constant. The thermal conductivity is
computed using a C-style user subroutine contained within the foam model.

8.4.4. Verification of Solution

The initial conditions are speci�ed as follows: The test includes a Mathematica notebook �le
(ExpectedSolution.nb) for calculation of expected pressure which is 1.15125e7 Pa or 1669.75 psi.

For input decks see Appendix 12.7.5.

130

Table 8.4-1.. PMDI Plugin Test: Initial Conditions
Variable Value Units

Bulk Density 321.4432249 𝑘𝑔/𝑚3

Initial condensed density 1500
Initial porosity 0.786301

Mass fraction of all ChemEQ species 1/7
Temperature 599.8

Initial gas pressure (N2) 101325
Initial gas temperature 299.9

131

9. MISCELLANEOUS

9.1. THERMAL POSTPROCESSING

9.1.1. Problem Description

This problem tests basic thermal postprocessors in Aria.

9.1.2. Features Tested

Basic heat conduction, thermal postprocessors, Hex8 meshes.

9.1.3. Boundary Conditions

Dirichlet BCs are speci�ed using the exact solution on surface 1. On surface 2, a natural convection BC
is speci�ed, using the exact solution as the reference temperature and a constant heat transfer coe�cient.
Similarly, a radiative �ux BC is applied on surface 3, with constant values of emissivity and radiation
form factor. A source term is applied within all blocks based on substituting the exact solution into the
heat conduction operator.

9.1.4. Material Parameters

The values of density, thermal conductivity, and speci�c heat are all constant with the same value for
both blocks.

9.1.5. Verification of Solution

The manufactured solution is

𝑇0 + exp(𝐶0(𝑥
2 − 1) + 𝐶1(𝑦

2 − 0.25) + 𝐶2(𝑧
2 − 0.25) + 𝐶3𝑡).

Postprocessors are computed for the integrated power output for convective and radiative BCs
(cf_bc_ipo, rf_bc_ipo), the integrated �ux output for convective and radiative BCs (cf_bc_ifo,
rf_bc_ifo), the integrated power output for volume source terms (src_ipo), and several point
evaluations (eval_b1, eval_b1b2, eval_s2).

132

For each mesh, the errors in the temperature solution are computed in the 𝐿2 norm and for various
postprocessors. The test passes, only if the observed rates of convergence are 2 (except for the integrated
power output for source terms, which convergences with order 4).

These optimal rates are observed in this test clearly in most cases. However, for the point evaluation
cases, a large amount of variability exists in the convergence rates.

Coarse Mesh Error Norms

Figure 9.1-1.. Thermal Postprocess

Table 9.1-1.. Thermal Postprocess: Convergence Rates
Num Dofs 𝐿2 𝑐𝑓_𝑏𝑐_𝑖𝑝𝑜 𝑟𝑓_𝑏𝑐_𝑖𝑝𝑜 𝑐𝑓_𝑏𝑐_𝑖𝑓𝑜 𝑟𝑓_𝑏𝑐_𝑖𝑓𝑜 𝑠𝑟𝑐_𝑖𝑝𝑜 𝑒𝑣𝑎𝑙_𝑏1 𝑒𝑣𝑎𝑙_𝑏1𝑏2 𝑒𝑣𝑎𝑙_𝑠2

225 2.52 2.88 2.83 2.88 2.83 4.62 2.21 1.94 2.56
1377 2.27 2.52 2.48 2.52 2.48 4.44 2.83 3.47 5.75
9537 2.14 2.27 2.25 2.27 2.25 4.26 1.71 1.98 -0.16

70785 2.07 2.13 2.12 2.13 2.12 4.14 2.15 2.05 2.37
545025 2.04 2.06 2.05 2.06 2.05 4.07 2.20 1.57 2.44

For input decks see Appendix 12.8.1.

9.2. LOCAL COORDINATES: CARTESIAN

This problem tests the use of a local Cartesian coordinate system in a material model. The geometry is a
3D cube that has been rotated.

133

9.2.1. Features Tested

Steady heat conduction, time integrators, tensor thermal conductivity, local Cartesian coordinates in a
material model.

9.2.2. Boundary Conditions

The boundary conditions are prescribed at the nodes using the analytic solution. The initial condition
is speci�ed using an Encore function evaluated at the nodes.

9.2.3. Material Parameters

The speci�c heat is constant. The density and thermal conductivity are constant, with a diagonal
(tensor) thermal conductivity in the local coordinate space of the material.

9.2.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑋, 𝑌, 𝑍) = 𝑇0 + 𝑇1 cos(𝑥𝑘𝑋) cos(𝑦𝑘𝑌) cos(𝑧𝑘𝑍)

where (𝑋, 𝑌, 𝑍) are the local material coordinates, which are related to the Cartesian coordinates
(𝑥, 𝑦, 𝑧) by a rotation matrix consisting of a product of rotations (22.5 deg around the 𝑧-axis and
45 deg around the 𝑥-axis).

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 1 for 𝐻1 and 2 for all other
norms (within a tolerance).

Table 9.2-1.. Local Cartesian Coordinate System: Convergence Rates
Num Dofs 𝐿2 𝐿∞

1331 2.29 2.27
9261 2.15 2.14

For input decks see Appendix 12.8.3.

9.3. LOCAL COORDINATES: CYLINDRICAL

This problem tests the use of a local cylindrical coordinate system in a material model. The geometry is
a 3D cube that has been rotated.

134

Coarse Mesh Error Norms

Figure 9.2-1.. Local Cartesian Coordinate System

9.3.1. Features Tested

Steady heat conduction, time integrators, tensor thermal conductivity, local coordinates in a material
model.

9.3.2. Boundary Conditions

The boundary conditions are prescribed at the nodes using the analytic solution. The initial condition
is speci�ed using an Encore function evaluated at the nodes.

9.3.3. Material Parameters

The speci�c heat and density are constant. The diagonal (tensor) components of the thermal
conductivity are speci�ed using constant values in the local coordinate space of the material.

9.3.4. Verification of Solution

A manufactured solution is chosen as

𝑇 (𝑋, 𝑌, 𝑍) = 𝑇0 + 𝑇1(2𝑅)3 cos(𝜃) cos(𝑧𝑘𝑍)

where (𝑅,Θ, 𝑍) are the local cylindrical material coordinates, which are related to the standard
cylindrical coordinates (𝑥, 𝑦, 𝑧) by a rotation matrix consisting of a product of rotations (22.5 deg
around the 𝑧-axis and 45 deg around the 𝑥-axis).

135

For each mesh, the errors in the temperature solution are computed in the 𝐿2, 𝐿∞ and 𝐻1 norms. The
test passes, only if the observed rates of convergence in these norms are 1 for 𝐻1 and 2 for all other
norms (within a tolerance).

Coarse Mesh Error Norms

Figure 9.3-1.. Local Cylindrical Coordinate System

Table 9.3-1.. Local Cylindrical Coordinate System: Convergence Rates
Num Dofs 𝐿2 𝐿∞

2692 2.19 1.83
22723 2.12 1.74

For input decks see Appendix 12.8.4.

136

10. LOW-MACH FLUID FLOW

Documentation for the following tests is in progress:

1 _rtest/aria/cvfemConvTaylorVortex/cvfemConvTaylorVortex.test|np4
2 _rtest/aria/gfemConvTaylorVortex/gfemConvTaylorVortex.test|np4
3 _rtest/aria/hfemConvTaylorVortex/hfemConvTaylorVortex.test|np4
4 mConvTaylorVortex/cvfemConvTaylorVortex.test|np8
5 mSteadyTaylorVortex/cvfemSteadyTaylorVortex.test|np8
6 mSteadyTaylorVortexKeps/cvfemSteadyTaylorVortexKeps.test|np8
7 m_couette_flow/cdfem_couette_flow.test|cdfem_couette_flow_tri3
8 m_couette_flow/cdfem_couette_flow.test|cdfem_couette_flow_tri6
9 ConvTaylorVortex/gfemConvTaylorVortex.test|np8

10 SteadyTaylorVortex/gfemSteadyTaylorVortex.test|np8

137

11. HOW TO BUILD THIS DOCUMENT

You need to have Sierra developer access (through WebCars). Then you should clone the Sierra Git
repository containing the tests to a location with adequate memory (currently more than 80GB), using
a command like this:

git clone sierra-git:/git/tests

Then you need to assign the veri�cation tests, running the following command from your local tests
repository:

assign --path aria_rtest/verification

This will produce a text �le called assigned.tests containing the list of all tests to run. You should edit the
second line of this �le to indicate the remote location (accessible from the HPC machine where you will
run the tests). For example, I might have something like this:

Created by assign at Fri Sep 19 09:52:09 2014
#@ /gscratch1/bcarnes/TESTS
aria_rtest/verification/1dnonlin_verify1/1dnonlin_verify1.test|np8
aria_rtest/verification/cyl_shell_2d/cyl_shell_2d.test|np8
aria_rtest/verification/cyl_shell_3d/cyl_shell_3d.test|np8
...

Next you need to copy the test �les and the assigned.test �le to the remote location (here it is
“/gscratch1/bcarnes/TESTS/”):

rsync -azv aria_rtest/verification redsky:/gscratch1/bcarnes/TESTS/aria_rtest
scp assigned.tests redsky:/gscratch1/bcarnes/TESTS/

Here I am only copying the veri�cation test sub-directory, since I do not want to run any other tests.

On the HPC machine, you will need to load a pre-built version of the code such as the nightly master
build:

module load sierra/master

To see where the executables are located, you can run something like:

138

[bcarnes@redsky-login9 ~]$ which aria
/projects/sierra/redsky/install/master/bin/aria

Finally, to run the tests, you use the testrun script, with a few additional arguments. The �rst locates the
source code needed to compile the various user subroutines (which we just found from running “which
aria”), the second enables tests to run as long as needed, the third uses the queue, and the fourth saves
the results so you can use them in the manual.

testrun --user sourcedir=/projects/sierra/tlcc2/install/master/ \
--allow-multipliers=time \
--queued \
--save-all-results

It may take 1-2 hours to run all the tests. Note that if the tests start to fail with an error associated with
the ACCOUNT not being set, you may need to set it using your WCID:

export ACCOUNT=fyXXXXX

To view your available WCIDs, run the following command:

mywcid

To build this manual, you should clone the Sierra Git repository containing the documentation �les
using a command like this:

git clone sierra-git:/git/docs

Then go to the directory within your local repository containing the Aria Veri�cation Manual �les:

cd aria/doc/verification_manual

Once the tests have all ran successfully, you should sync the results from the remote location back to this
directory:

rsync -azv redsky:/gscratch1/bcarnes/TESTS/results .

Then run the a script to execute any local postprocessing needed to create the plots for the tests:

python ariaPostprocess.py

Finally you can create the manual using pd�atex:

pdflatex Aria_Verification_Manual.tex

which should create a new PDF output �le.

139

12. INPUT DECKS FOR VERIFICATION
PROBLEMS

12.1. BASIC THERMAL TESTS

12.1.1. Steady Heat Conduction: Hex8 Meshes

BEGIN SIERRA myJob

begin definition for function kxx
type = piecewise linear
begin values

0.0 0.5
1.0 2.0
2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values

0.0 0.2
1.0 1.2
2.0 2.1
20.0 20.2

end values
end

begin definition for function kzz
type = piecewise linear
begin values

0.0 1.0
1.0 2.0
2.0 3.0
20.0 21.0

end values
scale by 2.0

end

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz
Specific Heat = Constant cp=1
heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

140

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_hex8.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln

141

Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_thermal_steady_hex8_h{N}.dat

Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

142

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex8_h{N}.e

at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.2. Steady Heat Conduction: Hex20 Meshes
BEGIN SIERRA myJob

load user plugin file ./exact.so

begin definition for function kxx
type = piecewise linear
begin values

0.0 0.5
1.0 2.0
2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values

0.0 0.2
1.0 1.2
2.0 2.1
20.0 20.2

end values
end

begin definition for function kzz
type = piecewise linear
begin values

0.0 1.0
1.0 2.0
2.0 3.0
20.0 21.0

end values
scale by 2.0

end

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1

143

tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz
Specific Heat = Constant cp=1
heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN KLU2 SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_hex20.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2

144

Load From File ./exact.so Using Function registerFlux_Surface_2
End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %

Write To File errors_thermal_steady_hex20_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2S with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

145

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex20_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.3. Steady Heat Conduction: Hex27 Meshes
BEGIN SIERRA myJob

load user plugin file ./exact.so

begin definition for function kxx
type = piecewise linear
begin values

0.0 0.5
1.0 2.0
2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values

0.0 0.2
1.0 1.2
2.0 2.1
20.0 20.2

end values
end

begin definition for function kzz
type = piecewise linear

146

begin values
0.0 1.0
1.0 2.0
2.0 3.0
20.0 21.0

end values
scale by 2.0

end

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz
Specific Heat = Constant cp=1
heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_hex27.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

147

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %

Write To File errors_thermal_steady_hex27_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC

surface_4: x=0
surface_6: x=1

148

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex27_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.4. Steady Heat Conduction: Tet4 Meshes
BEGIN SIERRA myJob

load user plugin file ./exact.so

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER

149

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu
End

{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet4.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2

150

Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %

Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

151

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet4_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.5. Steady Heat Conduction: Tet4Tet10 Meshes
BEGIN SIERRA myJob

load user plugin file ./exact.so

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE

152

CONVERGENCE TOLERANCE = 1.000000e-14
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Iterative_Solver
Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

153

End

Begin Postprocessor Output Control pp_out
Comment Character Is %

Write To File errors_thermal_steady_tet4_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

154

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet4_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.6. Steady Heat Conduction: Tet10 Meshes
BEGIN SIERRA myJob

load user plugin file ./exact.so

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet10.e

155

coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %

Write To File errors_thermal_steady_tet10_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block

156

Advance myRegion
End

Simulation Start Time = 0
Simulation Termination Time = 1

End
End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet10_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

157

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.7. Transient Heat Conduction: Hex8 Meshes
BEGIN SIERRA myJob

load user plugin file ./exact_transient.so

L = { L = 10 }
rho = { rho = 1 }
Cp = { Cp = 1 }

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho={rho}
Thermal Conductivity = constant k=1
Specific Heat = Constant cp={Cp}
heat conduction = basic
latent heat = constant value={L}

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-12

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_hex8.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.so Using Function registerExactSoln

158

End

Begin User Function exact_soln_dot
Load From File ./exact_transient.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

Ts = { Ts = 0.5 }
Tl = { Tl = 1.5 }
Tm = { Tm = 0.5 * (Ts + Tl) }
sigma = { sigma = 0.429858 * (Tm - Ts) }

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Transient The_Time_Block

159

Advance myRegion
End

Simulation Start Time = 0
Simulation Termination Time = 3

End
Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2**N}
Time Integration Method = Second_Order
Time Step Variation = fixed

End
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

IC for temperature on block_1 = encore_function name=exact_soln

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3

Begin Heat Flux Boundary Condition hfbc2
Add Surface surface_5

Flux = -5
End

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

Begin Convective Flux Boundary Condition cfbc2
Add Surface surface_2

Convective Coefficient = 2
Reference Temperature = 2

End

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Begin Volume Heating vh1

160

Add Volume block_1
Value = 1

End

Source for Energy on block_1 = melting Ts={Ts} Tl={Tl}

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor l2_dot
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e
at step 0, increment = {2**N}
#at step 0, increment = 1
title Aria cube test
nodal variables = solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.8. Transient Heat Conduction: Tet4 Meshes
BEGIN SIERRA myJob

load user plugin file ./exact_transient.so

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

BEGIN ARIA MATERIAL Air
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END

161

MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-12

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet4.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact_transient.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

T0 = { T0 = 2 }
h = { h = 2 }
rho = { rho = 1 }
cp = { cp = 1 }
omega = { omega = PI }
bn_vol = { bn_vol = 0.5 }
Begin String Function bulk_node_exact_solution

Value is "{T0} * (sin({omega} * t) + 1)"
End
Begin String Function bulk_node_source

use function bulk_node_exact_solution as Tb
Value is "{rho * cp * omega * T0} * cos({omega} * t) - ({h} * (1 - Tb))/{bn_vol}"

End
Begin String Function bulk_node_flux_bc_corr

162

use function bulk_node_exact_solution as Tb
Value is "({h} * (Tb - 2))"

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
volumes block_1

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2
volumes block_1

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
volumes block_1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
volumes block_1

End

Begin Norm Postprocessor linf_bulk_node
Use Function bulk_node_exact_solution
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms Nodal LInfinity
volumes block_for_abulknode

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Transient The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2**N}

Time Integration Method = Second_Order
Time Step Variation = fixed

End
End

End

BEGIN ARIA REGION myRegion

163

Nonlinear Solution Strategy = Newton
Minimum Nonlinear Solves = 1
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
nonlinear residual minimum convergence rate = 0.999 number of steps = 3
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

IC const on block_1 temperature = 1.0

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1

Begin Bulk Fluid Element aBulkNode
material = Air
bulk element volume = constant v = {bn_vol}
initial temperature = {T0}
bulk eq energy for temperature using p0 with mass src
bulk source for energy = encore_function name=bulk_node_source

End
Begin Convective Flux Boundary Condition bulk_flux

add surface surface_2
use bulk element aBulkNode
convective coefficient = {h}

End
BC Flux for Energy on surface_2 = encore_function name=bulk_node_flux_bc_corr

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor l2_dot
Evaluate Postprocessor h1
Evaluate Postprocessor linf
Evaluate Postprocessor linf_bulk_node

164

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e

at step 0, increment = {2**N}
title Aria cube test
nodal variables = solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

global variables = abulknode_T
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.9. Transient Heat Conduction: Tet4Tet10 Meshes
BEGIN SIERRA myJob

load user plugin file ./exact_transient.so

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-12

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1

165

material Kryptonite
END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact_transient.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main

166

Begin System Main
Begin Transient The_Time_Block

Advance myRegion
End

Simulation Start Time = 0
Simulation Termination Time = 3

End
Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2**N}

Time Integration Method = Second_Order
Time Step Variation = fixed

End
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

IC const on block_1 temperature = 1.0

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor l2_dot

167

Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e

at step 0, increment = {2**N}
title Aria cube test
nodal variables = solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.1.10. Transient Heat Conduction: Tet10 Meshes
BEGIN SIERRA myJob

load user plugin file ./exact_transient.so

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = CG
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-12

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

168

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact_transient.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description

169

Use System Main
Begin System Main

Begin Transient The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2**N}

Time Integration Method = Second_Order
Time Step Variation = fixed

End
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with MASS DIFF SRC

IC const on block_1 temperature = 1.0

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Output Number of Nodes

Evaluate Postprocessor l2

170

Evaluate Postprocessor l2_dot
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e

at step 0, increment = {2**N}
title Aria cube test
nodal variables = solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

171

12.2. THERMAL BOUNDARY CONDITIONS

12.2.1. Radiative Heat Flux 3.1
BEGIN SIERRA Aria

Title Radiation Form Factor Flux User_Sub

Begin Global Constants
Stefan Boltzmann constant = 5.6704E-8

End Global Constants

load user plugin file ./FormFactor.so
load user plugin file ./DirichletBC.so

Begin User Function exact_soln
Load From File ./Exact_Solution.so Using Function registerExactSoln

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

Begin Aria Material mat1
density = constant rho = 0.1
thermal conductivity = constant k = 1.0
specific heat = constant cp = 1.0
heat conduction = basic

End Aria Material mat1

Begin Aria Material mat_s1
emissivity = constant e = 0.8
bc rad reference temperature = constant t_ref = 500
radiation form factor = calore_user_sub name = form_factor type = element

End

Begin Finite Element Model myModel
Database Name = mesh{N}.g
Coordinate System = Cartesian
decomposition method = rcb
Database Type = EXODUSII
Use Material mat1 for block_1
Use Material mat_s1 for surface_1

End Finite Element Model myModel

172

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
begin aztec equation solver solve_temperature

solution method = cg
preconditioning method = jacobi
maximum iterations = 1000
residual norm tolerance = 1.0e-12
residual norm scaling = r0

end aztec equation solver solve_temperature
{endif}

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential MySolveBlock
Advance myRegion

End
End

End

begin Aria region myRegion

Use Finite Element Model myModel
Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton

Maximum nonlinear iterations = 10
Nonlinear residual tolerance = 1.0e-10
Nonlinear correction tolerance = 1.0e-10
Nonlinear relaxation factor = 1.0

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF

BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node

Begin Radiative Flux Boundary Condition fraction
Add surface surface_1
Emissivity = 0.8
Reference Temperature = 500.0
Radiation Form Factor Subroutine = form_factor
End

BC Flux for Energy at surface_1 = generalized_rad

BC const DIRICHLET at surface_2 temperature = 600.0
BC const DIRICHLET at surface_4 temperature = 600.0

Output Number of Nodes
Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

Begin Results Output Label diffusion output
database Name = output{N}.e
At Step 1, Increment = 1
Timestep Adjustment Interval = 1

173

Title Radiative Flux BC User Sub Test
Nodal Variables = solution->temperature as T

End Results Output Label diffusion output

end Aria region myRegion

end procedure myProcedure

end sierra Aria

12.2.2. Radiative Heat Flux From Fortran User Subroutine
begin sierra FandI_VnVtest

title Verification of Fire and Ice BC subroutine, AKA Directed Heating User Sub \$
Simplified model with sidesets to check that BCs are applied to faces specified \$

Load User Plugin File ./FireAndIceBC.so USING function conv_subs_register

###
######## Material property definitions ############
###

begin aria material VnVmat
heat conduction = basic
density = constant rho = 8000.0 # Approximate value for VnV study
emissivity = constant e = 0.30 # Approximate value for VnV study
specific heat = constant cp = 550 # Approximate value for VnV study
thermal conductivity = constant k = 20 # Approximate value for VnV study

end aria material VnVmat

###
############ UPDATE THE FINITE ELEMENT MODEL ########################
###

begin finite element model fem
database name = VnVmesh2.g
database type = exodusII
use material VnVmat for block_1

- Block id 10 had name 10
use material VnVmat for block_10

- Block id 11 had name 11
use material VnVmat for block_11

- Block id 12 had name 12
use material VnVmat for block_12

- Block id 13 had name 13
use material VnVmat for block_13

- Block id 2 had name 2
use material VnVmat for block_2

- Block id 3 had name 3
use material VnVmat for block_3

- Block id 4 had name 4
use material VnVmat for block_4

- Block id 5 had name 5
use material VnVmat for block_5

- Block id 6 had name 6
use material VnVmat for block_6

174

- Block id 7 had name 7
use material VnVmat for block_7

- Block id 8 had name 8
use material VnVmat for block_8

- Block id 9 had name 9
use material VnVmat for block_9

end finite element model fem

###

begin global constants
stefan boltzmann constant = 5.67e-8

end global constants

##

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER TRILINOS_SOLVE

BEGIN GMRES SOLVER
BEGIN DD-ILUT PRECONDITIONER

DROP TOLERANCE = 0
FILL FRACTION = 5.000000e+00

END
MAXIMUM ITERATIONS = 1000
RESTART ITERATIONS = 100
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-12

END
MATRIX SCALING = ONE_NORM

END TPETRA EQUATION SOLVER
{else}

Begin TRILINOS Equation Solver trilinos_solve
Solution Method = GMRES
Preconditioning Method = DD-ILUT
Maximum Iterations = 1000
Matrix Scaling = row-sum
Residual Norm Tolerance = 1.0e-12
Residual Norm Scaling = R0
Restart Iterations is 100
preconditioning steps is 1
Param-Real AZ_ilut_fill value 5.0
polynomial order = 300
ilu threshold = 1.0e-6

End TRILINOS Equation Solver trilinos_solve
{endif}

begin procedure aria_procedure

begin solution control description

Use System Main

Begin System Main
Simulation Max Global Iterations = 10000
Simulation Start Time = 0.0
#Simulation Termination Time = 3600.0

Begin Transient Main
Advance myRegion

End

End

Begin Parameters For Transient Main
Start Time = 0.0

175

Termination Time = 0.1

Begin Parameters for Aria Region myRegion
---------------------------------------#

Time Integration Method = Second_Order #Second_Order
---------------------------------------#

Time Step Variation = Adaptive
Initial Time Step Size = 0.01
Minimum Time Step Size = 0.01
Maximum Time Step Size = 0.01
#Minimum Resolved Time Step Size = 0.001
Predictor-Corrector Tolerance = 1.0e-08

End
End

End #solution control

###

begin aria region myRegion
solve energy equation for temperature at the nodes (1st order) with diffusion
EQ ENERGY for TEMPERATURE on all_blocks using Q1 with lumped_mass Diff

use finite element model fem

nonlinear solution strategy = newton
use dof averaged nonlinear residual
accept solution after maximum nonlinear iterations = true
use linear solver trilinos_solve
nonlinear relaxation factor = 1.0

nonlinear residual tolerance = 1.0e-10 # for transient
maximum nonlinear iterations = 10 # for transient
#nonlinear residual tolerance = 1.0e-15 # for steady state
#maximum nonlinear iterations = 150 # for steady state

###
############## Initial Conditions #######################
###

IC Const on all_blocks temperature = 300.0

###
########### Convective Boundary Conditions ##############
###
#

begin convective flux boundary condition FireAndIceBC

add surface surface_1 surface_2 surface_3 surface_4
add surface surface_5 surface_6 surface_7 surface_8
add surface surface_9 surface_10 surface_11 surface_12
add surface surface_13 surface_14 surface_15 surface_16
add surface surface_17 surface_18 surface_19 surface_20
add surface surface_21 surface_22 surface_23 surface_24
add surface surface_25 # All external surfaces

User Sub Integer Input Constants:
cosdistA=idat(1), for x < xA
cosdistAB=idat(2), for xA <= x <= xB
cosdistB=idat(3), for x > xB

User Sub Real Input Constants:
xoffset=rdat(1), such that abs(xnosetip-xoffset)=0
xA=rdat(2), distance from nosetip to position A (xA>0)
xB=rdat(3), distance from nosetip to position B (xB>0)
hA1=rdat(4), convective htc for x < xA for azimuthal section 1
hAB1=rdat(5), convective htc for xA <= x <= xB for section 1
hB1=rdat(6), convective htc for x > xB for azimuthal section 1

176

TrefA1=rdat(7), Tref for x < xA for azimuthal section 1
TrefAB1=rdat(8), Tref for xA <= x <= xB for azimuthal section 1
TrefB1=rdat(9), Tref for x > xB for azimuthal section 1
emisA1=rdat(10), emis for x < xA for azimuthal section 1
emisAB1=rdat(11), emis for xA <= x <= xB for azimuthal section 1
emisB1=rdat(12), emis for x > xB for azimuthal section 1
hA2=rdat(13), convective htc for x < xA for azimuthal section 2
hAB2=rdat(14), convective htc for xA <= x <= xB for azimuthal section 2
hB2=rdat(15), convective htc for x > xB for azimuthal section 2
TrefA2=rdat(16), Tref for x < xA for azimuthal section 2
TrefAB2=rdat(17), Tref for xA <= x <= xB for azimuthal section 2
TrefB2=rdat(18), Tref for x > xB for azimuthal section 2
emisA2=rdat(19), emis for x < xA for azimuthal section 2
emisAB2=rdat(20), emis for xA <= x <= xB for azimuthal section 2
emisB2=rdat(21), emis for x > xB for azimuthal section 2
thetaA=rdat(22), azimuthal reference angle (degrees) for section 1 of region A
thetaAB=rdat(23), azimuthal reference angle (degrees) for section 1 of region AB
thetaB=rdat(24), azimuthal reference angle (degrees) for section 1 of region B
dphiA=rdat(25), subtended angle (degrees) for section 1 of region A
dphiAB=rdat(26), subtended angle (degrees) for section 1 of region AB
dphiB=rdat(27), subtended angle (degrees) for section 1 of region B
notes:
if cosdistA (or AB,or B) set to 1 then impose cosine distribution on radiative htc
otherwise, distribution is uniform (convective distribution is always uniform)
x coordinate assumed to lie on centerline of bomb
htc_total = convective htc + effective radiative htc
effective radiative htc = sigma*emis*(Twall+Tref)*(Twall^2+Tref^2)
emissivities should be the same as associated material emissivities, but
can be set to zero to eliminate radiative heat transfer from a region
set convective htc to zero to eliminate convective heat tranfer from a region
set both convective htc and emis to zero for an adiabatic (insulated) surface
a zero-degree angle corresponds to the y axis
angle is positive in clockwise direction when looking in the positive x axis direction
theta is the angle for the center of the azimuthal section and dphi is the delta angle
with section 1 extending from theta-dphi/2 to theta+dphi/2, centered on theta
section 2 is opposite section 1 and can be empty if dphi = 360 degrees.

convective coefficient fortran subroutine is coef_directed_angle
reference temperature fortran subroutine is tref_directed_angle
integer data 0 0 0

xoffset xA xB
hA1 hAB1 hB1
TrefA1 TrefAB1 TrefB1
emisA1 emisAB1 emisB1
hA2 hAB2 hB2
TrefA2 TrefAB2 TrefB2
emisA2 emisAB2 emisB2
thetaA thetaAB thetaB
dphiA dphiAB dphiB

real data -1.5 0.5 1.0 \$
0.0 50.0 0 \$
300.0 1000.0 300.0 \$
0.0 0.8 0.0 \$
0.0 0.0 100.0 \$
300.0 300.0 900.0 \$
0.0 0.0 0.0 \$

0.0 300.0 240. \$
0.0 120.0 240.0

+theta
xA xB azimuthal section 1 -dphi/2 ^ ^ |
A | AB | B axial (x axis) regions | y| y| V
============================== surfaces O-theta |_ _ > x |_ _ >z
| | |
xA xB azimuthal section 2 dphi/2 z out of page x into page
#

integrated power output qFireIce
integrated flux output fluxFireIce

177

end convective flux boundary condition FireAndIceBC

###
############# Results #################################
###
###

Begin user variable HTC
type is face real length = 1
initial value = 0.0
add part surface_1 surface_2 surface_3 surface_4
add part surface_5 surface_6 surface_7 surface_8
add part surface_9 surface_10 surface_11 surface_12
add part surface_13 surface_14 surface_15 surface_16
add part surface_17 surface_18 surface_19 surface_20
add part surface_21 surface_22 surface_23 surface_24
add part surface_25

End

Begin user variable SurfFlux
type is face real length = 1
initial value = 0.0
add part surface_1 surface_2 surface_3 surface_4
add part surface_5 surface_6 surface_7 surface_8
add part surface_9 surface_10 surface_11 surface_12
add part surface_13 surface_14 surface_15 surface_16
add part surface_17 surface_18 surface_19 surface_20
add part surface_21 surface_22 surface_23 surface_24
add part surface_25

End

Begin user variable Tref #for checking only
type is face real length = 1
initial value = 0.0
add part surface_1 surface_2 surface_3 surface_4
add part surface_5 surface_6 surface_7 surface_8
add part surface_9 surface_10 surface_11 surface_12
add part surface_13 surface_14 surface_15 surface_16
add part surface_17 surface_18 surface_19 surface_20
add part surface_21 surface_22 surface_23 surface_24
add part surface_25

End

Begin Results Output NodalTdata
Title VnVtest Nodal Temperature Data
database name = VnVinputTest.e
Nodal Variables = solution->temperature as T
#nodal variables = temperaturedot as Tdot
#Face Variables = HTC SurfFlux Tref #costheta
Global Variables = time_step as timestep

Global Variables = PEinterior_T as PEinterior_T

Timestep Adjustment Interval is 1
At Time 0.0, Increment = 0.01 #

End

###

end aria region myRegion

end procedure aria_procedure

end sierra FandI_VnVtest

178

12.2.3. Convective Heat Flux 3.3

Begin SIERRA Aria

load user plugin file ./Exact_Solution.so

Begin User Function exact_soln
Load From File ./Exact_Solution.so Using Function registerExactSoln

End

Begin Norm Postprocessor l2_norm
Use Function exact_soln
Subtract Function nonlinear_solution->temperature
Compute Norms L2

End

Begin Norm Postprocessor h1_norm
Use Function exact_soln
Subtract Function nonlinear_solution->temperature
Compute Norms H1

End

Begin Norm Postprocessor linf_norm
Use Function exact_soln
Subtract Function nonlinear_solution->temperature
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

load user plugin file ./FluxBC.so
load user plugin file ./DirichletBC.so
load user plugin file ./Init.so

Begin Aria Material M_Block
density = constant rho = 1.
specific heat = constant cp = 1.
heat conduction = basic
Thermal conductivity = constant k = 1.

End

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
Begin AZTEC Equation Solver solve_temperature

Solution Method = gmres
Preconditioning Method = dd-ilu
Maximum Iterations = 1000
Residual Norm Tolerance = 1e-12
Residual Norm Scaling = NONE

End
{endif}

Begin Finite Element Model myModel

179

Database Name = mesh{N}.g
Coordinate System = cartesian
decomposition method = rcb
Use Material M_Block for block_1

End

Begin procedure myProcedure

Begin solution control description
Use System Main
Begin System Main

Simulation Start Time = 0.0
Simulation Termination Time = 0.1
Simulation Max Global Iterations = 100
Begin Transient Time_Block

advance myRegion
End

End System Main

Begin parameters for transient Time_Block
Start Time = 0.0
Begin parameters for aria Region myRegion

time step variation = fixed # adaptive
initial time step size = {0.008*0.5**(N)}
time integration method = second_order
predictor-corrector tolerance = 1.0E-5

End
End

End Solution Control Description

begin aria region myRegion

Use Finite Element Model myModel
Use Linear Solver solve_temperature

nonlinear solution strategy = newton
nonlinear residual tolerance = 1.0e-10
maximum nonlinear iterations = 10
Nonlinear Relaxation Factor = 1.0

EQ energy for temperature on block_1 using Q1 with diff mass

BC const dirichlet on surface_2 Temperature = 0.0

Begin Temperature Boundary Condition s4
Add Surface surface_4
Temperature = 0.0

End

BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node
IC for temperature on block_1 = calore_user_sub name = localCoord_ic type=node

Output Number of Nodes
Evaluate Postprocessor l2_norm
Evaluate Postprocessor h1_norm
Evaluate Postprocessor linf_norm

Begin Convective Flux Boundary Condition internal
Add Surface surface_1 #y=1, 0<x<1, normal=(0,1)
Reference Temperature Subroutine = tref_coeff
Convective Coefficient Subroutine = convec_coeff

End

Begin Results Output output
Database Name = output{N}.e
AT STEP 0, INCREMENT = {2**(N)}
TITLE Aria Heat Convective Flux BC Condition
Nodal Variables = nonlinear_solution->temperature as T

180

End

end aria region myRegion

End procedure myProcedure

End sierra Aria

181

12.3. THERMAL CONTACT

12.3.1. 1D Flat Contact 4.1
12.3.1.1. Hex8 Tied

#{R=0.0}
begin sierra Aria

title Adaptive Square

load user plugin file ./Exact_solution.so

BEGIN ARIA MATERIAL M1
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_hex8_h{N}.g
Begin parameters for block block_1

material M1
End
Begin parameters for block block_2

material M2
End

End Finite Element Model bar

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN UMFPACK SOLVER
END

END TPETRA EQUATION SOLVER
{else}

begin trilinos equation solver direct_solver
solution method = amesos-umfpack

end trilinos equation solver direct_solver
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 20000
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 20000
Residual Norm Scaling = R0
Residual Norm Tolerance = 1.0e-12

End

182

{endif}

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value

End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in l2_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in h1_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_tied_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0
Simulation Termination Time = 1

End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xm1
add surface surface_1

183

TEMPERATURE = 0.
End

Begin TEMPERATURE BOUNDARY CONDITION xp1
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition res1
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2

end interaction inter_1

begin enforcement enf_1
Enforcement for Energy = Tied_Temperature

end enforcement

end contact definition res1

Output Number of Nodes
Evaluate Postprocessor l2
Evaluate Postprocessor linf
Evaluate Postprocessor h1

Begin Results Output Label diffusion output
database Name = 2blocks_tied_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = l2_err linf_err h1_err

End

end

end

end

12.3.1.2. Hex8 Resistance

#{R=4.0}
begin sierra Aria

title Adaptive Square

BEGIN ARIA MATERIAL M1
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2

184

Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_hex8_h{N}.g
Begin parameters for block block_1

material M1
End
Begin parameters for block block_2

material M2
End

End Finite Element Model bar

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN UMFPACK SOLVER
END

END TPETRA EQUATION SOLVER
{else}

begin trilinos equation solver direct_solver
solution method = amesos-umfpack

end trilinos equation solver direct_solver
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 20000
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 20000
Residual Norm Scaling = R0
Residual Norm Tolerance = 1.0e-12

End
{endif}

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value

End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in l2_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

185

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in h1_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_res_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0
Simulation Termination Time = 1

End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xm1
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xp1
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition res1
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1

186

surfaces = surf_1 surf_2
end interaction inter_1

begin enforcement enf_1
conductance coefficient= {1.0/R}
Enforcement for Energy = gap_conductance

end enforcement

end contact definition res1

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor linf
Evaluate Postprocessor h1

Begin Results Output Label diffusion output
database Name = 2blocks_res_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = l2_err linf_err h1_err

End

end

end

end

12.3.1.3. Tet4 Tied

#{R=0.0}
begin sierra Aria

title Adaptive Square

load user plugin file ./Exact_solution.so

BEGIN ARIA MATERIAL M1
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_tet4_h{N}.g
Begin parameters for block block_1

material M1
End
Begin parameters for block block_2

material M2
End

End Finite Element Model bar

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN UMFPACK SOLVER

187

END
END TPETRA EQUATION SOLVER

{else}
begin trilinos equation solver direct_solver

solution method = amesos-umfpack
end trilinos equation solver direct_solver

{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 200
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = dd-ilu
Maximum Iterations = 200
Residual Norm Scaling = R0
Residual Norm Tolerance = 1.0e-12

End
{endif}

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value

End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in l2_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in h1_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_tied_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

begin procedure myProcedure

Begin Solution Control Description

188

Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0
Simulation Termination Time = 1

End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xm1
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xp1
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition res1
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2

end interaction inter_1

begin enforcement enf_1
Enforcement for Energy = Tied_Temperature

end enforcement

end contact definition res1

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor linf
Evaluate Postprocessor h1

Begin Results Output Label diffusion output
database Name = 2blocks_tied_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks

189

Nodal Variables = solution->temperature as T
Element Variables = l2_err linf_err h1_err

End

end

end

end

12.3.1.4. Tet4 Resistance

#{R=4.0}
begin sierra Aria

title Adaptive Square

BEGIN ARIA MATERIAL M1
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_tet4_h{N}.g
Begin parameters for block block_1

material M1
End
Begin parameters for block block_2

material M2
End

End Finite Element Model bar

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN UMFPACK SOLVER
END

END TPETRA EQUATION SOLVER
{else}

begin trilinos equation solver direct_solver
solution method = amesos-umfpack

end trilinos equation solver direct_solver
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 200
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = dd-ilu

190

Maximum Iterations = 200
Residual Norm Scaling = R0
Residual Norm Tolerance = 1.0e-12

End
{endif}

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value

End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in l2_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in h1_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_res_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0
Simulation Termination Time = 1

End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

191

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xm1
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xp1
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition res1
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2

end interaction inter_1

begin enforcement enf_1
conductance coefficient= {1.0/R}
Enforcement for Energy = gap_conductance

end enforcement

end contact definition res1

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor linf
Evaluate Postprocessor h1

Begin Results Output Label diffusion output
database Name = 2blocks_res_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = l2_err linf_err h1_err

End

end

end

end

12.3.1.5. Hex8-Tet4 Tied

#{R=0.0}
begin sierra Aria

title Adaptive Square

load user plugin file ./Exact_solution.so

192

BEGIN ARIA MATERIAL M1
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_hex8_tet4_h{N}.g
Begin parameters for block block_1

material M1
End
Begin parameters for block block_2

material M2
End

End Finite Element Model bar

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN UMFPACK SOLVER
END

END TPETRA EQUATION SOLVER
{else}

begin trilinos equation solver direct_solver
solution method = amesos-umfpack

end trilinos equation solver direct_solver
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 200
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = dd-ilu
Maximum Iterations = 200
Residual Norm Scaling = R0
Residual Norm Tolerance = 1.0e-12

End
{endif}

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value

End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2

193

Store in l2_err
End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in h1_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_tied_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0
Simulation Termination Time = 1

End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xm1
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xp1
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2

194

VALUE = 1.
End

begin contact definition res1
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2

end interaction inter_1

begin enforcement enf_1
Enforcement for Energy = Tied_Temperature

end enforcement

end contact definition res1

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor linf
Evaluate Postprocessor h1

Begin Results Output Label diffusion output
database Name = 2blocks_tied_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = l2_err linf_err h1_err

End

end

end

end

12.3.1.6. Hex8-Tet4 Resistance

#{R=4.0}
begin sierra Aria

title Adaptive Square

BEGIN ARIA MATERIAL M1
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

BEGIN ARIA MATERIAL M2
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END

Begin Finite Element Model bar
Database Name = 2blocks_contact_unaligned_hex8_tet4_h{N}.g
Begin parameters for block block_1

material M1
End
Begin parameters for block block_2

material M2
End

195

End Finite Element Model bar

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN UMFPACK SOLVER
END

END TPETRA EQUATION SOLVER
{else}

begin trilinos equation solver direct_solver
solution method = amesos-umfpack

end trilinos equation solver direct_solver
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN DD-ILU PRECONDITIONER
END
MAXIMUM ITERATIONS = 200
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = dd-ilu
Maximum Iterations = 200
Residual Norm Scaling = R0
Residual Norm Tolerance = 1.0e-12

End
{endif}

Begin Field Function ffunc
Use Nodal Field solution->temperature As Value

End

Begin User Function exact_soln
Load From File ./Exact_solution.so Using Function registerExactSolution
Parameter R = {R}

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2
Store in l2_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity
Store in linf_err

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1
Store in h1_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_res_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

196

End

begin procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0
Simulation Termination Time = 1

End
End

begin Aria region myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model bar
use linear solver Iterative_Solver #Direct_Solver #

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

Begin TEMPERATURE BOUNDARY CONDITION xm1
add surface surface_1
TEMPERATURE = 0.

End

Begin TEMPERATURE BOUNDARY CONDITION xp1
add surface surface_2
TEMPERATURE = 1.

End

Begin VOLUME HEATING sm
add volume block_1
VALUE = -1.

End

Begin VOLUME HEATING sp
add volume block_2
VALUE = 1.

End

begin contact definition res1
contact surface surf_1 contains surface_3
contact surface surf_2 contains surface_4

begin interaction inter_1
surfaces = surf_1 surf_2

end interaction inter_1

begin enforcement enf_1
conductance coefficient= {1.0/R}
Enforcement for Energy = gap_conductance

end enforcement

end contact definition res1

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor linf

197

Evaluate Postprocessor h1

Begin Results Output Label diffusion output
database Name = 2blocks_res_h{N}.e
At Step 1, Increment = 1
Title Calore Two Blocks
Nodal Variables = solution->temperature as T
Element Variables = l2_err linf_err h1_err

End

end

end

end

12.3.2. 3D Curved Contact 4.2
12.3.2.1. Hex8-Hex8 Case

12.3.2.2. Tet4-Tet4 Case

12.3.2.3. Hex8-Tet4 Case

12.3.3. Steady Hex8 Contact
#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None

198

Residual Norm Tolerance = 1.0e-15
End

{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_hex8.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
store in l2_error

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
store in h1_error

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
store in linf_error

End

199

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q1 with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

200

begin contact definition mpc1
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

output rule = summary

begin interaction inter_1
surfaces = surf_1 surf_2
normal tolerance = 0.01

end
begin enforcement enf_1

Enforcement for Energy = Tied_Temperature
end

end

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex8_tied_contact_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

element variables = l2_error h2_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.4. Steady Hex20 Contact
BEGIN SIERRA myJob

load user plugin file ./exact.so

begin definition for function kxx
type = piecewise linear
begin values

0.0 0.5
1.0 2.0
2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values

0.0 0.2
1.0 1.2
2.0 2.1
20.0 20.2

end values
end

begin definition for function kzz
type = piecewise linear
begin values

0.0 1.0

201

1.0 2.0
2.0 3.0
20.0 21.0

end values
scale by 2.0

end

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz
Specific Heat = Constant cp=1
heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN klu2 SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-14

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_hex20.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

202

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %

Write To File errors_thermal_steady_hex20_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-14
Nonlinear Correction Tolerance = 1.0e-14
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2S with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2S with DIFF SRC

203

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpc1
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2

end
begin enforcement enf_1

Enforcement for Energy = Tied_Temperature
end

end

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex20_tied_contact_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

204

END SIERRA myJob

12.3.5. Steady Hex27 Contact
BEGIN SIERRA myJob

load user plugin file ./exact.so

begin definition for function kxx
type = piecewise linear
begin values

0.0 0.5
1.0 2.0
2.0 8.0

end values
end

begin definition for function kyy
type = piecewise linear
begin values

0.0 0.2
1.0 1.2
2.0 2.1
20.0 20.2

end values
end

begin definition for function kzz
type = piecewise linear
begin values

0.0 1.0
1.0 2.0
2.0 3.0
20.0 21.0

end values
scale by 2.0

end

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
tensor thermal conductivity = user_function X = temperature name_xx = kxx name_yy = kyy name_zz = kzz
Specific Heat = Constant cp=1
heat conduction = Generalized

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-14

END
END TPETRA EQUATION SOLVER

205

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-14

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_hex27.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out

206

Comment Character Is %
Write To File errors_thermal_steady_hex27_h{N}.dat

Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2 with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src

Source For ENERGY on block_2 = Constant value=1

207

Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpc1
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2

end
begin enforcement enf_1

Enforcement for Energy = Tied_Temperature
end

end

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_hex27_tied_contact_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.6. Steady Tet4 Contact
#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15

208

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-15

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet4.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In l2_error

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In h1_error

End

209

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_error

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q1 with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1

210

BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpc1
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2

end
begin enforcement enf_1

Enforcement for Energy = Tied_Temperature
end

end

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet4_tied_contact_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

element variables = l2_error h1_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.7. Steady Tet4Tet10 Contact
#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}

211

BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER
BEGIN GMRES SOLVER

BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-15

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In l2_error

End

212

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In h1_error

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_error

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q1 with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3

213

BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpc1
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2

end
begin enforcement enf_1

Enforcement for Energy = Tied_Temperature
end

end

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet4_tied_contact_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

element variables = l2_error h1_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.8. Steady Tet10 Contact
#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER

214

{else}
Begin Trilinos Equation Solver Direct_Solver

Solution Method = amesos-superlu
End

{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-15

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2

End

215

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In l2_error

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In h1_error

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_error

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2 with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0

216

BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpc1
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2

end
begin enforcement enf_1

Enforcement for Energy = Tied_Temperature
end

end

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet10_tied_contact_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

element variables = l2_error h1_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.9. Steady Tet10 Dash Contact
#N={N=4}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

217

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-15

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact.so Using Function registerFlux_Surface_5

End

218

Begin User Function flux_surface_1
Load From File ./exact.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In l2_error

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In h1_error

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_error

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2 with DIFF SRC

surface_4: x=0
surface_6: x=1

surface_3: y=0

219

surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpc1

skin all blocks = on

search = dash

begin interaction defaults
general contact = on

end interaction defaults

begin dash options
interaction definition scheme = explicit
search length scaling = 0.75

end dash options

begin enforcement enf_1
Enforcement for Energy = Dash_Tied

end
end

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_steady_tet10_tied_dash_contact_h{N}.e
at step 1, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

element variables = l2_error h1_error linf_error
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

220

END SIERRA myJob

12.3.10. Transient Tet4Tet10 Contact
#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-15

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot

221

Load From File ./exact_transient.so Using Function registerExactSolnDot
End

Begin User Function exact_src
Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Transient The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2**N}

222

Time Integration Method = Second_Order
Time Step Variation = fixed

End
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q1 with MASS DIFF SRC

IC const on block_1 temperature = 1.0
IC const on block_2 temperature = 1.0

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpc1
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2

end
begin enforcement enf_1

Enforcement for Energy = Tied_Temperature
end

223

end

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor l2_dot
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_transient_tet10_tied_contact_h{N}.e
at step 0, increment = {2**N}
title Aria cube test
nodal variables = solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.3.11. Transient Tet10 Contact
#N={N=5}
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER ITERATIVE_SOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-15

END
END TPETRA EQUATION SOLVER

{else}
Begin Trilinos Equation Solver Iterative_Solver

Solution Method = GMRES
Preconditioning Method = Jacobi
Maximum Iterations = 1000
Residual Norm Scaling = None
Residual Norm Tolerance = 1.0e-15

End
{endif}

224

BEGIN FINITE ELEMENT MODEL cube
database name = cube_contact_h{N}_tet10.e
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

BEGIN PARAMETERS FOR BLOCK block_2
material Kryptonite

END PARAMETERS FOR BLOCK block_2

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./exact_transient.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact_transient.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./exact_transient.so Using Function registerExactSrc

End

Begin User Function flux_surface_3
Load From File ./exact_transient.so Using Function registerFlux_Surface_3

End

Begin User Function flux_surface_5
Load From File ./exact_transient.so Using Function registerFlux_Surface_5

End

Begin User Function flux_surface_1
Load From File ./exact_transient.so Using Function registerFlux_Surface_1

End

Begin User Function flux_surface_2
Load From File ./exact_transient.so Using Function registerFlux_Surface_2

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out

225

Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Transient The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 3
End
Begin Parameters For Transient The_Time_Block

Begin Parameters For Aria Region myRegion
Initial Time Step Size = {0.5/2**N}
Time Integration Method = Second_Order
Time Step Variation = fixed

End
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Iterative_Solver #Direct_Solver

EQ ENERGY for TEMPERATURE on block_1 using Q2 with MASS DIFF SRC
EQ ENERGY for TEMPERATURE on block_2 using Q2 with MASS DIFF SRC

IC const on block_1 temperature = 1.0
IC const on block_2 temperature = 1.0

surface_4: x=0
surface_6: x=1

surface_3: y=0
surface_5: y=1

surface_1: z=1
surface_2: z=0

const Temp BC (x)
BC const dirichlet at surface_4 Temperature = 1.0
BC const dirichlet at surface_6 Temperature = 1.0

const flux BC (y)
BC FLUX for Energy on surface_3 = constant flux = 3
BC FLUX for Energy on surface_5 = constant flux = 5

BC FLUX for Energy on surface_3 = Encore_Function Name=flux_surface_3
BC FLUX for Energy on surface_5 = Encore_Function Name=flux_surface_5

convective flux BC with const Temp and H (z)
BC Flux for Energy on surface_1 = Nat_Conv T_Ref=1 H=1
BC Flux for Energy on surface_2 = Nat_Conv T_Ref=2 H=2

226

BC FLUX for Energy on surface_1 = Encore_Function Name=flux_surface_1
BC FLUX for Energy on surface_2 = Encore_Function Name=flux_surface_2

const source term
Source For ENERGY on block_1 = Constant value=1
Source For ENERGY on block_2 = Constant value=1

Source For ENERGY on block_1 = Encore_Function Name=exact_src
Source For ENERGY on block_2 = Encore_Function Name=exact_src

begin contact definition mpc1
contact surface surf_1 contains surface_7
contact surface surf_2 contains surface_8

begin interaction inter_1
surfaces = surf_1 surf_2

end
begin enforcement enf_1

Enforcement for Energy = Tied_Temperature
end

end

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor l2_dot
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = thermal_transient_tet10_tied_contact_h{N}.e
at step 0, increment = {2**N}
title Aria cube test
nodal variables = solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

227

12.4. ELEMENT DEATH

12.4.1. CDFEM Element Death (Heat Flux)
12.4.1.1. Tri3

BEGIN SIERRA Aria

Title \$
1-d standard conduction problem, Carslaw and Jaeger P. 292\$

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 10000
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-14

END
END TPETRA EQUATION SOLVER

{else}
BEGIN Aztec EQUATION SOLVER solve_temperature

Solution Method = cg
Preconditioning Method = JACOBI
Maximum Iterations = 10000
Residual Norm Tolerance = 1e-14
Residual norm scaling = R0

END
{endif}

Begin Global Constants
Stefan Boltzmann Constant = 5.67e-8 # W/m^2-K^4
Ideal Gas Constant = 8.314 # J/mol-K

End

BEGIN ARIA MATERIAL solid
DENSITY = constant rho = 1.
Thermal Conductivity = constant k = 1.
Specific Heat = Constant cp = 1.0
Heat Conduction = basic

END ARIA MATERIAL solid

BEGIN FINITE ELEMENT MODEL VERIFY_DEATH
DATABASE NAME = input{N}_tri3.e
decomposition method = rcb
COORDINATE SYSTEM = CARTESIAN
DATABASE TYPE = EXODUSII
USE MATERIAL solid FOR block_1
USE MATERIAL solid FOR block_1_dead

END FINITE ELEMENT MODEL VERIFY_DEATH

Begin String Function exact_soln
Value Is "ln(sqrt(x*x+y*y))*(1/ln(2-t))"
Gradient Is "(x/(x*x+y*y))*(1/ln(2-t))" "(y/(x*x+y*y))*(1/ln(2-t))"

End

Begin String Function exact_src
Value Is "ln(sqrt(x*x+y*y))*(-1/(ln(2-t)*ln(2-t)))*(1/(2-t))*(-1)"

End

exact flux computed at interface (r=2-t)
Begin String Function exact_flux

Value Is "-1/((2-t)*ln(2-t))"
End

228

exact interface position (radial)
Begin String Function exact_interface

Value Is "2-t"
End

radius function - evaluate r(x,y)
Begin String Function radius

Value Is "sqrt(x*x+y*y)"
End

Begin Norm Postprocessor l2
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms L2
Store In l2_err

End

Begin Norm Postprocessor h1
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms H1
Store In h1_err

End

Begin Norm Postprocessor linf
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_err

End

Begin Norm Postprocessor l2_interface
Surfaces surface_1 surface_block_1_death_by_temp
Use Function exact_interface
Subtract Function radius
Compute Norms L2

End

Begin Norm Postprocessor linf_interface
Surfaces surface_1 surface_block_1_death_by_temp
Use Function exact_interface
Subtract Function radius
Compute Norms Nodal LInfinity
Store In linf_interface_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 6
Floating Point Format Is Fixed

End

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Simulation Start Time = 0.0
Simulation Termination Time = 0.9
Begin transient MySolveBlock

Advance myRegion
End

End
begin parameters for transient MySolveBlock

229

start time = 0.0
begin parameters for aria region myRegion

initial time step size = {0.1*(0.5**(N-1))}
Predictor-Corrector Tolerance = {0.05*(0.5**(N-1))}
Maximum Time Step Size = {0.2*(0.5**(N-1))}
Time Integration Method = bdf2
time step variation = adaptive

end
end

End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_DEATH

Begin CDFEM Death death_by_temp
add volume block_1
Criterion is solution->Temperature > 1.0

End

Use Linear Solver solve_temperature

nonlinear solution strategy = newton
maximum nonlinear iterations = 2
nonlinear correction tolerance = 1.0e-12
nonlinear residual tolerance = 1.0e-12
nonlinear relaxation factor = 1.0

use dof averaged nonlinear residual

eq energy for temperature on all_blocks using q1 with lumped_mass diff src

IC Encore function on block_1 Temperature = exact_soln

BC Dirichlet for Temperature on surface_2 = encore_function name=exact_soln

SOURCE for Energy on block_1 = encore_function name=exact_src

BC Flux for Energy on surface_1 = encore_function name=exact_flux
BC Flux for Energy on surface_block_1_death_by_temp = encore_function name=exact_flux

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

Evaluate Postprocessor l2_interface
Evaluate Postprocessor linf_interface

Begin Results Output Label diffusion output
database name = output{N}.e
at Step 0, Interval = {2**N}
Nodal Variables = solution->temperature as TEMP
Nodal Variables = linf_interface_err
Element Variables = l2_err h1_err linf_err

End Results Output Label diffusion output

End Aria Region myRegion

End Procedure myProcedure

END SIERRA ARIA

230

12.4.1.2. Tet4

BEGIN SIERRA Aria

Title \$
1-d standard conduction problem, Carslaw and Jaeger P. 292\$

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 10000
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-14

END
END TPETRA EQUATION SOLVER

{else}
BEGIN Aztec EQUATION SOLVER solve_temperature

Solution Method = cg
Preconditioning Method = JACOBI
Maximum Iterations = 10000
Residual Norm Tolerance = 1e-14
Residual norm scaling = R0

END
{endif}

Begin Global Constants
Stefan Boltzmann Constant = 5.67e-8 # W/m^2-K^4
Ideal Gas Constant = 8.314 # J/mol-K

End

BEGIN ARIA MATERIAL solid
DENSITY = constant rho = 1.
Thermal Conductivity = constant k = 1.
Specific Heat = Constant cp = 1.0
Heat Conduction = basic

END ARIA MATERIAL solid

BEGIN FINITE ELEMENT MODEL VERIFY_DEATH
DATABASE NAME = input{N}_tet4.e
decomposition method = rcb
COORDINATE SYSTEM = CARTESIAN
DATABASE TYPE = EXODUSII
USE MATERIAL solid FOR block_1
USE MATERIAL solid FOR block_1_dead

END FINITE ELEMENT MODEL VERIFY_DEATH

Begin String Function exact_soln
Value Is "(1+t)/sqrt(x*x+y*y+z*z)"
Gradient Is "(1+t)*(-1/(x*x+y*y+z*z))*(x/sqrt(x*x+y*y+z*z))" "(1+t)*(-1/(x*x+y*y+z*z))*(y/sqrt(x*x+y*y+z*z))" "(1+t)*(-1/(x*x+y*y+z*z))*(z/sqrt(x*x+y*y+z*z))"

End

Begin String Function exact_src
Value Is "1/sqrt(x*x+y*y+z*z)"

End

exact flux computed at interface (r=2-t)
Begin String Function exact_flux

Value Is "-1/(1+t)"
###Value Is "-(1+t)" ### for verification of case with no element death

End

exact interface position (radial)
Begin String Function exact_interface

Value Is "1+t"
End

231

radius function - evaluate r(x,y)
Begin String Function radius

Value Is "sqrt(x*x+y*y+z*z)"
End

Begin Norm Postprocessor l2
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms L2
Store In l2_err

End

Begin Norm Postprocessor h1
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms H1
Store In h1_err

End

Begin Norm Postprocessor linf
Volumes block_1
Use Function exact_soln
Subtract Function solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_err

End

Begin Norm Postprocessor l2_interface
Surfaces surface_1 surface_block_1_death_by_temp
Use Function exact_interface
Subtract Function radius
Compute Norms L2

End

Begin Norm Postprocessor linf_interface
Surfaces surface_1 surface_block_1_death_by_temp
Use Function exact_interface
Subtract Function radius
Compute Norms Nodal LInfinity
Store In linf_interface_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 6
Floating Point Format Is Fixed

End

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Simulation Start Time = 0.0
Simulation Termination Time = 0.75
Begin transient MySolveBlock

Advance myRegion
End

End
begin parameters for transient MySolveBlock

start time = 0.0
begin parameters for aria region myRegion

initial time step size = {0.1*(0.5**(N-1))}
Predictor-Corrector Tolerance = {0.05*(0.5**(N-1))}

232

Maximum Time Step Size = {0.2*(0.5**(N-1))}
Time Integration Method = bdf2
time step variation = adaptive

end
end

End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_DEATH

Begin CDFEM Death death_by_temp
add volume block_1
Criterion is solution->Temperature > 1.0

End

Use Linear Solver solve_temperature

nonlinear solution strategy = newton
maximum nonlinear iterations = 2
nonlinear correction tolerance = 1.0e-12
nonlinear residual tolerance = 1.0e-12
nonlinear relaxation factor = 1.0

use dof averaged nonlinear residual

eq energy for temperature on all_blocks using q1 with lumped_mass diff src

IC Encore function on block_1 Temperature = exact_soln

BC Dirichlet for Temperature on surface_2 = encore_function name=exact_soln

SOURCE for Energy on block_1 = encore_function name=exact_src

BC Flux for Energy on surface_1 = encore_function name=exact_flux
BC Flux for Energy on surface_block_1_death_by_temp = encore_function name=exact_flux

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1
Evaluate Postprocessor linf

Evaluate Postprocessor l2_interface
Evaluate Postprocessor linf_interface

Begin Results Output Label diffusion output
database name = output{N}.e
at Step 0, Interval = {2**N}
Nodal Variables = solution->temperature as TEMP
Nodal Variables = linf_interface_err
Element Variables = l2_err h1_err linf_err

End Results Output Label diffusion output

End Aria Region myRegion

End Procedure myProcedure

END SIERRA ARIA

12.4.2. 3D Spherical Shell Enclosure
BEGIN SIERRA myJob

Title Element Death Test Problem #1

233

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-09

END
END TPETRA EQUATION SOLVER

{else}
BEGIN TRILINOS EQUATION SOLVER solve_temperature

Solution Method = CG
Preconditioning Method = jacobi
Residual Norm Scaling = R0
Residual Norm Tolerance = 1.0e-09

END
{endif}

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

BEGIN TRILINOS EQUATION SOLVER direct_solver
Solution Method = amesos-superlu

END
{endif}

BEGIN GLOBAL Constants
Stefan Boltzmann Constant = 5.6704e-08 # W/m2-K4

End

BEGIN ARIA MATERIAL ss304
Heat Conduction = Basic
Density = Constant rho = 7862.0 $ kg/m**3
Specific Heat = Constant Cp = 10.0 $ J/gm/K
Thermal Conductivity = Constant K = 1.0 $ W/m/K

END ARIA MATERIAL ss304

BEGIN ARIA MATERIAL fake
END ARIA MATERIAL fake

BEGIN FINITE ELEMENT MODEL myModel
Database Name = two_sphere_shells_tet4_m{N}.g
Coordinate System is cartesian
decomposition method = rcb

Use material ss304 for block_1 # Outer "case" block
Use material ss304 for block_2 # Inner block that will have death

#THIS BLOCK SHOULD BE REMOVED EVENTUALLY BUT IS CURRENTLY REQUIRED
Commenting it out leads to a segfault because of a null field data pointer for model_coordinates
This is very bizarre
Use material fake for block_2_dead
#BEGIN PARAMETERS FOR BLOCK block_2_dead
Material fake
#END PARAMETERS FOR BLOCK block_2_dead

END FINITE ELEMENT MODEL myModel

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./exact.so Using Function registerExactSolnDot

234

End

Begin User Function exact_src
Load From File ./exact.so Using Function registerExactSolnSrc

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In l2_err
Volumes block_1 block_2

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2
Store In l2_dot_err
Volumes block_1 block_2

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms Nodal LInfinity
Store In linf_err
Volumes block_1 block_2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In h1_err
Volumes block_1 block_2

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

Begin Average Value Postprocessor avg_T_surf1
Use Function nonlinear_solution->Temperature
Surfaces surface_1

End

Begin Average Value Postprocessor avg_T_surf2
Use Function nonlinear_solution->Temperature
Surfaces surface_2

End

Begin Average Value Postprocessor avg_T_surf2_death_temp1
Use Function nonlinear_solution->Temperature
Surfaces surface_block_2_death_temp1

End

Begin Average Value Postprocessor avg_T_surf3
Use Function nonlinear_solution->Temperature
Surfaces surface_3

End

Begin Average Value Postprocessor avg_T_surf4
Use Function nonlinear_solution->Temperature
Surfaces surface_4

235

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Simulation Start Time = 0.0
Simulation Termination Time = 0.5 #1.0
Begin Transient Stepper

Advance myRegion
End

End

Begin Parameters For Transient Stepper
Begin Parameters for Aria Region myRegion

Time Integration Method = BDF2
Time Step Variation = fixed #Adaptive
Initial Time Step Size = {0.05*0.5**(N)}
#Minimum Time Step Size = 1.0e-5
#Maximum Time Step Size = 1000.0
#predictor order = 0
#Predictor-Corrector Tolerance = 1.e-3
#Fail Time Step When Time Step Size Ratio Is Below 0.0

End
End

End

BEGIN ARIA REGION myRegion

Use Linear Solver solve_temperature #direct_solver
Use Finite Element Model myModel

Begin CDFEM Death death_temp1
add volume block_2
Criterion is solution->Temperature > 867.011674920813

End

Nonlinear Solution Strategy = newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-06
Nonlinear Correction Tolerance = 1.0e-06
Nonlinear Relaxation Factor = 1.0
Accept Solution After Maximum Nonlinear Iterations = false

IC for Temperature for all_volumes = Encore_Function Name=exact_soln

BC Dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln
BC Dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with lumped_mass Diff Src
EQ ENERGY for TEMPERATURE on block_2 using Q1 with lumped_mass Diff Src

Source For ENERGY on all_volumes = Encore_Function Name=exact_src

Begin Viewfactor Calculation vf_calc
Compute Rule = Hemicube
Geometric Tolerance = 1.0e-6
Hemicube Resolution = 500
Hemicube Max Subdivides = 5
hemicube min separation = 5.0
Output Rule = Verbose

End

Begin Viewfactor Smoothing smooth
Method = least-squares
Convergence Tolerance = 1.0e-06
Maximum Iterations = 500

236

weight power = 2.0
Reciprocity Rule = average
Output Rule = verbose

End

Begin Viewfactor Smoothing no_smooth
Method = none
Convergence Tolerance = 1.0E-08
Maximum Iterations = 150
Weight Power = 2.0
Reciprocity Rule = average
Output Rule = Summary

End

Begin Radiosity Solver Rad_Solv
Coupling = mason
Solver = chaparral GMRES
Convergence Tolerance = 1.0e-08
Maximum Iterations = 300
Output Rule = none

End

Begin Enclosure Definition enc1
add surface surface_2
add surface surface_3
add surface surface_block_2_death_temp1

meshed enclosure is block_2_dead
disable parallel redistribution

Emissivity = 0.6 On surface_block_2_death_temp1
Emissivity = 0.6 On surface_2
Emissivity = 0.7 On surface_3

Blocking Surfaces
Use Viewfactor Calculation vf_calc
Use Viewfactor Smoothing no_smooth
Use Radiosity Solver Rad_Solv

End

Postprocess Heat_Flux on All_Blocks

Evaluate Postprocessor avg_T_surf1
Evaluate Postprocessor avg_T_surf2
Evaluate Postprocessor avg_T_surf2_death_temp1
Evaluate Postprocessor avg_T_surf3
Evaluate Postprocessor avg_T_surf4

Begin Postprocessor Group zzz
Output Number Of Nodes
Evaluate Postprocessor l2
Evaluate Postprocessor l2_dot
Evaluate Postprocessor linf
Evaluate Postprocessor h1

End

BEGIN RESULTS OUTPUT myLABEL diffusion output etc
Database Name = cdfem_rad_death_m{N}.e
at step 0, increment = 1

Title CDFEM Death Test Case #1
Nodal Variables = Solution->Temperature as T
Nodal Variables = pp->heat_flux as Heat_Flux
Nodal Variables = encl_position linf_err
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT
Face Variables = face_area emissivity face_coverage face_temperature irradiance rad_flux radiosity
Element Variables = current_element_volume initial_element_volume volume_change_ratio l2_err l2_dot_err h1_err

END

237

Begin Heartbeat thermalrace
stream Name = globals_tet4_m{N}.dat
precision = 7
timestamp format ’’
legend = off
labels = off
Variable = Global time as time
Variable = Global l2_err
Variable = Global l2_dot
Variable = Global linf
Variable = Global h1_err
Variable = Global enc1_area
Variable = Global enc1_volume
Variable = Global avg_T_surf1
Variable = Global avg_T_surf2 # this value is mostly NaNs
Variable = Global avg_T_surf2_death_temp1
Variable = Global avg_T_surf3
Variable = Global avg_T_surf4
at step 0, increment = 1

end

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

238

12.5. TIME INTEGRATION

12.5.1. Adaptive Time Integration
12.5.1.1. First Order Fixed

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

239

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_1st_ord_fixed_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Transient The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2**N}
Time Integration Method = First_Order
Time Step Variation = fixed

End
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor l2
Evaluate Postprocessor l2_dot
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_1st_ord_fixed_h{N}.e
at step 0, increment = 1
time interval is 1.0
title Aria cube test

240

nodal variables = nonlinear_solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.2. First Order Adaptive

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1

241

Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_1st_ord_adapt_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Transient The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2**N}
Predictor-Corrector Tolerance = {1e-1/4**N}
Maximum Time Step Size = {0.5/2**N}

Time Integration Method = First_Order
Time Step Variation = adaptive

End
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor l2
Evaluate Postprocessor l2_dot
Evaluate Postprocessor h1

242

Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_1st_ord_adapt_h{N}.e
at step 0, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.3. Second Order Fixed

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

load user plugin file ./somefunc.so

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

243

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_2nd_ord_fixed_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Transient The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2**N}
Time Integration Method = Second_Order
Time Step Variation = fixed

End
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

244

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor l2
Evaluate Postprocessor l2_dot
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_2nd_ord_fixed_h{N}.e
at step 0, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.4. Second Order Adaptive

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc

End

245

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_2nd_ord_adapt_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Transient The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2**N}
Predictor-Corrector Tolerance = {1e-1/4**N}
Maximum Time Step Size = {0.5/2**N}

Time Integration Method = Second_Order
Time Step Variation = adaptive

End
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

246

BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor l2
Evaluate Postprocessor l2_dot
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_2nd_ord_adapt_h{N}.e
at step 0, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.5. BDF2 Fixed

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln

End

247

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_bdf2_fixed_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Transient The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2**N}
Time Integration Method = BDF2
Time Step Variation = fixed

End
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

248

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor l2
Evaluate Postprocessor l2_dot
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_bdf2_fixed_h{N}.e
at step 0, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.5.1.6. BDF2 Adaptive

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1
Thermal Conductivity = Polynomial Variable=Temperature Order=1 C0=1 C1=0.1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}_tri3.e
coordinate system is cartesian

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

249

Begin User Function exact_soln
Load From File ./somefunc.so Using Function registerExactSoln

End

Begin User Function exact_soln_dot
Load From File ./somefunc.so Using Function registerExactSolnDot

End

Begin User Function exact_src
Load From File ./somefunc.so Using Function registerExactSrc

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor l2_dot
Use Function exact_soln_dot
Subtract Function time_derivative_at_time->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_bdf2_adapt_h{N}.dat
Floating Point Precision Is 4
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Transient The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

Begin Parameters For Transient The_Time_Block
Begin Parameters For Aria Region myRegion

Initial Time Step Size = {0.1/2**N}
Predictor-Corrector Tolerance = {1e-1/4**N}
Maximum Time Step Size = {0.5/2**N}

Time Integration Method = BDF2
Time Step Variation = adaptive

End
End

End

BEGIN ARIA REGION myRegion

250

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

IC Encore Function on block_1 temperature = exact_soln

BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with MASS DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Output Number of TimeSteps

Evaluate Postprocessor l2
Evaluate Postprocessor l2_dot
Evaluate Postprocessor h1
Evaluate Postprocessor linf

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_bdf2_adapt_h{N}.e
at step 0, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T
nodal variables = time_derivative_at_time->TEMPERATURE as TDOT

END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

251

12.6. ENCLOSURE RADIATION

12.6.1. 2D Cylindrical Shell Enclosure
BEGIN SIERRA Aria

Title Verification for two concentric spheres with radiation gap between them

Begin Global Constants
Stefan Boltzmann constant = 5.6704E-8

End Global Constants

Begin Aria Material inner
Heat conduction = Basic
Density = constant rho = 1.0
Specific heat = constant cp = 1.0
Thermal conductivity = constant k = 2.0

End Aria Material inner

Begin Aria Material outer
Heat conduction = Basic
Density = constant rho = 1.0
Specific heat = constant cp = 1.0
Thermal conductivity = constant k = 0.35

End Aria Material outer

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

Begin Finite Element Model VERIFY_RAD_GAP
Database name = input{N}.g
Coordinate System = Cartesian
Database Type = EXODUSII
Begin Parameters for Block block_1

Material inner
End
Begin Parameters for Block block_2

Material outer
End

End Finite Element Model VERIFY_RAD_GAP

252

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RHS
CONVERGENCE TOLERANCE = 1.000000e-14

END
END TPETRA EQUATION SOLVER

{else}
BEGIN Aztec Equation Solver solve_temperature

Solution Method = cg
Preconditioning Method = jacobi
Maximum Iterations = 1000
Residual Norm Tolerance = 1.0e-14
Residual Norm Scaling = RHS

END
{endif}

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential Steady
Advance myRegion

End
End

End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_RAD_GAP
Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton
maximum nonlinear iterations = 1000
nonlinear residual tolerance = 1.0e-10
nonlinear relaxation factor = 1.0

EQ energy for Temperature for all_volumes using Q1 with Diff
IC const for all_volumes Temperature = 300.0
BC const Dirichlet at surface_1 Temperature = 300.0
BC const Dirichlet at surface_4 Temperature = 1300.0

Output Number of Nodes
Evaluate Postprocessor l2
Evaluate Postprocessor linf
Evaluate Postprocessor h1

begin enclosure definition sph_shell
add surface surface_2
add surface surface_3
blocking surfaces
use viewfactor calculation vf_calc
use viewfactor smoothing vf_smooth
use radiosity solver rad_solver

enclosure id = 1
emissivity = 0.50 on surface_2
emissivity = 0.80 on surface_3

end enclosure definition sph_shell

begin viewfactor calculation vf_calc
bsp tree max depth = 0 and min list length = 25
compute rule = hemicube
geometric tolerance = 1.0E-6

253

hemicube max subdivides = 5
hemicube min separation = 5.0
hemicube resolution = 500

check rowsum with tolerance = .001
output rule = verbose

end viewfactor calculation vf_calc

begin viewfactor smoothing vf_smooth
convergence tolerance = 1.0E-10
method = least-squares
weight power = 2
maximum iterations = 150
reciprocity rule = average
output rule = verbose

end viewfactor smoothing vf_smooth

begin radiosity solver rad_solver
coupling = mason
solver = chaparral gmres
convergence tolerance = 1.0E-8
maximum iterations = 800
output rule = verbose

end radiosity solver rad_solver

Begin Results Output Label diffusion output
database name = output{N}.e
at Step 0, increment = 1
Nodal Variables = solution->temperature as TEMP

End Results Output Label diffusion output

End Aria Region myRegion

End Procedure myProcedure

END SIERRA Aria

12.6.2. 2D Annular Enclosure

12.6.3. 3D Spherical Shell Enclosure

12.6.4. 3D Spherical Shell Partial Enclosure
BEGIN SIERRA Aria

Title Verification for two concentric spheres with radiation gap between them

load user plugin file ./exact.so

Begin Global Constants
Stefan Boltzmann constant = 5.6704E-8

End Global Constants

Begin Aria Material inner
Heat conduction = Basic
Density = constant rho = 1.0
Specific heat = constant cp = 1.0
Thermal conductivity = constant k = 2.0
emissivity = constant e = 0.50

End Aria Material inner

Begin Aria Material outer
Heat conduction = Basic
Density = constant rho = 1.0

254

Specific heat = constant cp = 1.0
Thermal conductivity = constant k = 0.35
emissivity = constant e = 0.80

End Aria Material outer

Begin User Function exact_soln
Load From File ./exact.so Using Function registerExactSoln

End

Begin Norm Postprocessor l2
Use Function exact_soln
Volumes block_1 block_2
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms L2
Store In l2_err

End

Begin Norm Postprocessor h1
Use Function exact_soln
Volumes block_1 block_2
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms H1
Store In h1_err

End

Begin Norm Postprocessor linf
Use Function exact_soln
Volumes block_1 block_2
Subtract Function nonlinear_solution->TEMPERATURE
Compute Norms LInfinity
Store In linf_err

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

BEGIN Field Function numerical_solution
USE NODAL FIELD solution->TEMPERATURE

END Field Function numerical_solution

BEGIN Difference Function temp_error
Difference is exact_soln - numerical_solution

END Difference Function temp_error

Begin Finite Element Model VERIFY_RAD_GAP
Database name = sphere_cutout_h{N}.g
Coordinate System = Cartesian
Database Type = EXODUSII
Begin Parameters for Block block_1

Material inner
End
Begin Parameters for Block block_2

Material outer
End

End Finite Element Model VERIFY_RAD_GAP

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = RHS
CONVERGENCE TOLERANCE = 1.000000e-10

255

END
END TPETRA EQUATION SOLVER

{else}
BEGIN Aztec Equation Solver solve_temperature

Solution Method = cg
Preconditioning Method = jacobi
Maximum Iterations = 1000
Residual Norm Tolerance = 1.0e-10
Residual Norm Scaling = RHS

END
{endif}

Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential Steady
Advance myRegion

End
End

End

Begin Aria Region myRegion

Use Finite Element Model VERIFY_RAD_GAP
Use Linear Solver solve_temperature

Nonlinear Solution Strategy = Newton
maximum nonlinear iterations = 1000
nonlinear residual tolerance = 1.0e-8
nonlinear correction tolerance = 1.0e-8
nonlinear relaxation factor = 1.0

EQ energy for Temperature for all_volumes using Q1 with Diff
IC const for all_volumes Temperature = 300.0
BC const Dirichlet at surface_1 Temperature = 300.0
BC const Dirichlet at surface_4 Temperature = 1300.0
BC Dirichlet for Temperature on surface_5 = encore_function name=exact_soln

Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor linf
Evaluate Postprocessor h1

interpolate function value of exact_soln into nodal field analytic_temp on volumes block_1 block_2
Interpolate Function Value of temp_error into nodal field temp_error on volumes block_1 block_2

begin enclosure definition sph_shell
add surface surface_2
add surface surface_3
blocking surfaces
use viewfactor calculation vf_calc
use viewfactor smoothing vf_smooth
use radiosity solver rad_solver
emissivity = 0.50 on surface_2
emissivity = 0.80 on surface_3
Partial Enclosure Emissivity = 0.8
Partial Enclosure Area = {2.0*PI*0.03*(0.03-0.025)}
Partial Enclosure Temperature = 1035.02

end enclosure definition sph_shell

begin viewfactor calculation vf_calc
bsp tree max depth = 0 and min list length = 25
compute rule = hemicube
geometric tolerance = 1.0E-10
hemicube max subdivides = 5

256

hemicube min separation = 5.0
hemicube resolution = 500

check rowsum with tolerance = .001
output rule = verbose

end viewfactor calculation vf_calc

begin viewfactor smoothing vf_smooth
method = none

end viewfactor smoothing vf_smooth

begin radiosity solver rad_solver
coupling = mason
solver = chaparral gmres
convergence tolerance = 1.0E-9
maximum iterations = 80
output rule = summary

end radiosity solver rad_solver

Begin Results Output Label diffusion output
database name = output{N}.e
at Step 0, increment = 1
Nodal Variables = solution->temperature as T
nodal variables = analytic_temp
nodal variables = temp_error
element variables = h1_err l2_err linf_err

End Results Output Label diffusion output

End Aria Region myRegion

End Procedure myProcedure

END SIERRA Aria

12.6.5. Fully 2D Enclosure Radiation

257

12.7. CHEMISTRY

12.7.1. First Order Reaction (Uniform Temperature)

12.7.2. First Order Reaction (Spatially Varying Temperature)
BEGIN SIERRA Aria

Title Verification Problem for Coupled Chemistry Diffusion

load user plugin file ./Exact_solution.so

Begin Field Function species
Use Quadrature Field species
Integration Order Is 2
Dimension Is 2

End

Begin User Function ufuncAB
Load From File ./Exact_solution.so Using Function registerExactSolnAB

End

Begin User Function ufuncT
Load From File ./Exact_solution.so Using Function registerExactSolnT

End

Begin User Function exact_src
Load From File ./Exact_solution.so Using Function registerExactSrc

End

Begin Postprocessor Output Control pp_out
Comment Character is %
Write To File errors{N}.dat

End

BEGIN Aria MATERIAL hmx
density = constant rho = 1
specific heat = constant cp = 1
heat conduction = basic
thermal conductivity = constant k = 1
begin parameters for chemeq model hmx

number of reactions = 1

species names are A B
species phases are Condensed GAS

Condensed Fraction = 0.0
Steric Coefficients are 0.0
Log Preexponential Factors are 5
Activation Energies are 1000.0
Energy Releases are 0 # insure temperature stays const

Concentration Exponents for A are 1.0
Concentration Exponents for B are 0.0

Stoichiometric coefficients for A are -1.0
Stoichiometric coefficients for B are 1.0

end parameters for chemeq model hmx

end Aria MATERIAL hmx

BEGIN GLOBAL CONSTANTS

258

Ideal Gas Constant = 1.9872 #CGS_cal
END GLOBAL CONSTANTS

BEGIN FINITE ELEMENT MODEL block
Database Name = input{N}.g
decomposition method = rcb
Use material hmx for block_1

END FINITE ELEMENT MODEL block

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
BEGIN AZTEC EQUATION SOLVER solve_temperature

solution method = cg
preconditioning method = jacobi
maximum iterations = 1000
residual norm scaling = NONE
residual norm tolerance = 1.0E-12

END AZTEC EQUATION SOLVER solve_temperature
{endif}

BEGIN procedure myProcedure

begin solution control description
Use System Main
Begin System Main

Simulation Start Time = 0.0
Simulation Termination Time = 0.04
Begin Transient time_block

advance myregion
End Transient time_block

End System Main

BEGIN parameters for transient time_block
start time = 0.0
termination time = 0.04

BEGIN PARAMETERS FOR Aria REGION myRegion
time step variation = fixed
time integration method = second_order
initial time step size = {0.01*0.5**(N-1)}

END PARAMETERS FOR Aria REGION myRegion

END parameters for transient time_block

end solution control description

begin aria region myRegion

Output Number Of Nodes
Compute Difference L2 Of ufuncAB species
Compute Difference L2 Of ufuncT solution->temperature

Interpolate Function Value of ufuncAB Into Element Field AEX

EQ energy for temperature on all_blocks using Q1 with diff mass src

Source for Energy on block_1 = chemeq_heating MODEL = hmx
Source For ENERGY on block_1 = Encore_Function Name=exact_src

259

BC const dirichlet at surface_1 Temperature = 400.0

IC Encore Function on block_1 temperature = ufuncT

maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0E-10
nonlinear correction tolerance = 1.0E-10
Nonlinear Relaxation Factor = 1.

BEGIN CHEMEQ SOLVER FOR hmx
ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL
Absolute Tolerance = 1e-14
Relative Tolerance = 1e-10
Chemistry step multiplier = 100 # default
Epsilon Min = 0.0001 # default
Epsilon Max = 10.0 # default
Minimum Chemistry Timestep = 1.0E-15 # default
Percentage Asymptotics = 0.0 # default
Asymptotic tolerance = 100.0 # default
Minimum Concentration for A = 1.0E-12 # default
Activation Temperature = 100.0
Deactivation Temperature = 500.0 Continue
species A = 1.0
species B = 0.0

END CHEMEQ SOLVER FOR hmx

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e
At Step 0, Increment = {2**(N)}
Timestep Adjustment Interval = 1
Title Aria Chem/Diffusion Verification
Nodal Variables = solution->temperature as T
Element Variables = A B AEX species

END RESULTS OUTPUT LABEL diffusion output

USE FINITE ELEMENT MODEL block
usE LINEAR SOLVER solve_temperature

END Aria REGION myRegion

END procedure myProcedure

END SIERRA Aria

12.7.3. First Order Reaction
BEGIN SIERRA Aria

Title Verification Problem for Coupled Chemistry Diffusion

load user plugin file ./Exact_solution.so

Begin Field Function species
Use Quadrature Field species
Integration Order Is 2
Dimension Is 2

End

Begin User Function ufuncAB
Load From File ./Exact_solution.so Using Function registerExactSolnAB

End

Begin User Function ufuncT
Load From File ./Exact_solution.so Using Function registerExactSolnT

End

260

Begin User Function energySrc
Load From File ./Exact_solution.so Using Function registerEnergySrc

End

Begin Norm Postprocessor L2_AB
Use Function ufuncAB
Subtract Function species
Compute Norms L2

End

Begin Norm Postprocessor L2_T
Use Function ufuncT
Subtract Function solution->temperature
Compute Norms L2

End

Begin Norm Postprocessor LInf_T
Use Function ufuncT
Subtract Function solution->temperature
Compute Norms LInfinity

End

Begin Norm Postprocessor H1_T
Use Function ufuncT
Subtract Function solution->temperature
Compute Norms H1

End

Begin Postprocessor Output Control pp_out
Comment Character is %
Write To File error{N}.txt

End

BEGIN Aria MATERIAL hmx
density = constant rho = 1
specific heat = constant cp = 1
heat conduction = basic
thermal conductivity = constant k = 1
begin parameters for chemeq model hmx

number of reactions = 1

species names are A B
species phases are Condensed GAS

Condensed Fraction = 0.0
Steric Coefficients are 0.0
Log Preexponential Factors are 5
Activation Energies are 1000.0
Energy Releases are -20.0

Concentration Exponents for A are 1.0
Concentration Exponents for B are 0.0

Stoichiometric coefficients for A are -1.0
Stoichiometric coefficients for B are 1.0

end parameters for chemeq model hmx

end Aria MATERIAL hmx

BEGIN GLOBAL CONSTANTS
Ideal Gas Constant = 1.9872 #CGS_cal

END GLOBAL CONSTANTS

BEGIN FINITE ELEMENT MODEL block

261

Database Name = grid{N}x.exo $ exodusii
decomposition method = rib

Use material hmx for block_1
END FINITE ELEMENT MODEL block

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-06

END
END TPETRA EQUATION SOLVER

{else}
BEGIN AZTEC EQUATION SOLVER solve_temperature

solution method = cg
preconditioning method = jacobi
maximum iterations = 1000
residual norm scaling = NONE
residual norm tolerance = 1.0E-6

END AZTEC EQUATION SOLVER solve_temperature
{endif}

BEGIN procedure myProcedure

begin solution control description
Use System Main
Begin System Main

Simulation Start Time = 0.0
Simulation Termination Time = 0.04
Begin Transient time_block

advance myregion
End Transient time_block

End System Main

BEGIN parameters for transient time_block
start time = 0.0
termination time = 0.04

BEGIN PARAMETERS FOR Aria REGION myRegion
time step variation = fixed
time integration method = second_order
initial time step size = {0.001*0.5**(N-1)}

END PARAMETERS FOR Aria REGION myRegion

END parameters for transient time_block

end solution control description

begin aria region myRegion

Output Number Of Elements

Evaluate Postprocessor L2_AB
Evaluate Postprocessor L2_T
Evaluate Postprocessor LInf_T
Evaluate Postprocessor H1_T

EQ energy for temperature on all_blocks using Q1 with diff mass src

Source for Energy on all_blocks = chemeq_heating MODEL = hmx

use data block region_data

maximum nonlinear iterations = 10

262

nonlinear residual tolerance = 1.0E-10
nonlinear correction tolerance = 1.0E-10
Nonlinear Relaxation Factor = 1.

BEGIN CHEMEQ SOLVER FOR hmx
Chemistry step multiplier = 10.0
Epsilon Min = 0.0001
Epsilon Max = 10.0
Minimum Chemistry Timestep = 1.0E-15
Percentage Asymptotics = 0.0
Asymptotic tolerance = 100.0

ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL
Absolute Tolerance = 1e-12
Relative Tolerance = 1e-9
Minimum Concentration for A = 1.0E-08
Activation Temperature = 0.0
species A = 1.0
species B = 0.0

END CHEMEQ SOLVER FOR hmx

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output{N}.e
At Step 0, Increment = {2**(N-1)}
Timestep Adjustment Interval = 1
Title Aria Chem/Diffusion Verification
Nodal Variables = solution->temperature as T
Element Variables = A B species

END RESULTS OUTPUT LABEL diffusion output

IC Encore Function on block_1 temperature = ufuncT

BC dirichlet for Temperature at surface_1 = Encore_Function Name=ufuncT

Source For ENERGY on block_1 = Encore_Function Name=energySrc

USE FINITE ELEMENT MODEL block
usE LINEAR SOLVER solve_temperature

END Aria REGION myRegion

END procedure myProcedure

END SIERRA Aria

12.7.4. DAE and Pressure Test
BEGIN SIERRA Aria

Title Verification Problem for Coupled Chemistry Diffusion

load user plugin file ./Exact_solution.so

Begin Field Function species
Use Quadrature Field species
Integration Order Is 2
Dimension Is 1

End

Begin User Function ufuncA
Load From File ./Exact_solution.so Using Function registerExactSolnA

End

Begin Norm Postprocessor L2_A
Use Function ufuncA
Subtract Function species
Compute Norms L2

263

End

Begin Postprocessor Output Control pp_out
Comment Character is %
Write To File error.txt

End

BEGIN Aria MATERIAL hmx
density = constant rho = 1
specific heat = constant cp = 1
heat conduction = basic
thermal conductivity = constant k = 1
pressure = constant value=3

begin parameters for chemeq model hmx
number of reactions = 1

species names are A
species phases are Condensed

Condensed Fraction = 0.0
Steric Coefficients are 0.0
Log Preexponential Factors are {log(5)}
Activation Energies are 10.0
Energy Releases are 0.0

Concentration Exponents for A are 0.0

Stoichiometric coefficients for A are -1.0

Pressure dependence
Reference pressure = 2.
Pressure exponents are 2.
Pressure = From_Material_Definition

#Distributed activation energy
Activation energy st devs are 1.
extent of reaction based on A

end parameters for chemeq model hmx

end Aria MATERIAL hmx

BEGIN GLOBAL CONSTANTS
Ideal Gas Constant = 1.

END GLOBAL CONSTANTS

BEGIN FINITE ELEMENT MODEL block
Database Name = 1block.g
decomposition method = rib

Use material hmx for block_1
END FINITE ELEMENT MODEL block

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
BEGIN AZTEC EQUATION SOLVER solve_temperature

solution method = cg
preconditioning method = jacobi

264

maximum iterations = 1000
residual norm scaling = NONE
residual norm tolerance = 1.0E-12

END AZTEC EQUATION SOLVER solve_temperature
{endif}

BEGIN procedure myProcedure

begin solution control description
Use System Main
Begin System Main

Simulation Start Time = 0.0
Simulation Termination Time = 2.0
Begin Transient time_block

advance myregion
End Transient time_block

End System Main

BEGIN parameters for transient time_block
start time = 0.0
termination time = 2.0

BEGIN PARAMETERS FOR Aria REGION myRegion
time step variation = fixed
time integration method = second_order
initial time step size = {0.01*0.5}

END PARAMETERS FOR Aria REGION myRegion

END parameters for transient time_block

end solution control description

begin aria region myRegion

Evaluate Postprocessor L2_A

EQ energy for temperature on all_blocks using Q1 with diff mass src
Source for Energy on all_blocks = chemeq_heating MODEL = hmx
IC for temperature on all_blocks = constant value=3

maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0E-10
nonlinear correction tolerance = 1.0E-10
Nonlinear Relaxation Factor = 1.

BEGIN CHEMEQ SOLVER FOR hmx
ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL
Absolute Tolerance = 1e-12
Relative Tolerance = 1e-10
Activation Temperature = 0.0
species A = 1.0

END CHEMEQ SOLVER FOR hmx

Begin Postprocessor Group exact_soln
Interpolate function value of ufuncA into nodal field exact_A

End

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = output.e
At Step 0, Increment = 1
Timestep Adjustment Interval = 1
Title Aria Chem/Diffusion Verification
Nodal Variables = solution->temperature as T
Nodal Variables = exact_A
Element Variables = A

END RESULTS OUTPUT LABEL diffusion output

USE FINITE ELEMENT MODEL block

265

usE LINEAR SOLVER solve_temperature

END Aria REGION myRegion

END procedure myProcedure

END SIERRA Aria

12.7.5. PMDI Plugin Test
{ECHO(OFF)}
{include("params_nom")}
{ECHO(OFF)}
{include("params")}

BEGIN SIERRA aria
Title PMDI_Plugin_Verification
load user plugin file pmdi_multspecies.so

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 10000
RESIDUAL SCALING = NONE
CONVERGENCE TOLERANCE = 1.000000e-08

END
END TPETRA EQUATION SOLVER

{else}
BEGIN TRILINOS EQUATION SOLVER solve_temperature

solution method = CG
preconditioning method = jacobi
maximum iterations = 10000
residual norm tolerance = 1e-08
residual norm scaling = NONE

END TRILINOS EQUATION SOLVER solve_temperature
{endif}

BEGIN GLOBAL CONSTANTS
Stefan Boltzmann Constant = 5.67e-8 # W/m^2-K^4
ideal gas constant = 8314. # J/kgmol-K

END GLOBAL CONSTANTS

begin data block pmdi_data
real data_real = (\# Variable definition, units

{to} \# to Initial gas temperature, K- necessary to calculate pressure for first timestep
{vexOTvex} \# vex/Tvex Excess volume/temp excess volume, m^3/K
{po} \# po Initial pressure, PA
{rbo*uden_pmdi} \# rbo Initial bulk density, kg/m^3
{rco} \# rco Initial condensed density, kg/m^3
{kb_1} \# kb, effectve cond. for Keff, W/mK (for20lb: 0.0486 0.706) radiation coefficient- 16/3/(a +sig s)
{kb_2} \# kb, W/mK
{t_1} \# t, K
{t_2} \# t, K
{rad_coef} \#
{ukb} \#
{ukrad} \#
{ukeff_pmdi} \#
{upress})

end data block pmdi_data

BEGIN ARIA MATERIAL pmdifoam
use data block pmdi_data
Emissivity = constant e = {0.8*uemis_pmdi}
density = constant rho = {rbo*uden_pmdi} #

266

specific heat = constant cp = 1
tensor thermal conductivity = calore_user_sub name = ktdirpu type = element_tensor # W/m-K

Heat Conduction = generalized

BEGIN PARAMETERS FOR CHEMEQ MODEL reaction_model
number of reactions is 3
species names are FOAMA FOAMB FOAMC CHAR CO2 LMWO HMWO
species phases are Condensed Condensed Condensed Condensed Gas Condensed Condensed
condensed fraction is 0. # Not used
steric coefficients are 0. 0. 0. # Not used
log preexponential factors are 0. 0. 0. # Set these to 0 to prevent any reactions for the purpose of verification
activation energies are {179441062.*uE1_pmdi} {179441062.*uE1_pmdi} {179441062.*uE1_pmdi} # J/kmol (e/R=21583 KENDATA)
energy release units are per unit mass
energy releases are 0 0 0 # J/Kg no energy for first cut

Rxn-->1 2 # Mechanism
concentration exponents for FOAMA ARE 1. 0. 0. # A -> CO2 --> 0.45 PMDIRPU -> 0.252 CO2 + 0.198 LMWO
concentration exponents for FOAMB ARE 0. 1. 0. # B-> HMWO --> 0.15 PMDIRPU -> 0.15 HMWO
concentration exponents for FOAMC ARE 0. 0. 1. # C-> HMWO --> 0.4 PMDIRPU -> 0.2 HMWO+0.2 char
concentration exponents for CHAR ARE 0. 0. 0. # 20% CHAR FORMATION
concentration exponents for CO2 ARE 0. 0. 0. #
concentration exponents for LMWO ARE 0. 0. 0. #
concentration exponents for HMWO ARE 0. 0. 0.

stoichiometric coefficients for FOAMA ARE -1.0 0.0 0.0 # dA/dt = r1
stoichiometric coefficients for FOAMB ARE 0.0 -1.0 0.0
stoichiometric coefficients for FOAMC ARE 0.0 0.0 -1.0
stoichiometric coefficients for CHAR ARE 0.0 0.0 0.5
stoichiometric coefficients for CO2 ARE +0.56 0.0 0.0 # dB/dt = 0.252/0.45 r1
stoichiometric coefficients for LMWO ARE +0.44 0.0 0.0 # dC/dt = 0.198/0.45 r1
stoichiometric coefficients for HMWO ARE +0.0 +1.0 +0.5 # dD/dt = r2 + r3

aux variable names are sf, phi, keff, frxn, krad #, p, krad, kbulk
aux variable subroutine is calcauxvar

END PARAMETERS FOR CHEMEQ MODEL reaction_model
END ARIA MATERIAL pmdifoam

BEGIN FINITE ELEMENT MODEL FoamInCan
database name is 1block.g
Use Material pmdifoam for block_1

END FINITE ELEMENT MODEL FoamInCan

BEGIN PROCEDURE myProcedure

begin solution control description
use system main
begin system main

simulation start time = 0.0
simulation termination time = 1.0

begin transient solution_block_1
advance myRegion

end transient solution_block_1
end system main

begin parameters for transient solution_block_1
start time = 0.0
begin parameters for aria region myRegion

time step variation = fixed
initial time step size = 0.1

end parameters for aria region myRegion
end

end solution control description

BEGIN ARIA REGION myRegion
use finite element model FoamInCan Model Coordinates are model_coordinates
use linear solver solve_temperature

267

nonlinear solution strategy = newton
maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0e-8
nonlinear relaxation factor = 1.0
use dof averaged nonlinear residual

BEGIN CHEMEQ SOLVER FOR reaction_model
ODE SOLVER = CVODE ADAMS 12 FUNCTIONAL
absolute tolerance = 1e-12
relative tolerance = 1e-9

aux variable names are sf, phi, rbulk, keff
aux variable sf = 1.0 # initial solid fraction value
aux variable phi = {phi} # initial gas volume fraction
aux variable keff = 0. # initial effective thermal conductivity
aux variable frxn = 1.0 # initial bulk density
aux variable krad = 0.0 # radcond
species FOAMA = {1./7.}
species FOAMB = {1./7.}
species FOAMC = {1./7.}
species CHAR = {1./7.}
species CO2 = {1./7.}
species LMWO = {1./7.}
species HMWO = {1./7.}
minimum concentration for FOAMA = 1e-12
minimum concentration for FOAMB = 1e-12
minimum concentration for FOAMC = 1e-12
chemistry step multiplier = 1E5

END CHEMEQ SOLVER FOR reaction_model

EQ ENERGY for TEMPERATURE on block_1 using Q1 with mass src
Source for energy on block_1 = chemeq_heating model=reaction_model
IC for temperature on block_1 = constant value={2*to}

#---------------------------------------
User variable definition
#---------------------------------------

Define Global Scalar gmasco2 as real operation sum initial value 0.0
Define Global Scalar gmasn2 as real operation sum initial value 0.0
Define Global Scalar gmaslowmw as real operation sum initial value 0.0
Define Global Scalar gmashighmw as real operation sum initial value 0.0

Define Global Scalar itv as real operation sum initial value 0.0
Define Global Scalar gvtot as real operation sum initial value 0
Define Global Scalar p as real operation min initial value 101325.0
Define Global Scalar psig as real operation min initial value 0.0
Define Global Scalar padmix as real operation min initial value 101325.0
Define Global Scalar psigadmix as real operation min initial value 0.0
Define Global Scalar mcvT as real operation sum initial value 0.0
Define Global Scalar mcv as real operation min initial value 0.0
Define Global Scalar gvol as real operation sum initial value 0.0

Define Global Scalar psig1 as real operation min initial value 0.0
Define Global Scalar psigadmix1 as real operation min initial value 0.0
Define Global Scalar poc as real operation max initial value 0.0
Define Global Scalar count as int operation min initial value 0

Define Global Scalar psigxuncert as real operation min initial value 0.0
Define Global Scalar pxuncertsig as real operation min initial value 0.0

Define Global Scalar molesn2 as real operation min initial value 0.0
Define Global Scalar molesco2 as real operation min initial value 0.0

Define Global Scalar moleslowmw as real operation min initial value 0.0
Define Global Scalar moleshighmw as real operation min initial value 0.0
Define Global Scalar molesofv as real operation min initial value 0.0
Define Global Scalar molestotal as real operation min initial value 0.0

268

BEGIN RESULTS OUTPUT output_1
Database Name is %B.e
Database Type is EXODUSII
at step 0, increment is 1
nodal variables = solution->temperature as temp
nodal variables = solution->temperatureDot as TDOT
element variables = Density as RHO
element variables = FOAMA FOAMB FOAM C CO2 CHAR LMWO HMWO
element variables = sf, phi, keff, frxn, krad
global variables = p
global variables = psig

END RESULTS OUTPUT output_1

END ARIA REGION myRegion
END PROCEDURE myProcedure

END SIERRA aria

269

12.8. MISCELLANEOUS

12.8.1. Thermal Postprocessing
BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = CONSTANT rho = 1
Thermal Conductivity = Constant k = 1
Specific Heat = Constant cp = 1
heat conduction = basic

END

BEGIN ARIA MATERIAL Mathite
Density = CONSTANT rho = 1
Thermal Conductivity = Constant k = 1
Specific Heat = Constant cp = 1
heat conduction = basic

END

Begin Global Constants
Stefan Boltzmann Constant = 5.67e-8

End

Begin Aria Material surf_2_models
BC Reference Temperature = encore_function name = cf_Tref
Heat Transfer Coefficient = constant h=10.0

End

Begin Aria Material surf_3_models
BC Rad Reference Temperature = encore_function name = rf_Tref
Emissivity = Constant E=0.6
Radiation form factor = Constant F=1.0

End

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER SOLVE_TEMPERATURE

BEGIN CG SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-14

END
END TPETRA EQUATION SOLVER

{else}
BEGIN AZTEC EQUATION SOLVER solve_temperature

solution method = cg
preconditioning method = jacobi
maximum iterations = 1000
residual norm scaling = r0
residual norm tolerance = 1.0e-14

END AZTEC EQUATION SOLVER solve_temperature
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = cube_two_blocks_hex8_h{N}.g
coordinate system is cartesian

[0,1] x [-0.5,0.5] x [-0.5,0.5]
BEGIN PARAMETERS FOR BLOCK block_1

material Kryptonite
END

[-1,0] x [-0.5,0.5] x [-0.5,0.5]
BEGIN PARAMETERS FOR BLOCK block_2

270

material Mathite
END

Use Material surf_2_models for surface_2
Use Material surf_3_models for surface_3

END FINITE ELEMENT MODEL cube

specify text output for Encore PPs
Begin Postprocessor Output Control pp_out

Write to File encoreinfo{N}.txt
Enable Small Output Rounding To Zero
Floating Point Precision Is 10

End

Begin Global Function Parameters gfp
Parameter T0 = 400 # [K]
Parameter C0 = 2.0
Parameter C1 = 3.0
Parameter C2 = 4.0
Parameter C3 = 0.4
Parameter h = 10.0
Parameter eps = 0.6
Parameter sigma = 5.67e-8

End

Begin Field Function ffunc
Use Nodal Field nonlinear_solution->TEMPERATURE

End

exact solution
Begin User Function ufunc

Load From File ./somefunc.so Using Function registerExactSoln
End

Begin Difference Function dfunc
Difference Is ufunc - ffunc

End

Begin User Function src
Integration Order Is 4
Load From File ./somefunc.so Using Function registerSrc

End

Begin User Function cf_Tref
Integration Order Is 4
Load From File ./somefunc.so Using Function registerConvHeatFlux_Tref

End

exact convective flux
Begin User Function cf_bc_exact

Integration Order Is 4
Load From File ./somefunc.so Using Function registerExactConvHeatFlux

End

Begin User Function rf_Tref
Load From File ./somefunc.so Using Function registerRadFlux_Tref

End

exact radiative flux
Begin User Function rf_bc_exact

Integration Order Is 4
Load From File ./somefunc.so Using Function registerExactRadFlux

End

Begin Norm Postprocessor l2_error
Use Function ufunc
Subtract Function ffunc

271

Compute Norm L2
End

Begin Integrate Function Postprocessor cf_bc_ipo_ex
Use Function cf_bc_exact
Surfaces surface_2
Disable Output

End

Begin Integrate Function Postprocessor rf_bc_ipo_ex
Use Function rf_bc_exact
Surfaces surface_3
Disable Output

End

Begin Average Value Postprocessor cf_bc_ifo_ex
Use Function cf_bc_exact
Surfaces surface_2
Disable Output

End

Begin Average Value Postprocessor rf_bc_ifo_ex
Use Function rf_bc_exact
Surfaces surface_3
Disable Output

End

Begin Integrate Function Postprocessor src_ipo_ex
Use Function src
Volumes block_1 block_2
Disable Output

End

Begin Evaluate Function Postprocessor eval_b1
Use Function ffunc
Evaluate Value
random interior point in block_2
Location -0.151720462393008 0.146935733548329 -0.393641401879319
parametric search tolerance 1.0e-10

End

Begin Evaluate Function Postprocessor eval_b1_ex
Use Function ufunc
Evaluate Value
random interior point in block_2
Location -0.151720462393008 0.146935733548329 -0.393641401879319
Disable Output

End

Begin Evaluate Function Postprocessor eval_b1b2
Use Function ffunc
Evaluate Value
random interior point on block interface (x=0)
Location 0 0.162595269728099 -0.377464159584852
parametric search tolerance 1.0e-10

End

Begin Evaluate Function Postprocessor eval_b1b2_ex
Use Function ufunc
Evaluate Value
random interior point on block interface (x=0)
Location 0 0.162595269728099 -0.377464159584852
Disable Output

End

Begin Evaluate Function Postprocessor eval_s2
Use Function ffunc
Evaluate Value

272

random interior point on sideset 2 (z=0.5)
Location -0.855758209426849 0.159603369582751 0.5

End

Begin Evaluate Function Postprocessor eval_s2_ex
Use Function ufunc
Evaluate Value
random interior point on sideset 2 (z=0.5)
Location -0.855758209426849 0.159603369582751 0.5
Disable Output

End

Begin Difference Postprocessor cf_bc_ipo_err
Difference is cf_bc_ipo_ex - cf_bc_ipo

End

Begin Difference Postprocessor rf_bc_ipo_err
Difference is rf_bc_ipo_ex - rf_bc_ipo

End

Begin Difference Postprocessor cf_bc_ifo_err
Difference is cf_bc_ifo_ex - cf_bc_ifo

End

Begin Difference Postprocessor rf_bc_ifo_err
Difference is rf_bc_ifo_ex - rf_bc_ifo

End

Begin Difference Postprocessor src_ipo_err
Difference is src_ipo_ex - src_ipo

End

Begin Difference Postprocessor eval_b1_err
Difference is eval_b1_ex - eval_b1

End

Begin Difference Postprocessor eval_b1b2_err
Difference is eval_b1b2_ex - eval_b1b2

End

Begin Difference Postprocessor eval_s2_err
Difference is eval_s2_ex - eval_s2

End

Begin Tabular Function Output Postprocessor tfo_sset2
Use Functions model_coordinates ffunc ufunc dfunc
Surfaces surface_2
Write To File values_sset2_{N}.dat

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Transient MySolveBlock
Advance myRegion

End
Simulation Max Global Iterations = 1
Simulation Start Time = 0
Simulation Termination Time = 1

End
Begin Parameters for Transient MySolveBlock
End

End

BEGIN ARIA REGION myRegion

273

use finite element model cube
use linear solver solve_temperature

nonlinear solution strategy = newton

maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0e-16
nonlinear correction tolerance = 1.0e-12
nonlinear relaxation factor = 1.0

use dof averaged nonlinear residual

EQ ENERGY for TEMPERATURE on all_blocks using Q1 with DIFF SRC

MESH GROUP Dirichlet_Surface = surface_4 surface_5 surface_6 surface_7
BC Dirichlet for Temperature on Dirichlet_Surface = encore_function name=ufunc

BC Flux for Energy on surface_2 = Generalized_Nat_Conv Power_Output=cf_bc_ipo Flux_Output=cf_bc_ifo

BC Flux for Energy on surface_3 = Generalized_Rad Power_Output=rf_bc_ipo Flux_Output=rf_bc_ifo

SOURCE for ENERGY on all_blocks = encore_function name=src Power_Output=src_ipo

Evaluate Postprocessor eval_b1
Evaluate Postprocessor eval_b1b2
Evaluate Postprocessor eval_s2

Evaluate Postprocessor tfo_sset2

Begin Postprocessor Group zzz
Output Number of Nodes

Evaluate Postprocessor l2_error

Evaluate Postprocessor cf_bc_ipo_ex
Evaluate Postprocessor cf_bc_ipo_err

Evaluate Postprocessor rf_bc_ipo_ex
Evaluate Postprocessor rf_bc_ipo_err

Evaluate Postprocessor cf_bc_ifo_ex
Evaluate Postprocessor cf_bc_ifo_err

Evaluate Postprocessor rf_bc_ifo_ex
Evaluate Postprocessor rf_bc_ifo_err

Evaluate Postprocessor src_ipo_ex
Evaluate Postprocessor src_ipo_err

Evaluate Postprocessor eval_b1_ex
Evaluate Postprocessor eval_b1_err

Evaluate Postprocessor eval_b1b2_ex
Evaluate Postprocessor eval_b1b2_err

Evaluate Postprocessor eval_s2_ex
Evaluate Postprocessor eval_s2_err

End

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

274

12.8.2. Postprocess Min/Max

BEGIN SIERRA myJob

BEGIN ARIA MATERIAL Kryptonite
Density = constant rho=1
Thermal Conductivity = constant k=1
Specific Heat = Constant cp=1
heat conduction = basic

END ARIA MATERIAL Kryptonite

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER DIRECT_SOLVER

BEGIN SUPERLU SOLVER
END

END TPETRA EQUATION SOLVER
{else}

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End
{endif}

BEGIN FINITE ELEMENT MODEL cube
database name = square_h{N}.e
coordinate system is cartesian
decomposition method = rib

BEGIN PARAMETERS FOR BLOCK block_1
material Kryptonite

END PARAMETERS FOR BLOCK block_1

END FINITE ELEMENT MODEL cube

Begin String Function exact_soln
Value Is "sin(7*x) * sin(8*y)"
Gradient Is "7 * cos(7*x) * sin(8*y)" "8 * sin(7*x) * cos(8*y)"

End

Begin String Function exact_src
Value Is "(49 + 64) * sin(7*x) * sin(8*y)"

End

Begin Field Function ffunc
Use Nodal Field nonlinear_solution->TEMPERATURE

End

Begin Norm Postprocessor l2
Use Function exact_soln
Subtract Function ffunc
Compute Norms L2

End

Begin Norm Postprocessor h1
Use Function exact_soln
Subtract Function ffunc
Compute Norms H1

End

Begin Norm Postprocessor linf
Use Function exact_soln
Subtract Function ffunc
Compute Norms LInfinity

End

Begin Min Max Postprocessor max_node_b1
Use Function ffunc
Compute Max

275

Volumes block_1
End

Begin Min Max Postprocessor min_node_b1
Use Function ffunc
Compute Min
Volumes block_1

End

Begin Min Max Postprocessor max_node_s2
Use Function ffunc
Compute Max
Surfaces surface_2 # x=1

End

Begin Min Max Postprocessor min_node_s2
Use Function ffunc
Compute Min
Surfaces surface_2 # x=1

End

code used to compute exact errors in Min Max PP
Begin String Function sfunc_max_node_b1_ex

Value Is "1.0"
End

Begin String Function sfunc_min_node_b1_ex
Value Is "-1.0"

End

Begin String Function sfunc_max_node_s2_ex
Value Is "sin(7)"

End

Begin String Function sfunc_min_node_s2_ex
Value Is "-sin(7)"

End

Begin Evaluate Function Postprocessor max_node_b1_ex
Use Function sfunc_max_node_b1_ex
Location 0 0 0

End

Begin Evaluate Function Postprocessor min_node_b1_ex
Use Function sfunc_min_node_b1_ex
Location 0 0 0

End

Begin Evaluate Function Postprocessor max_node_s2_ex
Use Function sfunc_max_node_s2_ex
Location 0 0 0

End

Begin Evaluate Function Postprocessor min_node_s2_ex
Use Function sfunc_min_node_s2_ex
Location 0 0 0

End

Begin Difference Postprocessor max_node_b1_err
Difference is max_node_b1_ex - max_node_b1

End

Begin Difference Postprocessor min_node_b1_err
Difference is min_node_b1 - min_node_b1_ex

End

Begin Difference Postprocessor max_node_s2_err
Difference is max_node_s2_ex - max_node_s2

276

End

Begin Difference Postprocessor min_node_s2_err
Difference is min_node_s2 - min_node_s2_ex

End
end code used to compute exact errors in Min Max PP

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors_h{N}.dat
Floating Point Precision Is 8
Floating Point Format Is Scientific

End

BEGIN PROCEDURE myAriaProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential The_Time_Block
Advance myRegion

End
Simulation Start Time = 0

Simulation Termination Time = 1
End

Begin Parameters For Transient The_Time_Block
End

End

BEGIN ARIA REGION myRegion

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-12
Nonlinear Correction Tolerance = 1.0e-12
Nonlinear Relaxation Factor = 1.0
use dof averaged nonlinear residual

use finite element model cube
Use Linear Solver Direct_Solver

BC dirichlet for Temperature at surface_1 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_2 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_3 = Encore_Function Name=exact_soln
BC dirichlet for Temperature at surface_4 = Encore_Function Name=exact_soln

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF SRC

Source For ENERGY on block_1 = Encore_Scalar_Function Name=exact_src

Evaluate Postprocessor max_node_b1
Evaluate Postprocessor min_node_b1

Evaluate Postprocessor max_node_s2
Evaluate Postprocessor min_node_s2

Begin Postprocessor Group zzz
Output Number of Nodes

Evaluate Postprocessor l2
Evaluate Postprocessor h1

Evaluate Postprocessor linf

Evaluate Postprocessor max_node_b1_err
Evaluate Postprocessor min_node_b1_err
Evaluate Postprocessor max_node_s2_err
Evaluate Postprocessor min_node_s2_err

End

277

Begin Solution Options
post process normalized temperature on surface_2 as t_s2
post process normalized temperature on block_1 as t_b1

End

BEGIN RESULTS OUTPUT LABEL diffusion output
database Name = aria_h{N}.e
at step 0, increment = 1
time interval is 1.0
title Aria cube test
nodal variables = nonlinear_solution->TEMPERATURE as T

global variables = t_s2 t_b1
END RESULTS OUTPUT LABEL diffusion output

Begin History Output blah
database Name = aria_h{N}.hist

at time 1 interval is 1
Variable = global t_s2
Variable = global t_b1

End

END ARIA REGION myRegion

END PROCEDURE myAriaProcedure

END SIERRA myJob

12.8.3. Local Coordinates: Cartesian
Aria input file heat condution in local
coodinate system

BEGIN SIERRA MyProblem

Begin User Function ufunc
Load From File ./cartesian.so Using Function registerExactSolution

End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 3
Floating Point Format Is Scientific

End

load user plugin file ./cartesian.so
load user plugin file ./cartesian.so
load user plugin file ./cartesian.so

begin data block region_data
T0 T1 Kxx Kyy Kzz Lx Ly Lz theta1 theta2

Real r_data = 400.0 100.0 10.0 1.0 1.0 1.0 1.0 1.0 45.0 22.5
end data block region_data

BEGIN LOCAL COORDINATE SYSTEM CS_Block
TYPE = Cartesian
ORIGIN = 0.000000 0.000000 0.00000
POINT = 0.707106781186548 0.653281482438188 0.270598050073098
VECTOR = 0 -0.382683432365090 0.923879532511287

END

BEGIN ARIA MATERIAL M_Block
DENSITY = CONSTANT rho = 0.1
TENSOR THERMAL CONDUCTIVITY = CONSTANT XX=10.0 YY=1.0 ZZ=1.0
SPECIFIC HEAT = CONSTANT CP = 0.5

278

Heat Conduction = Generalized
END ARIA MATERIAL M_Block

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER LINEARSOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
BEGIN AZTEC EQUATION SOLVER LinearSolver

SOLUTION METHOD = gmres
PRECONDITIONING METHOD = jacobi
MAXIMUM ITERATIONS = 1000
RESIDUAL NORM TOLERANCE = 1.0e-12
RESIDUAL NORM SCALING = r0

END AZTEC EQUATION SOLVER LinearSolver
{endif}

BEGIN FINITE ELEMENT MODEL FE_Block
DATABASE NAME = cartesian{N}.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
MATERIAL M_Block
LOCAL COORDINATE SYSTEM = CS_Block

END PARAMETERS FOR BLOCK block_1
END

BEGIN PROCEDURE MyProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential MyBlock
Advance Region_Block

End
End

End

BEGIN ARIA REGION Region_Block
nonlinear solution strategy = newton
use data block region_data

Output Number of Nodes
Compute Difference L2 Of ufunc solution->temperature Store In l2_error_norm2
Compute Difference LInfinity Of ufunc solution->temperature Store In linf_error_norm

NONLINEAR RESIDUAL TOLERANCE = 1.0e-10
NONLINEAR CORRECTION TOLERANCE = 1.0e-10
MAXIMUM NONLINEAR ITERATIONS = 10
NONLINEAR RELAXATION FACTOR = 1.0

IC for temperature on block_1 = calore_user_sub name = localCoord_ic type=node

BC dirichlet for temperature on surface_1 = calore_user_sub name = localCoord_bc type=node
BC dirichlet for temperature on surface_2 = calore_user_sub name = localCoord_bc type=node
BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node
BC dirichlet for temperature on surface_4 = calore_user_sub name = localCoord_bc type=node
BC dirichlet for temperature on surface_5 = calore_user_sub name = localCoord_bc type=node
BC dirichlet for temperature on surface_6 = calore_user_sub name = localCoord_bc type=node

IC CONST ON block_1 Temperature = 0.0

279

along z
BC Const Dirichlet on surface_1 Temperature = 100.0
BC Const Dirichlet on surface_2 Temperature = 0.0
along y
BC Linear Dirichlet on surface_3 Temperature Coeff = 50. 0. -38.37 92.39
BC Linear Dirichlet on surface_5 Temperature Coeff = 50. 0. -38.37 92.39
along x
BC Linear Dirichlet on surface_4 Temperature Coeff = 50. 0. -38.37 92.39
BC Linear Dirichlet on surface_6 Temperature Coeff = 50. 0. -38.37 92.39

EQ ENERGY FOR TEMPERATURE ON block_1 USING Q1 WITH DIFF #SRC
#SOURCE for Temperature on block_1 =

Begin Volume Heating juan
add volume block_1
element subroutine = localCoord_vhs

End

USE FINITE ELEMENT MODEL FE_Block

BEGIN RESULTS OUTPUT TemperatureOutput
DATABASE NAME = output{N}.e
AT STEP 1, INCREMENT = 1
TITLE Aria Temperature in Local Coordinate System Verification Problem
NODAL VARIABLES = solution->TEMPERATURE AS T
Element Variables = l2_error_norm2 as l2error
Element Variables = linf_error_norm as linf

END RESULTS OUTPUT TemperatureOutput

USE LINEAR SOLVER LinearSolver
END

END
END SIERRA MyProblem

12.8.4. Local Coordinates: Cylindrical
Aria input file heat condution in local
coodinate system

BEGIN SIERRA MyProblem

Begin Field Function ffunc
Use Nodal Field solution->temperature

End

Begin User Function ufunc
Load From File ./cylindrical.so Using Function registerExactSolution

End

Begin Definition for Function krr
Type is piecewise linear
Begin Values
0 1.0
400 1.0

End Values
Scale by 10.0

End

Begin Definition for Function ktt
Type is piecewise linear
Begin Values
0 1.0
400 1.0

End Values
Scale by 1.0

280

End

Begin Definition for Function kzz
Type is piecewise linear
Begin Values
0 1.0
400 1.0

End Values
End

Begin Postprocessor Output Control pp_out
Comment Character Is %
Write To File errors{N}.dat
Floating Point Precision Is 6
Floating Point Format Is Scientific

End

load user plugin file ./cylindrical.so

begin data block region_data
T0 T1 Krr Ktt Kzz Lx Lz theta1 theta2

Real r_data = 400.0 100.0 10.0 1.0 1.0 1.0 1.0 45.0 22.5
end data block region_data

BEGIN LOCAL COORDINATE SYSTEM CS_Block
TYPE = Cylindrical
ORIGIN = 0.000000 0.000000 0.00000
POINT = 0.707106781186548 0.653281482438188 0.270598050073098
VECTOR = 0 -0.382683432365090 0.923879532511287

END

BEGIN ARIA MATERIAL M_Block
DENSITY = CONSTANT rho = 0.1
#tensor thermal conductivity = user_function X=Temperature Name_XX=krr Name_YY=ktt Name_ZZ=kzz
TENSOR THERMAL CONDUCTIVITY = CONSTANT XX=10.0 YY=1.0 ZZ=1.0
SPECIFIC HEAT = CONSTANT CP = 0.5
Heat Conduction = Generalized

END ARIA MATERIAL M_Block

{if(useTpetra)}
BEGIN TPETRA EQUATION SOLVER LINEARSOLVER

BEGIN GMRES SOLVER
BEGIN JACOBI PRECONDITIONER
END
MAXIMUM ITERATIONS = 1000
RESIDUAL SCALING = R0
CONVERGENCE TOLERANCE = 1.000000e-12

END
END TPETRA EQUATION SOLVER

{else}
BEGIN AZTEC EQUATION SOLVER LinearSolver

SOLUTION METHOD = gmres
PRECONDITIONING METHOD = jacobi
MAXIMUM ITERATIONS = 1000
RESIDUAL NORM TOLERANCE = 1.0e-12
RESIDUAL NORM SCALING = r0

END AZTEC EQUATION SOLVER LinearSolver
{endif}

BEGIN FINITE ELEMENT MODEL FE_Block
DATABASE NAME = cylindrical{N}.g
coordinate system is cartesian
decomposition method = rcb

BEGIN PARAMETERS FOR BLOCK block_1
MATERIAL M_Block
LOCAL COORDINATE SYSTEM = CS_Block

END PARAMETERS FOR BLOCK block_1

281

END

BEGIN PROCEDURE MyProcedure

Begin Solution Control Description
Use System Main
Begin System Main

Begin Sequential MyBlock
Advance Region_Block

End
End

End

BEGIN ARIA REGION Region_Block
nonlinear solution strategy = newton
use data block region_data

Output Number of Nodes
Compute Difference L2 Of ufunc ffunc Store In l2_error_norm2
Compute Difference LInfinity Of ufunc ffunc Store In linf_error_norm

NONLINEAR RESIDUAL TOLERANCE = 1.0e-10
NONLINEAR CORRECTION TOLERANCE = 1.0e-10
MAXIMUM NONLINEAR ITERATIONS = 10
NONLINEAR RELAXATION FACTOR = 1.0

BC dirichlet for temperature on surface_1 = calore_user_sub name = localCoord_bc type=node
BC dirichlet for temperature on surface_2 = calore_user_sub name = localCoord_bc type=node
BC dirichlet for temperature on surface_3 = calore_user_sub name = localCoord_bc type=node

EQ ENERGY FOR TEMPERATURE ON block_1 USING Q1 WITH DIFF SRC

Begin Volume Heating juan
add volume block_1
element subroutine = localCoord_vhs

End

Begin Initial Condition BlockName
All Volumes
Temperature = 400.0

End

USE FINITE ELEMENT MODEL FE_Block

Interpolate Function Value of ufunc Into Nodal Field Tex

BEGIN RESULTS OUTPUT TemperatureOutput
DATABASE NAME = output{N}.e
AT STEP 1, INCREMENT = 1
TITLE Aria Temperature in Local Coordinate System Verification Problem
NODAL VARIABLES = solution->TEMPERATURE AS T
NODAL VARIABLES = Tex
Element Variables = l2_error_norm2 as l2error
Element Variables = linf_error_norm as linf

END RESULTS OUTPUT TemperatureOutput

USE LINEAR SOLVER LinearSolver
END

END
END SIERRA MyProblem

282

Appendices

283

DISTRIBUTION
Email—Internal

Name Org. Sandia Email Address

Technical Library 01177 libref@sandia.gov

285

287

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Contents
	List of Figures
	List of Tables
	Introduction
	Basic Thermal Tests
	Steady Heat Conduction: Hex8 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Heat Conduction: Hex20 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Heat Conduction: Hex27 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Heat Conduction: Tet4 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Heat Conduction: Tet4Tet10 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Heat Conduction: Tet10 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Heat Conduction: Hex8 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Heat Conduction: Tet4 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Heat Conduction: Tet4Tet10 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Heat Conduction: Tet10 Meshes
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	PostProcess Min/Max
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Adaptivity
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Boundary Conditions
	Radiative Heat Flux
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Radiative Heat Flux From Fortran User Subroutine
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Convective Heat Flux
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Convective Flux (Fortran sub-routine)
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Convective Flux (User field from Exodus read-in)
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Heat Flux
	Thermal Heat Flux (Basic)
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Heat Flux (Flux node variable user field)
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Heat Flux (Flux node variable user field)
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Heat Flux (Fortran Subroutine)
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Thermal Radiative Heat Flux
	Basic Calore-Style BC
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	With Fortran Subroutines
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	With User Subroutines
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Advective Bar
	Steady Advection-Diffusion
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Transient Advection-Diffusion
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Transient Advection-Diffusion in 2D
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Solution Verification
	Features Tested
	Material Parameters
	Verification of Solution

	Thermal Contact
	1D Flat Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results: Hex8 Tied
	Results: Hex8 Resistance
	Results: Tet4 Tied
	Results: Tet4 Resistance
	Results: Hex8-Tet4 Tied
	Results: Hex8-Tet4 Resistance

	3D Curved Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results: Hex8-Hex8 Contact
	Results: Tet4-Tet4 Contact
	Results: Hex8-Tet4 Contact

	Steady Hex8 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Hex20 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Hex27 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Tet4 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Tet4Tet10 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Tet10 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Steady Tet10 Dash Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Tet4Tet10 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Tet10 Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Hex8 Tied Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Transient Tet4 Tied Contact
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Element Death
	CDFEM Element Death (Heat Flux)
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results: Tri3
	Results: Tet4

	3D Spherical Shell Enclosure
	Problem Description
	Features Tested
	Boundary and Initial Conditions
	Material Parameters
	Verification of Solution
	Results

	Standard Element Death (Heat Flux)
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results: 1D Hex8
	Results: 1D Quad4
	Results: 1D Tri3
	Results: 2D Quad4
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results: 3D Hex8
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Time Integration
	Adaptive Time Integration
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results: First Order Fixed
	Results: First Order Adaptive
	Results: Second Order Fixed
	Results: Second Order Adaptive
	Results: BDF2 Fixed
	Results: BDF2 Adaptive

	Enclosure Radiation
	2D Cylindrical Shell Enclosure
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results

	2D Annular Enclosure
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	3D Spherical Shell Enclosure
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution
	Results

	3D Spherical Shell Partial Enclosure
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Chemistry
	First Order Reaction (Spatially Varying Temperature)
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	First Order Reaction
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	DAE and Pressure Test
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	PMDI Plugin Test
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Miscellaneous
	Thermal Postprocessing
	Problem Description
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Local Coordinates: Cartesian
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Local Coordinates: Cylindrical
	Features Tested
	Boundary Conditions
	Material Parameters
	Verification of Solution

	Low-Mach Fluid Flow
	How to Build this Document
	Input Decks For Verification Problems
	Basic Thermal Tests
	Steady Heat Conduction: Hex8 Meshes
	Steady Heat Conduction: Hex20 Meshes
	Steady Heat Conduction: Hex27 Meshes
	Steady Heat Conduction: Tet4 Meshes
	Steady Heat Conduction: Tet4Tet10 Meshes
	Steady Heat Conduction: Tet10 Meshes
	Transient Heat Conduction: Hex8 Meshes
	Transient Heat Conduction: Tet4 Meshes
	Transient Heat Conduction: Tet4Tet10 Meshes
	Transient Heat Conduction: Tet10 Meshes

	Thermal Boundary Conditions
	Radiative Heat Flux 3.1
	Radiative Heat Flux From Fortran User Subroutine
	Convective Heat Flux 3.3

	Thermal Contact
	1D Flat Contact 4.1
	Hex8 Tied
	Hex8 Resistance
	Tet4 Tied
	Tet4 Resistance
	Hex8-Tet4 Tied
	Hex8-Tet4 Resistance

	3D Curved Contact 4.2
	Hex8-Hex8 Case
	Tet4-Tet4 Case
	Hex8-Tet4 Case

	Steady Hex8 Contact
	Steady Hex20 Contact
	Steady Hex27 Contact
	Steady Tet4 Contact
	Steady Tet4Tet10 Contact
	Steady Tet10 Contact
	Steady Tet10 Dash Contact
	Transient Tet4Tet10 Contact
	Transient Tet10 Contact

	Element Death
	CDFEM Element Death (Heat Flux)
	Tri3
	Tet4

	3D Spherical Shell Enclosure

	Time Integration
	Adaptive Time Integration
	First Order Fixed
	First Order Adaptive
	Second Order Fixed
	Second Order Adaptive
	BDF2 Fixed
	BDF2 Adaptive

	Enclosure Radiation
	2D Cylindrical Shell Enclosure
	2D Annular Enclosure
	3D Spherical Shell Enclosure
	3D Spherical Shell Partial Enclosure
	Fully 2D Enclosure Radiation

	Chemistry
	First Order Reaction (Uniform Temperature)
	First Order Reaction (Spatially Varying Temperature)
	First Order Reaction
	DAE and Pressure Test
	PMDI Plugin Test

	Miscellaneous
	Thermal Postprocessing
	Postprocess Min/Max
	Local Coordinates: Cartesian
	Local Coordinates: Cylindrical

