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ABSTRACT
SIERRA/Aero is a compressible �uid dynamics program intended to solve a wide variety compressible
�uid �ows including transonic and hypersonic problems. This document describes the commands for
assembling a �uid model for analysis with this module, henceforth referred to simply as Aero for
brevity. Aero is an application developed using the SIERRA Toolkit (STK). The intent of STK is to
provide a set of tools for handling common tasks that programmers encounter when developing a code
for numerical simulation. For example, components of STK provide �eld allocation and management,
and parallel input/output of �eld and mesh data. These services also allow the development of coupled
mechanics analysis software for a massively parallel computing environment.
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NOMENCLATURE

Einstein notation is used extensively throughout this report to imply summation over repeated indices,
primarily for multiple directions in integral equations. Indices are also used to denote chemical species
in a gas mixture. When dealing with notation for chemical species, Einstein notation is not implied.
When summation over chemical species is required, we will use a summation operator.

ENGLISH CHARACTER SYMBOLS

𝐸 total internal energy

𝐻 total enthalpy

𝑘 kinetic energy

𝑀 Molecular Weight

𝑃 pressure

𝑞 heat conduction

𝑅 universal gas constant

𝑡 time

𝑇 temperature

𝑢 velocity

𝑥 Cartesian coordinates

GREEK CHARACTER SYMBOLS

𝜅 thermal conductivity

𝜇 viscosity

𝜑 limiter

𝜌 density

𝜎 turbulent stress tensor
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𝜏 viscous stress tensor

SUPERSCRIPT CHARACTER SYMBOLS

𝑖 indicial notation for species number

𝑛 iteration or time step number

𝑟 indicial notation for reaction number
′ �uctuating quantity with respect to time average
′′ �uctuating quantity with respect to Favre average

˜ Favre-averaged quantity

¯ Reynolds-averaged quantity

SUBSCRIPT CHARACTER SYMBOLS

air property associated with air

T Turbulent modeled quantity

DIMENSIONLESS GROUPS

Pr Prandtl number, the ratio of viscous and thermal di�usivities

Re Reynolds number, the ratio of inertial and viscous forces
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1. INTRODUCTION

SIERRA/Aero is a two and three dimensional, node-centered, edge-based �nite volume code that
approximates the compressible Navier-Stokes equations on unstructured meshes. It is applicable to
inviscid and high Reynolds number laminar and turbulent �ows. Currently, two classes of turbulence
models are provided: Reynolds Averaged Navier-Stokes (RANS) and hybrid methods such as Detached
Eddy Simulation (DES). Large Eddy Simulation (LES) models are currently under development. The
gas may be modeled either as ideal, or as a non-equilibrium, chemically reacting mixture of ideal gases.

This document describes the mathematical models contained in the code, as well as certain
implementation details. First, the governing equations are presented, followed by a description of the
spatial discretization. Next, the time discretization is described, and �nally the boundary conditions.
Throughout the document, SIERRA/ Aero is referred to simply as Aero for brevity.
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2. GOVERNING EQUATIONS FOR AN
IDEAL GAS

Many �ows of engineering interest may be modeled as a calorically perfect gas. (In this work, we use the
term ideal gas synonymously with calorically perfect.) In this case, the following assumptions are
made:

• the gas is in thermodynamic equilibrium

• the gas is not chemically reacting

• the internal energy and enthalpy are functions only of temperature

• the speci�c heat at constant pressure and constant volume is constant.

In this chapter, the resulting governing equations are presented. In Section 2.1 we discuss the laminar
and inviscid �ow cases, and in Section 2.2 we consider turbulent �ows.

2.1. LAMINAR EQUATIONS

For an ideal gas, the �ow is governed by the compressible Navier-Stokes equations in Cartesian
coordinates. We do not derive these equations here. We present them in divergence form using Einstein
notation, which implies summation over repeated indices. For a derivation of the Navier-Stokes
equations in Einstein notation, see [1]. Conservation of mass, momentum and energy are given by (2.1),
(2.2), and (2.3), respectively.

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0 (2.1)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗 + 𝑃𝛿𝑖𝑗) =

𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

(2.2)

𝜕𝜌𝐸

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝐻

𝜕𝑥𝑗
= − 𝜕𝑞𝑗

𝜕𝑥𝑗
+
𝜕𝑢𝑖𝜏𝑖𝑗
𝜕𝑥𝑗

(2.3)

The �rst term on the left side of the above equations indicates the local, instantaneous rate of change of
the conserved quantity. The second term on the left is the divergence of the Euler (also called the
advective) �uxes. The terms that appear on the right are the divergence of the viscous �uxes. The
symbol 𝛿𝑖𝑗 indicates the Kronecker delta, which has a value of zero if 𝑖 ̸= 𝑗 and one otherwise.
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The primitive variables are the velocity components, 𝑢𝑖, the pressure, 𝑃 , and the temperature 𝑇 . The
viscous stress tensor is denoted as 𝜏𝑖𝑗 , the heat �ux vector as 𝑞𝑖, the total enthalpy as𝐻 , the total internal
energy as𝐸, and the density as 𝜌. The equations are closed using the ideal gas law, the stress tensor for a
Newtonian �uid, and Fourier’s Law for heat conduction, which results in the following relations,

𝑃 =
𝜌𝑅𝑇

𝑀
(2.4)

𝐻 = ℎ+
1

2
𝑢𝑘𝑢𝑘 (2.5)

𝐸 = 𝐻 − 𝑃/𝜌 (2.6)

𝜏𝑖𝑗 = 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
− 2

3
𝜇
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 (2.7)

𝑞𝑖 = −𝜅 𝜕𝑇
𝜕𝑥𝑖

(2.8)

where 𝜇 denotes the dynamic viscosity and the thermal conductivity is denoted as 𝜅. We remark that
the inviscid Euler equations are obtained by setting the right hand side of (2.1)-(2.3) to zero.

2.2. TURBULENT EQUATIONS

The Navier-Stokes equations (2.1)-(2.3) are, strictly speaking, valid for laminar and turbulent �ows.
However, once the equations are discretized, current technology does not provide su�cient computer
resources to resolve the length and time scales over which turbulent �uctuations occur. Nor are these
resources expected to be available in the foreseeable future. Hence many important phenomena occur at
sub-grid scales and must be modeled. This is the motivation for Reynolds averaging the conservation
equations. We begin this section by discussing the averaging process in Section 2.2.1. Next, we present
the averaged equations and brie�y discuss the closure problem in Section 2.2.2. In Sections 2.3 through
2.5 we discuss the speci�c RANS turbulence models and their DES extensions, respectively.

2.2.1. Reynolds and Favre Averaging

To begin, each variable is decomposed as a time-averaged average quantity plus a �uctuating quantity,
e.g.

𝜑 = 𝜑+ 𝜑′′ (2.9)

where the Reynolds average is de�ned as:

𝜑 =
1

𝑡𝑓

∫︁ 𝑡𝑓

0

𝜑𝑑𝑡 (2.10)

over some time scale 𝑡𝑓 , and the �uctuation is denoted 𝜑′′. Because some terms in the Navier-Stokes
equations appear as products with the �uid density, it is helpful to introduce the Favre average, which is
de�ned as

𝜑 =
𝜌𝜑

𝜌
(2.11)
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Some useful identities associate with Favre Averaging are:

𝜑′′ ̸= 0 (2.12)
𝜑′′ = 𝜌𝜑′′ = 0 (2.13)

𝜌𝜑𝜓 = 𝜌̃︁𝜑𝜓 = 𝜌𝜑𝜓 + 𝜌̃︂𝜑′′𝜓′′ (2.14)

𝜌̃︂𝜑′′𝜓′′ = 𝜌(̃︁𝜌𝜓 − 𝜑𝜓) (2.15)

2.2.2. Turbulent Averaged Equations

After performing the Reynolds averaging of the compressible Navier-Stokes equations (2.1) - (2.3) over
some time scale, and performing some considerable algebra, it may be shown that the result may be
expressed as

𝜕𝜌

𝜕𝑡
=
𝜕𝜌𝑢̄𝑗
𝜕𝑥𝑗

= 0 (2.16)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
[𝜌𝑢̃𝑖𝑢̃𝑗 + 𝑝𝛿𝑖𝑗 − 𝜏𝑖𝑗 − 𝜎̄𝑖𝑗] = 0 (2.17)

𝜕𝜌𝐸̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︁
𝜌̃︂𝐻𝑢𝑗 + 𝑞𝑗 − 𝑢𝑖𝜏𝑖𝑗

]︁
= 0 (2.18)

In the momentum equations, the averaged stress term is

𝜏𝑖𝑗 = 2𝜇̄

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
where 𝑆𝑖𝑗 =

1

2

(︂
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗
𝜕𝑥𝑖

)︂
(2.19)

The turbulent stress term is

𝜎̄𝑖𝑗 = −𝜌 (̃︂𝑢𝑖𝑢𝑗 − 𝑢̃𝑖𝑢̃𝑗) = −𝜌
(︁̃︂𝑢′′𝑗𝑢′′𝑖 )︁ (2.20)

The energy can be rewritten as:

𝜕𝜌𝐸̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︁
𝜌𝐻̃𝑢̃𝑗 + 𝑞𝑗 − 𝑢𝑖𝜏𝑖𝑗 − 𝜌

(︁ ̃︂𝐻 ′′𝑢′′𝑗

)︁]︁
= 0 (2.21)

In the above equations, there are two terms that require closure, the turbulent stress term, 𝜎̄𝑖𝑗 , and the
turbulent transport of total enthalpy, 𝜌( ̃︂𝐻 ′′𝑢′′𝑗 ). Both terms are modeled using the eddy viscosity
hypothesis. Consequently, the turbulent stress tensor is approximated in terms of the strain tensor and
an eddy viscosity, and may be written as

𝜎̄𝑖𝑗 = −𝜌 (̃︂𝑢𝑖𝑢𝑗 − 𝑢̃𝑖𝑢̃𝑗) = 2𝜇𝑇

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
− 2

3
𝜌𝑘𝛿𝑖𝑗 (2.22)
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Similarly, the turbulent transport of total enthalpy may be written as

𝜌 ̃︂𝐻 ′′𝑢′′𝑗 =
𝜇𝑇𝐶𝑝

𝑃𝑟𝑇

𝜕𝑇

𝜕𝑥𝑗
− 1

2
𝜌 ( ̃︂𝑢𝑖𝑢𝑖𝑢𝑗 − ̃︂𝑢𝑖𝑢𝑖𝑢̃𝑗) (2.23)

Next, we describe the speci�c models for the turbulent viscosity and turbulent kinetic energy that have
been implemented in Aero.

2.3. SST TURBULENCE MODEL

SST (Shear Stress Transport) is a variant of a 𝑘-𝜔 model. Accordingly, a transport equation is solved for
the turbulent kinetic energy 𝑘 and the speci�c dissipation rate 𝜔̃. We do not derive these equations here.
The interested reader should consult the excellent text by Pope[2] for a broad discussion of turbulence
models, and Menter [3] for the details of the speci�c model that has been implemented in Aero.. The
transport equations for 𝑘 and 𝜔̃ can be written as

𝜕𝜌𝑘

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︃
𝜌𝑘𝑢̃𝑗 −

(︂
𝜇̄+

𝜇𝑇

𝑐𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗

]︃
= 𝜎̄𝑖𝑗

𝜕𝑢̃𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝑘𝜔̃ (2.24)

and
𝜕𝜌𝜔̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︂
𝜌𝜔̃𝑢̃𝑗 −

(︂
𝜇̄+

𝜇𝑇

𝑐𝜔̃

)︂
𝜕𝜔̃

𝜕𝑥𝑗

]︂
= 𝛾

𝜔̃

𝑘
𝜎̄𝑖𝑗

𝜕𝑢̃𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝜔̃2, (2.25)

respectively. The eddy viscosity is de�ned in terms of these two model quantities

𝜇𝑇 = 𝜌
𝑘

𝜔̃
(2.26)

We explain the parameters 𝑐𝑘 and 𝑐𝜔̃ below in Section 2.3.1.

To summarize, the governing equations for the Reynolds Averaged Navier Stokes (RANS) equations
consist of (2.24) and (2.25), together with the RANS equations for conservation of mass, momentum
and energy, viz.

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢̄𝑗
𝜕𝑥𝑗

= 0 (2.27)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
[𝜌𝑢̃𝑖𝑢̃𝑗 + 𝑝𝛿𝑖𝑗 − 𝜏𝑖𝑗 − 𝜎̄𝑖𝑗] = 0 (2.28)

𝜕𝜌𝐸̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︁
𝜌̃︂𝐻𝑢𝑗 + 𝑞𝑗 − 𝑢̃𝑖 (𝜎̄𝑖𝑗 + 𝜏𝑖𝑗)− 𝑇𝑗

]︁
= 0 (2.29)

𝜎̄𝑖𝑗 = 2𝜇𝑇

(︂
𝑆𝑖𝑗 −

1

3
𝑆𝑘𝑘𝛿𝑖𝑗

)︂
− 2

3
𝜌𝑘𝛿𝑖𝑗 (2.30)

𝑇𝑗 =
𝜇𝑇𝐶𝑃

𝑃𝑟𝑇

𝜕𝑇

𝜕𝑥𝑗
+

(︂
𝜇̄+

𝜇𝑇

𝑐𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗
(2.31)

𝜇𝑇 = 𝜌
𝑘

𝜔̃
(2.32)
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We remark that, in the form of the turbulent kinetic energy transport equation presented above as
(2.24), the turbulent kinetic energy due to Reynolds stresses is not included in the turbulent transport.
This is a modeling choice, and the physical argument for not including this term is as follows: this term
describes the generation of heat due to viscous work. Unlike the viscous stresses, the turbulent stresses
do not directly produce heat, they only cause a cascade of energy down to the viscous scales where the
energy can be converted to heat by the viscous stresses.

To simplify the implementation of the RANS equations, the turbulent kinetic energy transport
equation can be subtracted from the energy equation. This manipulation avoids any modi�cations to
the calculation of the internal energy from the conserved total energy variable. Recall that the
conservation of energy and turbulent kinetic energy equations may be written as

𝜕𝜌𝐸̃

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︁
𝜌̃︂𝐻𝑢𝑗 + 𝑞𝑗 − 𝑢̃𝑖 (𝜎̄𝑖𝑗 + 𝜏𝑖𝑗)− 𝑇𝑗

]︁
= 0 (2.33)

𝜕𝜌𝑘

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︃
𝜌𝑘𝑢̃𝑗 −

(︂
𝜇̄+

𝜇𝑇

𝑐𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗

]︃
= 𝜎̄𝑖𝑗

𝜕𝑢̃𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝑘𝜔̃ (2.34)

By de�nition,

𝜌𝐸̃ = 𝜌

(︂
𝑒+

𝑢̃𝑖𝑢̃𝑖
2

+ 𝑘

)︂
Therefore (2.33) may be written as

𝜕
[︁
𝜌
(︁
𝑒+ 𝑢̃𝑖𝑢̃𝑖

2
+ 𝑘
)︁]︁

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

[︂
𝜌 ̃︀𝑢𝑗 (︂𝑒+ 𝑢̃𝑖𝑢̃𝑖

2
+
𝑃

𝜌
+ 𝑘

)︂
+ 𝑞𝑗 − 𝑢̃𝑖 (𝜎̄𝑖𝑗 + 𝜏𝑖𝑗)− 𝑇𝑗

]︂
= 0 (2.35)

Now, (2.34) may be subtracted from (2.35) to obtain

𝜕
[︀
𝜌
(︀
𝑒+ 𝑢̃𝑖𝑢̃𝑖

2

)︀]︀
𝜕𝑡

+

𝜕

𝜕𝑥𝑗

[︃
𝜌 ̃︀𝑢𝑗 (︂𝑒+ 𝑢̃𝑖𝑢̃𝑖

2
+
𝑃

𝜌

)︂
+ 𝑞𝑗 − 𝑢̃𝑖 (𝜎̄𝑖𝑗 + 𝜏𝑖𝑗)− 𝑇𝑗 +

(︂
𝜇̄− 𝜇𝑇

𝑐𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗

]︃
=

−𝜎̄𝑖𝑗
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+ 𝛽⋆𝜌𝑘𝜔̃ (2.36)

Upon substituting the expression for 𝑇𝑗 given in (2.31), and the heat �ux given in (2.8), the energy
conservation equation may now be written as

𝜕
[︀
𝜌
(︀
𝑒+ 𝑢̃𝑖𝑢̃𝑖

2

)︀]︀
𝜕𝑡

+

𝜕

𝜕𝑥𝑗

[︃
𝜌 ̃︀𝑢𝑗 (︂𝑒+ 𝑢̃𝑖𝑢̃𝑖

2
+
𝑃

𝜌

)︂
− 𝑢̃𝑖 (𝜎̄𝑖𝑗 + 𝜏𝑖𝑗)−

(︂
𝜅+

𝜇𝑇𝐶𝑃

𝑃𝑟𝑇

)︂
𝜕𝑇

𝜕𝑥𝑗

]︃
=

−𝜎̄𝑖𝑗
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+ 𝛽⋆𝜌𝑘𝜔̃

(2.37)
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Finally, if we rede�ne𝐸 to be the total speci�c energy minus the turbulent kinetic energy, and𝐻 to be
the corresponding total speci�c enthalpy without the turbulent kinetic energy, the RANS equations
may be expressed as

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0 (2.38)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗) =

𝜕

𝜕𝑥𝑗

[︂
𝜇e�

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

)︂
− 2

3
𝜌𝑘𝛿𝑖𝑗

]︂
(2.39)

𝜕𝜌𝐸

𝜕𝑡
+
𝜕𝜌𝐻

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[︂
𝑢̃𝑖 (𝜎𝑖𝑗 + 𝜏𝑖𝑗) + 𝜅e�

𝜕𝑇

𝜕𝑥𝑗

]︂
− 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝛽⋆𝜌𝑘𝜔 (2.40)

𝜕𝜌𝑘

𝜕𝑡
+
𝜕𝜌𝑘𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂(︂
𝜇+

𝜇𝑇

𝑐𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗

]︂
+ 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝑘𝜔 (2.41)

𝜕𝜌𝜔

𝜕𝑡
+
𝜕𝜌𝜔𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂(︂
𝜇+

𝜇𝑇

𝑐𝜔

)︂
𝜕𝜔

𝜕𝑥𝑗

]︂
+ 𝛾

𝜔

𝑘
𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝜔2 (2.42)

with

𝐸 = 𝑒𝑖 +
𝑢𝑘𝑢𝑘
2

(2.43)

𝐻 = 𝐸 +
𝑃

𝜌
(2.44)

𝜇𝑇 =
𝜌𝑘

𝜔
(2.45)

𝜇e� = 𝜇+ 𝜇𝑇 (2.46)

𝜅e� =
𝜇𝐶𝑃

𝑃𝑟

+
𝜇𝑇𝐶𝑃

𝑃𝑟𝑇

(2.47)

where, for the sake of brevity in later developments, we have dropped the (̄) and (̃). It should be clear
from this form of the 𝑘-𝜔 model that the implementation in a laminar code is simpli�ed because it is
not necessary to subtract the turbulent kinetic energy term from the degree of freedom 𝜌𝐸 everywhere
the internal energy is needed. Furthermore, the �ux Jacobian matrices are also simpli�ed because the
advective �uxes do not involve the turbulent kinetic energy. However, the turbulent kinetic energy
a�ects the total energy through a source term, as indicated in (2.40).

2.3.1. Variants of the 𝑘-𝜔 Model

There are several variants of the 𝑘-𝜔 model, which are de�ned, for example, by various de�nitions of the
parameters such as 𝛽⋆, 𝛾, and 𝜇𝑇 . In this section, we show how four of these variants, namely the 1988
model of Wilcox [4], the 2006 model of Wilcox [5], the baseline (BSL) model due to Menter [3], and the
shear stress transport (SST) model due to Menter [3] are related. In order to discriminate among these
models it is helpful to rewrite the turbulent transport equations as

𝜕𝜌𝑘

𝜕𝑡
+
𝜕𝜌𝑘𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂
(𝜇+ 𝜎𝑘𝜇𝑇 )

𝜕𝑘

𝜕𝑥𝑗

]︂
+ 𝑃𝑘 −𝐷𝑘 + 𝑆𝑘 (2.48)

𝜕𝜌𝜔

𝜕𝑡
+
𝜕𝜌𝜔𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂
(𝜇+ 𝜎𝜔𝜇𝑇 )

𝜕𝜔

𝜕𝑥𝑗

]︂
+ 𝑃𝜔 −𝐷𝜔 + 𝑆𝜔 (2.49)
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Here, 𝑃𝑘 and 𝑃𝜔 denote the production terms for turbulent kinetic energy and dissipation rate,𝐷𝑘 and
𝐷𝜔 denote the dissipation, or destruction terms, and 𝑆𝑘 and 𝑆𝜔 denote the cross production source
terms. The parameters that de�ne each of the four models, Wilcox88, Wilcox06, BSL and SST are given
in Table 2.3-1.

2.3.2. Detached eddy simulation (DES)

Detached Eddy Simulation is a hybrid RANS-LES approach that can be used for �ows with massive
separation[6]. RANS models cannot capture the large scale eddies in the separated region accurately
but are e�cient and accurate for thin shear layers. LES is expensive in attached boundary layers and thin
shear layers but accurately captures the large scale motion of separated �ows. Detached Eddy
Simulation combines RANS and LES by using an LES subgrid based model in the parts of the domain
where the grid resolution is �ne enough for LES. Elsewhere a RANS model is used. The switch
between the two modes is determined by comparing an integral turbulent length scale and the local grid
spacing. The approach is nonzonal and the RANS equations are still solved in all regions. For the 𝑘-𝜔
model, this is done by modifying the dissipative term in the turbulent kinetic energy equation. The
dissipation term is modi�ed from

𝐷𝑘 = 𝛽⋆𝜌𝜔𝑘 (2.50)

to

𝐷𝑘 =
𝜌𝑘3/2

𝑙
(2.51)

where we have introduced the length scale

𝑙 = min(𝑙𝑘−𝜔, 𝐶DESΔ), 𝑙𝑘−𝜔 =
𝑘1/2

𝛽⋆𝜔
(2.52)

𝐶DES is a constant whose default value is 0.65 and Δ is a grid spacing measure. This measure is de�ned at
each node as the maximum value over all edges of:

Δ = max(𝛿𝑥, 𝛿𝑦, 𝛿𝑧), (2.53)

where, e.g. 𝛿𝑥 is the absolute value of the change in the 𝑥 coordinate across an edge. Equation (2.53) is
designed so that the computation is limited by the coarsest spacing for each node.

2.3.3. Linearization of implicit terms

The turbulent transport equations require careful treatment in order to obtain a stable and robust
solution algorithm. The basic method that we follow is that the time derivative, convective �ux terms,
and di�usion terms are treated in a way that is consistent with the rest of the Navier-Stokes equations.
The source/sink terms are treated according to the following rules:

• sensitivities are computed so that only diagonal matrix entries are generated

• only sensitivities to turbulent dissipation terms are generated; sensitivities to production terms
are ignored.
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Wilcox88 Wilcox06 BSL SST
𝜇𝑇

𝛾⋆𝜌𝑘
𝜔

𝛾⋆𝜌𝑘
𝜔

𝛾⋆𝜌𝑘
𝜔

𝑎1𝜌𝑘
max (𝑎1𝜔,Ω𝐹2)

𝜎𝑘
1
2

3
5

𝐹1𝜎𝑘1 + (1− 𝐹1)𝜎𝑘2 𝐹1𝜎𝑘1 + (1− 𝐹1)𝜎𝑘2

𝑃𝑘 𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

𝐷𝑘 𝛽⋆𝜌𝜔𝑘 𝛽⋆𝜌𝜔𝑘 𝛽⋆𝜌𝜔𝑘 𝛽⋆𝜌𝜔𝑘
𝑆𝑘 0 0 0 0
𝛾⋆ 1 1 1 1
𝜎𝜔

1
2

1
2

𝐹1𝜎𝜔1 + (1− 𝐹1)𝜎𝜔2 𝐹1𝜎𝜔1 + (1− 𝐹1)𝜎𝜔2

𝑃𝜔
𝛾𝜔
𝑘
𝑃𝑘

𝛾𝜔
𝑘
𝑃𝑘

𝛾𝜔
𝑘
𝑃𝑘

𝛾𝜌
𝜇𝑇

𝑃𝑘

𝐷𝜔 𝛽𝜌𝜔2 𝛽𝜌𝜔2 𝛽𝜌𝜔2 𝛽𝜌𝜔2

𝑆𝜔 0 𝜎𝑑
𝜌
𝜔

𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

𝜎𝑑
𝜌
𝜔

𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

𝜎𝑑
𝜌
𝜔

𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

𝛽⋆ 0.09 0.09 0.09 0.09

𝛾 5
9

13
25

13
25

𝐹1𝛾1 + (1− 𝐹1) 𝛾2
𝛽 3

40
𝛽0𝑓𝛽 𝐹1𝛽1 + (1− 𝐹1)𝛽2 𝐹1𝛽1 + (1− 𝐹1)𝛽2

𝜔⋆ - max

(︂
𝜔,𝐶lim

√︁
2𝑆𝑖𝑗𝑆𝑖𝑗

𝛽⋆

)︂
- -

𝐶lim - 7
8

- -
𝛽0 - 0.0708 - -
𝑓𝛽 - 1+85𝜒𝜔

1+100𝜒𝜔
- -

𝜒𝜔 -
⃒⃒⃒⃒
Ω𝑖𝑗Ω𝑗𝑘

^𝑆𝑘𝑖

(𝛽⋆𝜔)3

⃒⃒⃒⃒
- -

𝑆𝑘𝑖 - 1
2

(︁
𝜕𝑢𝑘
𝜕𝑥𝑖

+ 𝜕𝑢𝑖
𝜕𝑥𝑘

− 𝜕𝑢𝑚
𝜕𝑥𝑚

𝛿𝑘𝑖

)︁
- -

𝜎𝑑 -

{︃
0 : 𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

≤ 0
1
8

: 𝜕𝑘
𝜕𝑥𝑗

𝜕𝜔
𝜕𝑥𝑗

> 0
2(1− 𝐹1)𝜎𝜔2 2(1− 𝐹1)𝜎𝜔2

𝜎𝑘1 - - 1
2

0.85
𝜎𝑘2 - - 1 1
𝜎𝜔1 - - 1

2
1
2

𝜎𝜔2 - - 0.856 0.856
𝛽1 - - 0.075 0.075
𝛽2 - - 0.0828 0.0828
𝛾1 - - 𝛽1

𝛽⋆ − 0.5531𝜎𝜔1𝜅
2

√
𝛽⋆

𝛽1
𝛽⋆ − 𝜎𝜔1𝜅

2
√
𝛽⋆

𝛾2 - - 𝛽2
𝛽⋆ − 0.44035𝜎𝜔2𝜅

2
√
𝛽⋆

𝛽2
𝛽⋆ − 𝜎𝜔2𝜅

2
√
𝛽⋆

𝐹1 - - tanh
(︀

arg41
)︀

tanh
(︀

arg41
)︀

arg1 - - min
(︁
max

(︁ √
𝑘

𝛽⋆𝜔𝑑
, 500𝜈

𝑑2𝜔

)︁
, 4𝜌𝜎𝜔2𝑘
𝐶𝐷𝑘𝜔𝑑2

)︁
min

(︁
max

(︁ √
𝑘

𝛽⋆𝜔𝑑
, 500𝜈

𝑑2𝜔

)︁
, 4𝜌𝜎𝜔2𝑘
𝐶𝐷𝑘𝜔𝑑2

)︁
𝐶𝐷𝐾𝜔 - - max

(︁
2𝜎𝜔2

𝜌
𝜔

𝜕𝑘
𝜕𝑥𝑘

𝜕𝜔
𝜕𝑥𝑘

, 10−20
)︁

max
(︁
2𝜎𝜔2

𝜌
𝜔

𝜕𝑘
𝜕𝑥𝑘

𝜕𝜔
𝜕𝑥𝑘

, 10−20
)︁

𝐹2 - - - tanh
(︀

arg22
)︀

arg2 - - max
(︁

2
√

𝑘
𝛽⋆𝜔𝑑

, 500𝜈
𝑑2𝜔

)︁
𝑎1 - - - 0.31

Table 2.3-1.. Definition of parameters for Wilcox88, Wilcox06,
BSL, and SST variants of the 𝑘-𝜔 models. Ω𝑖𝑗 denotes the vor-
ticity tensor, Ω its magnitude, and 𝑑 is the minimum distance to
the wall.
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The source terms for the turbulent kinetic energy equation given in (2.41) may be written as

𝒮𝑘 = 𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝑘𝜔

Then we only compute the sensitivity according to

𝜕𝒮𝑘

𝜕𝜌𝑘
= −𝛽⋆𝜌𝜔

and ignore the sensitivities to 𝜌, 𝜌𝑢𝑗 , 𝜌𝐸 and 𝜌𝜔.

Similarly, the source terms given in the speci�c dissipation rate equation (2.42) may be written as

𝒮𝜔 = 𝛾
𝜔

𝑘
𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽⋆𝜌𝜔2

We compute the sensitivity to 𝜌𝜔 according to

𝜕𝒮𝜔

𝜕𝜌𝜔
= −2𝛽⋆𝜔

2.4. 𝐾-𝜖 MODEL

If instead of solving a transport equation for the speci�c dissipation rate 𝜔, a transport equation for the
dissipation rate

𝜖 = 𝑘𝜔 (2.54)

is solved, the resulting turbulence model belongs to the class of models known as 𝑘-𝜖. The 𝑘-𝜖model
implemented in Aero is described in So et al [7] and Brinkman et al [8]. This model is described by the
following equations

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0 (2.55)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗) =

𝜕

𝜕𝑥𝑗

[︂
𝜇e�

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

)︂
− 2

3
𝜌𝑘𝛿𝑖𝑗

]︂
(2.56)

𝜕𝜌𝐸

𝜕𝑡
+
𝜕𝜌𝐻

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[︂
𝑢̃𝑖𝜏𝑖𝑗 + 𝜅e�

𝜕𝑇

𝜕𝑥𝑗

]︂
− 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝛽⋆𝜌𝑘𝜔 (2.57)

𝜕𝜌𝑘

𝜕𝑡
+
𝜕𝜌𝑘𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂(︂
𝜇+

𝜇𝑇

𝜎𝑘

)︂
𝜕𝑘

𝜕𝑥𝑗

]︂
+ 𝑃𝑘 − 𝜌𝜖 (2.58)

𝜕𝜌𝜖

𝜕𝑡
+
𝜕𝜌𝜖𝑢𝑗
𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[︂(︂
𝜇+

𝜇𝑇

𝜎𝜖

)︂
𝜕𝜖

𝜕𝑥𝑗

]︂
+
𝜖

𝑘
[(𝐶1𝑓1𝑃𝑘 − 𝐶2𝑓2𝜌𝜖) + 𝑆𝜖] ,

(2.59)

where
𝑃𝑘 = 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

, (2.60)
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𝑆𝜖 =
14

9
𝐶2𝜇

𝜕𝑘
1
2

𝜕𝑥𝑗

𝜕𝑘
1
2

𝜕𝑥𝑗
, (2.61)

𝜎𝑘, 𝜎𝜖,𝐶1 and𝐶2 are modeling constants, the turbulent viscosity is de�ned as

𝜇𝑇 = 𝐶𝜇𝑓𝜇𝜌
𝑘2

𝜖
(2.62)

and 𝑓1, 𝑓2, and 𝑓𝜇 are empirical modeling functions designed to account for low Reynolds number
e�ects that occur near the walls. These functions approach unity as the distance from the wall is
increased, and may be written as

𝑓1 = 1− exp

[︃
−
(︂

Re𝑡
40

)︂2
]︃
+

0.20

cosh
[︁
log
(︁

Re𝑘

100

)︁]︁
𝑓2 = 1− 2

9
exp

[︀
− (Re𝑡)2

]︀
𝑓𝜇 =

(︁
1 + 4Re−3/4

𝑡

)︁
tanh

(︂
Re𝑘
125

)︂
,

where

Re𝑡 =
𝜌𝑘2

𝜇𝜖

Re𝑘 =
𝜌𝑑

√
𝑘

𝜇

and 𝑑 is the nearest distance to the wall. The model is completed with the following constants:

𝑐𝜇 𝜎𝑘 𝜎𝜖 𝑐1 𝑐2
0.09 1 1.3 1.43 1.92

2.4.1. Detached eddy simulation (DES)

The hybrid RANS-LES model for the 𝑘-𝜖model di�ers from that of the SST and Spalart-Allmaras
models in the sense that the method is applied to the turbulent viscosity instead of through the source
terms for the turbulent transport equations. We begin the explanation of this approach by exploiting
the observation that the turbulent kinetic energy statistics at every point in the �ow �eld satis�es a
turbulent spectrum. If each point in the �ow �eld is treated as a realization of these statistics, then a
model can be formulated which provides a method to estimate total, resolved and unresolved portions
of the kinetic energy in any simulation. This information can be used to formulate a hybrid RANS-LES
model. The starting point for this approach is a turbulent kinetic energy spectrum. Here, the
Karman-Pao spectrum is used. This form is parameterized by the energy-containing wave number, 𝑘𝑒,
the turbulent kinetic energy dissipation rate, 𝜖, and the Kolmogorov scale, 𝜂, and can be written as

𝐸(𝑘) = 𝐶𝑒𝜖
−2/3

(︂
𝑘

𝑘𝑒

)︂4
[︃
1 +

(︂
𝑘

𝑘𝑒

)︂2
]︃−17/6

exp

(︂
−3

2
𝛼 (𝑘𝜂)4/3

)︂
(2.63)
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where 𝑘 is the wave number, 𝛼 = 1.5, and the constant𝐶𝜖 = 1.67, which calibrates the dissipation
spectrum,𝐷(𝑘) = 2𝜈𝑘2𝐸(𝑘) to the turbulence dissipation rate. (As a matter of notation, throughout
this section, 𝑘 refers to a wave number, not to the turbulent kinetic energy, unless indicated otherwise.)
This spectrum can be nondimensionalized using the Kolmogorov length scale 𝜂 =

(︀
𝜈
𝜖

)︀1/4. The
nondimensional spectrum is de�ned as

𝐸̂(𝑘) = 𝐸(𝑘)/
(︀
𝜈5𝜖
)︀1/4

which may be written as

𝐸̂(𝑘) = 𝐶𝑒𝑘
−5/3
𝑒

(︃
𝑘

𝑘𝑒

)︃4
⎡⎣1 +(︃ 𝑘

𝑘𝑒

)︃2
⎤⎦−17/6

exp

(︂
−3

2
𝛼𝑘4/3

)︂
, (2.64)

where 𝑘 = 𝑘𝜂, and 𝜈 is the kinematic viscosity. The spectrum and various Taylor micro-scale Reynolds
numbers is shown in Figure 2.4-1, along with the location of the energy-containing wave number for
each Reynold number.

	
  
Figure 2.4-1.. The non-dimensional Karman-Pao spectrum at
several Taylor micro-scale Reynolds numbers.

The turbulent kinetic energy,𝐾RANS (denoting the total turbulent kinetic energy or the RANS
turbulent kinetic energy) is formally related to this energy spectrum as

𝐾RANS =

∫︁ ∞

0

𝐸(𝑘)𝑑𝑘 =

∫︁ 𝑘𝜂

𝑘min

𝐸(𝑘)𝑑𝑘

where 𝑘𝜂 represents the Kolmogorov wave number and 𝑘min is the smallest wave number in the �ow
�eld, typically taken as 0.1𝑘𝑒. The sub-grid kinetic energy is given by

𝐾 SGS =

∫︁ 𝑘𝜂

𝑘Δ

𝐸(𝑘)𝑑𝑘 (2.65)
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2.4.1.1. Original model based on the one equation 𝐾SGS model

In the original approach [?], the sub-grid kinetic energy𝐾 SGS is obtained at every point in the �ow �eld
from the solution of a transport equation for𝐾 SGS using a one equation sub-grid scale model. Then
(2.65) can be solved to determine 𝑘𝑒, the energy containing wave number at that location. However,
since 𝑘𝜂 is a function of the total dissipation rate, 𝜖, which is not known, (2.65) must be solved
iteratively. Once 𝑘𝑒 is known, the eddy viscosity is computed based on the sub-grid kinetic energy and
the dissipation rate from the unresolved portion of the spectrum using

𝜈T,Hyb = 𝑓𝜇𝐶𝜇
(𝐾 SGS)2

𝜖SGS
(2.66)

𝐾 SGS =

∫︁ 𝑘𝜂

𝑘Δ

𝐸(𝑘)𝑑𝑘 (2.67)

𝜖SGS =

∫︁ 𝑘𝜂

𝑘Δ

2𝜈𝑘2𝐸(𝑘)𝑑𝑘 (2.68)

The sub-grid quantities can be obtained by analytically integrating the known spectrum given by (2.63)
from the smallest scales to the local mesh resolution scale. Thus, the model not only ensures that the
local total range of scales is accounted for, but also that the eddy viscosity used in the momentum
equations is consistent with the local mesh resolution and the range of scales. The underlying steps in
the above procedure can be summarized as follows

1. From the local values of total turbulent kinetic energy𝐾 and the local mesh size Δ, compute the
energy-containing wave number 𝑘𝑒 by iteratively solving (2.65).

2. Given 𝑘𝑒, analytically integrate the spectrum to compute the sub-grid (unresolved) turbulent
kinetic energy𝐾 SGS and sub-grid dissipation rate 𝜖SGS.

3. Compute the eddy viscosity, which is used in the momentum equation from (2.66).

2.4.2. Linearization of implicit terms

The source terms for the turbulent kinetic energy equation given in (2.41) may be written as

𝒮𝑘 = 𝑃𝑘 − 𝜌𝜖 (2.69)

Since 𝑃𝑘 is a production term, we ignore its sensitivities. Now there is a di�culty, because this
expression for 𝒮𝑘 does not depend directly on 𝜌𝑘, and there will be no contribution to the diagonal
block of the Jacobian matrix. To circumvent this di�culty, use (2.62) to express 𝜖 in terms of 𝑘

𝜖 = 𝐶𝜇𝑓𝜇𝜌
𝑘2

𝜇𝑇

(2.70)

and substitute this into (2.69) to obtain

𝒮𝑘 = 𝑃𝑘 −
𝐶𝜇𝑓𝜇
𝜇𝑇

(𝜌𝑘)2 (2.71)
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Now, di�erentiate (2.71) with respect to 𝜌𝑘 to obtain
𝜕𝒮𝑘

𝜕𝜌𝑘
= −2𝐶𝜇𝑓𝜇

𝜇𝑇

𝜌𝑘

Finally, use (2.62) to remove the explicit dependence of this result on the turbulent viscosity. Hence, we
obtain

𝜕𝒮𝑘

𝜕𝜌𝑘
= −2𝜖

𝑘

The source terms for the dissipation rate equation may be written as

𝒮𝜖 =
𝜖

𝑘
𝐶1𝑓1𝑃𝑘 − 𝐶2𝑓2𝜌

𝜖2

𝑘
+ 𝑆𝜖

Following the approach described in Section 2.3.3, we ignore sensitivities to production terms and the
gradient magnitude 𝑆𝜖 to obtain

𝜕𝒮𝜖

𝜕𝜌𝜖
= −2𝐶2𝑓2𝜖

𝑘

2.5. SPALART-ALLMARAS TURBULENCE MODEL

The Spalart-Allmaras class of turbulence models adds a single transport equation to the Reynolds
averaged Navier-Stokes equation. The complete set of conservation equations for this model may be
written as

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑗

= 0 (2.72)

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑖𝑢𝑗 + 𝑝𝛿𝑖𝑗) =

𝜕

𝜕𝑥𝑗

[︂
𝜇e�

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

)︂]︂
(2.73)

𝜕𝜌𝐸

𝜕𝑡
+
𝜕𝜌𝐻

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

[︂
𝑢̃𝑖𝜏𝑖𝑗 + 𝜅e�

𝜕𝑇

𝜕𝑥𝑗

]︂
− 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

(2.74)

𝜕𝜌𝜈

𝜕𝑡
+
𝜕𝜌𝜈𝑢𝑗
𝜕𝑥𝑗

= 𝜌𝑐𝑏1𝑆𝜈 − 𝜌𝑐𝑤1𝑓𝑤

(︂
𝜈

𝑑

)︂2

+
𝜌𝑐𝑏2
𝜎

𝜕𝜈

𝜕𝑥𝑗

𝜕𝜈

𝜕𝑥𝑗
+

1

𝜎

𝜕

𝜕𝑥𝑗

[︂
(𝜇+ 𝜌𝜈)

𝜕𝜈

𝜕𝑥𝑗

]︂
(2.75)

where 𝜈 denotes the so-called ’working variable’, 𝑐𝑏1, 𝑐𝑤1, 𝑐𝑏2 and 𝜎 are model constants, 𝑑 is the nearest
distance to the wall. The turbulent viscosity is de�ned as

𝜇𝑇 = 𝜌𝜈𝑓𝑣1, (2.76)

where

𝑓𝑣1 =
𝜒3

𝜒3 + 𝑐3𝑣1

𝜒 =
𝜌𝜈

𝜇

𝑆 = Ω+
𝜈

𝜅2𝑑2
𝑓𝑣2,
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Ω is the vorticity magnitude, and 𝜅 is another model constant. The model also contains the
de�nitions

𝑓𝑣2 = 1− 𝜒

1 + 𝜒𝑓𝑣1

𝑓𝑤 =

(︂
1 + 𝑐6𝑤3

𝑔6 + 𝑐6𝑤3

)︂ 1
6

𝑔 = 𝑟 + 𝑐𝑤2

(︀
𝑟6 − 𝑟

)︀
𝑟 = min

(︂
𝜈

𝑆𝜅2𝑑2
, 10

)︂
and the following table provides the values for the model constants.

𝑐𝑏1 𝑐𝑤1 𝑐𝑏2 𝜎 𝑐𝑣1 𝜅 𝑐𝑤2 𝑐𝑤3

0.1355 𝑐𝑏1
𝜅2 + 1+𝑐𝑏2

𝜎
0.622 2

3
7.1 0.41 0.3 2

2.5.1. Detached eddy simulation (DES)

The approach for implementing detached eddy simulation in the Spalart-Allmaras model is to replace
the nearest distance to the wall, 𝑑, with 𝑑, where

𝑑 = min (𝑑, 𝐶DESΔ) , (2.77)

where Δ is given by (2.53). This simple modi�cation makes the turbulence model behave like Large
Eddy Simulation away from the walls, and RANS near the walls.

2.5.2. Linearization of implicit terms

The source term for the turbulent transport equation (2.75) may be written as

𝒮 = 𝜌𝑐𝑏1𝑆𝜈 − 𝜌𝑐𝑤1𝑓𝑤

(︂
𝜈

𝑑

)︂2

+
𝜌𝑐𝑏2
𝜎

𝜕𝜈

𝜕𝑥𝑗

𝜕𝜈

𝜕𝑥𝑗

We ignore the sensitivities of the �rst and last terms, since they are production. Hence we obtain

𝜕𝒮
𝜕𝜌𝜈

= −2𝑐𝑤1𝑓𝑤
𝑑2

𝜈
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3. GOVERNING EQUATIONS FOR A
CHEMICALLY REACTING GAS

For �ows at Mach numbers higher than about Mach 8, the ideal gas model produces temperatures that
are unreasonably high. In this regime, the ideal gas approximation breaks down, and we model the gas
as a chemically reacting mixture. The conservation of mass can be expressed as a series of equations for
the number of species considered in the gas mixture.

𝜕𝜌𝑠
𝜕𝑡

+
𝜕

𝜕𝑥𝑖
(𝜌𝑠𝑢𝑖) +

𝜕

𝜕𝑥𝑖

(︂
𝜌𝒟𝑠

𝜕𝑦𝑠
𝜕𝑥𝑖

)︂
= 𝜔𝑠 (3.1)

In (3.1), 𝜌𝑠 is the density of species 𝑠, 𝒟𝑠 is the species di�usion coe�cient (discussed in section ??), 𝑦𝑠 is
the mass fraction (𝜌𝑠/𝜌) of species 𝑠, and 𝜔𝑠 is the rate of production of species 𝑠 due to chemical
reactions.

The energy equations for a �uid in thermal non-equilibrium may be expressed for each of the possible
energy modes of a molecule. Hence, energy equations may exist for translational, rotational,
vibrational, and electronic states, which each governed by its own separate temperature. A
two-temperature model, however, is a common approach for describing thermal nonequilibrium of
re-entry aerodynamics with one temperature modeling the translational and rotational energy states
and another temperature modeling the vibrational and electronic energy of the molecule. The
translational and rotational energy equation is thus expressed as

𝜕𝜌𝐸

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖 (𝐸 + 𝑝/𝜌))− 𝜕

𝜕𝑥𝑖
(𝜏𝑖𝑗𝑢𝑗)+

𝜕

𝜕𝑥𝑖

(︀
𝑞𝑡,𝑟𝑖 + 𝑞𝑣𝑖

)︀
+

𝜕

𝜕𝑥𝑖

(︃
𝜌

NS∑︁
𝑠=1

ℎ𝑠𝒟𝑠
𝜕𝑦𝑠
𝜕𝑥𝑖

)︃
= 0 (3.2)

The vibrational equation is expressed as

𝜕𝜌𝐸𝑣

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝐸𝑣𝑢𝑖) +

𝜕

𝜕𝑥𝑖
(𝑞𝑣𝑖 ) +

𝜕

𝜕𝑥𝑖

(︃
𝜌

NS∑︁
𝑠=1

𝑒𝑣𝑠𝒟𝑠
𝜕𝑦𝑠
𝜕𝑥𝑖

)︃
= 𝜔̇𝑣 (3.3)

where𝐸𝑣 is the vibrational total energy and 𝑒𝑣𝑠 is the vibrational total energy per unit mass of species 𝑠.
The last term on the left side of (3.2) and (3.3) represents an energy �ux that arises due to the transport
of enthalpy that occurs when one species di�uses into another.
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3.1. EQUATIONS OF STATE

The total energy of the gas is de�ned by

𝜌𝐸 =
NS∑︁
𝑠=1

𝜌𝑠𝐶
𝑡,𝑟
𝑣𝑠 𝑇 + 𝜌𝐸𝑣 +

NS∑︁
𝑠=1

𝜌𝑠ℎ
0
𝑠 +

1

2
𝜌𝑢𝑖𝑢𝑖 (3.4)

where𝐶𝑡,𝑟
𝑣𝑠 is the combined translational and rotational speci�c heat at constant volume. The speci�c

heats are given by

𝐶𝑡,𝑟
𝑣𝑠 = 𝐶𝑡

𝑣𝑠 + 𝐶𝑟
𝑣𝑠 (monatomic and polyatomic species)

𝐶𝑡,𝑟
𝑣𝑠 = 𝐶𝑡

𝑣𝑠 (polyatomic species)
(3.5)

The individual translational and rotational speci�c heats are

𝐶𝑡
𝑣𝑠 =

3
2
𝑅𝑢𝑛𝑖𝑣

𝑀𝑠
(monatomic and polyatomic species)

𝐶𝑟
𝑣𝑠 =

𝑅𝑢𝑛𝑖𝑣

𝑀𝑠
(polyatomic species)

(3.6)

where𝑅𝑢𝑛𝑖𝑣 is the universal gas constant and𝑀𝑠 is the species molecular weight.

The total vibrational energy 𝜌𝐸𝑣 appearing in (3.4) is computed by the vibration energy equation, (3.3),
and is a function of the vibrational temperature 𝑇 𝑣 according to the equation

𝜌𝐸𝑣 (𝑇 𝑣) =
NS∑︁
𝑠=1

𝜌𝑠𝑒
𝑣
𝑠 (𝑇

𝑣) (3.7)

Here, the vibrational energy per unit mass can be expressed as

𝑒𝑣𝑠 =
𝑅𝑢𝑛𝑖𝑣

𝑚𝑠

𝜃𝑣𝑠
exp(𝜃𝑣𝑠/𝑇

𝑣)−1
(polyatomic species)

𝑒𝑣𝑠 = 0 (monatomic species)
(3.8)

The thermodynamic pressure of the gas is computed using a perfect gas law and Dalton’s law of partial
pressures

𝑝 =
NS∑︁
𝑠=1

𝑝𝑠 (3.9)

where the partial pressure for species 𝑠 is

𝑝𝑠 = 𝜌𝑠
𝑅𝑢𝑛𝑖𝑣

𝑀𝑠

𝑇 (3.10)

and 𝑇 is the is the translational-rotational temperature as computed from (3.4).

The species enthalpy per unit mass ℎ𝑠 appearing in (3.2) is computed according to

ℎ𝑠 = 𝐶𝑣𝑠𝑇 +
𝑝𝑠
𝜌𝑠

+ 𝑒𝑣𝑠 + ℎ0𝑠 (3.11)
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3.2. DIFFUSION TERMS

Recall that the viscous stress tensor that appears in the conservation of momentum equation, (2.2), may
be written as

𝜏𝑖𝑗 = 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
− 2

3
𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

)︂
𝛿𝑖𝑗 (3.12)

This equation requires that mixture viscosity 𝜇 be computed from individual species viscosities.

The translational-rotational heat �ux vector in (3.2) is expressed as

𝑞𝑡,𝑟𝑖 = −
(︀
𝜅𝑡 + 𝜅𝑟

)︀ 𝜕𝑇
𝜕𝑥𝑖

(3.13)

and the vibrational heat �ux vector appearing in equations 3.2 and 3.3 is

𝑞𝑣𝑖 = −𝜅𝑣 𝜕𝑇
𝑣

𝜕𝑥𝑖
(3.14)

These constitutive relations require the calculation of 𝜅𝑡, 𝜅𝑟, 𝜅𝑣, the translational, rotational, and
vibrational thermal conductivities, respectively, of the mixture. These mixture transport properties for
viscosity and thermal conductivity can be computed in a number of ways. One popular approach is to
use Blotter curve �ts for computing the species viscosities 𝜇𝑠 according to the relation

𝜇𝑠 = 0.1 𝑒𝑥𝑝 ((𝐴𝑠ln𝑇 +𝐵𝑠)ln𝑇 + 𝐶𝑠) (3.15)

with the constants𝐴𝑠,𝐵𝑠,𝐶𝑠 having been determined by Blottner [] for a number of species relevant to
high-speed reacting �ows. The thermal conductivities for the various energy modes can be computed
from an Eucken relation [] in conjunction with the Blottner species viscosities (3.15) and the species
speci�c heats (3.5) according to

𝜅𝑡𝑠 =
5
2
𝜇𝑠𝐶

𝑡
𝑣𝑠

𝜅𝑟𝑠 = 𝜇𝑠𝐶
𝑟
𝑣𝑠

𝜅𝑣𝑠 = 𝜇𝑠𝐶
𝑣
𝑣𝑠

(3.16)

The translational and rotational speci�c heats𝐶𝑡
𝑣𝑠 and𝐶𝑟

𝑣𝑠 were previously de�ned in (3.6). The
vibrational speci�c heat is then computed according to the equation

𝐶𝑣
𝑣𝑠 =

𝜕𝑒𝑣𝑠
𝜕𝑇 𝑣

(3.17)

The mixture viscosity and thermal conductivities are then computed using Wilke’s semi-empirical
mixing rule

𝜇 =
∑︀NS

𝑠=1
𝑋𝑠𝜇𝑠

𝜑𝑠

𝜅 =
∑︀NS

𝑠=1
𝑋𝑠𝜅𝑠

𝜑𝑠

(3.18)
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where

𝑋𝑠 =
𝑦𝑠 𝑀
𝑀𝑠

𝑀 =
(︁∑︀NS

𝑠=1
𝑦𝑠
𝑀𝑠

)︁−1

𝜑𝑠 =
∑︀NS

𝑟=1𝑋𝑟

[︂
1 +

√︁
𝜇𝑠

𝜇𝑟

(︁
𝑀𝑟

𝑀𝑠

)︁1/4]︂2 [︂√︂
8
(︁
1 + 𝑀𝑠

𝑀𝑟

)︁]︂−1
(3.19)

The Blottner curve �ts for species viscosities are generally accepted to be accurate up to 10,000 K. Above
10,000 K, the Yos approximate mixing rule is the preferred method for computing the mixture viscosity
and thermal conductivity.

The species di�usion coe�cients 𝒟𝑠 appearing in equations 3.1 and 3.2 must be de�ned. Accurate
treatment of the species di�usion coe�cients has received much attention in the literature. The
simplest approach is to assume that all species have the same di�usion coe�cient (𝒟 = 𝒟𝑠). This is
only valid if the molecular weights of the species are similar. The single binary di�usion coe�cient 𝒟
can be computed assuming a constant Lewis number according to the relation

𝒟 =
Le𝜅

𝜌𝐶𝑡𝑟
𝑝

(3.20)

In the event the molecular weights of the species are disparate, determining the individual species
di�usion coe�cient is necessary. Species speci�c binary di�usion coe�cients can be computed via
Gupta and Yos curve �ts [] or Ramshaw’s Self-Consistent E�ective Binary Di�usion method [].

3.3. SOURCE TERMS

The source terms for the mass conservation equations must be computed given a gas model (such as a
5-species or 11-species air model). Cantera, a general toolkit for chemical kinetics, can be used to
compute the reaction rates and hence the chemical source terms needed in (3.1).

The vibrational energy source term appearing in (3.3) is computed as follows

𝜔̇𝑣 = 𝑄̇𝑣 + 𝑄̇𝑡,𝑟−𝑣 (3.21)

where 𝑄̇𝑣 is the vibrational energy production rate and 𝑄̇𝑡,𝑟−𝑣 is the translational-vibrational and
rotational-vibrational energy exchange rate. All other energy exchange mechanisms are typically
neglected when a two-temperature (translation-rotation and vibration) model are used.

The vibrational energy production rate is computed according to

𝑄̇𝑣 =
NS∑︁
𝑠=1

𝜔̇𝑠 (𝑒
𝑣
𝑠) (3.22)

29



and the translational-vibrational and rotational-vibrational energy exchange rate is given by

𝑄̇𝑣 =
NS∑︁
𝑠=1

𝜌𝑠
𝑒𝑣𝑠 (𝑇 )− 𝑒𝑣𝑠 (𝑇

𝑣)

𝜏 𝑣𝑠
(3.23)

where 𝑒𝑣𝑠 is the speci�c vibrational internal energy for species 𝑠 given in (3.8) and 𝜏 𝑣𝑠 is the vibrational
relaxation time. 𝜏 𝑣𝑠 is typically computed via the Landau-Teller inter-species relaxation time given by
Millikan-White.
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4. SPATIAL DISCRETIZATION

The discretization of the governing equations (2.38) - (2.42) may be facilitated by recasting the
conservation equations into vector form. For an ideal gas, let

𝑈 =

⎛⎜⎜⎜⎜⎝
𝜌
𝜌𝑢𝑖
𝜌𝐸
𝜌𝑘
𝜌𝜔

⎞⎟⎟⎟⎟⎠ (4.1)

𝐹 𝑗(𝑈 ) =

⎛⎜⎜⎜⎜⎝
𝜌𝑢𝑗

𝜌𝑢𝑖𝑢𝑗 + 𝑃𝛿𝑖𝑗
𝜌𝐻𝑢𝑗
𝜌𝑘𝑢𝑗
𝜌𝜔𝑢𝑗

⎞⎟⎟⎟⎟⎠ (4.2)

𝐺𝑗(𝑈 ) =

⎛⎜⎜⎜⎜⎜⎜⎝
0

𝜇e�

(︁
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3
𝜕𝑢𝑙

𝜕𝑥𝑙
𝛿𝑖𝑗

)︁
− 2

3
𝜌𝑘𝛿𝑖𝑗

𝑢𝑙𝜏𝑙𝑗 + 𝜅e�
𝜕𝑇
𝜕𝑥𝑗(︀

𝜇+ 𝜎𝑘𝜌𝑘
𝜔

)︀
𝜕𝑘
𝜕𝑥𝑗(︀

𝜇+ 𝜎𝜔𝜌𝑘
𝜔

)︀
𝜕𝜔
𝜕𝑥𝑗

⎞⎟⎟⎟⎟⎟⎟⎠ (4.3)

𝒮(𝑈) =

⎛⎜⎜⎜⎜⎝
0
0𝑗

−𝜎𝑙𝑚 𝜕𝑢𝑚

𝜕𝑥𝑙
+ 𝛽⋆𝜌𝑘𝜔

𝑃𝑘 −𝐷𝑘 − 𝑆𝑘

𝑃𝜔 −𝐷𝜔 − 𝑆𝜔

⎞⎟⎟⎟⎟⎠ (4.4)

In the above de�nitions, the subscript ()𝑗 denotes the coordinate direction associated with each �ux
vector 𝐹 𝑗 and 𝐺𝑗 . The subscript ()𝑖 denotes the component of the momentum equation, which
expands the length of each vector according to the spatial dimension: e.g., for two spatial dimensions,
𝑈 , 𝐹 𝑗 , 𝐺𝑗 , and 𝒮 are each of length six: one continuity equation, two momentum equations, a total
energy equation, and two turbulence model equations. Because some variables use 𝑘 as a subscript to
indicate the quantity is associated with the turbulent kinetic energy, to avoid confusion we will not use
𝑘 as a Cartesian index subscript. Now, the conservation equations may be written as

𝜕𝑈

𝜕𝑡
+
𝜕𝐹 𝑗(𝑈 )

𝜕𝑥𝑗
=
𝜕𝐺𝑗(𝑈)

𝜕𝑥𝑗
+ 𝒮(𝑈), (4.5)

Currently, we discretize the equations exclusively using a node-centered �nite-volume approach.
Figure 4.0-1 illustrates a typical �nite volume, or cell, associated with node 𝑝. Let such a cell be denoted,

31



p

e

Ω
Ω∂

Figure 4.0-1.. Illustration of two-dimensional dual mesh for node
p. The dual volume, Ω, is the polygon defined by the edge mid-
points to the element centroids.

Ω. If we integrate (4.5) over Ω and apply the Gauss Divergence Theorem, the result may be written as∫︁
Ω

𝜕𝑈

𝜕𝑡
𝑑𝒱 +

∮︁
𝜕Ω

(𝐹 𝑗 −𝐺𝑗) 𝑑𝒜𝑗 =

∫︁
Ω

𝒮𝑑𝒱 (4.6)

where 𝜕Ω indicates the boundary of Ω and 𝑑𝒜𝑗 denotes an in�nitesimal area vector on the surface 𝜕Ω,
Next, the integrals in (4.6) are approximated by numerical quadrature. The volume integral is
approximated simply by multiplying the nodal value times the size of the control volume for that node.
Hence, for node 𝑝, we may write ∫︁

Ω

𝜕𝑈

𝜕𝑡
𝑑𝒱 ≃ 𝜕𝑈 𝑝

𝜕𝑡
𝒱𝑝 (4.7)∫︁

Ω

𝒮𝑑𝒱 ≃ 𝒮𝑝𝒱𝑝 (4.8)

The surface integral is approximated by evaluating the �uxes at the midpoint of each edge where it is
intersected by 𝜕Ω and computing the inner product of the �ux and the area vector, viz.∮︁

𝜕Ω

(𝐹 𝑗 −𝐺𝑗) 𝑑𝒜𝑗 ≃
NE∑︁
𝑒=1

(𝐹 𝑒
𝑛 −𝐺𝑒

𝑛)𝒜𝑒 (4.9)

where 𝐹 𝑒
𝑛 = 𝐹 𝑗𝑛𝑗 , 𝑛𝑗 is the unit vector in the direction of the area vector, and 𝒜𝑒 is the area of the

dual cell face that is intersected by edge 𝑒. After substituting (4.7) - (4.9) into (4.6), we may write the
semidiscrete residual for node 𝑝 as

𝜕𝑈 𝑝

𝜕𝑡
𝒱𝑝 +

NE∑︁
𝑒=1

(𝐹 𝑒
𝑛 −𝐺𝑒

𝑛)𝒜𝑒 − 𝒮𝑝𝒱𝑝 = 0 (4.10)
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4.1. ADVECTIVE FLUX EVALUATION

In this section, we consider the details of evaluating the advective �uxes at the edge midpoint. Consider
the arbitrary edge shown in Figure 4.1-1. The points 𝑝 and 𝑞 are the nodes de�ning the edge. 𝐿 and𝑅
illustrate that the at the edge midpoint, which is the interface between the dual volumes around 𝑝 and 𝑞,
the solution is discontinuous. To construct a conservative �ux at this interface, we currently use Roe’s
numerical �ux function [9] or the Steger-Warming �ux function [10].

L

p

q

n

R

Figure 4.1-1.. The edge is defined by left node p and right node
q, with unit normal vector n associated with the area facet, which
may not be aligned with the edge

4.1.1. Roe’s flux function

The Roe �ux at each edge midpoint is de�ned by

𝐹 𝑒
𝑛 =

1

2
(𝐹 𝐿 + 𝐹𝑅)−

⃒⃒
𝐴𝑛

⃒⃒
(𝑈𝑅 −𝑈𝐿) , (4.11)

where 𝐹 𝐿 = 𝐹 (𝑈𝐿), 𝑈𝐿 is the solution value sampled from the left volume. This dissipation matrix is
de�ned as ⃒⃒

𝐴𝑛

⃒⃒
= 𝑅𝑛

⃒⃒⃒
Λ̂𝑛

⃒⃒⃒
𝑅−1

𝑛 , (4.12)
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where
𝐴𝑛 = 𝑅𝑛Λ𝑛𝑅

−1
𝑛 =

𝜕𝐹 𝑛

𝜕𝑈
(4.13)

is evaluated at the Roe average state such that,

𝐹 𝑛(𝑈𝐿)− 𝐹 𝑛(𝑈𝑅) = 𝐴̄𝑛(𝑈𝐿 −𝑈𝑅). (4.14)

When the eigenvalues of the �ux Jacobian are equal to zero, then the dissipation of certain characteristic
waves vanishes. This can lead to issues with the numerical solution. To keep eigenvalues away from zero,
we employ an entropy �x. The eigenvalues in our implementation are

𝜆1 = 𝑢𝑛 + 𝑐, 𝜆2 = 𝑢𝑛 − 𝑐, 𝜆𝑘 = 𝑢𝑛, 𝑘 = 3, . . . , 𝑁𝑞, (4.15)

where𝑁𝑞 is the number of conserved variables in the system of equations. One approach to the entropy
�x is to modify the eigenvalues with

𝜆̂𝑘 =
𝜆2𝑘 + 𝜖2𝜆2max

2𝜖𝜆max
if |𝜆𝑘| < 𝜖𝜆max, 𝜆max = |𝑢𝑛|+ 𝑐, (4.16)

where 𝜖 is a user de�ned value that defaults to 𝜖 = 0.1. We refer to this as the scaled entropy �x. An
alternative approach is to modify the eigenvalues as

𝜆̂𝑘 =
√︁
𝜆2𝑘 + 𝜖2𝜆2max if |𝜆𝑘| < 𝜖𝜆max, (4.17)

which we refer to as the unscaled entropy �x. The modi�ed eigenvalues are used in 4.12.

4.1.2. Steger-Warming flux function

The Steger-Warming �ux-vector splitting method separates the inviscid �uxes into positive and negative
parts based on the eigenvalues of the �ux Jacobian matrix

𝐹 𝑒
𝑛 = 𝐹+

𝑛 + 𝐹−
𝑛 = 𝐴+

𝑛𝑈 +𝐴−
𝑛𝑈 (4.18)

The �ux Jacobians are de�ned

𝐴+
𝑛 = 𝑅−1Λ+𝑅 and 𝐴−

𝑛 = 𝑅−1Λ−𝑅 (4.19)

where 𝑅 is the column matrix of right eigenvectors of 𝐴𝑛, and Λ± are the diagonal matrices of the
positive and negative eigenvalues of 𝐴𝑛. The �ux Jacobians 𝐴+ and 𝐴− are clearly de�ned in [11].

The original Steger-Warming method computes the �ux at a face/edge using states at the left cell/node
and right cell/node according to

𝐹 𝑓 = 𝐴+
𝐿𝑈𝐿 +𝐴−

𝑅𝑈𝑅 (4.20)

However, while the original Steger-Warming scheme works well in the vicinity of shocks it is too
dissipative to be used elsewhere in the �ow. A modi�cation to the original scheme can be introduced by
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changing the evaluation of the 𝐴+ and 𝐴− matrices to some average of the left and right cell/node
states. Hence, the modi�ed scheme can be represented as

𝐹 𝑓 = 𝐴+
𝑓+𝑈𝐿 +𝐴−

𝑓−𝑈𝑅 (4.21)

where the subscripts 𝑓+ and 𝑓− indicate that the Jacobians are evaluated at the averaged states 𝑈 𝑓+ and
𝑈 𝑓−, respectively. Druguet, Candler, and Nompelis [10] introduced the following pressure weighted
averaging which has since become popular for high-speed �ows

𝑈 𝑓+ = (1− 𝑤)𝑈𝐿 + 𝑤𝑈𝑅 and 𝑈 𝑓− = 𝑤𝑈𝐿 + (1− 𝑤)𝑈𝑅 (4.22)

where
𝑤 = 1− 0.5

(𝑔𝛿𝑝)2 + 1
and 𝛿𝑝 =

𝑝𝑅 − 𝑝𝐿
𝑚𝑖𝑛(𝑝𝑅, 𝑝𝐿)

(4.23)

An additional aspect of the Steger-Warming scheme is that the eigenvalues of the Λ+ and Λ− matrices
are corrected according to

𝜆± = 0.5
(︁
𝜆±

√
𝜆2 + 𝜖2

)︁
(4.24)

where 𝜆 is the original eigenvalue of𝐴 and 𝜖 is usually computed as 𝜖 = 0.3𝑐, where 𝑐 is the speed of
sound. We can compute the �ux Jacobians using an expansion

𝐴± = 𝑉𝐴 ⊗𝐾𝐴 + 𝑉𝐵 ⊗𝐾𝐵 + 𝜆±3 𝐼, (4.25)

where for thermochemical transport with turbulence the expansion vectors are

𝑉𝐴 =
1

𝑐

(︂
𝜌𝑖
𝜌
, 𝑢𝑗, 𝐻, 𝑘, 𝜔

)︂𝑇

, 𝑉𝐵 = (0, 𝑛𝑗, 𝑢𝑛, 0, 0)
𝑇 ,

𝐾𝐴 =

(︂(︂
𝜕𝑃

𝜕𝜌𝑖

𝜇±
1

𝑐
− 𝑢𝑛𝜇

±
2

)︂
,

(︂
𝑛𝑗𝜇

±
2 +

𝜕𝑃

𝜕𝜌𝑢𝑗

𝜇±
1

𝑐

)︂
,

(︂
𝜕𝑃

𝜕𝐸

𝜇±
1

𝑐

)︂
, 0, 0

)︂𝑇

,

𝐾𝐵 =

(︂(︂
𝜕𝑃

𝜕𝜌𝑖

𝜇±
2

𝑐
− 𝑢𝑛𝜇

±
1

)︂
,

(︂
𝑛𝑗𝜇

±
1 +

𝜕𝑃

𝜕𝜌𝑢𝑗

𝜇±
2

𝑐

)︂
,

(︂
𝜕𝑃

𝜕𝐸

𝜇±
2

𝑐

)︂
, 0, 0

)︂𝑇

,

(4.26)

where
𝜇±
1 =

1

2

(︀
𝜆±1 + 𝜆±2 − 2𝜆±3

)︀
, 𝜇±

2 =
1

2

(︀
𝜆±1 − 𝜆±2

)︀
. (4.27)

The expansion vectors simplify easily for ideal gases or laminar �ows.

4.1.3. Steger-Warming Central + Dissipation Form

Delineating the above scheme into clearly de�ned central and dissipative parts can be advantageous
when it comes to modifying the central �uxes to increase the stability or accuracy of the scheme. In this
section, the modi�ed Steger-Warming method will be re-written in this form.

Beginning from the modi�ed Steger-Warming expression (equation 4.21) and the de�nition of the𝐴+

and𝐴− matrices (equation 4.19), we recognize that Λ+ and Λ− can be expanded to

Λ+ =
1

2
(Λ+ |Λ|) and Λ− =

1

2
(Λ− |Λ|) (4.28)
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Expanding all of these expressions give us

𝐹 𝑓 =
1

2

(︀
𝑅−1Λ𝑅

)︀
𝑓+ 𝑈𝐿 +

1

2

(︀
𝑅−1|Λ|𝑅

)︀
𝑓+ 𝑈𝐿 +

1

2

(︀
𝑅−1Λ𝑅

)︀
𝑓− 𝑈𝑅 − 1

2

(︀
𝑅−1|Λ|𝑅

)︀
𝑓− 𝑈𝑅

(4.29)
or written more compactly as

𝐹 𝑓 =
1

2
𝐴𝑓+𝑈𝐿 +

1

2
𝐴𝑓−𝑈𝑅 +

1

2
𝐴𝑑𝑖𝑠𝑠

𝑓+ 𝑈𝐿 − 1

2
𝐴𝑑𝑖𝑠𝑠

𝑓− 𝑈𝑅 (4.30)

The previous equation indicates that we must evaluate the central Jacobian matrices𝐴 and the
dissipation Jacobian matrices at both the 𝑓+ and 𝑓− average states. Listed explicitly, these four Jacobian
matrices are:

𝐴𝑓+ =
1

2

(︀
𝑅−1Λ𝑅

)︀
𝑓+ (4.31)

𝐴𝑓− =
1

2

(︀
𝑅−1Λ𝑅

)︀
𝑓− (4.32)

𝐴𝑑𝑖𝑠𝑠
𝑓+ =

1

2

(︀
𝑅−1|Λ|𝑅

)︀
𝑓+ (4.33)

𝐴𝑑𝑖𝑠𝑠
𝑓− =

1

2

(︀
𝑅−1|Λ|𝑅

)︀
𝑓− (4.34)

where we must compute Λ and |Λ| at both the 𝑓+ and 𝑓− average states. We can get expressions for
these matrices by solving the original de�nition of Λ+ and Λ−, given by (4.28) for Λ and |Λ|. This
yields

Λ = Λ+ +Λ− and |Λ| = Λ+ −Λ− (4.35)

4.1.4. Kinetic Energy Preserving

The kinetic energy preserving �ux [12] is a nondissipative �ux algorithm that in the limit of
incompressible �ow does not produce any spurious kinetic energy due to the nonlinearity of the �ux
terms,

𝐹 𝑓 (𝑈𝐿,𝑈𝑅) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 [(𝜌𝑢𝑘𝑛𝑘)𝐿 + (𝜌𝑢𝑘𝑛𝑘)𝑅]
1
4 [(𝜌𝑢𝑘𝑛𝑘)𝐿(𝑢1)𝑅 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑢1)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢1)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢1)𝑅]
+1

2 [(𝑝𝑛1)𝐿 + (𝑝𝑛1)𝑅]
1
4 [(𝜌𝑢𝑘𝑛𝑘)𝐿(𝑢2)𝑅 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑢2)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢2)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢2)𝑅]
+1

2 [(𝑝𝑛2)𝐿 + (𝑝𝑛2)𝑅]
1
4 [(𝜌𝑢𝑘𝑛𝑘)𝐿(𝑢3)𝑅 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑢3)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢3)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢3)𝑅]
+1

2 [(𝑝𝑛3)𝐿 + (𝑝𝑛3)𝑅]
1
2 [(𝜌𝑢𝑘𝑛𝑘𝐻)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝐻)𝑅]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.36)

The nondissipative part of the �ux can be combined with the dissipation from Roe where needed. This
is handled in the hybrid �ux approach, discussed below.

36



4.1.5. Honein and Moin

Another nondissipative algorithm in Aero comes from Honein and Moin [13], which was heuristically
designed to exhibit more robustness for compressible �ows than the kinetic energy preserving �ux,

𝐹 𝑓 (𝑈𝐿,𝑈𝑅) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
[(𝜌𝑢𝑘𝑛𝑘)𝐿 + (𝜌𝑢𝑘𝑛𝑘)𝑅]

1
4
[(𝜌𝑢𝑘𝑛𝑘)𝐿(𝑢1)𝑅 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑢1)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢1)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢1)𝑅]
+1

2
[(𝑝𝑛1)𝐿 + (𝑝𝑛1)𝑅]

1
4
[(𝜌𝑢𝑘𝑛𝑘)𝐿(𝑢2)2 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑢2)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢2)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢2)𝑅]
+1

2
[(𝑝𝑛2)𝐿 + (𝑝𝑛2)𝑅]

1
4
[(𝜌𝑢𝑘𝑛𝑘)𝐿(𝑢3)2 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑢3)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢3)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑢3)𝑅]
+1

2
[(𝑝𝑛3)𝐿 + (𝑝𝑛3)𝑅]

1
4
[(𝜌𝑢𝑗𝑢𝑘𝑛𝑘)𝐿(𝑢𝑗)𝑅 + (𝜌𝑢𝑗𝑢𝑘𝑛𝑘)𝑅(𝑢𝑗)1]
+1

4
[(𝜌𝑢𝑘𝑛𝑘𝑒)𝐿 + (𝜌𝑢𝑘𝑛𝑘𝑒)𝑅 + (𝜌𝑢𝑘𝑛𝑘)𝐿(𝑒)𝑅 + (𝜌𝑢𝑘𝑛𝑘)𝑅(𝑒)𝐿]

+1
2
[(𝑝)𝐿(𝑢𝑘𝑛𝑘)𝑅 + (𝑝)𝑅(𝑢𝑘𝑛𝑘)𝐿]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4.37)

4.1.6. Entropy Preserving

For the compressible Euler equations, the entropy of the system should only change due to the
boundary conditions. It is possible to construct a two-point �ux that maintains this property [9],

𝐹 𝑓 (𝑈𝐿,𝑈𝑅) =
(︁
𝜌𝑢̂𝑗, 𝜌𝑢̂𝑗𝑛𝑗𝑢̂1 + 𝑛1𝑝, 𝜌𝑢̂𝑗𝑛𝑗𝑢̂2 + 𝑛2𝑝, 𝜌𝑢̂𝑗𝑛𝑗𝑢̂3 + 𝑛3𝑝, 𝜌𝑢̂𝑗𝑛𝑗𝐻̂)

)︁𝑇
,

𝑢̂𝑖 =

(𝑢𝑖)𝐿√
𝑇𝐿

+ (𝑢𝑖)𝑅√
𝑇𝑅

1√
𝑇𝐿

+ 1√
𝑇𝑅

, 𝑝 =

𝑝𝐿√
𝑇𝐿

+ 𝑝𝑅√
𝑇𝑅

1√
𝑇𝐿

+ 1√
𝑇𝑅

,

ℎ̂ = 𝑅
log
(︁√

𝑇𝐿𝜌𝐿√
𝑇𝑅𝜌𝑅

)︁
1√
𝑇𝐿

+ 1√
𝑇𝑅

⎛⎝ √
𝑇𝐿𝜌𝐿 +

√
𝑇𝑅𝜌𝑅(︁

1√
𝑇𝐿

+ 1√
𝑇𝑅

)︁ (︀√
𝑇𝐿𝜌𝐿 −

√
𝑇𝑅𝜌𝑅

)︀
+
𝛾 + 1

𝛾 − 1

log
(︁√︁

𝑇𝑅

𝑇𝐿

)︁
log
(︁√︁

𝑇𝐿

𝑇𝑅

𝜌𝐿
𝜌𝑅

)︁(︁
1√
𝑇𝐿

− 1√
𝑇𝑅

)︁
⎞⎠ ,

𝐻̂ = ℎ̂+
1

2
𝑢̂ℓ𝑢̂ℓ, 𝜌 =

(︁
1√
𝑇𝐿

+ 1√
𝑇𝑅

)︁ (︀√
𝑇𝐿𝜌𝐿 −

√
𝑇𝑅𝜌𝑅

)︀
2
(︀
log(

√
𝑇𝐿𝜌𝐿)− log(

√
𝑇𝑅𝜌𝑅)

)︀ .

(4.38)

4.1.7. First order spatial accuracy

The �rst order scheme is de�ned by a constant value of 𝑈 over each control volume. In this case, 𝑈𝐿

and 𝑈𝑅 are de�ned by the two nodal values of the edge.
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4.1.8. Second order spatial accuracy

The second order scheme uses MUSCL extrapolation [?] to reconstruct a linear variation of 𝑈 over
each control volume. This reconstruction is accomplished by going outside the cell to construct nodal
gradients, which are then used to extrapolate the state variables along each edge from the node to the
cell face.

4.1.9. Low-dissipation MUSCL-based fluxes

For Large Eddy Simulations (LES) or Detached Eddy Simulations (DES), fully upwinded methods are
known to exhibit too much damping of turbulent eddies, resulting in low e�ciency calculations for this
class of �ow. Toward reducing the dissipation in the implemented schemes and thus improving the
e�ciency of LES and DES, Aero has a hybrid algorithm that utilizes the MUSCL states. Near shocks,
the fully dissipative �ux is used. Away from shocks, we use a sensor function to blend a non-dissipative
�ux with a dissipative �ux,

𝐹 𝑓 (𝑈̃𝐿, 𝑈̃𝑅) = 𝛼𝐹 𝑛𝑜𝑑𝑖𝑠𝑠
𝑓 (𝑈̃𝐿, 𝑈̃𝑅) + (1− 𝛼)𝐹 𝑑𝑖𝑠𝑠

𝑓 (𝑈̃𝐿, 𝑈̃𝑅), (4.39)

where 𝛼 is determined by limiter values and 𝑈̃ denotes the MUSCL extrapolation. Any nondissipative
�ux can be chosen, but the Kinetic Energy Preserving, Honein and Moin, or Entropy Preserving �uxes
are preferred.

4.1.10. High-resolution hybrid fluxes

An alternative low-dissipation method utilizes multiple �ux evaluations and results in a higher
resolution algorithm on smooth grids,

𝐹 𝑓 (𝑈̂𝐿𝐿,𝑈𝐿,𝑈𝑅, 𝑈̂𝑅𝑅) =
4

3
𝑓𝑔(𝑈𝐿,𝑈𝑅)−

1

6

(︁
𝑓𝑔(𝑈̂𝐿𝐿,𝑈𝑅) + 𝑓𝑔(𝑈𝐿, 𝑈̂𝑅𝑅)

)︁
, (4.40)

where 𝑓𝑔 is a two-point function with the same form as described previously. 𝑈̂𝐿𝐿 and 𝑈̂𝑅𝑅 are
extrapolated states, where we extrapolate in primitive variables,

𝑉 = (𝜌, 𝑢1, 𝑢2, 𝑢3, 𝑇 )
𝑇 . (4.41)

using
𝑉 𝐿𝐿 = 𝑉 𝑅 − 2𝛿𝑟 · ∇𝑉 |𝐿, 𝑉 𝑅𝑅 = 𝑉 𝐿 + 2𝛿𝑟 · ∇𝑉 |𝑅, (4.42)

where 𝛿𝑟 = 𝑥𝑅 − 𝑥𝐿 and ∇𝑉 represents the reconstructed nodal gradients of the primitive variables.
The form of the phantom states may seem non-intuitive, but it recovers the structured de�nitions of a
higher order stencil in one-dimension [14], thus ensuring that in one dimension the secondary
preservation properties will be satis�ed.

For hybrid �uxes, a very similar form to above is utilized,

𝐹 𝑓 = 𝛼𝐹 𝑛𝑜𝑑𝑖𝑠𝑠
𝑓 𝐹 𝑓 (𝑈̂𝐿𝐿,𝑈𝐿,𝑈𝑅, 𝑈̂𝑅𝑅) + (1− 𝛼)𝐹 𝑑𝑖𝑠𝑠

𝑓 (𝑈̃𝐿, 𝑈̃𝑅). (4.43)

Note that the dissipative part again utilizes the MUSCL states. However, near shocks simple upwinding
is used.
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4.2. HYBRID SENSORS

To compute the sensor value in the hybrid �uxes described above, we �rst must determine if and where
shocks occur in the domain. To do this, we utilize the modi�ed Ducros sensor [15],

𝜑 =
1− tanh

(︀
5
2
+ 20Δ𝜃

𝑎

)︀
2

𝜃2

𝜃2 + 𝜔 · 𝜔 + 𝜖
,

𝜃 =
𝜕𝑢𝑘
𝜕𝑥𝑘

, 𝜖 = 10−6, Δ = 𝒱1/𝑑,

(4.44)

where 𝜔 is the vorticity and 𝑑 is the number of dimensions. When the maximum of phi over the stencil
of a given node is greater than a speci�ed tolerance (1.0e-03), we set 𝛼 = 1 for the hybrid algorithm.

The value of 𝛼 used in the hybrid algorithm is simply the average of left and right state for a given edge.
Away from a shock, we may still require dissipation where the grid is nonsmooth or the solution
contains underresolved features that lead to oscillations and noise. Thus, if a limiter is used, we add the
average edge value of the limiter to 𝛼. This greatly increases the robustness of the simulations utilizing
hybrid �uxes. More advanced sensors will be explored in the future.
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5. TIME MARCHING

Both implicit and explicit time marching methods are included in Aero. Time-accurate and steady-state
calculations may be made with implicit techniques, which allow large time steps but require LHS
(left-hand-side) sensitivities. Explicit methods do not require sensitivities and have lower memory usage
because a linear system is not needed, at the cost of stricter stability limits on timestep size.

The governing equations after the spatial discretization can be written in the semi discrete form

𝑑𝑈

𝑑𝑡
= 𝑅(𝑡,𝑈(𝑡)) , 𝑈 (𝑡𝑜) = 𝑈 𝑜, (5.1)

where 𝑅(𝑡,𝑈(𝑡)) contains the advection, di�usion, and source terms.

5.1. EXPLICIT METHODS

The explicit schemes in Aero can all be cast as low-storage Runge-Kutta (LSRK) schemes[16].
Low-storage schemes require 2𝑁 units of storage where𝑁 is the dimension of the system of ODEs.

A multistage low-storage Runge-Kutta scheme can be written as:

𝑡𝑗 = 𝑡𝑛−1 + 𝑐𝑗Δ𝑡, (5.2)
Δ𝑈 𝑗 = 𝐴𝑗Δ𝑈 𝑗−1 +Δ𝑡𝑅(𝑡𝑗−1,𝑈 𝑗−1), (5.3)
𝑈 𝑗 = 𝑈 𝑗−1 +𝐵𝑗Δ𝑈 𝑗, (5.4)

... (5.5)
𝑈𝑛 = 𝑈 𝑠 (5.6)

where the subindex 𝑗 denotes the stage number, 𝑠 is the number of stages, and the superscripts denote
the time level. The coe�cients𝐴𝑗 ,𝐵𝑗 , and 𝑐𝑗 are designed for many constraints, primarily to maintain
order of accuracy and to give a large stability region. Carpenter and Kennedy[16] give details of how to
determine these coe�cients for third- and fourth-order schemes. Two low-storage Runge-Kutta
schemes are included in Aero, based order of accuracy and stability limits of the schemes.

5.1.1. Forward Euler

The simplest explicit time marching scheme is the single-stage Forward Euler method. This is the
cheapest consistent integration method, although it is only �rst-order accurate and has very strict
stability requirements. Its LSRK coe�cients are found in Table 5.1-1.
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𝐴1 = 0 𝐵1 = 1 𝑐1 = 0

Table 5.1-1.. LSRK coefficients for the Forward Euler method

5.1.2. 5-stage RK4

A fourth-order LSRK scheme can be obtained with �ve stages. Several solutions exist - Aero uses
solution three from Carpenter and Kennedy[16]. The coe�cients for this method are found in Table
5.1-2.

𝐴1 = 0 𝐵1 = 0.1496590219993 𝑐1 = 0
𝐴2 = −0.4178904745 𝐵2 = 0.379210312999 𝑐2 = 0.1496590219993
𝐴3 = −1.192151694643 𝐵3 = 0.8229550293869 𝑐3 = 0.3704009573644
𝐴4 = −1.697784692471 𝐵4 = 0.6994504559488 𝑐4 = 0.6222557631345
𝐴5 = −1.514183444257 𝐵5 = 0.1530572479681 𝑐5 = 0.9582821306748

Table 5.1-2.. Coefficients for 5-stage RK4 explicit time marching scheme

5.2. POINT IMPLICIT

A point implicit algorithm is used to solve both the steady-state and time-accurate versions of the
implicit algorithm. In the steady-state case, the solution is still marched in time to drive the steady-state
residuals to zero but the solution is not time accurate because the residual does not include the time
term. For the time-accurate case, the time terms are added to the residual and at each timestep the total
residual is driven towards zero using Newton’s method for solving nonlinear equations.

In all cases, a non-linear equation is solved using Newton’s method which requires a series of linear
solves and an update of the conserved variables:

𝐴𝑗Δ𝑈 𝑗 = 𝑅𝑗, (5.7)
𝑈𝑛+1

𝑗+1 = 𝑈𝑛+1
𝑗 +Δ𝑈 𝑗 (5.8)

where n denotes timestep and j denotes nonlinear iteration, and the LHS matrix 𝐴𝑗 is slightly di�erent
for each time-marching method and de�ned below for each one.

The solution to the linear system is obtained through a relaxation method. 𝐴𝑗 is split into diagonal and
o�-diagonal terms

𝐴𝑗 = 𝐷𝑗 +𝑂𝑗 (5.9)

A Jacobi iteration is used and the o�-diagonal terms are moved to the RHS(right hand side) and are
evaluated using the previous subiteration value of 𝑈 𝑖 where i denotes the linear subiteration. The
resulting scheme is then

𝐷𝑗Δ𝑈 𝑖+1
𝑗 = 𝑅𝑗 −𝑂𝑗Δ𝑈 𝑖

𝑗 (5.10)
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The matrices 𝐷𝑗 , 𝑂𝑗 , and 𝑅𝑗 are updated at each nonlinear iteration for the time-accurate case and
only a single nonlinear iteration is typically used for steady-state problems.

Depending on the solution a full update taken for each nonlinear iteration may result in negative
temperatures or negative densities and lead to failure of the nonlinear solver. This is mitigated in Aero
by combining a local relaxation approach with a line search algorithm.

5.2.1. Local Relaxation

The local relaxation algorithm is used to limit updates at the nodal level to avoid potential stability
problems due to a poor initial guess or unknown/unrealistic initial conditions. E�ectively, a coe�cient
matrix Ω ≤ 𝐼 is applied in 5.8,

𝑈𝑛+1
𝑗+1 = 𝑈𝑛+1

𝑗 + ΩΔ𝑈 𝑗, (5.11)

where at each node the local relaxation factor is calculated when Δ𝑃
𝑃

≥ 𝑐 or Δ𝑇
𝑇

≥ 𝑐,

Ω𝑖 = min

(︂
𝑃𝑐

Δ𝑃
,
𝑇𝑐

Δ𝑇

)︂
, (5.12)

where Ω𝑖 reduces the update of the full conservative vector at the node uniformly. Because of the
nonlinear dependence of 𝑃 and 𝑇 on 𝑈 , this will not necessarily result in Δ𝑃

𝑃
≤ 𝑐 or Δ𝑇

𝑇
≤ 𝑐, but will

give a close approximation.

Local relaxation is also used to avoid updating the pressure and temperature below user speci�ed
minimum values. The predicted pressure and temperatures of the full update, 𝑃 ′ and 𝑇 ′, respectively,
are limited using,

Ω𝑖 = min

(︂
𝑃𝑚𝑖𝑛 − 𝑃

2Δ𝑃
,
𝑇𝑚𝑖𝑛 − 𝑇

2Δ𝑇

)︂
. (5.13)

As discussed above, because of the nonlinear nature of 𝑃 and 𝑇 with respect to the update, this limiting
procedure may fail when𝑃 and 𝑇 are near their respective minimum values relative to the update size.

5.2.2. Line Search

The line search algorithm ensures that the composite residual of the nonlinear solver decreases after the
update. In other words,

𝑅*(𝑈𝑛+1
𝑗 + 𝜔Δ𝑈) < 𝑅*(𝑈𝑛+1

𝑗 ), (5.14)

where 𝜔 is the global relaxation factor for the line search. Initially, 𝜔 = 1 is used. If equation 5.14 is not
satis�ed, then 𝜔 = 1

2
𝜔 is used until equation 5.14 is satis�ed. In Aero, if 𝜔 = 1

16
, then the update is

taken anyway.
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5.2.3. Steady-State

Steady-state time advancement is based on the linearized backward-Euler time marching scheme.

𝑑𝑈

𝑑𝑡
=

𝑈𝑛+1 −𝑈𝑛

Δ𝑡
= 𝑅(𝑡,𝑈𝑛(𝑡)). (5.15)

In this case the time-term is not included in the residual but is included in the sensitivities. Only a single
linearization is done for each time step.

𝐴0 =
𝑉

Δ𝑡
𝐼 − 𝜕𝑅

𝜕𝑈𝑛 (5.16)

5.2.4. Time accurate Backward Euler

For time-accurate backward Euler, the time derivative is approximated as:

𝑑𝑈

𝑑𝑡
=

𝑈𝑛+1 −𝑈𝑛

Δ𝑡
(5.17)

The time-derivative term is included in the residual term. The modi�ed residual is now

𝑅*(𝑈𝑛+1
𝑗 ) = 𝑅(𝑈𝑛+1

𝑗 )−
𝑈𝑛+1

𝑗 −𝑈𝑛

Δ𝑡
(5.18)

where j denotes the nonlinear iteration and 𝑈𝑛+1
0 = 𝑈𝑛. The resulting nonlinear equation,

𝑅*(𝑈𝑛+1
𝑗 ) = 0, (5.19)

is solved using Newton’s method. The LHS is:

𝐴𝑗 = −
𝜕𝑅*

𝑗(𝑈
𝑛+1
𝑗 )

𝜕𝑈𝑛+1
𝑗

=
𝑉

Δ𝑡
𝐼 −

𝜕𝑅𝑗(𝑈
𝑛+1
𝑗 )

𝜕𝑈𝑛+1
𝑗

(5.20)

5.2.5. Time accurate BDF2

BDF2 is very similar to time-accurate backward Euler except the time derivative is approximated as:

𝑑𝑈

𝑑𝑡
=

1

Δ𝑡

(︂
3

2
𝑈𝑛+1 − 2𝑈𝑛 +

1

2
𝑈𝑛−1

)︂
(5.21)

The above formulation assumes constant timestep.

The time-derivative term is included in the residual term. The modi�ed residual is now

𝑅*(𝑈𝑛+1
𝑗 ) = 𝑅(𝑈𝑛+1

𝑗 )− 1

Δ𝑡

(︂
3

2
𝑈𝑛+1

𝑗 − 2𝑈𝑛 +
1

2
𝑈𝑛−1

)︂
(5.22)
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where j denotes the nonlinear iteration and 𝑈𝑛+1
0 = 𝑈𝑛. The resulting nonlinear equation,

𝑅𝑛
* (𝑈

𝑛+1
𝑗 ) = 0, (5.23)

is solved using Newton’s method. The LHS is:

𝐴𝑗 = −
𝜕𝑅*

𝑗(𝑈
𝑛+1
𝑗 )

𝜕𝑈𝑛+1
𝑗

=
3

2

𝑉

Δ𝑡
𝐼 −

𝜕𝑅𝑗(𝑈
𝑛+1
𝑗 )

𝜕𝑈𝑛+1
𝑗

(5.24)

5.3. DIAGONALLY IMPLICIT RUNGE KUTTA

Diagonally implicit Runge Kutta schemes are useful for numerically sti� problems where time accuracy
is important. Diagonally implicit Runge Kutta schemes are similar to explicit Runge Kutta schemes in
that multiple stages are needed for each time step. However, for the implicit scheme, the solution at the
current stage is implicitly solved for and therefore a nonlinear solve is needed for each stage. A general
Runge Kutta scheme to solve the semi-discrete equation 5.1 can be written as a series of stage
calculations and a solution update. The stage calculation is:

𝑈 𝑖 = 𝑈𝑛 +Δ𝑡
𝑠∑︁

𝑗=1

𝑎𝑖,𝑗𝑅(𝑡𝑛 + 𝑐𝑗Δ𝑡,𝑈
𝑗) (5.25)

where the i index denotes stage and the n index denotes timestep. This equation must be solved
nonlinearly if there are non-zero values on the diagonally of 𝑎𝑖,𝑗 .

The update to the solution for the next timestep is:

𝑈𝑛+1 = 𝑈𝑛 +Δ𝑡
𝑠∑︁

𝑖=1

𝑏𝑖𝑅(𝑡𝑛 + 𝑐𝑖Δ𝑡,𝑈
𝑖) (5.26)

These schemes can be expressed in a Butcher tableau format and includes extra coe�cients (𝑏̃𝑖) that give
a solution one order lower than the coe�cients 𝑏𝑖. These extra coe�cients are useful in determining the
time discretization error and can be used for adaptive time stepping.

𝑐𝑖 𝑎𝑖,𝑗
𝑏𝑖
𝑏̃𝑖

Table 5.3-1.. Butcher tableau format for Runge Kutta methods.

In Aero, the following six stage fourth order diagonally implicit Runge Kutta scheme is used.
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0 0 0 0 0 0 0
1
2

1
4

1
4

0 0 0 0
83
250

8611
62500

− 1743
31250

1
4

0 0 0
31
50

5012029
34652500

− 654441
2922500

174375
388108

1
4

0 0
17
20

15267082809
155376265600

− 71443401
120774400

730878875
902184768

2285395
8070912

1
4

0
1 82889

524892
0 15625

83664
69875
102672

−2260
8211

1
4

𝑏𝑖
82889
524892

0 15625
83664

69875
102672

−2260
8211

1
4

𝑏̃𝑖
4586570599
29645900160

0 178811875
945068544

814220225
1159782912

− 3700637
11593932

61727
225920

Table 5.3-2.. Coefficients for six stage fourth order Diagonally
Implicit Runge Kutta.

5.4. ADAPTIVE TIME-STEPPING & TEMPORAL ERROR
CONTROL

This section details the adaptive temporal error control methodology in Aero. Consider the �rst step of
a numerical solution, resulting in an approximate solution 𝑣𝑛+1. Given an exact solution 𝑢(𝑡), the local
temporal error, ℓ𝑛+1, is

ℓ𝑛+1 ≡ 𝑢(𝑡𝑛 +Δ𝑡𝑛)− 𝑣𝑛+1. (5.27)

Suppose the numerical method has order of accuracy 𝑝. Then the error of a single step is

ℓ𝑛+1 ≡ (Δ𝑡)𝑝+1𝜑𝑛 + higher order terms, (5.28)

where 𝜑𝑛 is the principal error function. An estimation, ℓ̂𝑛+1, of the local error is found with a method
of order 𝑞 > 𝑝 that gives approximation 𝑣𝑛+1.

ℓ̂𝑛+1 ≡ 𝑣𝑛+1 − 𝑣𝑛+1 = (Δ𝑡)𝑝+1𝜑𝑛 + higher order terms. (5.29)

The objective is to control the local temporal error by adjusting the time step. A target error 𝜀 is
speci�ed, towards which we drive a norm of the estimate, 𝑟𝑛+1 ≡ ‖ℓ̂𝑛+1‖ (an error-per-step (EPS)
criterion). To avoid risking step rejection we drive the error norm to Θ𝜀, where Θ = 0.8 is a factor of
safety.

To compute the error norm, we �rst compute the relative di�erence, 𝛿𝑛+1
𝑗 = ℓ̂𝑛+1/𝑆𝑗 , where 𝑆𝑗 is a

rough scale of the degree of freedom 𝑗. The L2-norm of this relative error is integrated over the domain
volume,

(𝑟𝑛+1)2 =
1

𝑉

∫︁
𝑉

(𝛿𝑛+1)2𝑑𝑉 ≈ 1

𝑉

𝑛elem∑︁
𝑖=1

𝑛var∑︁
𝑗=1

(𝛿𝑛+1
𝑗 )2𝑉𝑖, (5.30)

in which 𝑛𝑣𝑎𝑟 is the number of variables in the local state vector.

There are several popular means of controlling the time step in response to the error sequence. In Aero
we provide three digital feedback controllers - the common ’elementary’ controller, a PI
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(proportional-integral) scheme, and a PID (proportional-integral-derivative) controller. In all of these
controllers we use a limiter of the form Δ𝑡𝑛+1 ≤ 𝑅Δ𝑡𝑛 where𝑅 = 2.0 is the ’maximum ramp’ that
prevents unreasonable step size increases. The controller is disengaged only when limiting the step
increase, modifying Δ𝑡 for FSI coupling, or enforcing the termination time. We do not employ
deadzones (cut-outs) wherein the time step is �xed until a substantial change is necessary.

5.4.1. Elementary Control

The elementary controller is derived by �rst assuming that the time step is in the asymptotic range of
the numerical method (the higher order terms can be neglected). Then our error norm is exactly
𝑟𝑛+1 = (Δ𝑡)𝑝+1‖𝜑𝑛‖. Adjusting the time step by an amount 𝜂(Δ𝑡) and equating the error to Θ𝜀
yields 𝜂 = Δ𝑡𝑛+1/Δ𝑡𝑛 = (Θ𝜀/𝑟𝑛+1)1/𝑝+1. Thus the elementary controller modi�es the time step
according to

Δ𝑡𝑛+1 = Δ𝑡𝑛
(︂

Θ𝜀

𝑟𝑛+1

)︂1/𝑝+1

. (5.31)

The elementary controller is very common and straightforward to derive. It has �rst-order dynamics
and its single pole is at the origin (so-called ‘deadbeat’ control), giving it the best intrinsic stability
properties. However it has several shortcomings. It is based entirely upon the process model of
𝑟𝑛+1 = (Δ𝑡)𝑝+1‖𝜑𝑛‖, which requires that Δ𝑡 is in the asymptotic range. This assumption is not always
met - for instance when numerical stability limits the step size or when sti� problems are solved with
L-stable implicit methods and large time steps. It is well-known that this controller tends to oscillate
around stability boundaries, a�ecting the smoothness of the resultant numerical solution [17].

A particular challenge with the elementary controller is exposed by its frequency response - there is no
attenuation of high frequencies in the stepsize transfer map, meaning that the spectral properties of
‖𝜑𝑛‖, which represents the ‘physics’ of the underlying solution, are transmitted without attenuation to
the stepsize. If the problem is noisy, then the resultant stepsize sequence will be just as noisy. Designing
controllers via ’noise-shaping’ and moving away from deadbeat control (placing poles away from the
origin) allows us to obtain smoother stepsize sequences, as discussed in [18].

5.4.2. PI and PID Control

Gustafsson et al. [19] approached the problem of adaptive time-stepping from a control-theoretic
perspective, and derived PI controllers as straightforward improvements to the elementary controller.
These methods modify the time step as

Δ𝑡𝑛+1 = Δ𝑡𝑛
(︂

𝑟𝑛

𝑟𝑛+1

)︂𝑘𝑃
(︂

Θ𝜀

𝑟𝑛+1

)︂𝑘𝐼

, (5.32)

where 𝑘𝑃 and 𝑘𝐼 are the proportional and integral gains, respectively. Comparing this formula to
Equation (5.31) shows that the elementary controller is an I-controller (𝑘𝑃 = 0) with gain
𝑘𝐼 = 1/(𝑝+ 1).
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Observe that the integral mode changes Δ𝑡 according to its distance from the target, while the
proportional mode modi�es the step by a trend of increasing or decreasing error. In specifying 𝑘𝑃 and
𝑘𝐼 , we can optimize controller dynamics for stability and monotonic/oscillatory/deadbeat control (pole
placement), frequency response, and the ’aggressiveness’ of the adaptation. [19] and [18] focus on the
problem of obtaining smoothed stepsize histories. The controllers of [18] struggle to operate near the
stability boundary of the time-stepping methods because they have extremely low responsiveness to
high-frequency forcing. Aero provides one PI controller, custom-tuned for aggressive time-stepping
near the stability boundary, with some of the stepsize-smoothing property of controllers in [18]. The
gains of this controller are 𝑘𝐼 = 0.6 and 𝑘𝑃 = −0.1.

It is common to utilize derivative mode control, as is used by [20] and discussed by [18]. Here the
stepsize control structure is

Δ𝑡𝑛+1 = Δ𝑡𝑛
(︂

𝑟𝑛

𝑟𝑛+1

)︂𝑘𝑃
(︂

Θ𝜀

𝑟𝑛+1

)︂𝑘𝐼
(︂

𝑟𝑛𝑟𝑛

𝑟𝑛+1𝑟𝑛−1

)︂𝑘𝐷

, (5.33)

where 𝑘𝐷 is the derivative gain. Aero provides the controller with the tuning of [20], with 𝑘𝑃 = 0.14,
𝑘𝐼 = 0.25, and 𝑘𝐷 = 0.10.

5.4.3. Adaptive Explicit Methods

Calculation of the error estimate requires a pair of discretizations. For implicit calculations, the pair
contained in the DIRK method is provided in §5.3. Aero provides three di�erent pairs of embedded
explicit low-storage Runge-Kutta methods. The Forward Euler method (Table 5.1-1) and the
second-order explicit trapezoidal method form two of these methods. ERK1(2) uses Forward Euler to
update the solution and trapezoidal to estimate the error, while ERK2(1) is the same pair run in local
extrapolation mode wherein the higher-order method (trapezoidal) is used for the update.

The fourth-order method given in Table 5.1-2 can be paired with an embedded third-order method. The
𝐴 and 𝑐 coe�cients are identical, but the update coe�cients [21] are given by 𝐵̂5 = 𝐵5 and
𝐵̂𝑖 = 𝐵𝑖 − 𝐴𝑖+1𝐵𝑖+1 for 𝑖 ∈ 1, 2, 3, 4. This gives the ERK4(3) scheme, a fourth-order accurate
method with a third-order error estimate. The coe�cients of the third-order scheme are not designed
for time integration and can only be used for error estimation.
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6. BOUNDARY CONDITIONS

The enforcement of boundary conditions is important for any numerical solution of partial di�erential
equations. Below, the enforcement of boundary conditions is detailed for the currently supported
boundary types in Aero.

6.1. SOLID WALL

6.1.1. Dirichlet no slip wall

On a no slip wall, velocity is set to the prescribed value of the wall. For the continuity equation, this
means that there is no mass �ux across the wall. This condition is applied weakly. The residual for the
momentum equation is replaced by

𝑢𝑗 − 𝑔𝑗 = 0

where 𝑔𝑗 is the speci�ed velocity at the wall. For a no-slip wall, 𝑔𝑗 = 0. The rows in the iterative matrix
for the Newton system are similarly removed and replaced by the Jacobian of this new residual. For
example, for a three dimensional �ow, the matrix equations associated with the momentum equation
for a node on a no slip wall are replaced by⎛⎝ −𝑢1

𝜌
1
𝜌

0 0 0
−𝑢2

𝜌
0 1

𝜌
0 0

−𝑢3

𝜌
0 0 1

𝜌
0

⎞⎠⎛⎝ 𝛿𝑢1
𝛿𝑢2
𝛿𝑢3

⎞⎠ =

⎛⎝ 𝑢1 − 𝑔1
𝑢2 − 𝑔2
𝑢3 − 𝑔3

⎞⎠
For an isothermal wall, the energy equation is also removed and temperature is speci�ed. On an
adiabatic wall, temperature is allowed to �oat, and the speci�cation of zero heat �ux is automatically
handled because the contribution to the �ux balance of the viscous �ux through an adiabatic no slip
wall is zero. balance is again zero. Turbulence equations are also removed and the turbulent variables are
set to a speci�ed state.

6.1.1.1. SST 𝑘-𝜔 turbulence model

The turbulent kinetic energy is simply set to zero,

(𝜌𝑘)wall = 0 (6.1)

Its speci�c dissipation rate is set to

(𝜌𝜔)wall =
60𝜇

𝛽1𝑑2
(6.2)
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where 𝛽1 is obtained from Table 2.3-1. Since the limit of (6.2) as 𝑑→ 0 is in�nity, (6.2) cannot be
evaluated directly at the wall. Instead, the right hand side of (6.2) is evaluated at a nearby location. The
residual and matrix entries for the rows associated with the turbulence equations are replaced by(︂

1 0
0 1

)︂(︂
𝛿(𝜌𝑘)
𝛿(𝜌𝜔)

)︂
=

(︂
𝜌𝑘

𝜌𝜔 − (𝜌𝜔)wall

)︂

6.1.1.2. 𝑘-𝜖 turbulence model

At a solid wall, the turbulent kinetic energy is simply set to zero.

(𝜌𝑘)wall = 0

Its dissipation rate is set to

(𝜌𝜖)wall =
2𝜇𝑘

𝑑2
(6.3)

Since the limit of (6.3) as 𝑑→ 0 is in�nity, (6.3) cannot be evaluated directly at the wall. Instead, the
right hand side of (6.3) is evaluated at a nearby location. The residual and Jacobian matrix rows
associated with the solid walls are replaced by the following matrix system(︂

1 0
0 1

)︂(︂
𝛿(𝜌𝑘)
𝛿(𝜌𝜖)

)︂
=

(︂
𝜌𝑘

𝜌𝜖− (𝜌𝜖)wall

)︂
,

where we have neglected the sensitivities of(𝜌𝜖)wall.

6.1.1.3. Spalart-Allmaras turbulence model

At a solid wall, the working variable is set to zero.

(𝜌𝜈)wall = 0 (6.4)

The residual and Jacobian matrix rows associated with the solid walls are replaced by

𝛿(𝜌𝜈) = (𝜌𝜈)wall

6.1.2. Weak no slip wall

It is often advantageous to impose the no slip conditions in a weak sense instead of forcing the solution
to be equal to the boundary condition at the wall. In the limit of in�nite resolution, the weak boundary
condition gives the same solution as a strongly enforced boundary condition. However, in practical
cases weak boundary conditions typically result in more accurate solutions for the same resolution [22].
Furthermore, the solution at the wall for a weakly enforced no slip condition can be used to estimate the
error in the overall solution. As �ow features such as the boundary layer become better resolved, the
error in the no slip condition decreases. In the asymptotic range of the numerical method used for the
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simulation, the error at the boundary will decrease by the designed order of accuracy as the grid is
re�ned. This speci�cation is similar to that of a cell-centered �nite volume approach.

To enforce the no slip condition weakly, we specify the total �ux at the boundary using the di�erence
between the computed solution and the speci�ed wall condition:

F𝑏 = −F𝑛(U,U𝑏) +G(U, ̃︂∇V(U)), (6.5)

where ̃︂∇V(U) is a modi�ed projected nodal gradient at the boundaries. The modi�cations for the
velocity gradients are ̃︂𝜕𝑥𝑗

𝑢𝑖 = 𝜕𝑥𝑗
𝑢𝑖 −

𝑢𝑖 − (𝑢wall)𝑖
𝑑

𝑛𝑗, (6.6)

where 𝑑 is the some measure of the normal wall spacing. For isothermal walls the modi�ed temperature
gradient is ̃︂𝜕𝑥𝑗

𝑇 = 𝜕𝑥𝑗
𝑇 −

𝑇 − 𝑇wall
𝑑

𝑛𝑗, (6.7)

and for speci�ed heat �ux walls, the modi�ed temperature gradient is

̃︂𝜕𝑥𝑗
𝑇 = 𝜕𝑥𝑗

𝑇 + (𝑔wall − 𝜕𝑥𝑘𝑇𝑛𝑘)𝑛𝑗, 𝑔wall = −
𝑞wall
𝜅

, (6.8)

where 𝑞wall is the speci�ed wall heat �ux.

The �ux reconstruction, F𝑛 can use any dissipative reconstruction function. The boundary state used
in the reconstruction is de�ned as

U𝑏 =

⎛⎝ 1 0 0
0 𝛿𝑖𝑗 − 2𝑛𝑖𝑛𝑗 0
0 0 1

⎞⎠U, (6.9)

which reverses the normal velocity, but does not modify any slip velocity, density, or energy.

6.1.2.1. SST 𝑘-𝜔 turbulence model

For the SST model, the same wall conditions as above are used:

(𝑘)wall = 0,

(𝜔)wall =
60𝜇

𝛽1𝜌𝑑2
.

The modi�ed gradients are ̃︂𝜕𝑥𝑗
𝑘 = 𝜕𝑥𝑗

𝑘 −
𝑘 − 𝑘wall

𝑑
𝑛𝑗,

̃︂𝜕𝑥𝑗
𝜔 = 𝜕𝑥𝑗

𝜔 −
𝜔 − 𝜔wall

𝑑
𝑛𝑗.

(6.10)
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6.1.2.2. 𝑘-𝜖 turbulence model

For the 𝑘-𝜖model, wall conditions are:
(𝑘)wall = 0,

(𝜖)wall =
2𝜇𝑘

𝜌𝑑2

The modi�ed gradients are ̃︂𝜕𝑥𝑗
𝑘 = 𝜕𝑥𝑗

𝑘 −
𝑘 − 𝑘wall

𝑑
𝑛𝑗,

̃︂𝜕𝑥𝑗
𝜖 = 𝜕𝑥𝑗

𝜖−
𝜖− 𝜖wall

𝑑
𝑛𝑗.

(6.11)

6.1.2.3. Spalart-Allmaras turbulence model

For the Spalart-Allmaras model, wall conditions are

𝜈wall = 0.

The modi�ed gradients are ̃︂𝜕𝑥𝑗
𝜈 = 𝜕𝑥𝑗

𝜈 −
𝜈 − 𝜈wall

𝑑
𝑛𝑗. (6.12)

6.1.3. Turbulent Wall Function

For a turbulent boundary layer at high Reynolds number, the minimum wall spacing required to
resolve the turbulent boundary layer can be quite small. Wall functions can be used to reduce this wall
spacing requirement by modeling wall shear stress and heat transfer using the law of the wall[23]. The
assumptions of using the law of the wall for the wall function boundary condition are:

• local equilibrium of turbulent kinetic energy production and dissipation

• constant shear stress within the log-law region

Wall functions are used to modify the contribution of the wall shear stress and wall heat �ux

∫︁
𝜏𝑖𝑗𝑛𝑗𝑑𝑆 = 𝐹𝑤𝑖,

∫︁
𝑞𝑗𝑛𝑗𝑑𝑆 (6.13)

The velocity parallel to the wall is used as the velocity for all quantities. It can be calculated by
projecting the velocity vector onto the surface plane

𝑢𝑖‖ = (𝛿𝑖𝑗 − 𝑛𝑖𝑛𝑗)𝑢𝑗 (6.14)

where 𝑛𝑖 is the surface unit normal.

The law of the wall for compressible �ow [24] can be written as
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𝑈𝑐

𝑢𝜏
= 𝑈+

𝑐 =
1

𝜅
ln 𝑦+ + 𝐶, (6.15)

𝑢𝜏 =

√︂
𝜏𝑤
𝜌𝑤

=
𝑢‖
𝑢+
, 𝑦+ =

𝑢𝜏𝑦

𝜈𝑤
(6.16)

with𝐶 = 5.1 and 𝜅 = 0.41 by default. This law of the wall is similar to the incompressible version
except velocity is transformed using the Van Driest transformation[23]

𝑈𝑐 =
1

𝑎

[︂
sin−1

(︂
2𝑎2𝑢‖ − 𝑏

𝑄

)︂
+ sin−1

(︂
𝑏

𝑄

)︂]︂
(6.17)

where

𝑎 =

√︃(︂
𝑃𝑟𝑇
2𝐶𝑝𝑇𝑤

)︂
, 𝑏 =

𝑇𝑎𝑤 − 𝑇𝑤
𝑇𝑤𝑢𝑒

, 𝑄 =
√
𝑏2 + 4𝑎2 (6.18)

The adiabatic wall temperature is computed assuming that the recovery factor, 𝑟 is equal to the
turbulent Prandtl number, 𝑃𝑟𝑇

𝑇𝑎𝑤 = 𝑇1 +
𝑟𝑢2‖
2𝐶𝑝

(6.19)

The wall temperature is set to the adiabatic wall temperature for an adiabatic wall. For an isothermal
wall it is set to the speci�c wall temperature. The quantities with a subscript of 1 are the value at the �rst
point o� the wall. In the case of edge-based Aero, this point is actually at the wall and the wall value is at
a �ctitious location. The wall values of density and viscosity are computed using the wall temperature
and assuming that the pressure does not vary between the wall and the �rst point o� the wall. The shear
velocity, 𝑢𝜏 is determined by solving equation 6.15 using Newton’s method. After 𝑢𝜏 is determined the
wall shear stress for each component is

𝜏𝑤,𝑖 = 𝜌𝑤𝑢𝜏
𝑢𝑖‖
𝑢+

(6.20)

The calculation for obtaining the wall heat �ux follows Huang et al[24]. If near a solid surface
convection is neglected and 𝜏 = 𝜏𝑤 is assumed then the energy equation can be integrated resulting in

𝑞 = 𝑞𝑤 + 𝑢‖𝜏𝑤 (6.21)

The heat transfer and wall shear stress are written as

𝑞 = −𝜇𝑇𝐶𝑝

𝑃𝑟𝑇

𝜕𝑇

𝜕𝑦
, 𝜏𝑤 = 𝜇𝑡

𝜕𝑢‖
𝜕𝑦

(6.22)

Integrating the above equation with respect to 𝑢‖ results in

𝑇 = 𝑇𝑤 −
𝑃𝑟𝑡𝑞𝑤𝑢‖
𝐶𝑝𝜏𝑤

−
𝑃𝑟𝑇𝑢

2
‖

2𝐶𝑝

(6.23)
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By using 𝑟 = 𝑃𝑟𝑇 and solving for 𝑞𝑤, the above equation can be written

𝑞𝑤 =
𝜏𝑤𝐶𝑝

𝑟𝑢‖
(𝑇𝑤 − 𝑇𝑎𝑤) (6.24)

which gives the �ux boundary condition on the energy equation at the wall. If the �rst point is too close
to the wall and no longer in the log layer typically for 𝑦+ < 12, then the viscous wall shear stress and
heat �ux are given by:

𝜏𝑤 = 𝜇
𝑢‖
𝑦
, 𝑞𝑤 = 𝜅

𝑇𝑤 − 𝑇1
𝑦

(6.25)

The turbulence quantity model for the SST model are speci�ed as

𝑘wall =
𝜌𝑤
𝜌1
𝑢2𝜏√
𝛽* , 𝜔wall =

𝑢𝜏

𝜅
√
𝛽*𝑦

. (6.26)

For the 𝑘-𝜖model, the turbulence quantities are

𝑘wall =
𝑢2𝜏
𝐶𝜇

, 𝜖wall =
𝑢3𝜏
𝜅𝑦
. (6.27)

The working variable for the Spalart-Allmaras model is

𝜈wall = 𝜅𝑢𝜏𝑦. (6.28)

The turbulence quantities for the above models are imposed weakly at the wall using equations ??, ??,
and ??, respectively.

6.1.4. Slip wall

For slip walls, see the tangent �ow boundary conditions described below.

6.2. TANGENT FLOW

A tangent �ow condition is typically applied for underresolved or slip walls or as a symmetry condition.
In Aero, two methods can be used to apply this condition, one based on re�ecting the velocity and one
based on a pressure integral. The enforcement of additional required boundary conditions for viscous
�ows is independent of whether velocity re�ection or pressure integration is used.
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6.2.1. Velocity Reflection

The primary condition for a tangent �ow boundary is that the velocity normal to the boundary is zero.
In Aero, this is enforced using a �ux through the boundary face. To calculate the �ux, �rst the �ow state
at the boundary is copied into a boundary state, 𝑈𝑏. The normal velocity of boundary state is then
re�ected,

𝑢𝑏𝑖 = 𝑢𝑖 − 2𝑢𝑘𝑛𝑘𝑛𝑖. (6.29)

The boundary �ux follows simply as

𝐹𝑏 = 𝐹𝑅(𝑈,𝑈𝑏, 𝑛), (6.30)

where 𝐹𝑅 is a dissipative reconstruction, such as Roe or Steger-Warming.

6.2.2. Pressure Integration

Another way to impose that the velocity normal to the boundary is zero is to simply construct the
boundary �ux such that all terms multiplied by the normal velocity are zero. Thus, only the pressure
force in the momentum equation is included. For a turbulent ideal gas, the form of the �ux is

𝐹𝑏 =

∫︁
𝜕Ω

⎛⎜⎜⎜⎜⎝
0
𝑃𝑛𝑖

0
0
0

⎞⎟⎟⎟⎟⎠ 𝑑𝐴. (6.31)

In Aero, a �rst order approximation to the integral is used, where the pressure value at the boundary
node is multiplied by the area of the boundary face.

The two approaches give di�erent results. For a more strict enforcement of zero normal velocity, the
re�ection condition is preferred.

6.2.3. Viscous Conditions

The Navier-Stokes equations are incompletely parabolic and require (𝑁𝑞 − 1) linearly independent
boundary conditions for tangent �ow, where

𝑁𝑞 = 𝑁𝑒 +𝑁𝑠 +𝑁𝑑 +𝑁𝑇

is the number of di�erential equations in the system,𝑁𝑒 is the number of energy equations,𝑁𝑠 is the
number of species,𝑁𝑑 is the number of physical dimensions, and𝑁𝑇 is the number of turbulence
equations. In Aero, this requirement is satis�ed by

1. Requiring that the viscous traction force has no component parallel to the boundary, and

2. Requiring no species mass di�usion, heat �ux, or turbulent di�usion through the boundary.
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The �rst condition yields (𝑁𝑑 − 1) linearly independent conditions, and the second condition yields
(𝑁𝑠 +𝑁𝑇 ) independent conditions. The velocity re�ection or pressure integration condition yields the
�nal needed condition. For a turbulent ideal gas, the boundary viscous �ux takes the form

𝐺𝑏 =

∫︁
𝜕Ω

(︀
0, 𝑇𝑖, 0, 0, 0

)︀
𝑑𝐴, (6.32)

where 𝑇𝑖 is the modi�ed traction vector,

𝑇𝑖 = 𝑇𝑛𝑛𝑖, 𝑇𝑛 = 𝜏𝑘𝑗𝑛𝑗𝑛𝑘. (6.33)

Note that there is no contribution of the viscous heating to the energy equation because 𝑢𝑖𝑇𝑖 = 0.

6.3. OPEN BOUNDARIES

Open boundaries are used to specify in�ows, out�ows, and far�eld conditions. Aero has many methods
of specifying open boundaries, which are detailed below. As for tangent �ows, the additional needed
conditions for viscous �ows are always enforced in the same manner when required for out�ows and
far�elds.

The boundary conditions for open boundaries in Aero are set up with an inviscid part, which will be
applied to both the Euler and Navier Stokes equations, and a viscous part, which is only applied to the
Navier Stokes equations. The number of inviscid boundary conditions required for an open boundary
depends on the number of incoming eigenvalues of the �ux Jacobian,

𝜕𝐹

𝜕𝑈
= 𝑆Λ𝑆−1, (6.34)

where 𝑆 denotes the matrix of right eigenvectors and Λ denotes the diagonal matrix of eigenvalues,

Λ = 𝐴

⎛⎜⎜⎜⎝
𝑢𝑘𝑛𝑘 + 𝑐 0 0 . . .

0 𝑢𝑘𝑛𝑘 − 𝑐 0 . . .
0 0 𝑢𝑘𝑛𝑘 0
...

... 0
. . .

⎞⎟⎟⎟⎠ . (6.35)

Since the normal vector is oriented to point outward from the domain, incoming eigenvalues will
always be negative.

6.3.1. Viscous Conditions

Open boundaries with one or zero nonzero eigenvalues require additional conditions for well-posedness
of the viscous equations.

In Aero, this requirement for open boundaries is satis�ed by

1. Requiring that the viscous traction force has no component normal to the boundary, and
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2. Requiring no species mass di�usion, heat �ux, or turbulent di�usion through the boundary.

The �rst condition yields one linearly independent condition, and the second condition yields
(𝑁𝑠 +𝑁𝑇 ) independent conditions. Thus, for some inviscid out�ow conditions in Aero, the linear
well-posedness may not be met. However, in numerical experiments, the boundary conditions used
exhibit correct and robust behavior.

For a turbulent ideal gas, the boundary viscous �ux takes the form

𝐺𝑏 =

∫︁
𝜕Ω

(︀
0, 𝑇𝑖, 𝑢𝑘𝑇𝑘, 0, 0

)︀
𝑑𝐴, (6.36)

where 𝑇𝑖 is the modi�ed traction vector,

𝑇𝑖 = 𝜏𝑖𝑗𝑛𝑗 − 𝑇𝑛𝑛𝑖, 𝑇𝑛 = 𝜏𝑘𝑗𝑛𝑗𝑛𝑘. (6.37)

These viscous conditions are applied to all open boundary conditions unless a Dirichlet condition is
speci�ed.

6.3.2. Extrapolation

For a �ow with no negative eigenvalues, no inviscid condition should be speci�ed. One method to
accomplish this is to simply use the �ux calculated from the state at the boundary to specify the
boundary �ux,

𝐹𝑏 = 𝐹 (𝑈). (6.38)

For �ows that may be transonic at the boundary, this is not an appropriate choice. The extrapolation
boundary condition is an instance in the viscous case where not enough data is imposed for linear
well-posedness to be satis�ed.

6.3.3. Farfield

In Aero, far�eld enforcement is a general open boundary condition that automatically handles all
combinations of eigenvalues. In the case of a supersonic out�ow (strictly positive eigenvalues), the
extrapolation boundary condition is recovered.

For a supersonic in�ow (strictly negative eigenvalues), the entire boundary state is calculated from a
user-speci�ed �ow state, and a �ux reconstruction is used to specify the boundary �ux,

𝐹𝑏 = 𝐹𝑅(𝑈,𝑈𝑏). (6.39)

For subsonic boundary regions, the boundary states are calculated based on Riemann invariants,

𝑅(−)
𝑠 = 𝑢𝑠𝑗𝑛𝑗 −

2

𝛾 − 1
𝑐𝑠, 𝑅(+) = 𝑢𝑗𝑛𝑗 +

2

𝛾 − 1
𝑐, (6.40)
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where the subscript 𝑠 denotes the user speci�ed state. These Riemann invariants are used to compute
the normal velocity as:

𝑢𝑏𝑗𝑛𝑗 =
𝑅

(−)
𝑠 +𝑅(+)

2
. (6.41)

To compute the full velocity tangent velocity vectors are de�ned for the speci�ed and computed
states,

𝑢𝑡1𝑖 = 𝑢𝑗𝑡1𝑗𝑡1𝑖, 𝑢𝑡2𝑖 = 𝑢𝑗𝑡2𝑗𝑡2𝑖,

𝑢𝑠𝑡1𝑖 = 𝑢𝑠𝑗𝑡1𝑗𝑡1𝑖, 𝑢𝑠𝑡2𝑖 = 𝑢𝑠𝑗𝑡2𝑗𝑡2𝑖,
(6.42)

where 𝑡1 and 𝑡2 denote vectors that are orthogonal to each other and the normal. The full boundary
state velocity is then calculated as

𝑢𝑏𝑖 = 𝑢𝑏𝑗𝑛𝑗𝑛𝑖 +
1

2

(︁
1− 𝑢𝑗𝑛𝑗

𝑐

)︁
(𝑢𝑠𝑡1𝑖 + 𝑢𝑠𝑡2𝑖) +

1

2

(︁
1 +

𝑢𝑗𝑛𝑗

𝑐

)︁
(𝑢𝑡1𝑖 + 𝑢𝑡2𝑖) . (6.43)

The Riemann invariants are additionally used to specify the square of the speed of sound:

𝑐2𝑏 =
(𝛾 − 1)2

16

(︀
𝑅(+) −𝑅(−)

𝑠

)︀2
. (6.44)

The speed of sound is used to specify the temperature as

𝑇𝑏 =
𝑐2𝑏
𝛾𝑅

. (6.45)

For a subsonic in�ow, the density is

𝜌𝑏 =

(︂
𝑐2𝑏
𝛾𝑆𝑠

)︂ 1
𝛾−1

, 𝑆𝑠 =
𝑃𝑠

𝜌𝛾𝑠
, (6.46)

and for a subsonic out�ow, the density is

𝜌𝑏 =

(︂
𝑐2𝑏
𝛾𝑆

)︂ 1
𝛾−1

, 𝑆 =
𝑃

𝜌𝛾
. (6.47)

In other words, the entropy is used from the speci�ed state for an in�ow and from the computed state
for an out�ow to specify the density. This fully speci�es the boundary state and the boundary �ux is
computed using a �ux reconstruction.

6.3.4. Characteristic Projection

In Aero, three boundary conditions are applied through characteristic projection, which involves a
nonlinear solve to compute the boundary state appropriate for each boundary condition. This
boundary state is then computed using a �ux reconstruction.

For a subsonic out�ow specifying only backpressure, the left eigenvectors, 𝑆−1 for the current
boundary state are computed. The di�erence between the boundary state and the computed state are
then transformed to characteristic space,

𝛿𝑈̂ = 𝑆−1 (𝑈 − 𝑈𝑏) . (6.48)
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The di�erence corresponding to the incoming eigenvalue is replaced by 𝑃 − 𝑃𝑠. A linear system

𝑀𝛿𝑈 = −𝛿𝑈̃ , (6.49)

where𝑀 is equivalent to the left eigenmatrix, except that the eigenvector corresponding to the
incoming eigenvalue is replaced by the Jacobian of the pressure with respect to the boundary state,
𝜕𝑃/𝜕𝑈𝑏. The boundary state is subsequently updated by

𝑈𝑏 = 𝑈𝑏 + 𝛿𝑈, (6.50)

and the procedure is iterated until the 𝐿1 norm of 𝛿𝑈̃ is less than a speci�ed tolerance.

For a subsonic in�ow specifying velocity and temperature, the same procedure is followed. A subsonic
in�ow has𝑁𝑞 − 1 incoming eigenvalues. Values of 𝛿𝑈̃ corresponding to the �rst𝑁𝑑 incoming
eigenvalues are replaced by 𝑢𝑖 − 𝑢𝑠𝑖 and the corresponding rows in𝑀 are replaced by 𝜕𝑢𝑖/𝜕𝑈 .
Similarly, the di�erence values and row corresponding to the next incoming eigenvalue are replaced by
𝑇 − 𝑇𝑠 and 𝜕𝑇/𝜕𝑈 , respectively. For multicomponent �ows, the next𝑁𝑠 − 1 values would also be
speci�ed.

For a subsonic in�ow (pressure reservoir) specifying total pressure, total temperature, and the �ow
direction, we again follow the same procedure. The incoming di�erences are replaced by 𝑃 0 − 𝑃 0

𝑠 ,
𝑇 0 − 𝑇𝑠, 𝑢𝑣𝑡1 , and 𝑢𝑣𝑡2 , respectively. 𝑢𝑣𝑡 denotes the velocity tangent to the speci�ed velocity direction,
not the velocity tangent to the boundary. The rows corresponding to incoming eigenvalues are replaced
by 𝜕𝑃 0/𝜕𝑈 , 𝜕𝑇 0/𝜕𝑈 , 𝜕𝑢𝑣𝑡1/𝜕𝑈 , and 𝜕𝑢𝑣𝑡2/𝜕𝑈 , respectively.

6.4. SUPERSONIC INFLOW

At a supersonic in�ow, all inviscid quantities are directly speci�ed and the equations are not computed
at the boundary nodes. However, the boundary �uxes are still computed for post-processing.

6.4.1. 𝑘-𝜔 turbulence model

At an in�ow boundary, the turbulent kinetic energy is typically computed from an estimate of the
turbulence intensity, 𝑇𝑢

𝑘∞ =
3

2
(𝑇𝑢𝑈∞)2 (6.51)

Typically, 𝑇𝑢 ∼ 0.01. The symbol 𝑈∞ denotes the free stream �ow speed. The turbulent kinetic energy
speci�c dissipation rate is speci�ed as

𝜔∞ = 𝐶𝜇
𝜌∞𝑘∞
𝑟𝜇∞

(6.52)

where 𝑟𝑡 is the speci�ed ratio of the turbulent viscosity to laminar viscosity, and 𝜇∞ is the free stream
value of the laminar viscosity. Typically, 𝑟 ∼ 0.1.
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6.4.2. 𝑘-𝜖 turbulence model

At an in�ow boundary, the turbulent kinetic energy is typically computed from an estimate of the
turbulence intensity, 𝑇𝑢

𝑘∞ =
3

2
(𝑇𝑢𝑈∞)2 (6.53)

Typically, 𝑇𝑢 ∼ 0.01. The symbol 𝑈∞ denotes the free stream �ow speed. The turbulent energy
dissipation rate is speci�ed as

𝜖∞ = 𝐶𝜇
𝜌∞𝑘

2
∞

𝑟𝜇∞
(6.54)

where 𝑟𝑡 is the speci�ed ratio of the turbulent viscosity to laminar viscosity, and 𝜇∞ is the free stream
value of the laminar viscosity. Typically, 𝑟 ∼ 0.1.

6.4.3. Spalart-Allmaras turbulence model

At an in�ow boundary, the working variable is set to a value computed from the incoming values of the
kinematic viscosity, namely

𝜈∞ = 4
𝜇∞

𝜌∞
(6.55)
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7. ADAPTIVITY

7.1. ERROR INDICATORS

Error indicators are used to mark the mesh for re�nement or unre�nement. This section describes the
available error indicators in Aero.

7.1.1. Limiter

Limiters are active at shocks and in regions of high gradients where the mesh resolution is insu�cient.
Both of these properties make the limiter values a good error indicator for marking regions for
re�nement. One downside to using limiters as error indicators is that they are noisy.

In Aero, an elemental error indicator is needed for re�nement. First, for each node the minimal value of
the limiter is taken over all of the variables.

𝑒𝑖𝑛𝑜𝑑𝑎𝑙 = min
𝑈

(𝜑) (7.1)

For the elemental error indicator, a low value indicates low error and a high value indicates high error.
For the limiter-based error indicator, a lower limiter value indicates higher error and the limiter is
between zero and 1. Therefore, for the element error indicator, 1 - the minimal limiter value over all
nodes is used, i.e.,

𝑒𝑖𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 1− min
𝑛𝑜𝑑𝑒𝑠

(𝑒𝑖𝑛𝑜𝑑𝑎𝑙) (7.2)

7.1.2. High Low Flux

One good measure of the discretization error is the di�erence between a low order discretization and a
higher order discretization of the inviscid �ux. The nodal error indicator is a sum over conserved
variable �ux di�erences.

𝑒𝑖𝑛𝑜𝑑𝑎𝑙 =
∑︁
𝑗

1

𝑈 𝑗
𝑠𝑐𝑎𝑙𝑒

∫︁
𝜕Ω

(𝐹 (𝑈 𝑗
𝐻)

𝐻𝑂 − 𝐹 (𝑈 𝑗
𝐻)

𝐿𝑂) · ^⃗𝑛 𝑑𝐴 (7.3)
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where j denotes the conserved variable indices and 𝑈 𝑗
𝑠𝑐𝑎𝑙𝑒 is a scale factor usually based on the freestream

quantities.

The elemental error indicator is simply the sum of the nodal error indicator over all of the element’s
nodes.

𝑒𝑖𝑒𝑙𝑒𝑚𝑒𝑛𝑡 =
∑︁
𝑛𝑜𝑑𝑒𝑠

(𝑒𝑖𝑛𝑜𝑑𝑎𝑙) (7.4)
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