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ABSTRACT
Work performed under this one-year LDRD was concerned with estimating resource
requirements for small quantum test beds that are expected to be available in the near future. This
work represents a preliminary demonstration of our ability to leverage quantum hardware for
solving small quantum simulation problems in areas of interest to the DOE. The algorithms
enabling such studies are hybrid quantum-classical variational algorithms, in particular the
widely-used variational quantum eigensolver (VQE). Employing this hybrid algorithm, in which
the quantum computer complements the classical one, we implemented an end-to-end
application-level toolchain that allows the user to specify a molecule of interest and compute the
ground state energy using the VQE approach. We found significant limitations attributable to the
classical portion of the hybrid system, including a greater than greater-than-quartic power scaling
of the classical memory requirements with the system size. Current VQE approaches would
require an exascale machine for solving any molecule with size greater than 150 nuclei. Our
findings include several improvements that we implemented into the VQE toolchain, including a
new classical optimizer that is decades old but hadn’t been considered before in the VQE
ecosystem. Our findings suggest limitations to variational hybrid approaches to simulation that
further motivate the need for a gate-based fault-tolerant quantum processor that can implement
larger problems using the fully digital quantum phase estimation algorithm.

Disclaimer: This report represents preliminary exploration on the limits of specific approaches to
VQE. It does not represent broadly publishable, peer-reviewed, conclusive work. Mitigation
approaches to both address some of the bottlenecks found in the hybrid quantum-classical VQE
workflow and potential inconsistencies in our own analysis are being explored as follow-on
efforts.
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1. INTRODUCTION

Quantum computation is among the most highly anticipated technologies currently being pursued
by the Department of Energy. The ultimate promise of quantum computers is the realization of an
exponential speedup over classical computers, and, among the many proposed applications for
quantum computing, high-accuracy simulation of quantum systems holds special potential for
realizing this promise. The underlying reasoning is easily conveyed. Quantum simulation of
atoms, molecules, and materials requires solution of the Schrödinger equation, which is
infamously difficult due to the quantum nature of electron-electron interactions, or correlations.
Algorithms for the description of electron correlation can be conveniently divided into two
categories: there are exact methods, requiring classical computing resources that scale
exponentially with the system size, and there are approximate methods, characterized by resource
requirements that scale polynomially with system size. Exact algorithms provide solutions with
arbitrarily high accuracy, but their steep classical resource requirements make them intractable for
the vast majority of systems. A quantum computer is expected to enable near exact simulations at
a cost which scales polynomially with the system size. At present, demonstration of a quantum
simulation capability that outperforms existing classical computers remains an outstanding
challenge.

Physical qubit counts in integrated systems[1] have risen to the point that it would take a sizeable
fraction of the secondary-storage space of the world’s largest supercomputer to store their
state[2]. Assuming that qubit counts continue to rise while error rates continue to drop, due to
some combination of physical hardware development and the eventual realization of quantum
error correction, we will eventually arrive at a point where the limits to quantum simulation will
be qualitatively very different. In fact, it is plausible that there will be a point in the development
of quantum computing technologies for which the classical overhead associated with specifying
problem instances becomes the limiting factor. There is a need to articulate what that might look
like, specifically in the context of quantum simulations of electronic structure.

The variational quantum eigensolver (VQE), a hybrid quantum-classical algorithm for
approximating the ground state energies and wave functions of Hamiltonians, has been identified
as the leading computational approach for execution on noisy intermediate-scale quantum (NISQ)
hardware∗. While it is widely assumed that the VQE approach will allow useful problems to be
implemented on NISQ-sized testbeds, it is unclear to what extent that is true when one considers
both the qubit count needs and the classical resources required to support the classical
calculations in the hybrid VQE approach. Various choices of algorithms and implementation
methods for the interdependent functional elements (classical or quantum) have significant impact

∗Here, ‘noisy’ suggests that control/environmental noise limits the achievable error rates, and ‘intermediate-scale’
refers to devices with a number of qubits ranging from 50 to a few hundred[3].
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Figure 1-1. The basic workflow for the VQE software stack used
in molecular electronic structure calculations. Preparatory
classical steps are shown on the left and the hybrid quan-
tum/classical VQE loop is shown within the dashed box on the
right.

on the accuracy of the results, the capabilities required of different quantum computer test beds,
and more generally, the limits of near-term quantum computers for applications beyond
characterizing and improving quantum devices.

This report details our investigations of the classical and quantum resource requirements
associated with employing VQE to generate ground-state energies of common small systems. The
application focus was chosen to be molecular electronic structure, a popular and impactful field
spanning a range of system sizes from analytically solvable diatomics (e.g., H+

2 , HeH2+, etc.) to
macromolecules constituting the building-blocks of life (e.g., lipids, proteins, and nucleic acids),
and beyond. Figure 1-1 is an illustrative example of the interplay between quantum and classical
elements for VQE-based electronic structure algorithms, where detailed descriptions of each step
are provided in Sections 3.1–3.5. While outside the scope of this work, it is worth mentioning that
similar VQE diagrams can be drawn for other quantum simulation applications; to name a few
examples, within the last year VQE algorithms have been developed for molecular vibrational
structure [4], solid-state electronic band structure [5], and many-particle nuclear structure [6].

Having introduced VQE as an alternative to fully classical electronic structure calculations, it is
informative to compare the two by generating back-of-the-envelope estimates for the associated
resource requirements. For this task around 20 small-to-medium-sized molecular species were
chosen, forming a representative sample of molecules of interest to the DOE†. System sizes were
considered at three basis set levels, [i.e., three discretization levels of the electronic structure
Hamiltonian (see Sections 2.1 and 2.2 for further details)]. The largest basis set level was chosen
to be one that facilitates extrapolation to the complete basis set (CBS) limit, where the basis-set
error becomes acceptably small for quantitative applications of interest to chemists. Two smaller
basis sets were also considered (6-31G∗∗ and cc-pVTZ), but these can be recommended only for
qualitative investigations. Basis sets at the smallest extreme are called minimum basis sets
(MBS), but basis sets of this size usually fail to provide even qualitatively correct results.

Figure 1-2 collects quantum and classical resource requirements calculated by applying

†See Appendix A for the full list including the underlying data needed to produce Figure 1-2.
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well-known scaling laws to the set of molecular systems described previously. Data is reported
relative to the resource requirements for a MBS, where, for example, 1.0x102 on the classical axis
indicates that the simulation requires 100 times more RAM than the MBS case. VQE typically
employs the unitary coupled-cluster theory with singles and doubles approach (see Section 2.4),
requiring a gate count scaling as N4, with N the system size. For the classical analogy, projection
coupled-cluster with singles and doubles (see Section 2.3), the required RAM scales as N6.
Figure 1-2 is a composite of three graphs, with each one corresponding to a different basis-set
level. The horizontal and vertical limits are aligned to produce a continuous effect.

At present, VQE calculations are feasible almost exclusively at the MBS level, so the quantum
gate count values in Fig. 1-2 provide rough estimations of the advances in quantum hardware that
are required to perform useful VQE simulations. Focusing on the relative costs for generating
approximate CBS-limit energies on the right-hand side (RHS), gate-count requirements are
between one- and ten-thousand times the capabilities of quantum hardware available today.
Meanwhile, turning to classical limitations, RAM requirements on the RHS are shown to grow by
a factor of about six thousand. Taking, for simplicity, the conservative estimate that performing a
MBS calculation on taxol requires 1 gigabyte of RAM, then the desired large-basis calculation
would require between 1 and 10 terabytes of RAM. Either limit far exceeds the RAM currently
available on an individual node of ORNL’s Summit supercomputer. On the quantum side, qubit
counts are currently limited to around 50, both physically (on state-of-the-art hardware) and
virtually (via qubit simulation on classical hardware), and this constraint guided our choice of
chemical systems. We find that qubit counts exceed this limit for all molecules that we
considered.

Since most systems in Figure 1-2 are too large for inclusion in a VQE scaling study, we chose to
consider instead liquid deuterium, simulating explicit atomic models of increasing size. This is an
exemplary problem for numerous reasons. Due to its minimal nuclear charge, freezing (or
pseudization) of chemically inert orbitals is irrelevant. The number of electrons scales identically
with the number of atoms. Further, recent work on highly accurate classical many-body
calculations on this system nicely articulate the need for scalable many-body electronic structure
simulation [7], while also outlining the relevance of liquid deuterium to DOE applications.

The first goal of the present work is to identify the resource requirements and the bottlenecks for
both the quantum and the classical components across the entire VQE application stack.
Rate-limiting bottlenecks could come in the form of any of the following metrics: wall times,
RAM requirements, disk requirements, qubit count, qubit depth, or number of circuit repetitions.
After careful examination of each element, opportunities for software engineering were identified
and implemented to improve efficiency of the stack overall. While classical quantum simulation
algorithms and implementations have been fine-tuned for generations, the VQE approach is only
a few years old and is therefore fertile ground for development and optimization.

Presently the most evident factor limiting the realization of a quantum simulation capability that
practically outperforms existing classical computers is the error rates that are achievable in those
systems. Such errors can lead to incorrect measurements, and this may prevent the classical
optimization step from converging to a solution. We also addressed the need to study the
complexity of implementing a unified application framework that allows us to generate quantum
circuits for a wide array of applications that can be compiled and run on different test beds and/or

13



Figure 1-2. Resource requirements for the hybrid VQE and fully
classical approaches for computing the correlation energy. All
values are reported relative to a minimum basis set calcula-
tion for 20 chemical species of relevance to the Department of
Energy. Gate-count (hybrid) and RAM (classical) requirements
were calculated from known scaling laws associated with the
lowest-order unitary (hybrid) and projective (classical) coupled-
cluster methods, respectively.
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simulators. In doing so, we combined a variety of existing tools to build a toolchain that serves as
an end-to-end “flight simulator” for VQE applications implemented on quantum hardware.
Results illustrating the use of this toolchain will be presented in follow-on work.

The report is structured as follows. In Section 2 the VQE protocol is described in detail, including
sufficient background information to enable a technical interpretation of the following sections.
Section 3 addresses our first goal, the identification of resource bottlenecks for the quantum and
classical components of VQE, by singling out various components of the VQE workflow and
performing detailed resource scaling studies. Finally, in Section 4 we recapitulate our findings
and assess the long-term prospects of VQE for quantum simulation.
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2. VARIATIONAL QUANTUM
EIGENSOLVER

The VQE procedure coordinates execution between a quantum computer, which is periodically
called upon to measure the expectation value of the Hamiltonian Ĥ for some parameterized
wavefunction |Ψ(~θ)〉, and a classical computer, which analyzes measurement outcomes and
suggests new energy-minimizing values for the ~θ parameters [8, 9]. Here |Ψ(θ)〉 is always
normalized and {θ} is a set of real valued parameters ranging from 0 to 2π which we arrange into
a vector, ~θ . The goal is the determination of the eigenvectors and eigenvalues. For the vast
majority of chemical applications, only the lowest-energy eigenvectors and eigenvalues are of
interest. This is because within the temperature range that supports chemical bonding, statistical
sampling is dominated by low-lying states.

Given some parameterized form of the electronic wave function, |Ψ(~θ)〉, a quantum computer is
first used to prepare the ansatz state. This step involves generation of an initial guess for the state,
which is supplied by a classical quantum chemistry code known as the driver (Section 3.1). Next,
fermionic operators associated with the ansatz state are encoded into qubits (Section 3.2) and an
excitation operator circuit is created to prepare the trial wave function state (Section 3.3. The
expectation value of the energy of that state, E(~θ), is obtained by measuring the expectation
values of each term of the Hamiltonian individually. These measurements are repeated a large
number of times (called shots) to give high statistical confidence in the expected energy. The
measured energy is fed into a classical “black-box” optimization algorithm, which chooses a new
vector of parameters, ~θ ′ (Section 3.5). These parameters are used to prepare a different candidate
state, |Ψ(~θ ′)〉 (Section 3.4). The process repeats until the optimizer converges to a state with
minimum energy.

Appendix B provides a detailed description of all software used to perform VQE calculations and
provides a link to a static code repository that includes all the compatible software versions
needed to reproduce our results. To succinctly reiterate, the steps required for the VQE algorithm
are as follows:

1. State preparation: The state |Ψ(~θ)〉 or ρ(~θ) is prepared on the quantum hardware in terms
of the angles ~θ , which can be any adjustable experimental or gate parameter.

2. Measurement: The expectation value of a Hamiltonian operator Ĥ is measured on the
quantum hardware as 〈Ĥ〉(~θ) = 〈Ψ(~θ)|Ĥ|Ψ(~θ)〉.

3. Classical optimization: A classical nonlinear optimizer is invoked to determine a new set of
values ~θ that decrease 〈Ĥ〉(~θ).

16



4. Iterate until convergence: Steps (1)–(3) are iterated until the procedure converges to a
minimum value of 〈Ĥ〉(~θ), at which time the parameters ~θ define the desired stationary
state of |Ψ(~θ)〉.

The primary advantage of VQE in the NISQ era is its utilization of Hamiltonian averaging,
meaning that it compensates for short coherence times by repeatedly sampling the quantum state
to determine the mean value of an observable.

2.1. ELECTRONIC STRUCTURE HAMILTONIAN

2.1.1. First quantization

The objective of the electronic structure problem is to estimate the energy of electrons interacting
in a fixed nuclear potential. The familiar non-relativistic, clamped-nucleus, electronic
Hamiltonian describes the motion of N electrons with positions ri in the Coulomb field of M
nuclear point charges with atomic numbers ZA and positions RA as [10]

H =−
N

∑
i

∇2
ri

2
−

N

∑
i

M

∑
A

ZA

|ri−RA|
+

N

∑
i> j

1
|ri− r j|

, (2.1)

where atomic units are assumed. Treatment of nuclei as stationary point-charges is known as the
Born-Oppenheimer approximation, and it is common practice to vary the nuclear positions
parametrically to construct Born-Oppenheimer potential energy surfaces (PESs).

2.1.2. Second quantization

For a fixed set of orthonormal single-particle spin orbitals, {φi(r)}N
i=1, the generic

second-quantized form of the electronic structure Hamiltonian is

H = ∑
pq

fpqa†
paq +

1
2 ∑

pqrs
vpqrsa†

pa†
qaras, (2.2)

where a†
p (aq) are fermionic creation (annihilation) operators and the one-electron and

two-electron integrals are defined as

fpq =
∫

dr φ
∗
p(r)

(
−∇2

r
2
−

M

∑
A

ZA

|r−RA|

)
φq(r) (2.3a)

vpqrs =
∫

dr
∫

dr′
φ∗p(r)φq(r)φ∗r (r′)φs(r′))

|r− r′|
, (2.3b)

At present the spin orbitals are extracted from the self-consistent solution to a mean-field (e.g.,
Hartree-Fock) theory executed on a classical computer and represented in terms of a set of
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primitive basis functions (e.g., linear combinations of Gaussians or plane waves). In the future a
set of mean-field spin orbitals may be efficiently obtained on quantum hardware, and this
capability was recently demonstrated by Arute et al. [11], but, at least for now, it is standard to
generate spin orbitals using existing classical chemistry drivers.

2.1.3. Potential energy surfaces

The scientific value of accurate PESs cannot be overstated. They are used by nuclear engineers to
perform equilibrium molecular dynamics calculations that predict thermal conductivity of
actinide oxides [12]. AMO physicists use them to perform fully quantum (coupled-channel)
dynamics calculations to locate Feshbach resonances in ultracold atomic and molecular collisions
[13], In chemistry and biochemistry, almost all phenomena are fundamentally governed by PESs.
The corresponding free energy landscapes facilitate simulation of molecular solvation, molecular
association, macromolecular stability, and enzyme catalysis [14], among countless other
applications. It is worth stressing that high accuracy is paramount in all of these fields. As an
example, free energy landscapes must be extremely accurate as chemical rates are exponentially
sensitive to changes in free energy. In many applications, near-exact PESs are requisite for
obtaining results having any value at all.

2.2. SINGLE-PARTICLE BASIS SETS

An ongoing research thrust in theoretical chemistry is the development of finite sets of basis
functions for use in electronic structure calculations. For molecular calculations, the most popular
type of basis set approximates nucleus-centered atomic orbitals (AOs). While the results found
throughout this report are primarily concerned with accurately representing the properties of an
extended system, which are typically described using plane-wave basis functions, we choose to
focus on nucleus-centered Gaussian basis sets to be consistent with classical many-body
benchmark calculations of this same system [7]. The purpose of this section is to provide
background information essential for interpreting the VQE scaling studies.

2.2.1. Gaussian-type orbitals

Slater-type orbitals (STO) are the best physically-motivated basis set for nuclear-centered basis
sets, primarily due to a qualitatively correct description of both the short-range nuclear cusp and
the long-range exponential decay, but unfortunately no analytic solution exists for evaluation of
their general four-index integral given by Equation 2.3. The expense associated with numerical
integral evaluation forces use of an alternative function having analytic integrals. This is most
easily achieved by modifying the e−r form of STOs to the e−r2

form characterizing a Gaussian
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function. Gaussian-type orbitals (GTOs) take the following form,

φ(x,y,z;α, i, j,k) =
(

2α

π

)3/4[(8α)i+ j+ki! j!k!
(2i)!(2 j)!(2k)!

]1/2

× xiy jzke−α(x2+y2+z2) (2.4)

where α controls the width of the GTO and i, j,k are non-negative integers dictating the Cartesian
nature. Specifically for hydrogen, one is concerned with the case when all three of these indices
are zero, which produces an s-type orbital with spherical symmetry. Gaussian basis set
development has been undertaken for decades, and by now there are 500+ varieties available
[15].

Gaussian functions have several undesirable features which are mitigated by forming linear
combinations, or contractions, of uncontracted Gaussians, or primitives. A contraction of
Gaussian functions takes the form

φ(x,y,z;α, i, j,k) =
M

∑
a=1

caφ(x,y,z;αa, i, j,k) (2.5)

where M is the number of Gaussians used in the linear combination, and the coefficients ca are
chosen to optimally reproduce the shape of an STO while also ensuring normalization. In basis
sets of contracted GTOs, each function is defined by a set of contraction coefficients and
exponents assigned to each of its primitives.

2.2.2. Minimal basis sets: STO-3G and STO-6G

The STO-MG basis sets are the minimal representation, in terms of the number of Gaussians,
which can capture the most basic physical features of AOs (e.g., their exponential tail, nodal
structure, etc.). STO-3G and STO-6G basis sets mimic STOs by fitting contraction coefficients
and exponents of three and six contracted GTOs, respectively. Pioneers observed that the optimal
combination of speed and accuracy is achieved for M = 3, and it follows that STO-3G remains the
most commonly used minimum basis set. While among the poorest performing GTOs in terms of
accuracy, the STO-MG basis sets are still in use today. This is due to their extreme efficiency and
exceptional availability, as they have been defined for all elements in the first five periods.

2.2.3. Pople basis sets (3-21G, 6-31G, and 6-31G**)

A minimal basis set can be given additional variational flexibility by strategically ‘decontracting’
its functions. For example, instead of constructing each basis function as a sum of three
Gaussians, as in the STO-3G basis set, one could instead construct two basis functions for each
AO, with the first being a contraction of the first two primitive Gaussians and the second being the
normalized third primitive. This contraction scheme results in a ‘double-ζ ’ basis set, which can
be contrasted with ‘single-ζ ’ sets such as STO-3G. Further decontraction results in a ‘triple-zeta’
set, and more functions can be added indefinitely to create higher multiple-ζ basis sets.

19



The 3-21G and 6-31G are two within a family colloquially referred to as ‘Pople basis sets’, a nod
to their creator. In this case the nomenclature reveals their contraction scheme. The first number
indicates how many primitives were used in the contracted core functions, while the numbers
following the hyphen indicate the valence contraction scheme. Enumeration of the digits
identifies the multiple-ζ character. The two digits in both 3-21G and 6-31G indicate a double-ζ
contraction scheme. The digits themselves provide the number of primitives used to contract each
valence function. The asterisks designate the inclusion of additional polarization functions, which
provide anisotropic degrees of freedom required for orbital hybridization in molecular bonding
environments.

2.2.4. Dunning basis sets (cc-pVDZ and cc-pVTZ)

In contrast to the previously discussed basis sets, where contraction coefficients and exponents
were fit using data from independent-particle molecular calculations, the correlation consistent
(cc) basis functions of Dunning were developed using improved data including a second-order
perturbative correction for electron correlation. Periodic trends dictate the number of spin orbitals
that should be used for a minimum description of each atom, and systematically improvable
hierarchies, such as the Dunning basis sets, were developed to efficiently approach the complete
basis set (CBS) limit through extrapolation. Here the nomenclature following the hyphen
indicates that polarization functions are included and that the valence functions were constructed
subject to a given contraction scheme [double-ζ (DZ), triple-ζ (TZ), etc.]. The systematically
improvable hierarchy of Dunning basis sets is cc-pVXZ with X=D,T,Q,5,6,. . ..

2.3. LIMITATIONS OF CLASSICAL ELECTRONIC
STRUCTURE ANSÄTZE

This section describes the theoretical formulation and hardware limitations of relevant classical
electronic structure ansätze. Since quantum computation has not yet delivered on its promise to
revolutionize electronic structure, the computational complexity of classical methods is
recapitulated here. With one exception, all electronic structure ansätze discussed in this report are
Hermitian variational forms subject to the symmetric energy functional

EA
0 [Ψ

A
0 ] =

〈ΨA
0 |H|ΨA

0 〉
〈ΨA

0 |ΨA
0 〉

, (2.6)

where EA and ΨA are the energy and wave-function, respectively, for a given approximate method
A. The variational principle given by Eq. 2.6 is, of course, equivalent to the exact Schrödinger
equation when ΨA

0 is the exact ground state wave-function Ψ0.
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Figure 2-1. Total number of terms in the full configuration inter-
action expansion. The left plot is in terms of determinants (see
Eq. 2.9), while the right plot is in terms of configuration state
functions (see Eq. 2.10).

2.3.1. Configuration interaction

In theory, the exact many-electron wave-function is easily written down. To introduce general
problem of electronic structure theory, this section develops configuration interaction (CI) theory
as the most näive, brute-force approach to an exact solution. For a more modern perspective on CI
approaches see, for example, Ref. [16].

2.3.1.1. Determinant-based full configuration interaction

Given an orthonormal set of p one-electron orbitals φp, one may construct an orthonormal basis
of N-electron determinants, |Φp1,...,pN 〉, and expand the exact N-electron wave-function as

|Ψ〉= ∑
p1<...<pN

cp1,...,pN |Φp1,...,pN 〉= ∑
ni

cni|Φni〉. (2.7)

Substituting this vector into Equation 2.6, one obtains the matrix eigenvalue problem   〈Φn1 |H|Φn1〉 〈Φn1 |H|Φn2〉 . . .
〈Φn2 |H|Φn1〉 〈Φn2 |H|Φn2〉 . . .

...
... . . .

   
 cn1

cn1
...

= E

 cn2
cn2
...

 . (2.8)
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This approach is called full configuration interaction (FCI). The size of the FCI space is
equivalent to the number of possible determinants,

Nd =

(
N

η

2 +S

)(
N

η

2 −S

)
, (2.9)

where N is the total number of orbitals and η is the number of electrons, and S(S+1) is the
eigenvalue of the total spin operator S2. From Figure 2-1 it is clear that even for small systems,
such as the water molecule in a minimal basis (10 electrons and 20 orbitals), the FCI
dimensionality is too large for diagonalization using standard LAPACK routines executed in serial
on a modern desktop computer.

2.3.1.2. CSF-based full configuration interaction

The FCI dimensionality can be significantly reduced by employing a basis of configuration state
functions (CSFs), where CSFs are linear combinations of the determinants |Φni〉 forming
eigenfunctions of the total spin operator S2. This change of basis is exact since the total spin is a
constant of motion in the non-relativistic Hamiltonian (i.e., [S,H] = 0). The total number of
unique CSFs which can be formed is given by the Weyl formula as

Nc =
2S+1
N +1

(
N +1
η

2 −S

)(
N +1

η

2 +S+1

)
. (2.10)

The value Nc is collected for several combinations of N and η in Figure 2-1. Again using as an
example the water molecule in a minimum basis (10 electrons and 20 orbitals), the determinant
FCI dimension is seen to be a quarter of a billion, whereas the CSF FCI dimension is close to 50
million. While switching to a CSF basis reduces the size of the problem, it remains intractable on
serial-execution classical hardware. The combinatorial growth of the FCI problem with system
size, shown explicitly by the Weyl formula in Eq. 2.10, is sometimes referred to as “the curse of
dimensionality”. Approximation methods are thus essential for classical simulation of electronic
structure.

2.3.1.3. Approximate configuration interaction and size extensivity

Approximations can be made within the CI framework by including only certain classes of
determinants in the wave-function given by Eq. 2.7. This introduces formal problems, however, as
approximate CI wave-functions break an important property called size-extensivity. The concept
of size extensivity was introduced by Bartlett [17], and it is a mathematically rigorous
characteristic referring to the correct (linear) scaling of a method with the number of electrons.
Davidson introduced a perturbative correction for approximate restoration of
size-extensivity[18, 19], but, for reasons discussed shortly, practical truncations of the CI
wavefunction are typically abandoned in favor of size-extensive coupled-cluster (CC) theory
analogs.
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2.3.2. The Hartree-Fock method

Hartree-Fock (HF) theory provides an approximate solution to the electronic Schrödinger
equation which is of fundamental importance in electronic structure theory. For an extensive
review on the derivation of the HF self-consistent field (SCF) equations for both closed- and
open-shell systems, see Ref. [20]. In the following a non-technical summary of HF theory is
provided which enables a discussion of the current limitations of HF on classical hardware.

2.3.2.1. HF theory

Given a basis of single-particle atomic orbitals centered on nuceli with appropriate proximity, HF
theory performs orbital rotations until reaching self-consistency, thereby producing a new set of
orthonormal functions known as the molecular orbitals (MOs), {φa}. The exact electronic
correlation energy Ecorr within a basis set is, by definition, the difference between the FCI and HF
energies, or

Ecorr = EFCI−EHF. (2.11)

In general, the quality of a wave-function approximation is judged by the extent to which it
recovers Ecorr. The HF machinery produces the optimal single-Slater-determinant approximation
of the many-body wave-function, and this serves as an especially good zeroth-order starting point
for expanding the correlated many-body wave-function in post-HF methods. Post-HF methods
often utilize the electron-electron repulsion integrals (ERIs) generated from converged HF
orbitals, which are computed as indicated in Equation 2.3.

For an N-electron system, solving the HF equations is equivalent to minimization of the energy of
the determinant |Φ0〉= |∏No

i=1 φi〉, with the RHS an antisymmtrized Hartree product of
single-particle orbitals φi. This leads to an eigenvalue equation f̂ |φi〉= εi|φi〉 for the No occupied
spin orbitals, with the Fock operator defined as

f̂ = Ĥcore +
N/2

∑
j=1

[
2Ĵ j− K̂ j

]
, (2.12)

where Ĥcore, Ĵ j, and K̂ j are the one-electron core Hamiltonian, the Coulomb operator, and the
exchange operator, respectively. For more information we direct the reader to Ref. [10].

After obtaining a set of converged SCF orbitals from HF theory, a variety of methods can be
subsequently applied to recover, at least in part, the electron correlation energy (Ecorr in Eq. 2.11).
It is common practice in post-HF methods to partition the occupied HF molecular orbitals into
valence and core sets, and, since the latter are inert in most chemical processes, core MOs can be
excluded from consideration in post-HF methods. This is especially true when targeting relative
energies. For the atoms lithium to neon typically the 1s atomic orbital is frozen, while for atoms
sodium to argon the atomic orbitals 1s, 2s, 2px, 2py and 2pz are frozen. The frozen core
approximation is so common, in fact, it is actually the default setting in many electronic structure
software packages. Similarly, virtual orbitals can be omitted from post-HF calculations. However,
there is not a universally accepted convention for choosing frozen virtual orbitals, so they are
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seldom reported in the literature. For the systems of interest in this work (i.e., hydrogen clusters
in small basis sets), all occupied and virtual orbitals participate to some degree in chemical
bonding and therefore must remain unfrozen. Applying this approximation within VQE
algorithms is also trivial, so we avoid repeating this discussion in Sect. 2.4.

2.3.2.2. Techniques for reduced-scaling HF calculations

The HF eigenvalue problem is quite straightforward to solve using iterative algorithms on
classical hardware with memory requirements of O(N3)−O(N4). This scaling is attributable to
two bottlenecks. The first is the construction of the Fock matrix, which requires evaluation of as
many as O(N4) ERIs. Negligibly small ERIs are eliminated using Cauchy-Schwarz screening
[21, 22] and related techniques [23–27], such that, in the asymptotic limit of large systems, the
number of evaluated ERIs is reduced to O(N2) or, for certain insulating systems, even O(N)
[28].

The second bottleneck is diagonalization of the N×N Fock matrix into its eigenvectors and
eigenvalues. Eigensolvers applied to dense matrices run with a complexity of O(N3), but, when
exploiting sparsity in large systems, it is again possible to achieve O(N) scaling [29, 30]. Density
fitting techniques [21, 31] can also reduce the number of required ERIs from O(N4) to O(N3), but
it has recently been demonstrated that direct integral techniques are more efficient for large
systems [32].

2.3.2.3. Limits on massively-parallel hardware

Specialized classical hardware can be used to accelerate HF computations. High-performance
parallel algorithms for construction of the Fock matrix have been recently proposed [32, 33], and
benchmark studies [32, 34] imply a single-node time requirement under 10 minutes for a system
of 10,000 basis functions. Graphical processing units (GPUs) have been shown to accelerate HF
calculations, both as an alternative [35–40], and as a complement to CPU-based SCF algorithms
[41–44]. Mixed- and dynamic-precision approaches offer additional speedups [35, 36, 45].
Hybrid algorithms have also been implemented on Xeon Phi processors, and performance studies
imply 50,000 basis functions can be treated on a single node with 200GB of memory in O(10
mins) [46, 47]. Thus, we regard 50,000 basis functions as the current limit for state-of-the-art
canonical HF calculations, though obviously larger calculations will be possible on architectures
built with more memory per node. For systems requiring more than 50k basis functions,
non-canonical linear-scaling fragment-based SCF methods are available, but a detailed discussion
of these is beyond the scope of this report (for further information, see, e.g., Refs. [48–50] for
related reviews and Ref. [51] for a recent perspective article.)

2.3.3. Projection coupled-cluster methods

Single-reference methods based on the exponential wavefunction ansatz of CC theory are the
most successful approximate electronic structure methods for the calculation of energies and
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properties of ground-state atomic and molecular systems[52]. Contrary to the CI approach, which
is characterized by a linear expansion of CSFs, the CC approach uses an exponential ansatz for
the wave function, which inherently assures that truncated forms of CC theory remain
size-extensive, and produces a much faster convergence to the full CI wave function. It can be
shown using a perturbation theory analysis that the improved convergence of CC as compared
with the same level of truncation in CI theory is due to higher-order excitations being folded in as
products of lower-order excitations by the exponential form of the CC ansatz. At the same time,
thanks to the use of diagram factorization techniques commonly employed in efficient computer
implementations of CC methods, the computer costs of CC calculations are similar to those
characterizing the CI approaches truncated at the same excitation levels. This is why CC methods
can offer higher accuracy at relatively lower costs as compared with CI methods and even though
the energies produced are not variational, they are typically considerably more accurate than those
produced by CI at the same level of truncation.

2.3.3.1. Traditional coupled-cluster theory

Projection CC (PCC) utilizes an exponential ansatz, such that

|ΨPCC〉= eT |Φ0〉 , (2.13)

where |Φ〉 is the reference determinant (usually HF) and T is the cluster operator, an N-body
excitation operator of the form

T = ∑
k

Tk. (2.14)

with

Tk = ∑
i1<i2<...<ik∈occ
j1< j2<...< jk∈virt

t i1,i2,...,ik
j1, j2,..., jk

(
k

∏
r=1

a†
ir

)(
k

∏
s=1

a js

)
(2.15)

where a†
ir ( a js ) are creation (annihilation) operators and t i1,i2,...,ik

j1, j2,..., jk are the cluster amplitudes.

In practice, the sum over k is truncated to some finite order. For example, in the most basic
approximation∗, PCC with single and double excitations (PCCSD), the cluster operator in Eq.
2.14 is approximated as T ≈ T1 +T2. The PCCSD cluster amplitudes and the PCCSD energy
ECCSD, are obtained by solving the following system of equations:

〈|Φ0|e−(T1+T2)He(T1+T2)|Φ0〉= EPCCSD

〈|Φa
i |e−(T1+T2)He(T1+T2)|Φ0〉= 0

〈|Φab
i j |e−(T1+T2)He(T1+T2)|Φ0〉= 0,

(2.16)

where |Φa
i 〉 and |Φab

i j 〉 are singly- and doubly-excited determinants out of the reference
wave-function, Φ0. Solving the PCCSD equations requires RAM scaling as 4N2

o ×N2
u +No×N3

u

∗PCC with only single excitations (PCCS) is never considered because Thouless’s theorem states PCCS is equivalent
to Hartree-Fock.
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and serial execution time scaling as N2
o N4

u , where No (Nu) is the number of occupied (unoccupied)
correlated orbitals.

Following solution of the PCCSD equations, the CC wave function can be truncated at
progressively higher orders (i.e., increasingly higher levels of excitation) until sufficient
convergence to the exact solution is reached. Ascending the single-reference hierarchy is seldom
done in practice, as CC with singles, doubles, and triples (PCCSDT) is already computationally
intractable for the vast majority of systems due to its characteristic O(N8) scaling. As an
alternative, one may use instead a multi-reference formulation of coupled-cluster theory, which
can recover the effects of triples more efficiently than in the full PCCSDT method.
Multi-reference CC methods are an active area of research (see Ref. [53] for a recent perspective
article).

2.3.3.2. Brueckner coupled-cluster theory

Brueckner CC (BCC) performs orbital rotations such that the t1 amplitudes from Eq. 2.16 become
vanishingly small. The resulting orbital set, known as Brueckner orbitals [54], differs from the
HF orbitals in that they are optimized self-consistently in the presence of electron correlation
introduced by the Tn = T1 + . . .+Tn operators (assuming 1 < n < N). Within a given one-electron
Hilbert space, Brueckner orbitals are defined sufficiently by satisfying one of the following two
conditions: (a) the single-excitation contributions to the exact wave function vanish or (b) the
reference determinant has the maximum overlap with the exact wave function. Employing
Thouless’s theorem, these two conditions can be shown to be equivalent by requiring stationarity
of the overlap of the Brueckner determinant |ΦB〉 and the exact wave function Ψ with respect to
the components of T̂1, or

0 =
∂

∂ ta
i
〈Ψ|eT̂1|0〉= 〈Ψâ†

aâieT̂1|0〉= 〈Ψ|(ΦB)
a
i 〉 (2.17)

An advantage of BCC calculations is that, with T̂1 = 0 many nonlinear terms (e.g., T̂1T̂3, T̂1T̂4,
etc.) do not contribute to the total energy and thus do not limit the accuracy of truncated BCC
methods, such as BCC doubles (BCCD)†. In classical computations, the Brueckner wave function
is determined iteratively by repeatedly solving the PCCSD equations while searching numerically
for the orbitals satisfying T̂1 = 0. This procedure adds a significant prefactor (typically > 10) to
the expense. In the following section, a VQE-based BCC analog is discussed, which can be
employed without consuming additional quantum resources.

2.3.3.3. Limits on massively-parallel hardware

Leading MPI implementations of CCSD and CCSD(T) scale well in to the regime of thousands of
cores, with representative packages including the MPQC[55, 56], ACESIII[57], Aquarius[58],
FHI-aims [59], and NWChem [60, 61] program suites. Gyevi-Nagy et al. [62] recently compared
the performance of their MPI/OpenMP CCSD and CCSD(T) implementations and that of several
†The ’S’ is intentionally omitted since singles are eliminated.
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leading packages. For systems with about 1000 orbitals CCSD required 4–7 hours on 112 cores.
They went on to report performing one of the largest canonical CCSD(T) calculations ever,
involving 1569 orbitals and requiring 224 cores running for 68 hours. For comparison, Fales et al.
[63] recently reported a state-of-the-art GPU-accelerated CCSD implementation. Their code,
when run on a single CPU node accelerated by 8 high-end GPUs, can tackle systems with
1000–1300 basis sets in less than 1 day. They claim that this timing is competitive with the
performance of an unsophisticated MPI implementation of CCSD with distribution across 1024
CPU cores on 64 nodes. In contrast to the MPI/OpenMP implementations, the CPU/GPU
implementation is memory-limited, which means advances in GPU hardware will be
accompanied by rapid timing improvements. While progress in classical CC implementations
continues to improve, we adopt a conservative estimate for the classical limit of roughly 1000
basis functions.

2.4. HYBRID ANSÄTZE FOR STATE PREPARATION

The choice of ansatz for state preparation strongly influences the performance of VQE. Currently
there are two categories of ansatz which may be implemented on NISQ devices with a low-depth,
high-fidelity circuit. The first class are the physically motivated ansätze, which are developed
with insight into the physical nature of the simulation, while the second are the hardware heuristic
ansätze, which are designed to exploit unique features of targeted quantum hardware platforms.

2.4.1. Physically motivated ansätze: The Unitary Coupled-Cluster
Methods

In the development of physically-motivated ansätze, many classical electronic structure
methodologies have been translated into quantum analogs. The unitary CC (UCC) theory is
among the most successful of this type. The method has been known for many decades, but it
remained unpopular due to implementation difficulties on classical hardware [64–71]. While the
UCC method is not identical to variational CC [72], its energy is similarly based upon a
symmetric expectation value, so it is guaranteed to obey the variational theorem.

The present study utilized a workflow that involves generation of non-relativistic HF integrals by
the driver on classical hardware and these are subsequently used to generate the UCC ansatz
quantum circuit. One might expect an advantage to implementing a quantum HF method rather
than using classical quantum chemistry programs to provide integrals. A VQE HF solver was
recently presented by the Google Artificial Intelligence Quantum team[11], where Thouless’s
theorem was used as a tool to solve the HF equations by applying Givens rotations. In response,
Gulania and Whitfield pointed out that HF is NP-Hard and therefore it is not a strong candidate
for exponential speedup[73]. Thus, the primary advancement brought about by a VQE HF solver
is migrating more of the VQE workflow onto quantum hardware. Rather than surveying all hybrid
VQE ansätze, we focus here on those approaches which are enabled by quantum hardware,
meaning that they are virtually impossible to implement on classical hardware alone.
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2.4.1.1. Unitary coupled-cluster theory

Unitary CC (UCC), which simply makes eT̂ unitary in Eq. 2.13, is a natural extension of
projection coupled-cluster theory, and one that has undergone a renaissance since its consideration
in the context of quantum computation. The UCC wave function is formally defined as

|ΨUCC(θ)〉= eT̂−T̂ †
|Φ0〉= eτ |Φ0〉 . (2.18)

Variational minimization of the ground-state energy yields the desired wave function, with the
unitary nature of the ansatz enabling variation to be carried out using quantum circuits. Similar to
projection CC, the most efficient non-trivial approximation of the excitation operator truncates at
doubles (i.e., UCCSD), or

τ̂ ≈ T̂1 + T̂2− T̂ †
1 − T̂ †

2 , (2.19)

where T1 and T2 are expressed as

T1 = ∑
ia

θ
a
i â†

aâi

T2 = ∑
i jab

θ
ab
i j â†

aâ†
bâiâ j

(2.20)

The quality of CC energies is, in general, ordered as CCSD < UCCSD < CCSD(T) < .. .
Truncation schemes with explicit inclusion of excitation operators beyond singles and doubles
have not yet been implemented. The number of parameters associated with the UCCSD ansatz
grows as (

N−η

2

)(
η

2

)
+

(
N−η

2

)(
η

2

)
< O(N2

η
2) (2.21)

with N the number of spin orbitals and η the number of electrons in the system[74].

2.4.1.2. Orbital-optimized unitary coupled-cluster

Mizukami et al. proposed the orbital-optimized (oo) VQE-UCC approach, in analogy to the
Brueckner CC methods [75], where the coupled-cluster amplitudes and molecular orbital
coefficients are simultaneously variationally optimized [76]. The key advantage of oo-VQE is that
first analytical derivatives of the energy are obtainable without solving any additional equations.
Derivatives of the VQE energy are given as

dE(x,θ ,κ)
dx

=
∂E(x,θ ,κ)

∂x
+

∂E(x,θ ,κ)
∂x

∂θ

∂x
+

∂E(x,θ ,κ)
∂x

∂κ

∂x
, (2.22)

where θ and κ are the quantum circuit parameters and molecular orbital parameters, respectively.
For a valid oo-VQE solution, the second and third terms in Eq. 2.22 go to zero and the first-order
oo-VQE energy derivative can be determined by evaluating the expectation value of the derivative
of the Hamiltonian. For VQE solutions without oo, clearly the third term in Eq. 2.22 is nonzero
and this must be addressed if gradients are desired. Orbital-optimized methods have the same
gate-count and circuit-depth requirements as their base methods, while the additional
computational burden manifests as an increase on the parameter count in the classical optimizer.
The rate of proliferation of classical parameters is investigated in Sect. 3.5.

28



Resource requirements
Method Gate Circuit

count depth
VQE-HF O((N−η)η)) O(N)
UCCSD O((N−η)2η2)) O((N−η)2η))
oo-UCCSD O((N−η)2η2)) O((N−η)2η))
UpCCD O((N−η)η)) O(N)
oo-UpCCD O((N−η)η)) O(N)
k-UpCCGSD O(kN2) O(kN)
UGCCSD O(N4) O(N3)

Table 2-1. Scaling laws for the quantum resource requirements
for various hybrid VQE methods, expressed in terms of system
parameters including the number of electrons η , the total num-
ber of basis fucntions N, and k, a parameter specific to the k-
UpCCGSD method.

2.4.1.3. The k-UpCCGSD ansätz

Among the most promising recent advances in UCC methodology is the k-UpCCGSD approach
of Lee et al. [77]. This method applies k-times the UCC with generalized (i.e., summed over all
orbitals without specifying occupation) single and pair double excitations to construct a wave
function of the form

|Ψk-UpCCGSD〉=
k

∏
α=1

(
eT (a)−T (a)†

)
|Φ0〉 (2.23)

where each T (k) contains an independent set of variational parameters contained in the
generalized singles and pair-doubles operator

T̂ = T̂1 + T̂2 =
1
2 ∑

pq
tq
pâ†

qâp +
1
4 ∑

ia
t
âα âβ

iα iβ
â†

aα
â†

aβ
âiβ âiα , (2.24)

where the pair-doubles T2 operator promotes pairs of electrons from one spatial orbital to another.
This approach has been shown to provide a systematic way to converge to FCI without
introducing higher excitation rank operators. This significantly reduces the gate count and circuit
depth requirements to O(kN2) and O(kN), respectively. For convenience, Table 2-1 collects
resource requirements for several UCC variants.

2.4.1.4. Trotterization

The Suzuki-Trotter decomposition, or simply Trotterization, is a general approach for
decomposing the exponential of a sum of operators [78, 79], which is necessary for
implementation of Eq. 2.18. Each θi must be mapped to a sum of commuting[74] Pauli strings.
Trotter error can be systematically mitigated by choosing increasingly fine discretizations, but this
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comes at the expense of drastic increases in circuit depth. For the sake of computational
efficiency, often one considers only a single Trotter step,

|ΨUCC〉 ≈∏
j

et j(τ̂ j−τ̂
†
j ),

where the t j are the excitation amplitudes and the τ j are the corresponding excitation operators.
Trotter-Suzuki decomposition represents an uncontrollable error source [80–83], although a
single-Trotter-step UCC ansatz was shown by Barkoutsos et al. to reproduce ground-state
energies accurately [84] and O’Malley et al. observed that the variational flexibility actively
compensates for severe Trotterization error [85].

Grimsley et al. recently noted that the non-uniqueness of Trotterization presents a crisis of
reproducibility, and that the only solution is to explicitly report which among the combinatorial
number of operator-ordering possibilities was employed for a given study [83]. Novel ansätze
have also been proposed which either uniquely determine the operator ordering [86, 87] or do not
require Trotteriztion [88–90]. Grimsley’s argument is indisputable, yet a compact scheme for
reporting Trotterization ordering has not been established. It remains an open question whether it
is more convenient to abandon Trotterization or develop a reporting scheme.

2.4.1.5. Limits of VQE-UCC and comparison with classical analogs

Select VQE quantum resource requirements are known, but the associated power scalings can
seem very abstract. Figure 1-2 provides explicit values for the quantum resource scaling of
UCCSD and compares with the classical resource scaling of PCCSD, with three basis set levels
and 20 species of chemical relevance considered. The data therein are reported relative to the
expense of calculation of the system using a minimum (STO-3G) basis set, and, while they are
approximate to the true resource requirements, they enable order-of-magnitude resource
estimates. For the largest molecules of interest, PCCSD simulations performed in a large basis set
(i.e., one which enables extrapolation to the CBS limit), is estimated to require up to a 1
million-fold increase in the classical resources (RAM) over an STO-3G calculation. For
VQE-UCCSD, the same transition requires up to 1 hundred-thousand-fold increase in the gate
count.

2.4.2. Hardware-efficient ansätze

Circuits based on the hardware-efficient ansätze involve alternating single-qubit rotations and
entangling blocks. By design, the entangling blocks leverage quantum hardware capabilities
specific to a given platform. This approach facilitated the original experimental demonstration of
VQE for small molecules and quantum magnets[91]. While these approaches are easier to
implement on NISQ devices than those based on physically motivated ansätze, it is unclear
whether they are universally applicable for generating many-electron wave functions.

For hybrid quantum-classical algorithms suitable for NISQ devices, namely those involving a
parametrized unitary circuit controlled by a classical optimization loop, success hinges upon
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avoidance of certain topographic features in the classical parameter space. A pervasive limiting
feature is the so-called “barren plateau”, a region of parameter space where gradients in all
directions are zero to within the sampling error of the estimator, rendering useless any optimizer
that is not inherently derivative-free [9, 92]. McClean et al. estimated the variance of the energy
gradient of a two-local Pauli term and discovered two important results: the variance decreases
exponentially with increasing number of qubits and it converges toward its fixed lower value as a
function of the circuit depth [93]. The implication for hardware-efficient ansätze[91] is that
barren plateaus will occur with a frequency that grows exponentially with the number of qubits.
Very recently vanishing gradients have also been demonstrated for shallow QNNs [94] and for
ansätze requiring a one-depth circuit [95]. This represents a serious problem for algorithms based
on 2-designs, and as such several interesting remediation strategies have been proposed, including
refined parameter initialization schemes [96, 97], new classes of QNNs [98, 99], and even a
variational quantum compiler [95], among others.
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3. VQE RESOURCE ANALYSES

3.1. QUANTUM CHEMISTRY DRIVERS

Figure 3-1. The purpose of the quantum chemistry driver is to
supply HF ERIs to the VQE routine.

3.1.1. Overview of the Different Drivers

There are several drivers currently integrated with IBM’s Qiskit or Microsoft’s quantum
development kit (QDK)[100].

3.1.1.1. NWChem

The NWChem software suite is a mature quantum-chemistry package written in C++ that is
actively developed and maintained by the EMSL located at the Pacific Northwest National
Laboratory in Richland, Washington [101]. The code is able to supply non-relativistic SCF
integrals to Microsoft’s open-source QDK [100], which includes Q#-language compilers and
simulators. Within the QDK, a VQE-based sparse multi-configuration SCF method [102, 103],
which is the base method required for constructing CSFs, has been implemented and has been
made available to the community. Such wave-functions are generators of starting orbitals for
multi-reference correlated methods, a topic which is beyond the scope of this report. NWChem is
not currently integrated with Qiskit.
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3.1.1.2. PyQuante

The PyQuante software suite, pronounced ‘picante’, is a pythonic open-source light-weight
electronic structure software package created for ease-of-development by Richard Muller (and
collaborators) at Sandia National Laboratories in Albuquerque, New Mexico [104]. Compared to
the other suites on this list PyQuante has an incomplete set of classical features, yet its
non-relativistic HF functionality was among the earliest to be adopted for quantum simulation.
Qiskit has integrated PyQuante for integral generation.

3.1.1.3. Psi4

The Psi4 software suite is a mature electronic structure software suite written in C++ that is
actively developed and maintained by The Psi4 Project team, who are based at Georgia Tech, at
Virginia Tech, at Emory University, and, in the group of its genesis, at University of Georgia. It is
the preferred quantum chemistry backend for the OpenFermion project, a pythonic open-source
software library for simulation of quantum computation written by scientists at Google Research,
Riggetti Computing, and their collaborators. Qiskit also accepts non-relativistic integrals
generated by Psi4.

3.1.1.4. PySCF

The PySCF software suite is a pythonic open-source light-weight electronic structure software
package actively developed and maintained by Qiming Sun of Garnet Chan’s Caltech group in
Pasadena, California, with contributions from other research groups [105]. It is the youngest
package among the four, with the first official publication dated 2018 [106]. By now its classical
feature list is relatively comprehensive, and it includes the capability to generate both
non-relativistic and 4-component relativistic integrals. PySCF can supply non-relativistic
integrals to both OpenFermion and Qiskit.

3.1.2. Results: Memory and Time Scaling

Generation of ERIs by the driver is one potential bottleneck on the classical side of Figure 3-1.
Modern classical electronic structure calculations are usually either memory-limited or
time-limited. Finite disk space is seldom a limiting factor in modern applications. HF algorithms
are by now well established, so we do not expect that one of the above-mentioned drivers would
significantly outperform another. As a result, PySCF was chosen for performing scaling studies
because of its relative ease-of-use when interfacing with Qiskit.

Figure 3-2 tracks memory usage with increasing deuterium-cluster size as performed on two
classical systems. The first system is a desktop with 8GB of RAM, which caps out at around 150
nuclei, while the second is the HPC system Uno with 64 of RAM, which can handle around 250
nuclei. Scaling with system size was found to be n3.6 and n4.0 for the desktop and HPC system,
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Figure 3-2. Scaling of the RAM requirement with increasing
deuterium-cluster size on a desktop computer and a high-
performance computing cluster housed at SNL.

respectively. These empirical values are consistent with the established n3 – n4 scaling discussed
in Section 2.3.

Figure 3-16 collects CPU timings for various deuterium clusters as performed on a desktop, a
laptop, and two HPC systems. Each of these platforms was executed in serial, and was thus
temporally limited by similar processor clock speeds of 2.7–3.0 GHz. This resulted in nearly
identical empirical scaling coefficients and polynomials, with the latter varying from n3.0–n3.1. At
220 nuclei, while approaching the memory limit of Uno, calculations take less than 5 minutes.
Serial calculations are thus memory limited.

We have verified empirically that generation of ERIs requires time requirements with cubic
scaling in the number of basis functions and quartic memory scaling. The associated scaling
prefactors are between 1×10−7–1×10−8, but at this point we have no other data to compare to
these values. In the following sections of this report, each of the remaining elements in the
software stack are considered, leading to a final assessment which will identify the resource
limiting step(s).
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Figure 3-3. Scaling of the CPU time requirement with increasing
deuterium-cluster size on a desktop workstation, a laptop, and
two high-performance computing clusters housed at SNL.
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Mitigation Strategies: Utilizing the SNL supercomputer Uno, we can already handle
deuterium system sizes with atom counts in the hundreds. But what improvements should be
expected in the next 10 years? Imagine a future commercially available classical-computing
platform having similar specifications to ORNL’s Summit supercomputer. Leveraging the full
600GB of RAM available on a single node, serial HF computations would still be limited to 440
nuclei - only twice the number treatable by Uno! Clearly we are approaching the limits of what is
possible on serial classical hardware, but fortunately parallel HF routines are also available. As
discussed in Section 2.3, our estimate for the maximum number of basis functions was 50,000
which equates to 25,000 deuterium atoms in our model. It is thus doubtful that the driver will be
the bottleneck for VQE any time soon. The remainder of the tests employed the PySCF driver on
the T1700 workstation or Uno supercomputer for generation of ERIs.

3.2. FERMION-TO-QUBIT MAPPING

Figure 3-4. The purpose of the mapping is to convert fermionic
operators to qubit operators.

3.2.1. Transformation Algorithms Overview

On most quantum computing architectures, the computational resources available are in the form
of qubits. Thus, the fermionic operators appearing in the UCC ansätz, Eq. 2.18, must be encoded
into qubit operators, consisting of products of Pauli operators with the correct commutation
relations. Among the many standard ways of performing this mapping, we limit our consideration
to the Jordan-Wigner transformation, the parity transformation, and the Bravyi-Kitaev
transformation.

3.2.1.1. Jordan-Wigner

The Jordan-Wigner transformation maps N fermions on to N ordered qubits by assigning to the
value of the j-th qubit the occupation of the j-th fermionic mode[107, 108]. Meanwhile, a
Z-check on the neighboring qubits provides the parity information. The correspondence between
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Figure 3-5. A quantum-computational simulation scheme (green
path) first encodes fermionic states in qubits, then acts with the
qubit operator representing the fermionic operator (obtained by
the associated mapping), then inverts the encoding to obtain
the resultant fermionic state. A successful simulation scheme
reproduces the action of the classical fermionic operator, mean-
ing that the terminals shared by the green path and the blue path
are wholly equivalent.
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fermionic creation/annihilation operators and the qubit operators is formally defined in the JW
transformation as

a j→

(
j−1

∏
i=1

σ
z
i

)
σ
+
j

a†
i →

(
j−1

∏
i=1

σ
z
i

)
σ
−
j ,

(3.1)

assuming conventional definitions for σ+ = (σ x + iσ y)/2 and σ− = (σ x− iσ y)/2. The JW
operators in Eq. 3.1 act to flip the i-th bit of a qubit state vector, while attributing a sign that is
encoded into the count of 1-bits in the subset with index less than i. Although this keeps the
occupation information entirely local, the parity information is widely distributed. Thus, the
annihilation and creation operators are entirely nonlocal, acting on O(N) qubits.

3.2.1.2. Parity

The parity transformation encodes into the jth qubit the parity of the occupation numbers of the
first j spin-orbitals[108, 109]. That is, if there are an odd number of electrons in spin-orbitals 1
through j, then the jth qubit will be in the state |1〉, and otherwise it will be in |0〉. In other words,
the parity information is local and the occupation number information distributed, the opposite
case from Jordan-Wigner transformation. The formal definition is
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(3.2)

However, the annihilation and creation operators still act on O(N) qubits each. One notable
strength of the parity transformation, especially for small problems, is that two of the qubits store
only redundant information. The last qubit stores the parity of the electron number of the system,
which is known in advance. If the qubits are numbered correctly one of the other qubits will store
the parity of the total spin, which is also known. Thus, those two qubits can be removed from the
circuit entirely[110].

3.2.1.3. Bravyi-Kitaev

The Bravyi-Kitaev transformation, also known as the binary tree mapping, represents a
compromise between the parity and Jordan-Wigner methods[108, 109]. Neither the occupation
information nor the parity information is stored entirely locally. Instead, each qubit stores the
parity information of O(logN) spin-orbitals. Even-indexed qubits store only the occupation
number of the matching orbital, exactly as in the Jordan-Wigner case. However, a qubit with an
odd index j stores the parity of the occupation numbers of k consecutive orbitals, ending with the
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jth, where k is the least power of two in the binary expansion of j+1. For example, qubit 5
would store the parity of two orbitals (orbitals 4 and 5), since 5+1 = 6 = 4+2; and qubit 7
would store the parity of eight orbitals (orbitals 0 through 7), since 7+1 = 8. Just as in the parity
transformation, two of the qubits store the electron number and spin information only, and could
be removed[110].

a j→∏
i

(3.3)

The primary benefit of this particular encoding is that it provides an asymptotic logarithmic
reduction in the number of operations required to implement a fermionic operator. In the context
of quantum chemistry simulations, even in the pre-asymptotic regime the Bravyi-Kitaev
transformation has been shown to be at least as efficient as Jordan-Wigner with even further
reductions in gate counts realized by limited circuit optimization [111].

3.2.2. Results: Memory Scaling

The mapping step is another potential bottleneck involving both classical and quantum hardware.
Leveraging the parameter count given in Eq. 2.21, upper bounds can be estimated for the total
number of operations required to prepare the UCCSD ansatz for a single iteration of the VQE
algorithm. For the Bravi-Kitaev transformation the expected number of gates scales as O(N2η2),
while for the Jordan-Wigner transformation the scaling is O(N3η2) [O(N2η2) if non-local gates
are available][74].

The first task is the identification of the limiting resource metric. While circuit depth and
compilation time are also affected to a lesser extent[112], memory was found to be the biggest
bottleneck for fermion-to-qubit mapping. The runtime should be roughly linear in the number of
terms in the Hamiltonian. Unfortunately, for large chemistry Hamiltonians with O(n4) terms,
that’s still expensive.

Figure 3-6 demonstrates that the T1700’s 8 gigabytes of memory was entirely exhausted with a
mere 20 atoms (requiring as few as 38 qubits). The scaling curves corresponding to the three
transformation algorithms are visually indistinguishable on the scale of the plot. Recalling that
the driver RAM requirements scaled as 1.0×10−7n3.5, here memory scaling prefactors were
found to be much larger, of order 1.0×10−4. According to this memory scaling, the 64 GB
available on a single Uno node would restrict treatment to systems with fewer than 40 atoms. The
600 GB available on a single Summit node enables only up to 75 nuclei.

Strategies for mitigation: The steep memory scaling of the the above-mentioned mapping
schemes can perhaps be mitigated by parallelization of the classical algorithm. Parallelization of
the quantum component has already been accomplished[112]. Alternatively, there is a special
routine that maps the operators directly to qubits without going through the fermion Hamiltonian
as an intermediate[113]. Thus it is likely that the expense associated with mapping can be
eliminated, or at least significantly reduced with sufficient software engineering.

39



Figure 3-6. Scaling of the RAM requirement with increasing
deuterium-cluster size while employing the three fermion-to-
qubit transformation algorithms.
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3.3. EXCITATION OPERATORS

Figure 3-7. Excitation operator circuits corresponding to the
wave function ansatz must be generated before execution of the
VQE optimization loop.

3.3.1. Definitions

After the fermionic operators are mapped to qubit form, the excitation operator circuits must be
prepared. Here we chose to employ the UCCSD ansatz approximated with a single Trotter step.
As discussed in Section 2.4, the UCC method represents a heirarchy of systematically-improvable
ansatze that can be prepared using quantum circuits with resource requirements scaling
polynomially. For applications in quantum chemistry, the UCCSD approximation represents an
good compromise of accuracy and expense, with an expected parameter count of O(N2η2).

3.3.2. Results: Time scaling

For large circuits, it was determined that gereration of excitation operator circuits is strongly
time-limited, while the associated memory requirements are entirely negligible. Initially it was
unclear to what extent this process is dependant upon the choice of fermion-to-qubit mapping.
Figure 3-8 considers the scaling of the computation time with increasing system size. It was
found that, independent of the mapping, the time to build the circuits scales octically with the
number of nuclei. Enabling qubit reduction in the parity basis offers a notable advantage, but the
reduced scaling is still quite large, at n7.2. Hence, this step requires over a CPU-week even for
relatively modest problems (54 qubits).

Strategies for Mitigation: The native method for constructing excitation operator circuits in
Qiskit is very slow. The associated n7–n8 time scaling with the the number of nuclei makes it the
most time-consuming step of the VQE initialization (i.e., pre-loop) workflow. Fortunately we
discovered that this classical cost can be reduced significantly by using sparse data structures and
otherwise optimizing the circuit construction.
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Figure 3-8. Temporal requirements for constructing excitation
operator circuits using various fermion-to-qubit mappings.
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Figure 3-9. Temporal requirements for constructing excitation
operator circuits using the native Qiskit implementation and our
newly optimized implementation.
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Figure 3-9 compares the time scaling with system size for Qiskit’s native implementation and our
newly optimized implementation. While our implementation is shown to have a significantly
larger prefactor (by ∼ 200%), the associated polynomial scaling is dramatically lower, at n4.2.
For the right-most data points shown, corresponding to H32, the acceleration was so great that the
wall-clock time to develop and run the optimized version was shorter than the time to run the
VQE initialization steps in the native Qiskit version.

3.4. CIRCUIT PARAMETERIZATION

Figure 3-10. The excitation operator circuit parameters must be
updated as part of the VQE optimization loop.

3.4.1. Definitions

At each iteration of the VQE loop, a new vector of excitation amplitude parameters will
determine the angles of the single-qubit rotation gates constituting the exponentiated Pauli strings.
These parameters are tuned variationally by a classical optimization routine based on energy
measurements of the states those parameter values define. The number of parameters thus directly
determines the size of the space our optimizer must explore, and so indirectly the number of
circuits that must be run before convergence.

Considering both the scaling of the number of UCCSD parameters given in Eq. 2.21 and the
upper bounds on the number of operations required to implement a single parameter, it is possible
to determine an upper bound for the total number of operations involved in preparing the UCCSD
ansatz for single iteration of the VQE algorithm[74]. The Bravi-Kitaev transformation has a gate
count scaling as Õ(N2η2), while Jordan-Wigner scales as O(N3η2), or O(N2η2) when non-local
gates are employed.
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Figure 3-11. Growth of the parameter count with system size
when utilizing a variety of small-to-medium basis sets.

3.4.2. Results

3.4.2.1. Parameter-count scaling

Figure 3-11 summarizes our study of the growth of the parameter count with the system size.
UCCSD was used in conjunction with basis sets from the MBS, Pople, and Dunning families. In
each case, the empirically derived power scaling with parameter count is n4, which is fully
consistent with our estimated scaling of O(N2η2). Only the prefactors were found to grow
significantly with increasing basis size. The maximum possible system size was limited to ∼ 10
nuclei while using the cc-pVDZ basis set. We attempted to extend the study to include the
cc-pVTZ basis set, but the expense became intractable.

3.4.2.2. Circuit-depth scaling

With increasing parameter counts, circuit depths also grow with system size. Minimum circuit
depth requirements were investigated as a function of system size, and the data including fits to
power curves are plotted in Figure 3-12. In a comparison between the various mappings,
Bravyi-Kitaev produced a significantly better scaling than Jordan-Wigner or the parity basis
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Figure 3-12. Growth of the minimum circuit depth with the sys-
tem size for parameterization when using a variety of fermion-
to-qubit mappings.

methods, but all had circuit depths that scaled with system size in the range n4.3–n4.9. These
represent the characteristic scaling with circuit depth for the VQE process on the whole.

3.4.2.3. Time scaling

Next we investigated the time scaling of the parameterization step with increasing system size, as
shown in Figure 3-13. Basis sets from the MBS, Pople, and Dunning families were used in tests,
all of which yielded power scalings in the range n4.4–n4.6. Thanks to our newly implemented code
for constructing excitation operator circuits in time scaling as n4.2 rather than n8.0,
parameterization represents the overall rate-limiting step for the VQE protocol.

The memory scaling of the parameterization with increasing system size was the last resource
requirement left to check. Figure 3-14 Again, several basis sets were employed to determine that
the power scaling of the memory required goes as n4.1–n4.3. The largest cc-pVDZ basis set
yielded a significantly smaller power (n3.8), but we disregard this result as too few data points
were generated to produce a good fit. With a memory scaling power greater than 4, the
parameterization step is also the memory-limiting step.
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Figure 3-13. Growth of the parameterization time requirements
with the system size when using a variety of basis sets.
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Figure 3-14. Growth of the memory requirements with the sys-
tem size for parameterization when using a variety of basis sets.
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Figure 3-15. Growth of the parameter count with the qubit count
when using a variety of electronic structure ansätze. The three
qubit count levels correspond to the H4, H2O, and N2 systems,
with each described by a MBS.

3.4.2.4. Strategies for mitigation

One way to reduce the parameter count, thereby reducing the required circuit depth, time, and
memory, is to adopt a different wave-function ansätz (see Section 2.4). Novel VQE-UCC
methods such as the k-UpCCGSD method of Lee et al.[77] look at first very promising because
they reduces the gate count and circuit depth of UCCSD from ∼ n4 and ∼ n3 to ∼ n2 and ∼ n,
respectively. However, the parameterization memory requirements also need to be considered.
While Table 2-1 described UCC resource requirements for gate count and circuit depth, the
scaling of the parameter count is not well established.

Figure 3-15 documents the relationship between the parameter count and qubit count for a variety
of ansätze. Unfortunately UCCSD is the only UCC method currently implemented in Qiskit, so
the underlying data was taken from recent studies by Lee et al.[77], Hickman et al.[114], and
Mizukami et al.[76] Qubit counts of 6, 10, and 14 correspond to the systems H4, H2O, and N2
modeled with a STO-3G basis set.

For the standard UCCSD approach, the number of parameters was observed to scale with qubit
count as a quadratic polynomial. The UCCGSD method was shown to be comparatively
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expensive, fitting to a q3.3 power function, whereas the k-UpCCGSD approximations required
slightly fewer parameters than UCCSD, scaling with power q1.8. For the UpCCD and oo-UpCCD
methods parameter counts scaled linearly with parameter count. It is worth noting that for
oo-UpCCD the additional oo step only adds a factor of 4–5 to the linear scaling. Moving toward
the treatment of larger systems, the alternative UpCCD and oo-UpCCD methods should be
considered. For all other methods considered here, the parameter count proliferates rapidly such
that the resulting parameter counts cause the parameterization step to become both time-limiting
and memory-limiting.

3.5. CLASSICAL OPTIMIZATION

Figure 3-16. The classical optimization determines a new set of
parameters to re-parameterize excitation operator circuits dur-
ing the VQE optimization loop.

The classical optimization step follows measurement of the quantum circuit, where the parameters
~θ of the quantum state are updated using a classical nonlinear optimization routine. The choice of
classical optimizer determines how many different circuits must be executed to achieve a desired
accuracy. As the system size increases, the number of adjustable classical parameters grows
quickly. Thus, the optimizer of choice must perform well in high-dimensional parameter spaces.
Quality of the optimizer is critical for obtaining high-accuracy results and rapid convergence.

The first VQE paper used a derivative-free optimization algorithm known as Nelder-Mead.
McClean et al.[8] compared four numerical algorithms side-by-side in a VQE study of the H2
system. Among GLCCLUSTER, LGO, MULTMIN, and Nelder-Mead, they recommended LGO.
Romero et al.[74] compared four more numerical algorithms applied to the H4 system, including
COBYLA, L-BFGS-B, Nelder-Mead, and Powell. For the compatively challenging case of H4,
the gradient algorithms COBYLA and L-BFGS-B had significantly fewer convergence problems
as compared with derivative-free methods. Romero et al. went at step further to consider analytic
gradient methods and concluded that they often converged more rapidly. Numerical methods were
found to perform poorly in the presence of noise, often requiring orders-of-magnitude more
accuracy to achieve the same accuracy. Since both analytical and numerical gradients require a
number of circuits proportional to the dimension of the space at every time step[74], gradient-free
algorithms are favored unless their convergence is vastly slower.
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3.5.1. Algorithm definitions

We consider the performance of three numerical gradient optimization methods, namely
conjugate gradient descent, SPSA, and COBYLA, and one numerical derivative-free method
called NEWUOA. NEWUOA was not considered in previous studies, so its inclusion is a novel
aspect of this work.

The conjugate gradient algorithm takes single steps in a sequence of conjugate directions,
which together form a complete basis for the parameter space[115][116]. The direction of each
step is chosen by taking the gradient numerically (requiring a number of evaluations proportional
to the dimension of the space), then using conjugate Gram-Schmidt to find the component of the
gradient conjugate to the previous search directions. The length of each step is computed by a line
search along the chosen direction[117]. After each step, the process repeats, finding another
numerical gradient, performing conjugate Gram-Schmidt, and performing another line search.
The number of iterations required, generally, is equal to the dimension of the space. We use the
implementation built into the SciPy package[118], which performs the Gram-Schmidt
conjugation by the Polak-Ribière method[119].

Simultaneous perturbation stochastic approximation (SPSA) is a variant of the
Kiefer-Wolfowitz stochastic approximation (SA) algorithm. SA functions almost identically to
simple gradient descent, but uses a finite-difference-like numerical gradient that performs better
in the presence of noisy measurements. While SA requires taking numerical gradients by finite
differences, SPSA avoids that cost, allowing it to perform better in high-dimensional spaces.
Specifically, it uses a different noise-resilient estimator for the gradient, known as the
simultaneous perturbation estimate. The simultaneous perturbation estimate chooses a random
direction in which to take a partial derivative at each step, rather than taking derivatives along
every basis vector. A step is then taken, either in the random direction chosen or the opposite
direction depending on the sign of the partial derivative, and a new random direction is chosen
and partial derivative is taken. We use the implementation built into the Qiskit package[120],
which is based on that used by Kandala et al.[91]

Constrained optimization by linear approximation (COBYLA) approximates the
energy as a linear function of the parameters, interpolating between points at the corners of a
simplex in parameter space[121]. It uses this linear approximation to choose a point in the
simplex to replace with a new point, running a circuit with the new parameters and updating the
linear approximation accordingly. The implementation we use is built into the SciPy
package[118].

New unconstrained optimization algorithm (NEWUOA) is one among a variety of
optimization schemes invented by M. J. D. Powell, the inventor of COBYLA [122]. NEWUOA
uses quadratic approximations instead of linear ones, and typically performs much better in
high-dimensional spaces[123]. Unfortunately, unlike the other algorithms we considered, it lacks
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Figure 3-17. Performance of various optimization algorithms for
the determination of the ground-state wave functions for H2 (a),
H4 (b), H6 (c), and H8 (d). Wave functions were parameterized
according to the UCCSD ansätz with the STO-3G basis set.

a convenient integration with SciPy or Qiskit. We ported Powell’s original Fortran
implementation to Python/NumPy.

3.5.2. Results

Tests of the four optimizers were performed on the H2, H4, H6, and H8 systems. We are not aware
of prior optimizer comparisons studying deuterium clusters larger than H4. As shown in Figure
3-17, the gradient descent, NEWUOA, and COBYLA methods each demonstrated similar
convergence patterns, with NEWUOA performing best for all four clusters. Using H8 as a specific
example, NEWUOA “catches” at fewer iterations than the other methods, matching the exact
UCCSD energy to four significant figures after only 722 iterations. After 1463 iterations the
optimization converged, matching the exact UCCSD energy to five significant figures (a
discrepancy of only 0.002%). For every system SPSA converged to a different state than the other
three optimizers.
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4. DISCUSSION AND CONCLUSIONS

Figure 4-1. Ballpark estimations of hardware limitations for elec-
tronic structure calculations using a minimum basis set and hy-
brid VQE simulation approaches

VQE is viewed by the community as a promising application on near-term quantum devices
thanks to the relatively low qubit-count requirement. Our study, which unpacked the VQE
workflow and considered individual resource requirements for each step, found circuit
parameterization to be the among the most expensive steps, in terms of memory, wall time, and
circuit depth. In Figure 4-1 we collect our best estimates of the quantum resource requirements
associated with VQE. In the following we consider each VQE resource requirement limitation in
turn and assess the implications.

Circuit depth In terms of quantum resources, the quartic to quintic scaling of the circuit depth
during parameterization means that for all but the smallest problems, error mitigation, detection,
or correction will be necessary. At present, the thought of circuit depths in the billions is
incredibly daunting, but let us assume for the sake of argument that this is surmountable.
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Qubit count Honeywell recently announced a record-breaking quantum computer with a
quantum volume∗ of 64, accompanied by an optimistic declaration of 10-fold increases in
quantum volume per year going forward [124]. Assuming Honeywell’s ambitious projection
holds true, quantum hardware with 1 million qubits may be available within a decade. Assuming
this lofty goal is achieved and quantum resources cease to be the bottleneck, at what point will
classical resource requirements become limiting?

Time limits The largest classical barriers to implementing VQE are the memory and time
required to generate circuits from the parameters at each iteration. An iterative n4.4 time step,
while appearing at first to be more favorable than the hexic scaling of a traditional projection
coupled-cluster calculation, is compounded by the enormous number of VQE optimization
iterations necessary even for small systems. The VQE iteration counts appearing in Figure 3-17
already exceeded 10,000 for a mere 23 deuterium atoms having 16 basis functions. The number
of iterations will grow even larger for realistic molecules in large basis sets, totalling perhaps, say,
another order of magnitude. Meanwhile projection CCSD typically finishes in 20 iterations on
classical hardware. VQE-UCCSD is expected to be slower than its classical analog until the
system size overcomes this factor of 1000–10,000 difference in the required iterations. From this
we can estimate that the crossover point will occur between 75 and 750 basis functions. For
reference, our estimate of the limit of projection coupled-cluster calculations, as performed on
massively-parallel classical hardware, was ∼ 1000 basis functions. Exclusively considering time
requirements, VQE is a worthy candidate to carry the torch beyond the limitations of what is
currently feasible on classical hardware (1000 functions) to cover the range of systems (up to
∼ 5000 basis functions) targeted by the DOE (see, e.g., Appendix A for a list).

Classical Memory Let us now consider implications of the classical memory scaling in the
parameterization step. The STO-3G data in Figure 3-14 fit to a scaling relation of 1.2×10−5 n4.2,
which is actually steeper than the n4 memory requirements of traditional projection CCSD.
Assuming VQE-UCCSD has access to the full 600GB of RAM available on a single node of
ORNL’s Summit supercomputer, this corresponds to a maximum number of 128 basis functions.
This is comparable to the number of basis functions for which exact diagonalization is possible on
a laptop. Furthermore, 128 is only a small fraction of the 1000 basis-function calculations
currently possible on the same Summit node using massively-parallel implementations of
projection coupled-cluster.

Conclusions Variational quantum eigensolvers, a family of error-resilient algorithms
potentially applicable on NISQ hardware, have become a topic of increasing research activity by
the quantum simulation community. Whether they will enable scientific advances that were
otherwise impossible is yet to be seen. The present LDRD effort came away with a generally
negative outlook about the prospects of VQE-UCCSD. Even when operating under the cavalier

∗Competing quantum hardware platforms are difficult to compare, so quantum volume was proposed as a universally
applicable performance metric. Quantum volume simultaneously considers the number of qubits, connectivity
performance, gate set performance, whole-algorithm errors, and compilers and software stack performance [124].
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assumption that we will soon have access to unlimited quantum resources, classical memory
requirements of the VQE loop limit the short-term applicability to small system sizes. Systems of
this size are already exactly solvable on a capable laptop. While the expense of the limiting
parameterization step can be reduced by switching to alternative hybrid ansätze such as UpCCD,
this comes at great penalty to the associated energy accuracy. Unless the community can mitigate
these classical memory requirements, we recommend prioritizing investment in fully quantum
algorithms, such as the quantum phase estimation, over hybrid approaches, such as VQE.
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APPENDIX B. DESCRIPTION OF
SOFTWARE STACK

The VQE software stack provides a test environment for benchmarking algorithmic components
to determine their hardware requirements. It also enables evaluation of the algorithm’s sensitivity
to error sources, and of techniques for reducing that sensitivity. The stack, shown as a flow-chart
in Figure 1-1, consists of components that implement each step, as follows:

1. Hartree-Fock: We use the open-source PySCF software suite as a driver to generate
non-relativistic HF integrals. For more information on quantum chemistry drivers, see
Section 3.1.

2. Unitary Coupled Cluster: We use IBM’s Qiskit Aqua package to generate unitary coupled
cluster ansätz circuits. For more information on hybrid VQE ansäze, see Section 2.4.

3. State Preparation: We use either IBM’s Qiskit Terra package or SNL’s JaqalPaq package to
compile the ansatz state preparation circuit to superconducting or trapped-ion gates.

4. Measurement: We use either IBM’s Qiskit Aer noiseless statevector emulator or our
modified version of Delft’s quantumsim noisy process matrix simulator to sample from the
measurement distribution of the circuit. For the latter, we use process matrices supplied by
SNL’s ionsim package for modeling noisy trapped-ion gates.

5. Classical Optimization: We use either scipy’s implementation of the conjugate gradient or
COBYLA optimizers, Qiskit Aqua’s implementation of the SPSA optimizer, or our own
implementation of M. J. D. Powell’s NEWUOA optimizer to update the ansatz parameters.
For more information on classical optimizers, see Section 3.5.

Our resource estimations were performed with a version of this stack built primarily on the Qiskit
package[et al.)]; that is, using PySCF, Qiskit Aqua, Terra, and Aer, and a variety of optimizers.
This version of the stack can be found at
https://gitlab.sandia.gov/tsmetod/marmalade. It requires Qiskit 0.19 to run,
which can be installed via pip. To generate the relevant benchmarking data, go to the
qiskitVQE subfolder and run python3 benchmark_hN.py [idx] [stage]. The
stage argument specifies which stage is to be benchmarked:

0. Generating HF integrals in PySCF.

1. Generating HF integrals in PySCF and constructing a Qiskit FermionicOperator
object from them.
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2. Generating HF integrals in PySCF, constructing a Qiskit FermionicOperator object
from them, and mapping them to a qubit operator (see Section 8).

3. Constructing the UCCSD ansatz.

4. Constructing the UCCSD ansatz and building a state preparation circuit with specified
parameters.

5. All steps.

The idx argument specifies which test case to run, both system size and basis set. The two are
combined into a single parameter for convenience when issuing batch jobs on HPC machines to
benchmark many different molecules and basis sets at once. Each of basis sets described in
Section 2.2 are stepped through. The base system size is H8 for stage 0 or 1 and H2 for stage 2–5.
Each increment of 7 to idx increases the size of the system by another multiple of the system
size; so for example python3 benchmark_hN.py 9 0 would time how long it took to
calculate the HF integrals for H16 in the 3-21G Pople basis. Total CPU time used at each step is
output directly by the script; the Gnu time utility was used for benchmarking memory usage.

Qiskit’s UCCSD ansatz circuit builder uses an inefficient dense data structure to store the
fermionic representations of the excitation operators. As detailed in Section 3.3, we constructed a
sparse representation; sparse_fermionic_operator.py contains both that data model
and a subclass of Qiskit’s UCCSD object, OptimizedUCCSD, which uses it in place of the
default dense representation. This new version can be found at
https://gitlab.sandia.gov/tsmetod/marmalade.

Finally, as we describe in Section 3.5, we ported M. J. D. Powell’s NEWUOA optimizer from
Fortran to Python; it can be found in newuoa.py, and a Qiskit-Aqua-compatible wrapper class
over it, called NEWUOA, can be found in q_newuoa.py.
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