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Scaling of Transport

• Using the K-area fracture data and previous 
analysis, start to examine the effect of 
various processes and parameters needed to 
predict transport at PA time and length 
scales

• Focus here is on diffusion

– Recognized as major process responsible for 
increased retention in the geosphere

– Sorption sites within the matrix must be accessed 
by diffusion

Neretnieks I., (1980) Diffusion in rock matrix: an important factor
in radionuclide retardation? Journal of Geophysical Research
85(B8): pp. 4379–4397



Retention by Diffusion
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Double-Porosity 
Transport with Sorption

Probabilistic Systems Analysis is used to predict the 
future performance of the repository – incorporate 
uncertainty in multiple processes and parameters

Regulations are written to 
incorporate uncertainty

Mass transfer processes make a 
huge difference in predicted 
repository performance

Other situations: hydrothermal 
mineralization, partitioning 
tracer tests for DNAPL, 
groundwater-surface water 
coupling with bank storage, etc.



Transport Processes

• Processes acting in a single fracture:

– Dispersion (velocity variation along different 
flowpaths due to physical heterogeneity in fracture)

– Diffusion (movement of solute due to concentration 
gradient – from fracture to matrix and back)

– Sorption (attachment of solute to fracture walls and 
matrix pore spaces)

Conceptually, there are two domains 
in the rock:

1) Advective, mobile, fracture

2) Diffusive, stagnant, matrix



Diffusion

• Spreading of a solute due to a concentration 
gradient

Analogy: Drop of dye in an aquarium
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Fick’s 1st law: Flux of 
solute is proportional to 
concentration gradient

D is a function of the material(s) 
through which the solute is diffusing



Dispersive Transport

Simple particle tracking model showing solute transport 
in a single fracture with matrix on top and bottom

Hydrodynamic dispersion is active, but no mass-transfer with matrix

Also referred to as “single-porosity” transport



Dispersion and Diffusion

Also referred to as “dual-porosity” transport

Simple particle tracking model showing solute transport 
in a single fracture with matrix on top and bottom

Hydrodynamic dispersion and mass-transfer are active



Breakthrough Curves
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-3/2 Slope

The breakthrough curve is the plot of the concentration as a 
function of time at a downgradient location (e.g., pumping well). 

• To characterize tailing behavior, examine results in log-log space

• -3/2 slope is characteristic of diffusion into an infinite medium



Traditional Dual Porosity Model

The classic dual-porosity 
representation of a fractured 
medium is the “sugar-cube” 
model

To match an observed 
breakthrough curve that does 
not have a –3/2 slope, the 
amount of dispersion and the 
matrix block size are adjusted



The Real World

Large blocks: bigger 
capacity, less surface 
area per aquifer volume, 
slower diffusion rate

Small blocks: small 
capacity, more surface 
area per aquifer volume, 
faster diffusion rate

Solute accesses all 
blocks simultaneously

Cemented breccia zone at Yucca 
Mountain, Nevada



Multi-Porosity Model
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Application to Granitic Rocks

• Aspo Task Force

– 10 nuclear waste organizations from 8 countries

– Tracer experiments conducted at Aspo 
underground research laboratory in Sweden

Aspo LOGO 
GOES HERE



Conceptual Model: Fractured Granite
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Schematic diagram of Feature A (after Winberg, et al. 1999).
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Conceptual Model: Feature A

• Precambrian granites experienced episodic ductile and 
brittle deformation with hydrothermal mineralization

After Mazurek, et al., 2003, Jour. Contaminant Hydrology

Altered granite

Unaltered mylonite

Cataclasite

Altered mylonite
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Transport: Analytical Solution

• Transport in a single fracture with infinite matrix 
(immobile zone) capacity, continuous source
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After Pickens and Grisak, 1981, Journal of Hydrology



Transport: Analytical Solution

• Parameters for analytical solution
– b aperture half-width

– Cf concentration in fracture

– Cm concentration in matrix

– C0 input concentration

– D* effective molecular diffusion coefficient of solute in matrix

– erfc complimentary error function

– t time

– V ground water velocity in the fracture

– x distance along the fracture

– z distance into the matrix normal to the fracture

� m matrix porosity



Approximation

• Relative concentration at the center of a matrix 
block (approximate)

• “early time” solution for diffusion into a semi-infinte 
slab (Crank, 1975)
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What Can the Test See?
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Damkohler number provides ratio of mass-transfer rate 
to advective rate

DaI >> 1.0 indicates local 
equilibrium behavior

DaI << 1.0 indicates 
single porosity transport



Transport Scaling: K-area

• Excel Exercise



Fit to Conceptual Model
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Beyond the Tracer Test Scale
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