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Abstract 

This chapter demonstrates versatile and practical model validation and uncertainty 

quantification techniques applied to the accuracy assessment of a computational model of 

heated steel pipes pressurized to failure. The “Real Space” validation methodology 

segregates aleatory and epistemic uncertainties to form straightforward model validation 

metrics especially suited for assessing models to be used in the analysis of performance 

and safety margins. The methodology handles difficulties associated with representing 

and propagating interval and/or probabilistic uncertainties from multiple correlated and 

uncorrelated sources in the experiments and simulations including: 

 material variability characterized by non-parametric random functions (discrete 

temperaturedependent stress-strain curves);  

 very limited (sparse) experimental data at the coupon testing level for material 

characterization and at the pipe-test validation level; 

 boundary condition reconstruction uncertainties from spatially sparse sensor data;  

 normalization of pipe experimental responses for measured input-condition 

differences among tests and for random and systematic uncertainties in 

measurement/processing/inference of experimental inputs and outputs;  

 numerical solution uncertainty from model discretization and solver effects.  
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1.  Introduction 
 

A current project at Sandia National Laboratories is the modeling of stainless-steel pressure 

vessel response at high pressures and temperatures, up to initiation of failure ([1]). The first 

vessels to be modeled are simple pipe geometries. It is desired to test a temperature-dependent 

constitutive model of stainless-steel response over large ranges of pressures and temperatures, 

ramp rates, and large temperature gradients on the pipes. Figures 1.1 and 1.2 portray some of the 

associated “pipe bomb” (PB) hardware and experiments and coupled thermal-mechanical 

modeling. Only details of PB geometry and experimental conditions and results important to the 

model validation procedures and comparisons in this chapter are presented herein. Further details 

of the design of the hardware and experiments, and execution and results of the larger set of  

experiments, are given in [2].  

 

Controlled nitrogen pressurization of the pipe is accomplished via pressure supply tanks. The 

pipe is heated by a hot inconel plate, creating a hot spot on the pipe. The pipe is pressurized until 

it bursts at the hot spot, tearing back along upper and lower thickness-transition shoulders in the 

pipe, leaving “butterfly wings” as shown in Figure 1.1. The pipe is approximately 14 inches high 

and 3.5-in. in diameter, with mid-region wall thickness of nominally 0.02 in. and upper & lower 

shoulder-region thicknesses of nominally 0.05 in. For safety reasons the inner slug (shiny silver) 

fills up most of inside volume of the pipe, lessening the explosive energy built up prior to pipe 

breach failure.  
 

The project required the formulation and development of an approach for including the 

significant temperature dependence of strength (stress-strain response) of 304L stainless steel 

over the temperature range of interest, nominally 25C to 800C. Information on the mathematical 

and algorithmic formulation of the temperature-dependent multilinear elastic-plastic (MLEP) 

constitutive model for material behavior is available from [3], [4]. The constitutive model is used 

within the Sierra solid mechanics code [5] (massively parallel 3-D implicit nonlinear quasi-

statics) to model pipe response in the tests. 

 

Development of the constitutive model required new experimental characterization of stress-

strain behavior with material coupon round-bar tension tests (see [2]) performed at temperature 

levels spanning the range of interest. Several nominally identical replicate tests were performed 

with new material samples for each test to characterize the effects of material variability on 

exhibited strength at the tested temperatures. The measured stress-strain curves for the 

investigated temperature levels are presented in Section 2 of this chapter.  

 

For each measured stress-strain curve, optimization techniques were used to solve the inverse 

problem of obtaining best-fit transformed stress-strain curves for the constitutive model. The 

inverse problem and solution procedures and results are briefly described in Section 2 and are 

more fully documented in [3].  

 

For uncertainty quantification (UQ) purposes it is important to note that each stress-strain curve 

comprises a discrete random function that has no readily identifiable parametric relationship to 

other stress-strain curves at that temperature. A novel UQ approach based on just a few samples 

from a larger population of discrete random processes or functions is described in Section 2 that 

compensates for limited (sparse) numbers of material tests. 
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Figure 1.1  Model validation experiments. 
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Figure 1.2  Thermal modeling helped design, instrumentation, and analysis of experiments. 

Thermocouples with wire leads can be seen on the inconel heating shroud (glowing orange). 
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Section 3 describes the project’s finite-element (FE) models, geometries, mesh and solver 

choices, and calculation verification studies to characterize discretization related solution 

errors. The FE model and simulations employed in the constitutive model material 

characterization/  inversion procedure are described. These simulations emulate the cylinder 

test specimens’ response, through deformation (“necking”) and failure in the tension tests. 

Various versions of the heated pressurized pipe models and simulations employed in the 

study are also described.   

 

Section 4 describes the use of modeling and simulation to help design the PB validation 

experiments and thermocouple locations to minimize errors and uncertainty associated with 

the experiments and modeling of the boundary conditions from spatially sparse sensor 

information.  

 

Section 5 presents the PB validation experiments and simulations, their uncertainties, and 

processing of results and uncertainties for comparison within a “Real Space” model 

validation framework. A major aspect of the processing of model predictions and 

experimental results involves accounting for small numbers of tests at the material 

characterization level which populates the constitutive model, and at the pipe validation 

testing level. Ultimately, uncertainty ranges of experimental and predicted 0.025 and 0.975 

percentiles of response (failure pressure) are compared. Analysis and interpretation of the 

comparisons are provided. 

 

Section 6 closes with some comments on the Real Space validation methodology features 

and capabilities for handling the challenging PB validation problem as compared to some 

other validation methodologies in the literature.    
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2. Quantification and Propagation of Material Behavior Variability and 
Epistemic Uncertainty associated with the Constitutive Model 
 

 

2.1  Experimental stress-strain variability of tested material samples 
 

Figure 2.1 shows elements of the rod tensile tests and results from which the stress-strain curves 

for the constitutive model were derived. Several replicate tests at each of the temperatures 

indicated were conducted, through necking and failure of the rod specimens.  
 

   

 

The cylindrical material samples were cut and machined from the same 304L stainless steel 

tubular stock (3.5 in. dia., ¼ in. wall thickness) that the validation-experiment pipes were 

machined from. The rod specimens are 3 in. long and have a long thin “gage” section of diameter 

1/8 inch (see [2] for detailed drawings). The specimens were vacuum annealed at 1000C for 30 

minutes to produce the same anneal conditions present in the pipe vessels. The ends of the 

cylinders were displaced in axially opposing directions to produce axial tension at an engineering 

strain rate of 0.001/s, slow enough to be considered quasistatic and estimated from hand 

calculations to be representative of pipe wall membrane strain rates in the PB validation tests. 

Measured axial displacement and resisting force were transformed to the experimental 

“engineering stress-strain” response curves plotted in Figure 2.1. More details of the testing 

apparatus, experimental conditions, measurement and control instrumentation and calibration, 

etc., are given in [2]. 

 

2.2 Inverse calculations to convert from measured stress-strain curves to 
constitutive model stress-strain curves 

 

For each measured “engineering” stress-strain curve, optimization techniques were used to solve 

the inverse problem of determining the constitutive model’s corresponding “true” stress-strain 

curve ([3]). This enables a FE model of the cylinder to reproduce the measured engineering 

stress-strain response in the tension tests. An example is presented in Figure 2.2. Thus, the 

Figure 2.1  Rod tensile test material samples and measured stress-strain curves at the labeled 

temperatures. (Note: “RT” in the plot stands for “room temperature”, nominally 20C).  



modeled cylinder deforms and necks when pulled to experimentally measured displacement and 

resisting force vs. time, in a manner that closely matches the test results. The inverse-problem 

solution procedures and results for this project are more fully documented in [18].  

 

The solid mechanics code Adagio[5] was used for the FE model forward simulations in the 

inversion procedure. In section 3.1 a discussion of the cylinder model FE mesh and solver 

discretization choices indicates that model results are insensitive to significant perturbations 

from the model’s discretization settings used in the inversion procedure. Therefore the cylinder 

model mesh and solver settings are presumed adequately refined for the inversion purposes here.   

 

 

 
 
Figure 2.2  Relationship between experimental and constitutive-model stress strain curves obtained from 

a tensile test. The red curve is the Cauchy-Stress/Logarithmic-Strain “True-Stress/True-Strain” curve 

appropriate for the constitutive model. The black curve is the engineering-stress/engineering-strain curve 

from the test. The red curve is inversely calculated such that its use with the constitutive model in FE 

simulations of the cylinder tensile test yields the calculated green stress-strain curve which closely 

matches the experimental (black) stress-strain curve.  

 

 

The material inversion procedure involves many steps and decision points where analyst 

judgment is used. Therefore the sensitivity of the inversion procedure results to different analysts 

applying the procedure was checked. We asked another seasoned solid mechanics analyst to see 

if they could reproduce one of the 700C True-Stress/True-Strain curves that was originally 

obtained by the author of [3] who retired a short time after generating the material curves for our 

project. The second analyst was familiar with the inversion procedure from applying it on other 

projects, but otherwise this was a relatively independent spot-check on our derived material 

curves. The differences were insignificant below ~230% strain (see [18]), which far exceeds the 
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point of pipe structural failure initiation in our calculations. We presume that the relevant 

portions of the other True-Stress/True-Strain curves used in our project are also adequately 

immune to analyst judgment particulars in the material inversion process.   

   

2.3 Incorporating multiple stress-strain curves of material variability and 
accompanying uncertainty from small numbers of material tests  

 

Note from Figure 2.1 that the numbers of material variability tests (numbers of stress-strain 

curves at each temperature) are relatively small. When only a few samples of a random variable 

or function are available, these will usually significantly misrepresent the randomness properties 

of the source of variability that was sampled. The variability properties of the source (full 

population of random values or functions) generally cannot be accurately constructed from just a 

few samples of the population. Thus, substantial epistemic “sampling uncertainty” exists in 

addition to the aleatory uncertainty due to stochastic variability in the source population.  
 

The likely error that accompanies sparse sampling has a bias toward underestimating the true 

full-population variance (at least for distribution types and combinations investigated in [9] – 

[11]). This is unconservative and therefore undesirable for many engineering purposes. If a 

structure or pressure-vessel model were perfect in every other way, use of the constitutive model 

would likely underestimate the (strength or displacement) response variance of the real system. 

In design and risk analysis one would normally want to avoid such underestimation.  

 

Two approaches were tried to avoid underestimation of the larger-population variability. The 

first approach assumed that the variability of stress-strain curves at a given temperature can be 

parameterized. Then the parameter range corresponding to variations between the curves can be 

appropriately increased to correct for small-sample underestimation bias. The adjusted parameter 

range representing material curve variability could then be propagated through the pipe response 

model along with the other parametric uncertainties in the model. However, the attempted 

parametric representation of material curve variability failed an important “sanity test” for 

physical consistency as shown in [18].  

 

Consequently, a different approach was devised and implemented. The uncertainty associated 

with material curve variability is decoupled from the other (parametric) uncertainties in the 

problem. It is represented and propagated alone, as described here. After propagation it is 

combined with the other (propagated) parametric uncertainties as described in section 5.2. 
   
The approach treats the stress-strain curves at a given temperature as discrete random functions 

with no readily identifiable parametric relationship between them. Yet the approach recognizes 

that the stress-strain curves issue from the same temperature-characteristic population of discrete 

random functions. Furthermore, because usually only a small number of experimental curves of 

behavior are available, the approach mitigates chances of underestimating the full-population 

variability with relatively few data samples. Figure 2.3 conveys the approach for a random 

variable, but the idea also applies to random functions. 

Employing the approach at right in Figure 2.3, the multiple stress-strain curves at a given 

temperature are individually propagated through the applicable system model (here the PB 

model) to yield corresponding samples of output quantities of response such as displacement, 



failure pressure, etc. Tolerance Intervals of the response quantities are then constructed from the 

response samples for further analysis purposes as explained below.  

This approach also accommodates propagation of model parameter sets that are discrete (are not 

parametrically continuous). For instance, in electronics modeling applications the Gummel-Poon 

(GP) model parameters (often 10 or more) are determined unique to each particular device 

tested. When multiple repeat tests on nominally identical devices are performed, the resulting 

sets of GP parameters define different points in the parameter space. However, the parameter 

space is generally not considered to be continuous (e.g. [12]). The model is generally not 

“trusted” to yield suitable results when run with parameter values at other points in the space, 

e.g. at points interpolated on a line between any two established points/parameter-sets in the 

space. Hence device-to-device and other experimental variability resident in the discrete GP 

parameter sets can be treated by the paradigm illustrated at right in Figure 2.3.  

 

 

 

Considering the samples of output response on the vertical axis at right in the figure, various 

approaches can be taken to compensate for small numbers of samples. Investigations were 

undertaken in [9]-[11]. It was found that a classical statistical Tolerance Interval approach (e.g. 

[13]) provides reliably conservative estimates of the combined epistemic and aleatory 

uncertainty associated with limited data. The approach is also very easy to use. The approach 

[14] also worked well for sparse samples in many cases, but is somewhat more involved to 

implement and its performance remains to be broadly tested and characterized because the 

method is very new. The rather common practice of simply fitting the random data with a normal 

form Tol Intvl. on input

variability, then propagate Intvl.

Instead of this… Consider this… 

Input, xi

response

value

Model  function

propagated 

Tolerance 

Interval

Propagate realizations of input 

variability, then form Tol Intvl. 

on realizations of response 

Input, xi

response

value

Model  function
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Interval on 

results of 
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input 
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Figure 2.3  Two ways of propagating uncertainty from sparse samples of an input random variable. In the 

approach at left the sparse samples of the input quantity are fit with a tolerance interval (explained below) 

that is then propagated to an uncertainty of response. (Alternatively, an equivalent Normal PDF fitted to 

the tolerance interval is propagated.) The approach at right individually propagates each sample of the 

input quantity and then forms a tolerance interval (and equivalent Normal PDF, see Figure 2.6) from the 

propagated results.   
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distribution was found to be risky. It produces results skewed toward being non-conservative, 

especially if the sampled distribution is a Normal distribution.  

For the purposes here the Tolerance Interval (TI) approach was used. The length of tolerance 

intervals accounts for both the epistemic and aleatory elements of uncertainty due to  limited 

samples of data. Hence, TIs are characterized by two user-prescribed attainment levels: one for 

“coverage” of a subset of the variability, and one for statistical “confidence” in covering or 

bounding at least that subset of variability.  For instance, a 0.95-coverage/0.90-confidence TI 

prescribes lower and upper values of a range of response that is said to have at least 90% odds 

that it covers or spans the 0.025 and 0.975 percentiles of the “true” probability distribution (or 

probability density function, PDF) from which the random samples were drawn, for a large array 

of PDF types.   

A 0.95/0.90 TI is constructed by multiplying the calculated standard deviation  ̃ of the data 

samples by the following factors f in Table 2.1 to create an interval of total length 2f  ̃, where the 

interval is centered about the calculated mean   ̃of the samples. Table 2.1 and Figure 2.4 reveal 

that the TI size decreases quickly with the number of data samples. For 0.95/0.90 TI a knee in 

the rate of uncertainty decrease per added sample occurs somewhere between 4 to 6 samples, 

with the rate of decrease being fairly small after 8 samples. The tolerance interval has an 

asymptotic standard-deviation multiplier of 1.96 for an infinite number of samples. This gives a 

TI that corresponds to the exact 0.95 central percentile range of a Normal PDF with µ and σ the 

same as   ̃and  ̃ from the ∞ samples. That is, the multipliers f for 0.95/0.90 TI are effectively 

constructed from randomly sampling a Normal PDF a number of times M in each of a large 

number of random trials and finding the multiplier fM that gives TI which, in approximately 90% 

of the trials, span the true generating Normal PDF’s 0.025 to 0.975 percentile range.  

 

Table 2.1  0.95/0.90 Tolerance Interval Factors (standard deviation multipliers) vs.  # of samples 

of random quantity. (Selected results from tables in [13].) 
 

# samples f0.95/0.90 

2 18.80  

3 6.92 

4 4.94 

5 4.15 

6 3.72 

8 3.26 

12 2.86 

20 2.56 

30 2.41 

40 2.33 

∞ 1.96 

 

 



    

 

Although constructed with respect to Normal PDFs, 0.95/0.90 TI will also span, with 

approximately 90% odds, the 0.025 to 0.975 percentile ranges of many other PDF types when 

sparsely sampled. This has been empirically established in [10], [11] for uniform and right-

triangular PDFs and for PDFs resulting from convolving various types of PDFs as depicted in 

Figure 2.5. 

For subsequent uncertainty representation and analysis purposes a Normal PDF is constructed 

such that its 0.025 and 0.975 percentiles coincide with the end points of the established 0.95/0.90 

Tolerance Interval (see Figure 2.6). The Normal PDF therefore has approximately 90% odds that 

its 0.025 and 0.975 percentiles contain the 0.025 and 0.975 percentiles of the true PDF from 

which the random samples come (for a large array of PDF types). Furthermore, because the 

constructed PDF is Normal, its characteristically long tails will have extended percentiles like 

0.01 and 0.99 that in most cases extend beyond the same percentiles of the true PDF from which 

the data samples come. This was found in [9]-[11] to be true for all tested PDF types and 

combinations in Figure 2.5.  

Figure 2.4  Multiplier on calculated standard deviation used to form 0.95/0.90 Tolerance Interval ranges 

vs. number of random samples. (Figure reproduced from [15], ignore confidence interval curve.)  



11 
 

 
 

 

The TI approach described here is presumed to likely (at the said odds) exaggerate the effects of 

the actual material variability. Such exaggeration can sometimes be egregious when very few 

samples are involved, depending on the particular samples obtained (see [9] – [11]). The 

Pradlwarter-Schueller approach [14] has much smaller chances of egregious conservatism but 

averaged only 70% reliable in bracketing the true 0.025 to 0.975 percentile ranges of the PDF 

shapes and combinations shown in Figure 2.5 (compared to an average of 92% reliability for TI). 
 

2.4 Results for constant-temperature pipe bombs  
 

At each material characterization temperature T in Figure 2.1 the derived constitutive model 

stress-strain curves are used in simulations of the pipe vessel held at uniform temperature T and 

pressurized at a linear ramp rate of 1psi/sec until pipe wall failure is indicated. (The rate of linear 

pressure rise is representative but does not impact these quasi-static failure pressures; creep is not 

an aspect of the current constitutive model and is assumed to be unimportant in the PB tests, 

based on a test for creep effects ([16]).) The pipe model, mesh and solver settings, pipe ends 

fixturing/loading conditions, simulations, and failure criteria are described in section 3.2. Table 

2.2 gives the calculated failure pressures for the runs at the various characterization 

temperatures. The results at a given temperature are listed in order of predicted failure pressures 

and this orders the effective strengths of the stress-strain curves at that temperature. Note that 

because structural response depends on the history or path that a given stress-strain curve entails, 

it is not clear a priori how the curves rank in effective strength in a given application until 

application-model simulations are run. 

 

For the six predicted failure pressures at 20C the mean is 1482 psi and the standard deviation σ is 

3.97 psi. Table 2.3 lists these summary statistics and those for the other characterized 

temperatures. As indicated in the table, the upper and lower extents of the 0.95/0.9 tolerance 

intervals (TIs) are determined by adding/subtracting the quantity fσ to/from the mean failure 

pressure, where the appropriate values of f are found in Table 2.1. The tolerance intervals are 

plotted in Figure 2.6.  
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Figure 2.5  Test matrix for PDF representation study in [10], [11]. 



 Table 2.2  Predicted pipe failure pressures at listed temperatures where stress-strain curves 

were characterized (entries sorted from highest to lowest failure pressures). 

 

Test and 
Temperature 

Fail 
Press.  

% 
Equiv. 
Plastic  

Tearing 
param. 

hours 
runtime 

(degrees C) (psi) Strain  (192 CPUs) 

     

try5-20 1485.2 57.50% 2.04 0.324 

try6-20 1485.0 54.90% 1.54 0.348 

try3-20 1484.5 60.10% 2.14 0.368 

try39-20 1483.9 58.70% 2.09 0.402 

try4-20 1482.8 57.10% 2.03 0.308 

try40-20 1474.8 55.50% 1.96 0.309 

     try14-100 1227.1 58.60% 2.09 0.441 

try36-100 1226.3 55.90% 1.98 0.335 

try16-100 1225.3 56.10% 1.99 0.31 

try37-100 1222.9 54.90% 1.95 0.284 

try15-100 1208.7 52.80% 1.86 0.546 

     try11-200 1102.1 52.90% 1.66 0.335 

try34-200 1089.9 44.20% 1.32 0.453 

try13-200 1088.6 46.90% 1.43 2.26 

try12-200 1085.8 42.60% 1.26 2.62 

try35-200 1081.7 40.20% 1.17 0.342 

     try33-400 1014.0 38.40% 1.03 0.369 

try17-400 1010.3 39.40% 1.06 0.393 

try18-400 1007.2 38.60% 1.02 0.325 

try19-400 1005.7 43.20% 1.2 0.312 

try32-400 1001.9 37.30% 0.986 2.479 

     try24-600 884.7 52.30% 1.52 0.359 

try23-600 880.1 49.00% 1.39 2.54 

try22-600 869.2 40.90% 1.1 0.361 

     try25-700 714.0 61.70% 1.88 0.431 

try27-700 704.2 60.60% 1.83 0.443 

try26-700 703.7 60.50% 1.84 0.431 

     try31-800 448.8 64.50% 1.89 0.414 

try29-800 448.0 50.10% 1.32 0.476 

try30-800 440.8 63.20% 1.82 0.431 
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Table 2.3  Statistics of predicted failure pressures at temperatures where stress-strain 

                  curves were characterized. 

 

Temperature 
mean, µ std.dev., σ upper & lower 

upper & 
lower 

 

fail 
press. (psi) extents of 0.95/0.9 TI 

extents of 
0.95/0.9 TI 

 
(psi) 

 
 

 (psi) 

   
  

20C 1482.70 3.97 µ + 3.72σ = µ + 1% = 1497.5 

  

= 0.27% of 
mean  µ - 3.72σ = µ - 1% = 1467.9 

     

     100C 1222.06 7.63 µ + 4.15σ = µ + 2.6% = 1253.7 

  

= 0.63% of 
mean µ - 4.15σ = µ - 2.6% = 1190.4 

     

     200C 1089.62 7.65 µ + 4.15σ = µ + 2.9% = 1121.4 

  

= 0.7% of 
mean µ - 4.15σ = µ - 2.9% = 1057.9 

     

     400C 1007.82 4.59 µ + 4.15σ = µ + 1.9% = 1026.9 

  

= 0.46% of 
mean µ - 4.15σ = µ - 1.9% = 988.8 

     

     600C 878.00 7.96 µ + 6.92σ = µ + 6.3% = 933.1 

  

= 0.91% of 
mean µ - 6.92σ = µ - 6.3% = 822.9 

     

     700C 707.30 5.81 µ + 6.92σ = µ + 5.7% = 747.5 

  

= 0.82% of 
mean µ - 6.92σ = µ - 5.7% = 667.1 

     

     800C 445.87 4.41 µ + 6.92σ = µ + 6.8% = 476.4 

  

= 0.99% of 
mean µ - 6.92σ = µ - 6.8% = 415.4 

 

 

 



 

 

2.5 Extension to other pipe bomb application conditions 
 

In later validation simulations with the PB model, differences exist vs. the initial and 

boundary conditions underlying the TIs in Figure 2.6, such as wall thickness, 

fixturing/loading conditions on the pipe ends, pressure loading history, and non-uniform pipe 

temperature. A two-part approach explained in the following two sections is used to represent 

PB failure pressure variability under these different initial and boundary conditions. 

 

2.5.1 Temperature dependence of material variability, parameterized in terms of high & 
low strength material curves 

 

Consider a pipe simulation with the same pressure and end-loading conditions underlying the 

results in Figure 2.6. But now let the pipe have a spatially uniform temperature that increases 

in time. Let the simulation start at the first characterization temperature (20C) in the material 

data set. When the pipe temperature rises from 20C to 100C the stress-strain curves 

characterized at 20C gradually become less applicable and the stress-strain curves at the next 

characterization temperature of 100C gradually become more applicable until at 100C they 

are exclusively the applicable curves. This prompts a generalized question of how to “best” 

Figure 2.6  95% coverage / 90% confidence Tolerance Intervals from variation of pipe failure pressures 

at various pipe temperatures (for uniform temperature throughout pipe). Individual failure pressures 

predicted with the various stress-strain curves are plotted as red crosses. At 600C an illustrative Normal 

PDF constructed from the 0.95/0.9 TI is depicted.  
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(best balance of effectiveness and economics) weight or transition between two sets of stress-

strain curves from two adjacent characterization temperatures that bracket the local pipe 

temperature. The word ‘local’ is used here because the general problem involves 

alternatively or in combination a temperature field that varies in space. In general, how does 

the simulation model represent material constitutive behavior for local pointwise pipe 

temperature (in time and space) that lies between adjacent characterization temperatures at 

which stress-strain curves exist? 

 

If a single stress-strain curve exists at each bracketing temperature, then the procedure in [3] 

is employed to linearly interpolate the stress-strain state from the bracketing stress-strain 

curves, given the local temperature and the bracketing curve temperatures. However, when 

multiple stress-strain curves of material variability exist at each bracketing temperature, it 

must be decided how to handle this. The issues and our approach are discussed next.  

 

Consider a PB simulation with a spatially uniform temperature pipe that increases from 20C 

to 200C over time. Figure 2.7 is an illustrative representation (not to scale) of the TIs and 

underlying PB failure-pressure data points for the first three material characterization 

temperatures in Table 2.2 and Figure 2.6. Each dot on each TI in Figure 2.7 corresponds to a 

particular stress-strain (s-s) curve. The temperature transient in the simulation can be 

negotiated with the interpolation scheme [3] after selecting one dot/s-s curve at each of the 

relevant characterization temperatures, 20C, 100C, and 200C. Several possible selection 

combinations are shown in Figure 2.7. Vastly more combinations exist. One could think 

about sampling all combinations (“exhaustive” sampling) and running a PB simulation for 

each combination. This would amount to 6x5x5 = 150 runs of the PB model. With the full set 

of material data there would be 20,250 combinations/runs for a simulation involving a 

uniform pipe temperature that increases from 20C to 800C. This is clearly unaffordable and 

is not necessary anyway in the present circumstances. Alternatively, a random sampling of 

say 30 to 50 random combinations could be performed. This might be affordable in some 

circumstances, but not for validation simulations to be described in Section 5. Hence the 

following two-run “bounding” approach was taken.  

 

Consider a local region of material on the pipe. At a given characterization temperature, say 

20C, this local region has particular stress-strain properties with an effective strength 

variability reflected by the six data samples at 20C in Figure 2.7. Consider a case where the 

effective strength of the local material lies near the highest dot at 20C. If the local material 

region undergoes a temperature transition from say 20C to 200C, it is physically plausible
3
 

that a local material region with a high relative effective strength at the starting temperature 

20C will retain high relative effective strength as it transitions temperatures to 200C. Thus, a 

material realization with effective strength that starts in the neighborhood of the highest-

strength dot at 20C will tend to correlate with the highest-strength dots at 100C and 200C. So 

the HS “high strength” combination path in Figure 2.7 is reasoned to be a highly physically 

reasonable combination. Similar reasoning is applied to the lowest dots at 20C, 100C, and 

200C (LS “low strength” path).  

 

                                                 
3
 This assumes that material weakening mechanisms and % weakening are roughly similar with increasing 

temperature whether the material is initially of higher, medium, or lower relative strength.    



 
Figure 2.7  Illustrative (not to scale) 0.95/0.9 Tolerance Intervals and underlying PB failure pressure 

data (for uniform pipe temperature) for the first three material characterization temperatures in Table 

2.2 and Figure 2.6. Several possible combinations (“paths”) of material stress-strain curves are shown 

that could be used in a computational simulation to negotiate a temperature transition over the 

depicted temperature range.  

 

 

Material realizations corresponding to mid-range dots at 20C in Figure 2.7 will also tend to 

correlate with the mid-range dots at 100C and 200C. PB response in simulations using mid-

range path combinations is assumed to be bounded by the consistently high strength (HS) and 

consistently low strength (LS) combinations. Therefore computational resources are not 

expended investigating moderate paths. 

 

So far we have not discussed spatial material variability in the pipe. Figure 2.8 illustrates 

some possible combinations at three neighboring (> millimeters apart) locations on the pipe 

at uniform temperature 20C. Any of an exhaustive number of possible combinations would 

seem to be equally likely. To bound this problem we assume that PB simulation results from 

consistently high strength (HS) and consistently low strength (LS) combinations in Figure 

2.8 would bound the simulation results from any other possible combinations like the others 

shown in Figure 2.8. Due to lack of time and resources we have not verified this assumption, 

but recommend that it be assessed in future projects that would seek to rely on this 

assumption.  
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Figure 2.8  Illustrative (not to scale) 0.95/0.9 Tolerance Intervals and underlying PB failure pressure 

data for three neighboring locations on the pipe at uniform temperature 20C. Several possible stress-

strain curves exist at each of three sample locations on the pipe. Some possible combinations of the 

stress-strain curves at these locations are shown that could be used in a computational simulation of a 

uniform-temperature 20C pipe. However, only the HS and LS combinations are used in the present 

work.      

 

 

We use similar reasoning for steady or transient spatially non-uniform temperature fields. 

Consider a spatial temperature transition between 20C and 200C at two locations on the pipe. 

Figure 2.7 applies to this spatial temperature transition (and not just for the temporal 

transition previously considered with the figure). For spatial temperature transitions, strong 

correlation of ss-curve strengths is not expected between different locations because of 

physical material variations that can occur from point to point. Then any ss-curve 

computational path combinations are physically plausible such as all those shown in Figure 

2.7. Again, we assume that the consistently high strength (HS) and consistently low strength 

(LS) combinations bound the simulation results from any other possible combinations. But 

we acknowledge that a spatially stochastic uncertainty representation would be relevant here 

and may even be necessary for certain analysis requirements. A follow-on investigation is 

recommended. We conclude similarly for spatially varying pipe wall thickness in section 5.3. 

 

Thus, in view of the constraints in this project, material variability effects are parameterized 

in terms of just two simulation runs of the PB model. One simulation uses only the high 

strength stress-strain curves at each characterization temperature, using the methodology [3] 

to transition between the HS s-s curves. The other simulation uses only the low strength s-s 

curves at each characterization temperature. It is next explained how this parameterization is 

used in Section 5 to scale PB failure pressure variability TIs in Figure 2.6 to TIs for the 

validation application conditions. 

 

  



2.5.2 Scaling of PB failure pressure variability to new application conditions 
 

Let the HS and LS simulations described above yield respective failure pressures P_fail-HS 

and P_fail-LS. These define a range of predicted failure pressure given by 

   

   Δ = P_fail-HS  ‒  P_fail-LS.                  Eqn. 2.1 

 

For the case of a pipe at uniform temperature 700C, the range Δ700Cunif = P_fail-HS700Cunif  ‒  

P_fail-LS700Cunif can be determined from the results in Table 2.2. This range is labeled in 

Figure 2.9 on the left TI, which corresponds to the 700C uniform-temperature PB tolerance 

interval defined in Table 2.3. The 700C-uniform TI is composed of three segments (Llower-

700Cunif, Δ700Cunif, Lupper-700Cunif) as shown in Figure 2.9.  

 

The separation of the TI into three segments according to the HS and LS simulation results is 

handy for scaling the TI to other application conditions as illustrated in Figure 2.9. For 

example, let TIapp700C at right in Figure 2.9 be for a non-uniform temperature pipe where 

failure occurs at the pipe hot spot with temperature 700C at its peak. In validation 

simulations with the PB model, several things will differ from the Figure 2.6 conditions, such 

as pipe wall thickness, pressure loading history, non-constant temperature, and end fixturing 

conditions on the pipe. Even if the failure point is at 700C at the time of failure, the 

calculated HS and LS failure pressures will differ (perhaps greatly) from the values  

P_fail-HS700Cunif  and  P_fail-LS700Cunif in Table 2.2 for the 700C uniform-temperature pipe. 

But the spans Δ700Cunif and Δapp700C in Figure 2.9 both issue from the same sets of low-

strength and high-strength stress-strain curves. Therefore it is ventured that the spans 

Δapp700C and Δ700Cunif scale with each other. The scaling factor is 

  

S = Δapp700C / Δ700Cunif.                     Eqn. 2.2 

 

Everything on the right side of Equation 2.2 is obtainable from Table 2.2 and the HS and LS 

simulation results under the new application conditions. The lengths of the other segments 

that make up the TIs in Figure 2.9 are assumed to scale similarly. Mirroring Eqn. 2.2,  

S = Lupper-app700C /Lupper-700Cunif or 

 

Lupper-app700C  =  S × Lupper-700Cunif.                   Eqn. 2.3 

 

Analogously,  

 

Llower-app700C  =  S × Llower-700Cunif.                   Eqn. 2.4 

 

Then TIapp700C is fully defined by the three known segments (Llower- app700C, Δapp700C, Lupper-

app700C) as shown in Figure 2.9. Tolerance intervals constructed this way come from a loose 

but traceable basis of .95-coverage/.90-confidence TIs at “nearby” points in the problem 

parameter space. Because of several assumptions made in the construction, including 

interpolation and extrapolation (see next paragraph), it cannot be assured that the constructed 
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TI are likely be a conservative 95% range of failure pressure variation due to the underlying 

material property variability. We cannot assign a confidence level to the likelihood of 

conservatism, but we consider it to be a reasonable working estimate and use the lower and 

upper ends of the interval for .025 and .975 percentiles of a constructed Normal PDF of 

failure pressure variability in the new application, as indicated in Figure 2.9. 

 
 

Figure 2.9  Proposed scaling between 0.95/0.9 Tolerance Intervals parameterized by failure pressures 

calculated with low and high strength material curves for (at left) a uniform-temperature pipe at 700C 

and (at right) a non-uniform temperature pipe where failure occurs at pipe hot spot with temperature 

700C.  

 

 

This procedure can be applied for the general problem where the failure temperature is some 

value T between the specific characterization temperatures in Figure 2.6. Then the subscript 

700C in the above equations is replaced by the applicable temperature T.  The span ΔTunif in 

the new version of Eqn. 2.2 is linearly interpolated from the spans at the immediately 

surrounding characterization temperatures in Figure 2.6. The upper and lower segment 

lengths Lupper-Tunif and Llower- Tunif are likewise interpolated.  

 

Note that in the PB validation simulations, which involve both spatially and temporally 

varying temperature fields, the HS and LS predicted failures generally do not occur at exactly 

the same location or at exactly the same temperature. But failure locations and temperatures 

are within tenths of a percent for the HS and LS simulations so the average predicted failure 

temperature Tavg-app is used in the above procedure, where the applicable subscripts are 

related by Tunif = Tavg-app. 



3. FE Models, Geometries, Mesh and Solver Choices, and 
Calculation Verification 

3.1 Cylinder tension test simulations 
 

Here we consider the FE model and simulations of the cylindrical test specimens in the 

constitutive model material characterization/inversion procedure described in section 2.2. Given 

the geometry and testing conditions described in section 2.1 the simulations emulate cylinder 

response, through the necking and failure processes depicted in Figure 2.2.  

 

The geometry and mesh of the corresponding FE model are shown in Figure 3.1. Only a 1-in. 

middle portion of the gage length is considered, where the loading and stress-strain response is 

considered to be axisymmetric. The FE model consists of only a ~2.77% portion of this 1-in. 

middle section of gage length, invoking symmetry to model a 20-degree portion and only the top 

half as shown. The model’s radial dimension is 1/16 (0.0625) in. at the top cross-section, varying 

linearly to 0.0620 in. at the bottom. The bottom cross-section is modeled slightly less than actual 

so that computed failure will dependably occur at this minimum cross-section location.  

 

 
 

Figure 3.1  FE model geometry and mesh for modeled section of circular cylinder in tension tests.  

 

 

By seeding the location of most deformation (thus failure) in this way, a mesh can be tailored for 

the simulations. Linear 8-node hexagonal finite elements are used. The mesh is most dense in the 

severe necking region. In this region the mesh is graded so that grid density increases 

substantially where approaching the mid-length plane of symmetry. Necking entails substantial 
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axial stretching and radial compression of elements. To compensate, the initial mesh that the 

simulations start from is made with axially compressed and radially stretched elements as shown. 

The mesh resolution appears to be adequate when compared to the much coarser meshes in a 

mesh sensitivity study in [18] for a similar material inversion problem that shows no mesh 

effects for the relevant portion of the derived stress-strain curves.  

 

The solver and hourglass-control settings for the FE calculations in the material inversion 

procedure are also catalogued in [18]. These were chosen by the analyst ([3]) based on years of 

experience performing similar material inversion procedures for similar types of rod tensile tests. 

The settings were also deemed adequate by a second analyst with similar experience during a 

spot-check of reproducibility of the inversion procedure and results (see section 2.2).  

3.2   Isothermal pipe bomb simulations at the material characterization 
temperatures 

 

Isothermal PB simulations were performed to calculate the pipe failure pressures in Table 2.2. 

When the uniform-temperature pipes are pressurized to failure, a state is reached where the 

material can no longer resist the next increment in applied pressure. This is termed the ‘structural 

instability’ point ([17]). In the PB simulations this coincides with a mathematical instability, 

signified by the Adagio calculation going numerically unstable (unable to converge, [17]). The 

instability occurs because the Adagio quasi-statics governing equations have no inertial terms to 

balance the increment in pressure force by an acceleration of the material when its strength can 

no longer resist the internal pressure and the pipe bursts.  

 

Identifying the burst pressure by arriving at the quasi-statics instability point is sufficient for our 

purposes here. If one wants to calculate the ensuing structural breakup of the pipe, a structural 

dynamics code can be used. It has the required inertial terms for continuation of the simulation 

from a starting point just prior to quasi-statics instability and continuing through structure 

breakup. Such continuation was demonstrated in [3].    

 

Figure 3.2 shows representative Adagio calculation results associated with Table 2.2. A signature 

difficulty in these calculations is the large computational expense required to creep up to the 

structural instability point. As this point is neared, the solver must work harder to advance by 

taking smaller time-steps and performing more iterations per timestep to solve the increasingly 

nonlinear material response and force-balance problem.  

 

The large majority of CPU time is spent in the final stages of the event. Alternate approaches are 

being investigated to more efficiently identify the structural/mathematical instability point or to 

identify alternative indicators of material damage and critical failure values. The latter approach 

would ideally suspend the calculation at a point simultaneously low on the CPU cost curve and 

near the final failure pressure. Such a point occurs, for example, at the sharp knee in the curve of 

the lower left CPU plot in Figure 3.2. This point is very near the ending (instability) time in the 

simulation, and because pressure is linearly ramped with time in these simulations, the knee also 

corresponds to a pressure that is very near the final pressure at calculation failure. 

 



 
 

Figure 3.2  Representative Adagio calculation results associated with this section and Table 2.2. (EQPS 

is the ‘equivalent plastic strain’ of the material.) 

 

 

3.2.1 Geometry and Mesh 

 

The FE model has a pipe wall thickness of 0.02 in. and 4 finite-elements through the thickness of 

the wall. Mechanical end-loading conditions are fixed. The full-geometry model is shown at left 

in Figure 3.3 (see [2] for detailed drawings). For the calculations in section 3.3 a geometry 

change was made in the modeled length of the pipe. The full length of the PB cylinder is 14 

inches. The truncated model at right in Figure 3.3 contains only the middle 10.8 inch section of 

the pipe as shown. Most of the thick-walled shoulder regions at either end are truncated because 

previous simulations found they are so strong relative to the thin-wall sections of the pipe that 

truncating them does not materially affect failure pressure results. This reduces the finite-element 

count by about 30%. To further save on computational resources a 1/8 section of the truncated 

geometry was used that takes advantage of the symmetry of geometry and uniform-temperature 

and fixed-end boundary conditions in the problem. See Figures 3.4 and 3.5 for details on the 

mesh structure and element aspect ratios.  

 

In section 3.4 we investigate effects of different mesh densities and element aspect ratios for 

simulations of the spot-heated PB experiments. From that investigation we infer that the mesh in 

Figures 3.4 and 3.5 appears quite adequate for simulations of uniform-temperature pressurized 
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pipes described in this section. These simulations are used to calculate the failure pressures in 

Table 2.2. 

 

PB geometry, full length = 14 in. 
modeled portion of PB, 

truncated to 10.8 in. 

 

 

Figure 3.3.  Actual and truncated-model pipe geometries. Full length of pipe is 14 inches. Modeled 

portion omits 1.6 inches from each end of pipe, leaving ¼ in. length of stiffening collar at pipe ends. This 

decreases the finite-element count by almost 30%. 
 

 

 

 

 

 
 

Figure 3.4  Finite element mesh of 1/8 symmetry model of truncated pipe section shown in Figure 3.3. 

The 1/8 symmetry model contains 200,322 8-node linear hex elements. Grid density 

increases significantly in going from truncated end of pipe to mid-length of pipe. Grid 

density also increases in going from back of pipe to front of pipe. (The front-to-back grid 

density variations were imposed in anticipation of simulating scenarios with the hot spot 

from non-uniform heating conditions in the PB experiments, but different meshes were 

ultimately used, see section 3.5).   



 

 

 
 

Figure 3.5  Mesh with four elements through the thickness of the pipe wall. The starting aspect ratios of 

the elements at pipe mid-length are 4:4:1 in the radial, axial, and circumferential directions 

respectively.  

 

  

3.2.2 Solver, control settings, and error tolerance refinement study 

 

For the PB simulations the conjugate gradient (CG) solver in Adagio was used with the FETI 

(finite-element tearing and interconnecting) pre-conditioner. The solver settings in Table 3.1 

were used to produce the uniform-temperature PB results in Table 2.2.  

 

The settings in Table 3.1 were arrived at by performing the solution cost vs. accuracy study 

summarized in Table 3.2. Selected cases from Table 2.2 are considered in Table 3.2. The cases 

span a large temperature range from 20C to 700C and the stress-strain curves at each temperature 

yield closely coinciding failure pressures. This provides a tough test for the solver variants in 

Table 3.2: can the strength orderings of the selected stress-strain curves be accurately determined 

despite the small separations in the failure pressures, and is this successfully done at the low end 

20C and high end 700C temperatures?  

 

The error tolerances in column two of Table 3.2 are customary for Adagio analyses according to 

analyst experiences balancing calculation cost and accuracy in many projects prior to PB. 

Relatively small average differences of about 2.8 psi or 0.24% exist between results in the 2
nd

 

column and in the 3
rd

 column where error tolerances are significantly stricter. But a difference in 

curve-strength orderings occurs for try3-20C and try6-20C. In further tightening the error 

tolerances from column three to column four, the curve-strength orderings do not change and the 

calculated failure pressures are virtually unchanged (only the results for try26-700C change, and 

only by 0.1 psi). Hence, the error tolerances in column 2 are not sufficient for curve strength 
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ranking purposes and the tolerances in columns 3 and 4 both appear adequate; results are stable 

when error tolerances are tightened to these levels (for this particular type of PB analysis).   

 

Table 3.1  Solver error tolerances and algorithm controls in uniform-temperature 

PB calculations. 

 

Solver Error Tolerances CG 

 

Target relative residual 1.00E-06 

 

Acceptable relative 

residual 2.00E-04 

 Max iterations 10,000 

 Min iterations 3 

 

Max cutback 10 

 

cutback factor 0.5 

 

Growth factor 1.1 

 

Iteration window 100 

 

Target iterations 400 

 

Max multiplier 100 

 

Min multiplier  1.00E-12 

 Max timestep 1.0 

 

Hourglass Effective 

Moduli Elastic  

   

  FETI 

 Residual Norm Tolerance 1.00E-03 

 Iteration updates 125 

 

 

We note that the CPU costs of the simulations in Table 3.2 do not necessarily increase with 

tightened error tolerances. Complex numerical interactions in adaptive solvers sometimes result 

in slower progress overall when looser iteration-convergence tolerances are used. This can allow 

larger time steps and disproportionately increased iterations to converge the nonlinear solution 

over the larger time steps. Furthermore, sometimes the time step has to be retried with a smaller 

step size if convergence does not occur within the specified iteration limits for the original time 

step. So larger steps can result in non-convergence and then much numerical rework as the size 

of the steps are cut down until convergence can be achieved. Because the third column only 

saves about 3.4% on average vs. the stricter fourth column, we used the more strict tolerances 

(see Table 3.1) in the simulations for Table 2.2.  

 

To get a sense of the effectiveness of the FETI pre-conditioner we tried the CG solver without 

pre-conditioning. CG solver settings from Table 3.1 were used except for the following increased 

iteration targets and limits because of no preconditioning: iteration window = 10,000, target 

iterations = 35,000, max iterations = 50,000. On the five cases in Table 3.2 the non-pre-

conditioned simulations took from 2 to 5 times longer than with FETI preconditioning and 



results were insignificantly different, within 0.1%. Hence, on our PB problem the FETI pre-

conditioner yields large computational savings with no appreciable drawbacks, so we used it in 

all that follows.  

 

Table 3.2  Comparison of predicted failure pressures with uniform-temperature pipe model 

and FETI-CG solver using the listed error tolerances. Other settings not 

specified are the same as in Table 3.1. Cases are listed in order of increasing 

failure pressure per the last two columns which use the tightest error tolerances. 

 
Test & 
temperature 
cases 

Rel.Resid.=1e
-4

 

Accep.Resid.= 

2x10
-2

 

 

Rel.Resid.=10
-5

 

Accep.Resid.=2x

10
-4

 

 

Rel.Resid.=10
-6

 

Accep.Resid.= 

2x10
-4

 

 
 Failure psi 

(CPU hrs.*) 
Failure psi 
(CPU hrs.*) 

Failure psi 
(CPU hrs.*) 

try26-700C 702.0 (20.3) 703.8 (5.87) 703.7 (5.24) 

try27-700C 704.1 (19.1) 704.2 (5.28) 704.2 (6.21) 
    

try3-20C 1490.70 (12.1) 1484.5 (7.8) 1484.5 (9.78) 

try6-20C 1487.20 (4.6) 1485.0 (2.9) 1485.0 (4.39) 

try5-20C 1492.60 (41.3) 1485.2 (20.7) 1485.2 (8.26) 

    

* CPU times reported in Adagio output file via global output variable 

cpu_time. Simulations were run on 192 processors of Red Sky.  

 

 

3.3   Check of 8/8 truncated geometry model vs. 1/8 truncated 
geometry model   

 

As a spot check, the 8/8 truncated geometry model at right in Figure 3.3 was run at 700C with 

the try26 and try27 stress-strain curves. (The experiments we will later validate the model 

against have a failure temperature of approximately 700C so the stress-strain curve rankings at 

700C are of high relevance.) From Table 3.2 a very small difference of 0.5 psi separates the 

failure pressures for try26-700C and try27-700C. We wanted to assess how well this small 

separation was preserved when running the 8/8 geometry model. The calculations were run with 

the FETI solver and control settings listed in Table 3.1. The 8/8 model has 1.6 million elements 

and runs over an order of magnitude slower than the 200,322 element 1/8 geometry model. Table 

3.3 reveals that for the try26 curve a shift of +3.1 psi increase in failure pressure to 706.8 psi 

occurred with the 8/8 model. For the try27 curve a shift of +3.7 psi to 707.9 psi occurred with the 

8/8 model. These ~0.5% shifts are very small, supporting a conclusion that the mechanical 

loading symmetry boundary conditions were applied correctly in the 1/8 model.  

 

Furthermore, because the 1/8 model is only used for relative curve-strength ranking purposes, 

and not where prediction accuracy on an absolute basis is sought, the shift between the 8/8 and 

1/8 models is not a problem if the shifting is relatively uniform for the various stress-strain 

curves. Reasonably similar shifts of 3.1 psi and 3.7 psi occur for the try26 and try27 curves. The 

curve-strength rankings are the same with either model. From this spot check we assume that the 
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1/8 model gives accurate curve-strength rankings in Table 2.2 for all curves and all 

characterization temperatures. 

 

Table 3.3.  Comparison of predicted pipe failures with the 8/8 and 1/8 geometry models 

(all calculations with FETI/CG solver settings in Table 3.1) 

 
Test cases 1/8 model 

Failure 
psi  

8/8 model 
Failure psi  

difference 
(8/8 – 1/8) 
Failure psi  

% diff. 
Failure 

psi  
     

try26-700C 703.7 706.8 +3.1 0.44% 

try27-700C 704.2 707.9 +3.7 0.52% 
     

 

3.4   Pipe bomb model variants for hot-spot heating and pressurization to failure 
 

Four different categories of PB simulations with hot-spot heating and pressurization to failure are 

summarized below. Details of the calculation verification study (models, meshes, simulations, 

results, and analysis) are described in the remainder of this section. The findings are applicable 

to the other three categories of simulations as well. Further modeling and simulation details and 

results for the other three categories are given in the cited sections. 

 PB calculation verification study: ¼ symmetry Adagio model with mapped/interpolated 

temperature field BCs from test PB1 thermocouples (see next section); 

 coupled thermo-mechanical simulations: ¼ symmetry Adagio-Aria model with heating 

shroud and thermal radiation and conduction included in model—used to model the 

validation experiments for experiment design and improvement to minimize validation 

uncertainty (see section 4.1 and 4.2);    

 “self check” simulations to characterize temperature mapping/interpolation error: 

¼ symmetry Adagio model with mapped temperature field BCs from virtual TCs in 

coupled thermo-mechanical simulations —used to characterize BC temperature field 

errors from TC mapping/interpolation vs. known reference field from coupled thermo-

mechanical simulations (see section 4.4);    

 Full-model validation/UQ simulations: full pipe model Adagio simulations with TC 

mapped/interpolated temperature field BCs from PB tests (see section 5). 

 

3.5   Calculation verification of simulations of hot-spot heating and pressurization 
to failure  

 

3.5.1 Mesh refinements and solver settings in calculation verification study 
 

Figure 3.6 shows the ¼ pipe geometry and meshes used in the mesh refinement study. The 

temperature field boundary condition on the pipe comes from test PB1 thermocouple temperature 

mapping and interpolation described in section 4.2. This BC is used to maximize the 

applicability of the mesh study and discretization error/uncertainty estimates in this section to the 



PB validation simulations in section 5. Section 4.4 shows that the temperature field in the 

experiments varies markedly from front to back and axially upwards and downwards from mid-

height. This variation is captured in the ¼ symmetry model except for minor circumferential and 

axial asymmetries characterized in section 4.4. A ¼ pipe model was required for affordability of 

the mesh refinement study, as will become evident.   

 

 

 
Figure 3.6  ¼ truncated-length pipe geometry, meshes, linear HEX element counts, and failure pressure 

results in mesh refinement study.  

 

The 1tt (1 finite element through the thickness of the wall) mesh in Figure 3.6 was created 

with approximately equal cell lengths in the axial, circumferential, and thru-wall dimensions 

in the 0.020 in. thin-wall extent of the pipe where the hot spot exists and hence large 

deformation and ultimately failure occur. Use of 1:1:1 aspect ratio elements is not necessarily 

optimal because pressurization-induced deformations cause the walls to thin in the radial 

direction because of wall stretching predominantly in the circumferential dimension but in 

the axial direction as well. Therefore, finite elements near the hot spot that start the 

simulation with equal cell lengths have highly non-uniform aspect ratios by the end of the 

simulation. Later in this section we study the effects of attempting to compensate for element 

thinning and stretching by using non-1:1:1 aspect elements in the starting meshes.  

 

In the pipe wall-thickness transition region zoom-shots in Figure 3.6 the 1tt mesh has axial 

and thru-wall cell dimensions that increase together according to wall thickness as it 

transitions from 0.02 in. to 0.05 in. The cell axial dimensions are coordinated to 

approximately match cell widths (thru-wall) so that a nearly 1:1 aspect ratio is maintained in 

these element dimensions in the wall transition region and hence throughout the model. 

However, to maintain an i-j-k structured hex mesh throughout the model, cell size in the 

circumferential dimension cannot likewise follow wall thickness. Cell size in the 

circumferential direction is constrained to be constant along the entire length of the pipe at its 



29 
 

inside-diameter (ID) surface. This (constant) arc-length cell dimension of approximately 0.02 

in. at the pipe ID is set by the imposed target of 1:1:1 starting aspect ratios where the hot spot 

and deformation and failure occur. 

 

Our mesh refinement study followed rules for constructing geometrically similar meshes ( 

explained next) that are necessary for correctly estimating order or rate of convergence of the 

solution as the mesh is refined ([25]). Based on the rate of convergence, the asymptotic 

solution in the limit of infinite mesh refinement is estimated and assigned an  associated 

uncertainty band. Then the solution error for any mesh in the sequence of refined meshed can 

also be estimated with assigned uncertainty.  

 

The 2tt mesh in our refinement sequence doubles the number of elements across the wall. 

The two elements across the wall are equally spaced, having equal width in the thru-wall 

direction. The refinement rules require that a mesh refinement in one dimension be matched 

by similar refinements in the other dimensions of the mesh. Hence, nominally, each element 

of the 1tt mesh is subdivided into eight elements to get the 2tt mesh and each element in the 

2tt mesh has essentially the same aspect ratio as the parent element in the 1tt mesh.  

 

Another refinement rule is to maintain any grading of mesh density when subdividing 

elements. For example, in the 1tt mesh, the seven elements that vertically span the wall-

thickness transition region have graded (non-constant) cell sizes as the region is traversed in 

the vertical/axial direction. This grading is required to meet the objective of 1:1 aspect 

between axial and thru-wall cell dimensions, as the wall thickness increases in the axial 

direction. To meet the mesh refinement rule that the vertical mesh-density grading function 

in this region be preserved under mesh refinements, the seven elements that vertically span 

the transition region are not halved when subdivided in the axial direction. Rather, they are 

vertically subdivided such that the mesh density grading in the vertical direction is nominally 

preserved.  

 

The word ‘nominally’ in the two preceding paragraphs signifies that the mesh refinement 

objectives were met as well as reasonably possible by manual trial-and-error iteration with 

the present meshing facilities in CUBIT [26]. The 4tt and 6tt meshes in Figure 3.6 were 

constructed with similar considerations in mind. This experience spawned an initiative to 

develop automated mesh refinement capabilities in CUBIT that respect the rules for enabling 

estimation of solution convergence rate, asymptotic solution results, and solution error of the 

meshes in the refinement study.  

 

The calculations were run with the solver settings in Table 3.4. The FETI residual norm 

tolerance was tightened to 10
-4

 vs. Table 3.1 and experimentation for improving solver 

efficiency (reducing CPU times) lead us to lower some of the iteration limits so that time-

step cutbacks and re-tries would occur sooner instead of allowing high numbers of iterations 

that ultimately were often unsuccessful.  

 

 

  



Table 3.4  Solver error tolerances and algorithm controls in mesh study simulations and 

subsequently. 

 

Solver Error Tolerances CG 

 

Target relative residual 1.00E-06 

 

Acceptable relative 

residual 2.00E-04 

 Max iterations 20 

 Min iterations 3 

 

Max cutback 10 

 

cutback factor 0.5 

 

Growth factor 1.25 

 

Iteration window 100 

 

Target iterations 20 

 

Max multiplier 500 

 

Min multiplier  1.00E-12 

 Max timestep 10 

 

Hourglass Effective 

Moduli Elastic  

   

  FETI 

 Residual Norm Tolerance 1.00E-04 

 Iteration updates 10 

 

 

 

3.5.2 Mesh refinement results, convergence assessment, and solution error & 
uncertainty estimates 

 

The failure pressures calculated with each mesh are plotted and listed in Figure 3.7. As noted in 

Figure 3.6 the calculation with the 6tt mesh did not finish within an allowed 36 days on 400 

processors. (Adagio restarts were not working at the time of the mesh study so this was a 

continuous run for 36 days.) If the calculation was allowed to run until it reached instability 

failure, the associated failure pressure would be greater than the 837 psi level at the end of the 36 

day calculation. Hence 837 psi is the lowest potential failure pressure plotted in Figure 3.7 for 

the 6tt mesh. The calculated material damage quantities of equivalent plastic strain and tearing 

parameter [3] at the point when the 6tt simulation timed-out were very low relative to values 

from 1tt, 2tt, and 4tt results (see Table 3.5). So the 6tt simulation was probably relatively far 

from reaching failure instability. Therefore 837 psi is certainly a lower bound, but not a plausible 

value of failure pressure that would be yielded by a finished 6tt mesh simulation. 

 

For an upper bound, the trend of decreasing computed failure pressure with mesh refinement in 

Figure 3.7 indicates that an upper bound on failure pressure for the 6tt mesh can reasonably be 

assumed to be less than the 874 psi result for the 4tt mesh. Then representative potential failure 
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pressures within the lower (837 psi) and upper (874 psi) assumed limits are  chosen as 845, 855, 

and 865 psi as plotted in Figure 3.7. 

 

A standard method ([21], [22]) was used to determine the empirical rate of convergence of 

computed failure pressure as the mesh is refined. Results from the three coarsest meshes, 1tt, 2tt, 

and 4tt, yield an empirical rate of convergence of 0.26. This is much lower than the surmised 

ideal value of 1.0, which is the theoretical rate at which calculated stresses converge with mesh 

cell size for the second-order spatial discretization of displacement fields in Adagio. Although on 

thin ground from a theoretical standpoint, we relate computed failure pressure to computed stress 

state in the pipe. We venture that failure pressure might be expected to converge at the same rate 

as computed stresses, i.e., at an ideal rate of 1.0. Because failure pressure is not a nodal quantity 

or a quantity computed on the mesh, and because failure pressure is a value determined by the 

point of non-convergence of the calculation, we are not aware of any theory that would establish 

a theoretical rate of convergence for computed failure pressure. However, empirical results in 

Table 3.2 and Figures 3.7 and 5.8 provide a basis for treating failure pressure as a well-behaved 

quantity yielded by these computations.  

 

 

 
Figure 3.7  Calculated pipe failure pressures in mesh refinement study. Lowest result for 6tt mesh is from 

a calculation that did not finish within an allowed 36 days on 400 processors. Various 

plausible finishing results are plotted for the 6tt mesh, along with Richardson Extrapolation 

estimates of asymptotic mesh-converged values (red dots) and associated solution 

uncertainty bars (see text).  

 



Table 3.5  Calculated material damage quantities Equivalent Plastic Strain and Tearing 

Parameter for simulations in mesh study (spatial maximums over pipe, see e.g. 

Figure 4.9). 

 

mesh  maximum 

Equivalent Plastic 

Strain in simulation 

maximum Tearing 

Parameter value in 

simulation 
1tt 138% 5.5 

2tt 208% 8.89 

4tt 116% 3.53 

6tt *sim. timed out 27% 0.71 

 

 

Even more than the fact that the 0.26 convergence rate did not meet the surmised ideal rate, the 

consensus of the Sandia solid mechanics analysts consulted by the authors was that the 1tt-mesh 

results do not lie in the asymptotic regime of convergence for this problem, a requirement for 

Richardson Extrapolation to perform well. This is because structures modeled by single-element-

thick linear hex elements have no resistance to bending moments. Therefore we pursued the 

more refined triplet of 2tt, 4tt, and 6tt meshes/results to apply Richardson Extrapolation (RE). As 

Table 3.6 presents, uncertainty in the finished 6tt mesh result yields uncertainty in the empirical 

rates of convergence and therefore uncertainty in the asymptotic failure pressure estimated by 

RE for the limit of mesh size decreasing to zero. The estimated potential asymptotic failure 

pressures are plotted in Figure 3.7. 

 

In Figure 3.7 an uncertainty bar is shown about each estimated potential asymptotic value. Each 

uncertainty bar has a half-length equal to the distance between the asymptotic estimate and the 

corresponding 6tt mesh value. The half length of each estimated asymptotic solution’s 

uncertainty bar is about 80% of that given by Roach’s Grid Convergence Index ([21], [22]) when 

the recommended factor of safety 1.25 is used. This safety factor accompanies: 1) empirical rates 

of convergence used for RE; and 2) structured grids refined into geometrically similar meshes. 

The present study meets these criteria. Nonetheless, we used the simpler method of uncertainty 

bar sizing described at the start of this paragraph.    

 

 

Table 3.6  Potential empirical orders of convergence based on 2tt, 4tt, 6tt meshes and 

Richardson Extrapolation estimates of asymptotic mesh-converged failure 

pressures. 

 

6tt mesh potential 

finished result 

(failure pressure, psi)  

potential empirical 

order of convergence 

RE estimates of  potential 

grid-converged failure 

pressure results (psi) 
837 0.73 729 

845 1.15 796 

855 1.87 838 

865 3.1 861 
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Recalling the prior arguments about the potential 6tt mesh results considered plausible, we 

further consider only the results in the bottom three rows of Table 3.6. The bottom row shows a 

potential order of convergence that seems implausibly high, whereas the middle two rows have 

much more reasonable values. Therefore we discount the last row’s potential value of failure 

pressure (865 psi). We are left with the middle two rows in Table 3.6. We make no further 

judgment that one of these rows has greater or lesser plausibility or probability than the other. 

Hence we obtain a combined uncertainty range that spans the uncertainty bars in Figure 3.7 

which correspond to the middle two rows in Table 3.6. That is, the asymptotic grid-converged 

failure pressure for the modeled conditions in this mesh study is estimated to lie within an 

uncertainty range between 747 psi and 855 psi. This uncertainty estimate will be used in the 

model validation uncertainty analysis in section 5.2. To prepare for this, we note that corrections 

of -228 and -336 psi added to the 1tt-mesh result yield the said uncertainty range [747, 855] psi 

within which the asymptotic grid-converged failure pressure is estimated to lie.  

 



4.   Modeling and Design of the Pipe Bomb Validation Experiments to 
Minimize Error and Uncertainty in the Experiments and Validation 
Simulations 

 

In accordance with model validation best practices (see e.g. [29], [30]) a model of the 

envisioned validation experiments was constructed and used to help refine the experiment 

conditions and the locations of measurement sensors to best support the model validation 

objectives. It was desired to test the temperature-dependent constitutive model over large 

ranges of pressures and temperatures, ramp rates, and large temperature gradients on the 

pipes. Coupled thermal-structural modeling (section 4.1) was used to help define the length 

of the pipe and the size and temperature of the heating shroud and its location relative to the 

pipe in order to achieve the spatial temperature variations sought. The model was also used to 

devise a thermocouple (TC) placement scheme suitable to capture the anticipated 

temperature field variations and support a mathematical interpolation scheme to reconstruct 

the temperature field boundary condition on the pipe surface (section 4.2). Temperature field 

reconstruction prompted an experimental adjustment to compensate for convection effects 

(section 4.3). Representative simulations were performed to test the temperature mapping 

and interpolation capability and characterize associated error and uncertainty (section 4.4).  

 

Design of the pipe wall thickness and size of the internal slug for internal volume reduction 

(explosive energy reduction) were based on simplified handbook models and formulas. These 

design aspects were driven by experimental safety related to explosive rating limits of the test 

facility. 

4.1 Coupled thermal-mechanical modeling to help design the validation 
experiments 

 

Coupled thermal-structural modeling was used to help define the length of the pipe and the 

size and temperature of the heating shroud and its location relative to the pipe in order to 

achieve the spatial temperature variations sought. The model included thermal radiation 

exchange between the heating shroud, the dynamically bulging pipe, and the surroundings. 

Radiation exchange between the pipe and the internal slug (see Fig. 1.1) was also modeled, 

along with heat conduction along and through the pipe walls. Convection was ignored 

because of the difficulties mentioned in section 4.2. Nonetheless, the simplified thermal 

model was deemed sufficient to aid in the design and planning of the thermal aspects of the 

validation experiments.  

 

During pressurization the hot spot bulges outward because of temperature related weakening. 

The bulging brings the hot spot closer to the heating plate. During this process the 

viewfactors for radiative heat exchange on the inside and outside of the pipe must be updated 

after each timestep or a prescribed sufficiently small number of timesteps. This brings a 

challenging and expensive computational aspect to the coupled simulations. Fortunately the 

bi-symmetric temperature field in Figure 4.1 allows a reduced 1/4 geometry to be used for 

the calculations in all of section 4. But the 1/4 model used here has full shoulder extensions 

like the version at left in Figure 3.3. 
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The simulation provides a rough indication of the temperature pattern on the pipe in the 

planned experiments. This was useful in devising locations of thermocouples on the pipe 

surface for approximate reconstruction of the experimental temperature field. The 

thermocouple location and interpolation procedures are described next. 

 

 

         Side view, top half of pipe 

Front view, 

¼ symmetry 

 
 

 
 

Figure 4.1  Coupled SIERRA/Thermal-Solid Mechanics simulation results for circumstances described in 

body of text.  

 

4.2 Thermocouple placement and interpolation scheme for temperature field 
boundary condition reconstruction on pipe 

 

Early in the design and planning of the validation activity it was judged that modeling the 

thermal aspects of the experiments would contribute prohibitively large uncertainty to the 

validation study, thus unacceptably degrading the precision with which we could resolve the 

accuracy of the constitutive model. In particular, for modeling purposes the emissivities of 

the radiating surfaces of the shroud, pipe, and internal slug would not be known to within 

±10%. It was also estimated that modeling convective heat losses from the interior and 

exterior surfaces of the pipe could be in error by ±25% or more. The difficulty is 

compounded by the fact that pressurization of the pipe involved continually introducing new 

gas (mass) and its associated enthalpy into the pipe. These not only affect the gas temperature 

inside the pipe in a complex way, but also foreseeably affect convection inside the pipe. It 

was not even known if convection correlations that account for such introduced mass and/or 

the very high pressures in the experiment (several hundred atmospheres) exist to be found. 

 

Fortunately, error and uncertainty associated with thermal aspects in the validation problem 

were largely circumvented by measuring pipe surface temperatures at specifically designed 

thermocouple locations (based on model simulations). Then spatial interpolation was used 

(with interpolation error/uncertainty factored in) to provide pipe wall temperature boundary 



conditions for the pipe structural response simulations. The procedures for thermocouple 

placement, temperature interpolation, and associated UQ are explained below.  

 

An initial constraint was that 18 or fewer thermocouples (TCs) were allowed per experiment 

because of limited data channel availability in the data acquisition system. Freedoms in the 

sensor placement and interpolation design problem were that: 1) the 18 TCs could be placed 

anywhere on the pipe surface; and 2) any method of spatial interpolation could be used that 

was compatible with proposed sensor patterns and was expected to yield reasonably good 

interpolation accuracy and was within grasp of limited project time and resources.  

 

Another consideration for sensor placement and interpolation was that the quantities we 

wanted to predict (failure time, pressure, temperature, etc.) were anticipated to be most 

affected by the hot-spot region on the pipe. There the steel would experience greatest 

temperature-associated material strength loss, bulging, and tendency for failure. It was 

recognized, however, that the response prediction problem is a global one. Stress, strain, and 

ultimately failure at or near the hot spot is dependent on time-dependent material "give" 

everywhere else in the pipe. Therefore, temperature-dependent material relaxation needed to 

be modeled everywhere on the pipe.  

 

Even though the global nature dictates that temperature-dependent material behavior effects 

should be modeled everywhere on the pipe, it is reasonable to assume that it is most 

important to model the effects most accurately in the hotter regions of the pipe, where most 

of the stress/strain/failure action occurs. Accordingly, the temperature contour information in 

Fig. 4.1 was used as an indicator for relative concentration of TC sensor coverage over the 

pipe: greater concentration of TCs in the hotter regions, less in the cooler regions. Within this 

generalized objective, the locations of the individual TCs were determined as follows.  

 

A quasi-Hermite 2D bi-cubic polynomial interpolation scheme was identified as something 

that could be quickly developed and otherwise met our needs. The bi-cubic interpolating-

shape freedoms of 2D Hermite polynomials could conform reasonably well to the 

temperature field over the surface of the pipe, when the field is subdivided into a suitable set 

of interpolation “patches” as shown in Fig. 4.2. The assemblage of all interpolation patches 

yields a C
0
 interpolated temperature field that is continuous but not necessarily smooth across 

patch boundaries; i.e. temperature slope across patch boundaries is not necessarily 

continuous.  

 

Generation of a Hermite bi-cubic interpolation function over a quadrilateral interpolation 

domain (patch) requires input of temperature and three slope-affiliated terms at each corner 

of the patch:  T, zT  , T ,  zT2
. If the derivative information at the patch 

corners is from numerical approximation as employed here, the overall interpolation scheme 

is referred to as “Quasi”-Hermitian. The objective then becomes one of laying out a TC 

pattern that supports the best (most accurate) determination of temperature and the three 

derivatives at the corners of the patches in Fig. 4.2, assuming it is important to get greatest 

accuracy in the vicinity of the hot spot and accuracy importance drops as temperature drops 

with distance from the hot spot.  
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(drawing and TC locations not to scale) 

 

 
 

 
Figure 4.2  Division of pipe exterior surface into eight quadrilateral “interpolation patches”. Surface of 

the pipe represented as though sliced at the back, unwrapped, and laid flat in -z space as shown. TC 

locations on pipe surface are shown (not drawn to scale, see Table 4.2). TC 10 marks the origin ( = 0, z = 

0) of the -z "pipe-surface" coordinate system, where pipe circumference ranges from - <   . Note 

that the TC numbering here is from the convention used in the interpolation subroutine (see [18]) and not 

the ID numbering of TCs in the experiments (Fig. 4.3). 

 

 

In Fig. 4.2 the -z "pipe-surface" coordinate system has its origin at the hot spot at pipe mid-

height. A preferential TC placement scheme increases the concentration of TCs as the hot spot 

location ( = 0, z = 0) is approached, as shown in the figure. The location of the origin also 

coincides with an experimental pipe temperature distribution expected to be nominally 

symmetric about the vertical z-axis at  = 0, and to a lesser extent (because of convection) to be 

approximately symmetric about the horizontal -axis at z = 0. But the TC placements were 

designed to enable temperature non-symmetry in either or both directions to be detected and to 

be approximately modeled by the interpolation scheme.  
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Figure 4.3  TC numbering used in the experiments, which is different from the interpolation code’s 

numbering scheme shown in Fig. 4.2.  

 

 

The layout of TCs in Fig. 4.2 allows some of the derivatives to be evaluated non-uniquely, so 

any of several choices could be made. For example, T/ at TC10 could be evaluated from a 

Lagrange cubic polynomial fitted to the temperatures of TCs 7,8,9,10 or TCs 8,9,10,11; or 

simply be set to zero according to a physical argument of C
1
 smoothness (continuous slope 

across patch boundaries) + temperature field symmetry about the z axis. Testing each of these 

alternatives showed that interpolation error on the test problems to be described next was least 

for the first option. It was similarly found that setting T/ at TC7 according to the option 

described in [18, Appendix C] gave less overall interpolation error than using a C
1 

smoothness + 

symmetry condition T/ = 0 there.   

 

Symmetry + C
1 

smoothness conditions T/ = 0 at front and back of the pipe ( = ) were also 

not used for patch corners at TCs 1, 2, 15, 16 although this would have been simpler for the 

interpolation code. Instead, the upper TCs 2,1 and lower TCs 16,15 were used to prescribe linear 

temperature drops with circumferential distance from front to back. It was not assessed whether 

this linear temperature decrease caused less overall interpolation error than would a nonlinear 

decrease from front to back that would accompany T/ = 0 specified at front and back. An 

assessment was not performed for the following reasons. Temperatures in this region varied only 



39 
 

slightly around the pipe because its top and bottom rims were held to approximately 293K by 

active cooling from water jackets.   

 

Two thermocouples (TCs 5 and 12 in Fig. 4.2) were located to provide for a check on 

interpolation accuracy by placing TCs that would not be used to construct the interpolated 

temperature field. It was figured that the accuracy check should best be conducted near where the 

hot spot was anticipated to be. Also, it was figured that one TC should be above the z=0 plane 

and one symmetrically below the z=0 plane so that information could be obtained on non-

symmetric interpolation errors in the anticipated convection-induced non-symmetric temperature 

fields about the z=0 plane. It was envisioned that the information on interpolation error might be 

useful to inform uncertainty estimates in the model validation phase of the project. However, the 

very limited point information did not prove sufficient to make useful inferences about global 

interpolation error effects on computed failure pressures—the quantity of greatest validation 

interest. Therefore the strategy described in section 4.4. was used. 

4.3 Use of temperature mapping/interpolation to adjust experiments to 
compensate for convection effects 

Figure 4.4 shows a tested pipe (0.05 in. uniform wall thickness) heated and pressurized to 

a bulging state and then depressurized before failure. The thermocouple leads can be seen 

on the tested pipe. The accompanying simulation results show a significantly non-

symmetric temperature field with greater temperatures above pipe mid-height than below. 

The skewed temperature distribution was attributed to external and internal heat 

convection. The hottest point on the pipe was significantly above the center TC (#4 in Fig. 

4.3). The experiment was therefore reconfigured to lower the heating plate by about ½ 

inch to move the hotspot approximately to the center TC. Thus, the temperature mapping 

and interpolation capability was directly useful in fine-tuning the heating configuration in 

the experiments. 

 
 
Figure 4.4  Convection-caused non-symmetric temperature field in early test setup. Heating shroud was 

subsequently lowered to move hot spot toward center thermocouple. 

 



 

4.4 Simulations and analysis to test temperature mapping and interpolation 
procedures and characterize associated error and uncertainty 

 

Here we describe some relevant tests for the accuracy of the temperature interpolation and 

mapping procedure (TC data  temperature field BCs for model simulations) and the impact 

of interpolation error caused by sparseness of TC spatial coverage. We then describe how the 

results are leveraged to estimate a correction (with uncertainty) for interpolation-induced 

error in predicted pipe failure pressures in the validation simulations. 

 

Such quantification of induced error can also be used to actively adjust/optimize the number 

of TCs, their locations on the pipe surface, and the interpolation scheme (quasi-Hermite or 

others) to minimize the temperature BC reconstruction error and its effects on calculated 

failure pressure. This was done only at an informal level using expert judgment because of 

time and resource limitations in the project. 

   

4.4.1 Synthetic “nearby problem” representative of PB validation experiments  
 

A synthetic “nearby problem” was constructed to closely emulate the tests that the model will 

be compared to (validated against) in section 5. These tests, PB1 and PB4, undergo heating to 

produce a hot spot with a steady target temperature of 700C at the hottest point. Once this 

temperature is reached, the pipe is pressurized until failure. These will be referred to as the 

“700C-hold” PB1 and PB4 tests. See section 5.1 and [2] for further description of the test 

conditions. 

 

Convection is ignored in the model, so it predicts artificially high temperatures for a given 

heater plate temperature. Therefore the plate temperature from a different experiment (PB2) 

was used because it had a lower plate temperature which maintained the pipe hot-spot at 

672C in the test. It was ventured that use of this lower plate temperature in a simulation 

would nominally offset the lack of convective cooling in the simulation such that the pipe 

temperature field in the simulation would be close to the temperature field in the 700C-hold 

experiments. We later show that this is indeed the case.  

 

The pipe pressurization and heating-plate temperature inputs to the coupled thermal-

mechanical simulations are plotted in Figure 4.5. The 4tt mesh (Figure 3.6) and solver 

settings in Table 3.4 were used in the following simulations.   

 

Two variants of the stainless-steel constitutive model were used in the simulations: stress-

strain curves of high and low strength as explained in section 2.5.1. With these and with the 

radiative emissivity values described next, the coupled simulations yielded a representative 

set of time-developing spatial temperature fields on the pipe.  
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Figure 4.5  Test PB2 pressure and heating-plate temperature inputs to coupled thermal-mechanical 

simulations.  

 

 

The following emissivities were nominal estimates from consulting various references in the 

literature. The emissivities are not used in the eventual validation simulations so their 

accuracy is not critical from this stand point. The values only need to be representative 

enough to obtain temperature fields on the pipe that are close to the fields in the PB1 and 

PB4 experiments.  

 

The outside surface of the solid slug inside the pipe (Figure 1.1) was assigned an emissivity 

of 0.5. The painted-black Inconel heating plate was assigned an emissivity of 0.7. Except for 

the heating plate, the surroundings that exchange radiation with the outside surface of the 

pipe were modeled with an emissivity of 1.0 and ambient temperature of 296 K. Emissivity 

of the outside and inside surfaces of the pipe is assigned a value stated in the simulation case 

description column in Table 4.1. The lower and upper emissivities of 0.7 and 0.84 in the table 

were deemed a reasonable range to represent the radiative heating uncertainty in the problem 

as it affects the temperature distribution on the pipe.   

 

Table 4.1  Failure related quantities in coupled-simulation test cases. 

 
Simulation case  Time   

@failure 
(sec.) 

Temperature  
@failure (C) 

Pressure 
@failure 

(psi) 

Tear 
Param. 
@failure 

Coupled-high-0.84 2277.1 759.0 809.9 6.23 

Coupled-low-0.84 2255.9 759.0 791.6 5.40 

Coupled-high-0.7 2386.0 706.9 903.7 3.9 

Coupled-low-0.7 2350.4 706.8 873.0 3.50 

 

 

The Table 4.1 combinations of high and low material strengths and high and low radiative 

heating give a representative range of temperature fields in the simulations to assess 

temperature mapping and interpolation error effects on calculated failure pressures. The hot-

spot peak temperatures (at TC 10 location in Fig. 4.2) are essentially the same for high and 

low strength variants when emissivity = 0.84. Peak temperatures are also the same for high 



and low strength when emissivity = 0.7. Thus, peak temperatures (and the whole temperature 

fields, as discussed next) are essentially indifferent to changes between high and low strength 

material curves. But the temperature fields are significantly different when emissivity is 

changed from 0.7 to 0.84. Hot-spot temperatures in Table 4.1 are 52 C higher when 

emissivity = 0.84 than when emissivity = 0.7, whether high or low strength material is 

involved. Figure 4.6 shows the computed temperatures at other TC locations. Thus, the entire 

temperature field is hotter when emissivity = 0.84 than when emissivity = 0.7, as expected. 

Despite the linear visualization lines between TC temperatures in Figure 4.6, actual 

temperature variations between TCs are not linear. The actual variations are shown in the 

next section. 

 

  
 

Figure 4.6.  Coupled simulations temperature results (degrees C) plotted at thermocouple locations 

up and down front of pipe (left plot) and around pipe at mid-height (right plot). These locations 

correspond to TCs on z and  axes in Figure 4.2 that the temperature interpolation scheme is built on. 

Temperatures are at time of failure in the indicated computations (the results for emissivity=0.84 

essentially plot over each other regardless of whether high or low strength material curves are used, 

and likewise for emissivity=0.7). Temperatures at TC locations are spanned here by linear connecting 

segments for visualization purposes only and are not actual (see Figure 4.7).  

 

 

Although changing from high to low strength negligibly impacts the temperature field, Table 

4.1 reveals that failure pressure decreases by an average of ~3% (2.3% when emissivity=0.84 

and 3.5% when emissivity=0.7). But the material strength variations affect failure pressure 

far less than changing emissivity from 0.7 to 0.84. This increase raises the temperature field, 

thereby reducing failure pressure by an average of ~11% (11.5% for high material strength 

and 10.3% for low strength).  

 

4.4.2 Temperature mapping and interpolation errors and impact on calculated failure 
pressures  

 

Figure 4.7 shows, for a representative simulation case, the front and back views of the 

temperature fields of coupled and temperature-mapped/interpolated “interp.” simulations at a 

common time, the time of failure in the coupled simulation. The interp. results are obtained 
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from a mechanics-only Adagio simulation with temperature field BCs on the pipe surface 

obtained from mapping/interpolation of synthetic temperature data (at the 18 TC locations) 

generated by the coupled simulations.  

 

Noticeable differences exist between some areas of the coupled and interp. temperature fields 

in Figure 4.7. Figure 4.8 better reveals the spatial variation of error in the interpolated 

temperature field. Because the interpolated field is constructed from data at the TC locations, 

interpolation error at these locations is zero by default. Substantial error exists in many 

regions, especially where the temperature field varies quickly in space and simultaneously 

TC coverage is scarce.  

 

 

            Front view, coupled sim.,    

2259sec. 

Front view, 

interp. temps. 

sim, 2257 sec. 

Back view, 

coupled sim., 

2259sec. 

Back view, 

interp. temps. 

sim, 2257sec. 

 
 

   

Figure 4.7  Reference and interpolated temperature fields for simulations with emissivity=0.7 and low-

strength material curves. 

 

 

 

  



 

Front view Back view 

  
 

Figure 4.8  Difference plot of the interpolated minus coupled-sim. temperature fields in Figure 4.7 

quantifying error in interpolated temperatures at failure for emissivity=0.7 and low-strength material 

curves. Zero interpolation error exists where yellow fades to green, in particular at the indicated TC 

locations (by construction of the interpolation scheme). 

 

 

The interpolation error also varies over time. The integrated effect of the spatial-temporal 

interpolation error can be assessed by comparing the coupled sim. results in Table 4.1 to the 

interp. sim. results in Table 4.2. Various comparisons are discussed next.  

 

Table 4.2  Failure related quantities in coupled simulations using mapped/interpolated 

temperature field BCs. 

 
Simulation case  Time   

@failure 
(sec.) 

Temperature  
@failure (C) 

Pressure 
@failure 

(psi) 

Tear 
Param. 
@failure 

Interp-high-0.84 2332.8 758.9 857.9 7.27 

Interp-low-0.84 2299.3 759.0 829.0 7.46 

Interp-high-0.7 2400.9 706.9 916.2 4.43 

Interp-low-0.7 2353.6 706.8 875.8 3.86 

 

 

The hot-spot peak temperatures in Table 4.2 are effectively the same as in Table 4.1. The 

interpolation scheme ensures that the reference and interpolated temperature fields have the same 

temperature at all TC locations, including at the TC at the pipe hot spot. Therefore the trends 
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cited in the paragraph below Table 4.1 for hot-spot temperature vs. emissivity value and material 

strength also apply to the mapped temperatures here.  

 

Figure 4.9 shows that the magnitude of material damage tracks with elevated temperature and 

failure occurs at the hot spot where the peak temperature exists. Damage contours and location of 

failure are shown to be very similar for the coupled and the interp. simulations.  

 

 

                                coupled simulation      sim. using interpolated temperature 

field 

  
 

Figure 4.9  Spatial plots of computed tearing parameter indicating material damage at time of failure 

in emissivity=0.7 low-strength simulations. Damage is effectively confined to thin-wall section of 

pipe where the wall is 0.02 in. thick (wall is 0.05-in. thick elsewhere except at thicker shoulders). 

White dots locate maximum damage in coupled simulation. These are negligibly offset from pipe 

front-center where hottest point on pipe is. Black dot locates point of maximum damage in interp. 

simulations and is essentially the same location as failure in the coupled simulation.   

 

 

Hence, both the coupled and interp. simulations predict failure at the same location and at the 

same hot-spot temperature. Even though the two models have the same temperatures at the 18 

TC locations, spatial interpolation errors in the rest of the temperature field causes the interp. 

simulation output values to be different from those of the coupled simulation. Tables 4.1 and 4.2 

show that failure occurs earlier and at lower pressures and tearing parameter levels in the 

coupled simulation than in the interp. simulation.  

 



Nevertheless, the trends in output responses vs. changes in emissivity and material strength 

are in the same directions as those for the coupled calculations cited in the paragraph below 

Figure 4.6).  

 Changing from high to low strength negligibly impacts the interpolated temperature field.  

 Changing from high to low strength reduces failure pressures in Table 4.2 by an average 

of ~4% (3.5% when emissivity=0.84 and 4.6% when emissivity=0.7). These impacts are 

in the same direction as in the coupled simulations, but somewhat larger.  

 Increasing emissivity from 0.7 to 0.84 raises the temperature field thereby reducing 

failure pressure by an average of ~6% (6.8% at high strength and 5.6% at low strength). 

These decreases are in the same direction as in the coupled simulations, but significantly 

less.  

 These emissivity changes affect failure pressure significantly more than these material 

strength variations. 

 

Failure pressure is the quantity of interest for the validation comparisons in section 5. 

Accordingly, Table 4.3 lists the failure pressure errors and percent errors caused by 

temperature interpolation for the four test cases. The errors are always positive; failure 

pressures in the interp. simulations are higher than in the coupled simulations by 0.3% to 

5.9%. The errors are much larger for the higher-temperature 0.86 emissivity cases than for 

the lower temperature 0.7 emissivity cases, regardless of whether high or low strength 

material curves are involved. Errors are slightly greater for high strength curves than for low 

strength curves, regardless of whether emissivity is 0.7 or 0.84. 

 

 

Table 4.3  Overestimation of failure pressures caused by interpolation of temperature 

field for synthetic test cases.  
 

sim. case   = P_fail_interp - P_fail_coupled % = / P_fail_coupled 
high-0.84 48.0 psi 5.9 % 

low-0.84 37.4 psi 4.7 % 

high-0.7 12.5 psi 1.4 % 

low-0.7 2.8 psi 0.3 % 

 

 

 

4.4.3 Application to model validation simulations to correct calculated failure pressures, 
with uncertainty on the correction 

 

In the previous section, error in predicted failure pressures was characterized for pipe 

temperature boundary conditions constructed from limited temperature data at the discrete 

thermocouple locations. For actual temperature fields that closely resemble the synthetic 

fields in Figures 4.6 and 4.7, the characterized pressure prediction errors in Table 4.3 will 

approximately apply. Figure 4.10 compares the synthetic temperature fields against the actual 
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temperature fields at time of failure in the validation tests PB1 and PB4. The temperature 

fields are similar enough that the results in Table 4.3 are used to estimate failure pressure 

prediction errors and associated corrections (with uncertainty) in Section 5.2 due to 

reconstruction of the pipe temperature BCs from the tests’ TC data. 

 

 

  
 

Figure 4.10  Pipe TC temperatures at time of failure in the 700C-hold experiments PB1 (green curves) 

and PB4 (red curves) plotted along with synthetic temperature fields (red and black curves) from Figure 

4.6.  

 

 

In the region where failure occurs (at or near the hot spot), the PB1 and PB4 experimental 

temperature profiles track closely with the synthetic temperature profiles (Figure 4.10). For the 

emissivity=0.7 temperature field, the failure pressure prediction error due to temperature field 

reconstruction from the sparse TC information is 2.8 psi for simulations with low-strength stress-

strain curves and 12.5 psi for high-strength simulations (Table 4.3). These errors increase by 

about 35 psi to 37.4 (LS) or 48 psi (HS) for the emissivity=0.84 temperature field. The 35 psi 

change in the magnitude of interpolation-induced error apparently comes from the shape 

differences of the two temperature profiles in Figure 4.6. So the magnitude of interpolation-

induced error is apparently fairly sensitive to the temperature distribution being interpolated. 

This is apparently a symptom of the spatial sparseness of the TC data available for intepolation. 

The interpolation error characterized here is used in Section 5.2 to estimate error and uncertainty 

associated with interpolating the actual TC data from the pipe temperature fields in the 

experiments. 

  



 

5. Validation Experiments, Results, and Processing for 
Comparison to Model Predictions 

 

In this section the constitutive model’s performance is assessed by comparing experimental and 

predicted failure pressures of steel pipes heated and pressurized to failure. We present the 

experiments and simulations; their results and uncertainties; processing of these into a form 

suitable for the Real Space model validation methodology employed; and description of the 

comparisons along with their interpretation. The versatile and practical Real Space methodology 

has previously been applied to other complex calibration and validation problems in other 

physics realms: device thermal response and failure [25], [26]; modeled behavior of irradiated 

electronics [27], [28]; and combustion in fluids and solids [29], [30]. The PB model validation 

problem also has a large set of challenging features. Hence the methodology demonstrated here 

can be leveraged to a large set of model validation applications. Appendix C briefly compares 

and constrasts the Real Space validation approach to other established model validation 

frameworks. See also [7] and [8] in this regard. 

 

Various fidelities of uncertainty treatment can be applied in the Real Space validation 

framework. The particular UQ treatment applied here was driven by severe constraints in the 

number of simulations that could be completed in the time available. Only five simulations of the 

model were required in the “linear+” decoupled UQ approach applied here. Each of the 

simulations took on the order of a month on 800 processors. That was at the limit of what was 

feasible under the resource constraints. Nevertheless, we judge that if allowed considerably more 

simulations and higher-order UQ procedures, the main conclusions would not be significantly 

different than those arrived at in this chapter. 

5.1 Experimental inputs, outputs, and uncertainty in failure pressure tests at 
700C 

 

Here we consider the 700C-hold set of pipe pressurization experiments PB1 and PB4. The tests 

were planned replicates of each other. Figure 5.1 shows the transient internal absolute pressures 

in the pipes and the transient responses of temperature control TCs presumed to lie at the peaks 

of the hot spots in the two tests (i.e., TC#10 location in Figure 4.2). Later we attempt to account 

for uncertainties regarding TC accuracy and whether the TCs actually lie at the peak 

temperatures on the pipes. The peak hot-spot temperatures (as indicated by the control TCs) were 

ramped at a rate of approximately 31 C/min.  

 

When the control TCs reached nominally 700C, this temperature was maintained while the pipes 

were pressurized as shown in Figure 5.1. Controlled pressurization of the pipes was 

accomplished via pressure supply tanks as described in [2]. PB4 pressurization started about 1.5 

minutes after 700C was reached, while PB1 pressurization started about 4 minutes after 700C 

was reached. Minor differences also exist about the nominal pressure ramp rate of 1.3 psi/sec. 

The differences in pressurization were, from the outset of the project, anticipated to affect failure 

pressure levels negligibly. However, the experience of project participants concerning stainless 

steel behaviors at high pressures and especially high temperatures is very limited. Indeed, the 
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PB1 pipe spent a few minutes longer at 700C before pressurization than PB4 did, and failed at a 

lower pressure. The lower failure pressure could conceivably be explained at least partially by 

the pipe soaking at 700C longer than the PB4 pipe. But the PB1 lower failure pressure appears to 

be at least partially explained by PB1 vs. PB4 wall-thickness differences and temperature 

distribution differences over the pipes, as will be establish later. Hence, negligible effects of 

pressurization differences between the PB1 and PB4 tests are assumed in the following. But this 

assumption should be reexamined as further experiences and model development contribute to 

better understanding of material response/failure dependencies in this regime.  

 

In the following sections, details of hardware geometry and experimental conditions and results 

are presented that are pertinent to subsequent model validation procedures and comparisons. 

 

 
Figure 5.1  Tests PB1 and PB4 transient internal pressures (absolute) and control TC temperatures at 

the hot spots. Pipes fail at the pressures indicated by the ’s and are listed in Table 5.1.  

 

 

 
Table 5.1  Failure pressures measured in 700C-hold experiments. Pressure measurement 

uncertainties are explained in Section 5.1.1.  

Exper. Measured 
pressure at 

failure  

Uncertainty in 
pressure 

measurement  

PB1 606 psi ± 10 psi 

PB4 655 psi ± 10 psi 
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5.1.1 Experimental pressure loading and end fixturing BCs 

 

Figure 5.2 replots the pressure loadings and shows the pipe axial loading profiles in the two 

experiments. The precipitous drops in the pressure readings indicate the rupture depressurization 

in the tests. The manufacturer-specified uncertainty on the measured pressures is +/- 0.2% of the 

full-scale rating of the pressure gages used, which were 5000 psi max. gages. Therefore the 

uncertainty is within +/- 10 psi of the measured pressures in Figure 5.2. This amounts to about 

double the line thickness in the plots.  

 

 
 

 
 

Figure 5.2  Measured pressure (referenced to scale on right axis), and axial fixture loading 

(referenced to scale on left axis) in 700C-hold pressurization experiments.  Note similar pressure load 

scales in the two plots, but very different axial loading scales in the two plots. 
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5.1.2 Pipe surface temperature measurements (TC mapping/interpolation data) 

 

Figures 5.3 and 5.4 plot the thermocouple temperature histories in tests PB1 and PB4. These 

TC data are supplied to the TC mapping/interpolation procedure described in section 4.2 for 

reconstructing the temperature fields on the pipe surface in the experiments. These 

reconstructed fields are the temperature BCs in simulations of the experiments (next section). 

The precipitous drops in the temperature data coincide with the pipe failures.    

 

Table 5.2 lists linear regression values of the measured temperatures at the pipe front-center 

location, nominally at the pipe hot-spot temperature peaks (TC#4 in Figures 4.3, 5.3 and 5.4). 

The temperatures in Table 5.2 are obtained by linear regression of TC temperatures over the 

60 seconds preceding failure in each experiment. Over the last several minutes in each test, 

electrical noise creates visible oscillations in TC temperatures in Figures 5.3 and 5.4. The 

oscillations over the last 60 seconds are on the order of ±10C, so citing a single temperature 

record at the time of failure could be in error by up to ±10C. Therefore we use linear 

regression mean-temperature curves evaluated at the times of failure. We do this for all TCs. 

The simulations must be carried out beyond the failure times in the tests because the 

simulations predict failures at higher pressures and longer times than the actual failures. No 

temperature data exists beyond the failure times in the tests, so at all TC locations we 

evaluate the linear regression mean curves at the times of failure. We then hold these 

temperatures as constant for the remainder of the simulations.    

 

References [31] and [32] discuss various sources of thermocouple temperature measurement 

uncertainty applicable here. The PB experiments used intrinsic TCs of 0.005-inch diameter, 

which are the most accurate TCs commonly available. But small measurement uncertainties 

exist due to random and systematic sources of error described in Section 5.3. The largest 

uncertainties are indicated in Table 5.2, corresponding to the hottest TCs on the pipes. These 

uncertainties are less than the line thickness in figures 5.3 and 5.4. 

 
Table 5.2  Pipe front-center control TC4 temperature at failure in 700C-hold experiments.  

Exper. Measured 
temperature at 

failure 
(after regression) 

% uncertainty in 
temperature 

measurement  

uncertainty in 
temperature 

measurement 

PB 1 707 C 
[-0.25%, +0.5%] 

of reading in 
degrees C 

[-1.8, +3.5] C 

PB 4 711 C 
[-0.25%, +0.5%] 

of reading in 
degrees C 

[-1.8, +3.6] C 

 

 



 
Figure 5.3  Thermocouple temperature measurements in experiment PB1. TC numbering in this figure 

corresponds to numbered locations in Figure 4.3.   
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Figure 5.4  Thermocouple temperature measurements in experiment PB4. TC numbering in this figure 

corresponds to numbered locations in Figure 4.3.   

 

5.1.3 Pipe wall thickness variation 

 

Table 5.3 shows measured minimum and maximum pipe-wall thicknesses for various PB 

tests. The measurement procedure was the following. Two V-blocks where set up to support 

a mandrel. A dial indicator was then used and zeroed on the mandrel. This would be the 

reference for the pipe inside diameter, ID. A pipe test unit was then placed on the mandrel 

and the dial indicator was placed on the outside diameter (OD) of the reduced section. The 

dial indicator was then moved along the pipe and the readings were taken. The specimen was 

then rotated on the mandrel and another set of measurements were taken. This was repeated 

15-20 times and the minimum and maximum wall thicknesses were recorded in Table 5.3. 

This was done for each pipe unit. 

 

The machined units held fairly tightly to the nominal 0.02-inch wall thickness specified for 

the reduced middle length of pipe. All tested pipes were within the allowable tolerances 

specified on the drawings. PB4 seems slightly skewed to thicker walls than the other units. 

This might explain at least some of the reason why PB4 had a notably higher failure pressure 

than PB1, even though PB1’s control TC reads slightly hotter than PB4’s control TC. These 

issues are investigated in detail in section 5.3.  

 

 



Table 5.3  Measured minimum and maximum pipe-wall thicknesses for various PB 
tests/‘Parts’ specified. Nominal machining spec. thickness was 0.02-inch. 

 
 

 

5.2 Simulations of validation experiments and uncertainty processing & rollup 
for comparisons to experimental results 

 

In this section we address random and systematic uncertainties affiliated with the PB model 

and its computational solution. In the next section, 5.3, we address random and systematic 

uncertainties issuing from the PB experiments.  

 

Here we use the PB1 experiment as the reference case for model validation assessment at the 

700C-hold conditions. The validation comparisons of experimental results vs. simulation 

results will be built around this reference case. We could instead use PB4 as the reference. 

Alternatively we could use averaged experimental conditions and inputs from the PB1 and 

PB4 replicate experiments, but such averaging is difficult here and in most model validation 

applications.  

 

The time-varying PB1 temperature, end loading, and pressure boundary conditions plotted in 

Figures 5.3 and 5.2 (top plot) are applied to a full-geometry PB model. The spec. wall 

thickness of 0.02” in the thin-wall section of the pipe is used, along with dimensions of the 

thicker sections as described in section 3. Both high strength (HS) stress-strain curves and 

low strength (LS) variants of the model were run, as described in Notes 1 and 3 below.  

 

A coarse 1tt mesh was used because of the extreme computation demands of this problem. 

Corrections for mesh size (with associated uncertainty) are described later in this section, 

working from the mesh refinement study in section 3.5.2. The full model was first tried with 

a 4tt mesh and then a 2tt mesh, but even with 1200 processors the progress rates of these 

simulations indicated months of run time would be necessary to get through the multiple 

simulations required for uncertainty quantification (UQ). Because UQ/validation studies 

routinely take two or three iterations to refine and complete the analysis, the run times for 2tt 

and 4tt meshes were too long for the project schedule. The 1tt-mesh runs took about four 

weeks (involving four or five restarts) on several hundred processors, so this was just within 

workable limits. The solver settings in Table 3.4 were used. These settings were also used in 
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the mesh refinement study and in the TC temperature mapping/interpolation error 

characterization in section 4.4. 

 

The full geometry model was necessary because of non-negligible effects of using the non-

symmetric temperature distribution in PB1 (see Figure 4.10) vs. the ¼ symmetric mirrored 

PB1 temperature BCs used in the mesh study. Figure 3.6 shows the ¼ geometry section used 

for the ¼ model. The ¼ model and the full model have the same temperature distribution 

over their common quarter-section region, but the ¼ model assumes symmetry of the 

temperature distribution about the ¼ model’s bottom and side boundaries. So its solution 

emulates a full model with ¼ symmetric temperature BCs. Failure pressure for the symmetric 

temperature distribution (¼ model, 1tt mesh) is 55 psi or ~ 5% higher than the result from the 

1tt-mesh full model with non-symmetric PB1 temperature distribution. (The high strength 

stress-strain curves were used in this investigation.)  

 

The results and uncertainties associated with the PB1 reference prediction are summarized in 

Figure 5.5. Explanatory notes: 

 

1. The top left corner in Figure 5.5 shows the result from a simulation with the high strength 

(HS) stress-strain curves.  

 

2. A correction for use of a 1tt mesh is made using the results from section 3.5.2. From the 

last sentence in section 3.5.2, corrections of -228 and -336 to the failure pressure 

calculated on the 1tt-mesh yield upper and lower bounds within which the asymptotic 

grid-converged failure pressure is estimated to lie. These correction limits are applied 

here because the modeled PB1 experimental conditions in section 3.5.2 only differ from 

those in this section by the non-symmetry of the temperature field as explained earlier. 

Although the calculated failure pressures differ non-negligibly for the symmetric vs. non-

symmetric temperature fields, it is not anticipated that convergence rates with mesh 

refinement will differ appreciably. We could not check this assumption.  

 

Hence we estimate that the asymptotic grid-converged failure pressure lies within the 

range [856, 748] psi = 1084 psi (the 1tt-mesh result) + [-228, -336] psi. These upper and 

lower values define the left-most uncertainty bar in Figure 5.5. For convenience this 

uncertainty will be incorporated in a later step. In the present step, only a nominal 

reference value within this range is selected. A value midway between the upper and 

lower extremes might be the most common choice, but we select 839 psi and demonstrate 

that this works just as well. Thus we parameterize the corrected range [856, 748] psi in 

terms of a nominal corrected value 839 psi plus an uncertainty range [+17, -91] psi about 

the nominal 839 psi. These numbers are written to the left of the left-most uncertainty bar 

in Figure 5.5. Another way of expressing what we have done is to correct the 1tt-mesh 

result (1084 psi) by a nominal correction of -245 psi plus an uncertainty of [+17, -91] psi 

about the nominal correction: -245 psi + [+17, -91] = [-228, -336] psi. The nominal 



correction of -245 psi yields the nominal corrected value of 839 psi.  

 

3. Running the model with low strength stress-strain curves instead of high strength curves 

reduces the calculated failure pressure by 43 psi, from 1084 psi to 1041 psi. Applying the 

nominal correction (from step 2) of -245 psi to the LS result yields a nominal mesh-

corrected value of 1041 psi  - 245 psi = 796 psi. This nominal correction assumes that the 

mesh convergence behavior is similar whether the model has LS or HS stress-strain 

curves. The nominal corrected LS value of 796 psi coincides with the bottom of the 2
nd

 

uncertainty bar from left in Figure 5.5. This bar, spanning the LS and HS results, has a 

length of 43 psi as labeled in the figure. The LS and HS results parameterize the aleatory 

variability of predicted failure pressures due to stochastic variations in material strength 

as characterized from the cylinder tension tests in section 2.  

 

4. Before the aleatory variability of failure pressure can be predicted, the LS and HS failure 

pressures must be corrected for errors caused by reconstruction of the pipe temperature 

field BCs from the spatially sparse TC temperature data in test PB1. A “global” element 

of temperature reconstruction error is addressed here. Local elements are addressed in 

section 5.3. Here we consider the global reconstruction errors characterized in section 

4.4.2 for the synthetic temperature distributions in Figures 4.6 and 4.7. These 

distributions are similar to test PB1’s temperature distribution (see Figure 4.10).   

 

At the times of failure in the experiments and similations, Figure 4.10 shows that the 

temperature BCs for simulations of test PB1 are bounded between the ɛ = 0.7 and ɛ = 0.84 

synthetic temperature fields in the critical hot-spot region where failure occurs. From 

Table 4.3 the interpolation-induced errors for the ɛ = 0.7 and 0.84 “bounding” 

temperature distributions are respectively +12.5 psi and +48 psi if the simulations are 

performed with the high strength stress-strain curves. The “bounding” errors are 

respectively +2.5 psi and +37.4 psi if the simulations are carried out with the low-

strength curves.   

 

5. We treat the actual PB1 temperature field as effectively lying somewhere within a 

parametric continuum between the ɛ = 0.7 and 0.84 “bounding” temperature distributions. 

That is, it is assumed that there is some emissivity value 0.7 < ɛ_PB1 < 0.84 that yields a 

global interpolation error that is the same as the global interpolation error for the actual 

PB1 temperature field. Then the limiting cases are:  

 

if ɛ_PB1 = 0.7, the correction for the global interpolation error is: 

         = -12.5 psi if the simulations are performed with the HS curves,  

         = -2.5 psi if the simulations are performed with the LS curves;  
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if ɛ_PB1 = 0.84, the correction for the global interpolation error is: 

         = -48 psi if the simulations are performed with the HS curves,  

         = -37.4 psi if the simulations are performed with the LS curves. 

 

For the limiting case ɛ_PB1 = 0.7, corrections to the HS and LS simulation results in 

Figure 5.5 are indicated by the green line segments that end at the tops of the yellow and 

teal uncertainty bars respectively. These corrected pressure predictions are 827 psi and 

793 psi respectively. Figure 5.6 shows the corresponding tolerance interval and Normal 

PDF of failure pressure variability due to material strength variability scaled from Figure 

2.6. 

 

For the limiting case ɛ_PB1 = 0.84, corrections to the HS and LS simulation results in 

Figure 5.5 are indicated by the brown lines that end at the bottoms of the yellow and teal 

uncertainty bars respectively. The corrected pressure predictions are 791 psi and 756 psi 

respectively. Figure 5.7 shows the corresponding tolerance interval and Normal PDF 

scaled from Figure 2.6.  

 

The Normal PDFs for the two bounding cases ɛ_PB1 = 0.7 and ɛ_PB1 = 0.84 are shown 

in Figure 5.5. The intermediate value of actual effective emissivity ɛ_PB1 corresponds to 

a Normal PDF interpolated between the upper and lower bounding PDFs in the figure. As 

noted in the figure, the yellow and teal uncertainty bars for corrected predicted failure 

pressures are perfectly correlated uncertainties, both parametrically dictated by the 

(uncertain) value of the effective emissivity ɛ_PB1. 

 

6. Last, the uncertainty of the correction for mesh effects is incorporated. In Figure 5.5 the 

mesh correction uncertainty is shown translated to the right-most uncertainty bar in the 

figure. To aggregate this source of uncertainty with the uncertainty represented by the 

upper and lower PDFs defined in Note 5, linearity and independence are assumed. 

Essentially, the approximation is made that the upper and lower PDFs, which are built off 

the starting reference value of 839 psi marked by the dot on the left-most uncertainty bar, 

would translate up or down as a fixed-shape pair if the reference value (the dot) lie at 

some other place on the uncertainty bar. Thus the mean separation and the standard 

deviations of the two PDFs would not change, but the PDF assembly would simply 

translate up and down with the reference value (dot). This is thought to be a good 

approximation, but we could not afford to check it. 

 

Given the assumed linearity and independence, if the reference value (dot) was at the top 

of the mesh correction uncertainty bar, the PDF assembly would be translated upwards by 

17 psi. (existing reference of 839 psi + 17 psi upward translation = 855 psi = top of 

uncertainty bar per the last sentence in section 3.5.2.) Then the upper PDF in the upward 



translated PDF assembly would have a mean increased by 17 psi, making its mean 

(805psi + 17 psi) = 822 psi. This is shown at right in Figure 5.5.   

 

At the other extreme, the existing reference value of 839 psi could be translated 

downwards by 91 psi to reach the bottom of the uncertainty bar = 747 per the last 

sentence in section 3.5.2. Then the lower PDF in the downward translated PDF assembly 

would have a mean decreased by 91 psi, making its mean (768 psi - 91 psi) = 677 psi. 

This is shown at right in Figure 5.5. The pair of upper and lower PDFs comprise a 

“probability box” equivalent to the CDF (cumulative density function) form introduced in 

[44]. Their separation signifies epistemic lack-of-knowledge uncertainty regarding where 

the actual PDF of stochastic results or values in the population lies. 

 

 

 
 
Figure 5.5  Uncertainty rollup for simulation results processed for Real Space validation 

comparisons. 
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Figure 5.6  Section 2.5.2 scaling of failure pressure 95/90 TI for 700C uniform-temperature  pipe to 

95/90 TI and associated Normal PDF for PB1 test conditions and upper-bound (ɛ = 0.7) correction of 

temperature field reconstruction error.  

 

 

 

 

 

 
 

Figure 5.7  Section 2.5.2 scaling of failure pressure 95/90 TI for 700C uniform-temperature  pipe to 

95/90 TI and associated Normal PDF for PB1 test conditions and upper-bound (ɛ = 0.84) correction 

of temperature field reconstruction error.  



5.3 Processing and rollup of experimental uncertainties for model validation 
comparisons 

 

Here the experimental data is processed in a specific manner for comparison to the 

simulation results in Figure 5.5 via Real Space validation metrics. An “apples-to-apples” 

comparison basis must first be established between predicted PDF percentiles of failure 

pressure and experimentally derived percentiles of failure pressure. Consequently, 

accounting for non-traveling
4
 experiment-to-experiment variability and systematic 

uncertainty, we normalize the experimental data to the reference conditions input to the 

simulations:  

- 0.02” pipe wall thickness  

- PB1 nominal pressure, temperature, and mechanical end-loading boundary conditions. 

 

We also account for inference uncertainty on estimated percentiles of response from small 

numbers of experiments. To reduce UQ method complexity and cost we employ a linearized 

data normalization process in the following. Examples of higher-order UQ treatment are 

available in [28].  

 

Let wact be the actual pipe wall thickness in test PB1. From Table 5.1 the failure pressure is 

Pfailexper,w_act = 606psi. We will account for pressure measurement uncertainty later. Thus 

we have the input-out correspondence (wact, PfailPB1exper,w_act). This can be thought of as 

particular point of a function Pfailexper(w) that describes experimental failure pressure as a 

function of wall thickness.  

 

Pfailexper,w_act = Pfailexper(w=wact)            Eqn. 5.1 

 

A Taylor Series is used to normalize the data to the reference wall thickness wref = 0.02” used 

in the failure pressure calculations in section 5.2: 

 

Pfailexper,w_ref = Pfailexper(wref) = Pfailexper(wact+[wref – wact])  

                                                  = Pfailexper(wact) + 
             

    
•(wref – wact) + HOT.   Eqn. 5.2 

                                                 
4
 Non-traveling uncertainties in the experiments and/or simulations in a validation activity do not transfer or “travel” 

consistently to application settings of intended model use that the validation is meant to inform ([6]-[8], [26], [33]). 

For example, non-traveling uncertainties in the PB validation activity include uncertainties on pressure and 

temperature measurement errors. The intended post-validation uses for the constitutive model will involve different 

pressure vessel geometries and different pressurization and temperature conditions, even though at similar levels as 

in the PB tests. Any uncertainties or parametric variations in post-validation model use are to be considered scenario 

uncertainties in the envisioned analyses, and will have no direct linkage to the measurement uncertainties in the PB 

validation activity.  Other examples of non-traveling uncertainties are associated with the model and simulations in 

the validation activity, such as uncertainties associated with mesh discretization and temperature field reconstruction 

on the pipe (from the TC data). But an uncertainty that is proposed to travel consistently is the constitutive model’s 

material-strength variability as a function of temperature, characterized in Section 2 and propagated to predictions in 

section 5.2 to form the variability PDFs in Figure 5.5. Uncertainties are treated differently in the Real Space 

validation framework according to whether they are traveling or non-traveling between the validation and post-

validation model use settings. This distinction reflects their different significance and consequences to prediction, 

see [6], [8]. 
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Here HOT stands for ‘higher order terms’. The actual wall thickness wact is a small 

perturbation from the machining spec. wall thickness of wref = 0.02”, so the HOT 

contribution is relatively small and here we retain just the 1
st
-order term: 

 

Pfailexper(wref) ≈ Pfailexper(wact) + 
             

    
•(wref – wact).                   Eqn. 5.3 

 

The above equation is used to approximately normalize the PB1 failure pressure to a 

reference wall thickness wref that differs from the actual wall thickness wact at the point where 

failure onset occurs in the experiment. The derivative term  
             

    
 can be estimated 

either with the model or by using available test data from purposefully different wall-

thickness pipes exposed to temperature and pressure conditions similar to PB1. This will be 

further discussed below. The more important issue for immediate discussion is that the actual 

wall thickness wact is not known. But if an uncertainty description regarding the value of wact 

can be reasonably determined, then this uncertainty description U[wact] can be substituted 

into Equation 5.3. Any uncertainty U[
             

    
] associated with 

             

    
 can also be 

substituted. Then Equation 5.3 becomes an equation for uncertainty of the normalized failure 

pressure for a reference wall thickness of 0.02 inches, U[Pfailexper(wref = 0.02”)].  

 

If we normalize all replicate tests (e.g. PB1 and PB4) to the same reference wall thickness as 

in the failure pressure predictions, then we are on the same apples-to-apples basis of wall 

thickness to compare the predicted and experimental PDFs of failure pressure. We must 

similarly normalize the experimental failure pressure results to the same basis of pressure 

loading and temperature boundary conditions before validation comparisons can be made. 

Generalizing the 1
st
-order Taylor Series approximation Equation 5.3 to multiple experimental 

inputs xi, the normalization adjustments with respect to each of the individual inputs 

superpose (add linearly): 

 

Pfailexper( ⃗ref) ≈ Pfailexper( ⃗act) + Σ 
             

     
•(xi_ref – xi_act).           Eqn. 5.4 

 

Here Pfailexper( ⃗act) is the measured failure pressure, which occurs under all the actual 

experimental input values  ⃗act.  

 

Any significant measurement and processing uncertainties associated with the experimental 

results of interest (here Pfailexper( ⃗act)) are combined with any significant uncertainties in the 

partial derivatives and in the actual input values xi_act on the right hand side (RHS) of 

Equation 5.4. All these uncertainties are propagated to output uncertainty on the normalized 

failure pressure on the left side of the equation. Any correlation between the uncertainties on 

the RHS of the equation must be accounted for in the propagation. A simple spread-sheet-

based approach is demonstrated later. This approach would be a 1
st
-order or linear UQ 

method if only incorporating uncertainties of the inputs xi_act and of measurements of outputs 

(first term on RHS) in Equation 5.4. But including uncertainty of the partial derivatives 



makes this a nonlinear UQ method. It will be referred to as a “1
st
-order+” or “linear+” UQ 

method. 

 

A higher-order UQ approach to evaluation of the RHS of Equation 5.4 is demonstrated in 

[28]. Equation 5.4 and any higher-fidelity UQ approaches are applicable to either or both of 

random and systematic non-traveling uncertainties in replicate experiments supporting model 

calibration or validation.  

 

Equation 5.4 with linear UQ handles non-traveling systematic uncertainty of experimental 

inputs xi in the same way as to two very differently derived linearization approaches [6] and 

[33]. This is reassuring.   

 

When only systematic uncertainties are significant in the replicate experiments, the manner 

of uncertainty treatment and presentation of results in the RS approach can often be 

simplified, see section 5.5. The simplification allows a streamlined approach (e.g. [28]) vs. 

the spreadsheet methodology presented below. An earlier method of treatment in [29] 

handles all that the method below and in [28] do, but the interval approach for aggregating 

interval uncertainties in [29] almost certainly grossly exaggerates uncertainty when more 

than a couple of interval uncertainties are present. But the interval aggregation approach in 

[29] is simpler. It can be easily accomplished with hand calculations; it does not require 

statistical sampling and therefore a random number generator.   

 

5.3.1  Normalization of reference test results 
 

The next step in the procedure is to write Equation 5.4 for the reference test that we are 

normalizing all the test results to. The reference test is PB1 and we normalize it to the PB1 

nominal input conditions used in the simulations in section 5.2. We will later write 

normalization equations for the other replicate experiments.  

 

    PfailPB1( ⃗nomPB1) ≈ PfailPB1( ⃗actPB1) + Σ 
           

     
•(xi_nomPB1 – xi_actPB1)           Eqn. 5.5 

 

We only know the failure pressure in PB1 to within the uncertainty of the pressure 

measurement in the test (see Table 5.1). Hence PfailPB1( ⃗actPB1) on the RHS of Equation 5.5 

has an uncertainty range U[PfailPB1( ⃗actPB1)] = 606 psi ± 10 psi = [596, 616] psi.                

 

The two most substantial terms (by far) in the summation in Equation 5.5 involve differences 

between nominal and actual wall thickness, and nominal and actual temperature, at the 

location of failure initiation in PB1. Hence Equation 5.5 is rewritten as 

 

 PfailPB1( ⃗nomPB1) ≈ PfailPB1( ⃗actPB1) +  
           

    
•(wnomPB1 – wactPB1)  

                                                 +  
           

               
•(TnomTC4-PB1 – Tact@fail_point-PB1).     Eqn. 5.6 

 

Recall that the PB1 TC data provide the nominal temperature distribution on the pipe for the 

PB1 simulations, and the effect of any errors/uncertainties in reconstructing the temperature 
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BCs from the nominal TC data have already been accounted for in Section 5.2. However, the 

nominal TC data are not representative of the actual PB1 temperature conditions in two other 

respects:  

1) temperature measurement errors of the TCs still need to be accounted for; 

2) the actual temperature distribution may have a peak temperature that is  

hotter than at the TC4 location (the hottest TC location in all tests).  

       

It is presumed that failure initiates at the location (point) where the combination of local 

temperature, wall thickness, and material strength determines the weakest point on the pipe 

wall, i.e., the lowest resistance to pressure loading. Yielding initiates there and proceeds until 

failure occurs there. Indeed, the model simulations, which have uniform wall thickness in the 

reduced-thickness 0.02” wall section, predict that initial yielding and then failure occurs at 

the hottest point on the pipe (see Figure 4.9). We assume that in the tests the failures initiate 

within a close vicinity of the hottest TC, TC4. An investigation in [16] suggests this. For the 

monitored specimen, failure initiates at a location indistinguishable from the TC4 location, 

where the pipe wall first splits upwards and downwards, and then circumferentially along the 

top and bottom thickness-transition shoulders as the “butterfly wings” are created (see Figure 

1.1). The approximate symmetry of the final geometries in Figure 1.1 also implies that failure 

initiation is at the heated front center of the pipe. So we use TC4 as a reference temperature, 

above which we propose 15C as a reasonable maximum possible perturbation to address item 

2) in the prior paragraph.  

 

(Absent large temperature measurement uncertainties like in Appendix A which applies for 

much larger-diameter TCs than in the PB tests, the item 1) TC measurement 

errors/uncertainties in PB1and PB4 are much more important for the hot-spot TC4 than for 

the other TCs. Propagation of all the TCs’ uncertainties (if large) to evaluate their impact 

involves a spatially coupled problem in the spatially distributed TCs, so evaluating each 

individual TC’s error effect via a separate term in the summation in Equation 5.5 would not 

be adequate or cost effective. See Appendix A for an example evaluation of the effect of 

spatially correlated errors of the TC measurements and how the effect is folded into the 

larger validation analysis.) 

 

The wall thickness uncertainty in PB1 is modeled as the interval range given in Table 5.3: 

 

 U[wactPB1] = [0.019, 0.022] inch.                          Eqn. 5.7 

 

The term 
           

    
 in Equation 5.6 is approximated by considering the experimental and 

model simulation results in Figure 5.8. The figure shows predicted failure pressures (listed in 

Table 5.4) for test PB1 nominal boundary conditions and pipe wall thicknesses of: 0.02”, the 

nominal value, and 0.019” and 0.024”, the lowest and highest wall thickness measurements 

recorded in Table 5.3. The model used was the full-geometry 1tt-mesh model used for the 

predictions in Figure 5.5, except for changes to wall thickness. Thus, the value in Figure 5.8 

for the nominal 0.02” wall is the same as in Figure 5.5. Failure pressures at the three 

thicknesses were all corrected downward to approximate mesh-converged results by the same 

nominal correction of -245 psi shown in Figure 5.5. The corrected values are listed in Table 



5.4. The regression line through the simulation results in Figure 5.8 has a slope of 42,286 

psi/inch-wall-thickness and a y-intercept of -16 psi when extrapolated to zero wall thickness. 

 
Table 5.4  Predicted failure pressures for nominal PB1 conditions and pipe wall thicknesses 

listed.  

Pipe wall 
thicknes 
(inches) 

Predicted failure pressure 
(approximately corrected for 
mesh discretization effects) 

0.019” 780 psi 

0.020” 839 psi 

0.024” 997 psi 

 

 

 

 

 
Figure 5.8  Failure pressures vs. wall thickness from simulations and experiments. 

 

 

The experimental data line in Figure 5.8 connects failure pressures in the PB1 and PB3 tests 

(Table 5.5). The experimental line has a slope = 29,733 psi/inch-wall-thickness and a y-intercept 

of 11.3 psi when extrapolated to zero wall thickness. Test PB3 (see [16]) had a 0.05-inch thick 

wall and a hot-spot TC4 temperature of ~700C at failure, similar to PB1. But the pressure and 

temperature ramping conditions were somewhat different in the PB1 and PB3 tests. Furthermore, 

the experimental slope of failure pressure vs. wall thickness is subject to much uncertainty 

because it is based on only one test with 0.05” wall and one 0.02” wall result. (Table 5.1 gives a 

glimpse of the magnitude of variation that exists among failure pressures even for nominal 

replicate tests.) It would be best to average over many tests at different wall thicknesses to obtain 

an experimental slope of failure pressure vs. wall thickness, but PB3 is the only available test 

with a wall thicknesses other than 0.02”. Test PB1 had the closest temperature conditions at 

failure to test PB3, so is the best one to plot with PB3 in Figure 5.8. Test PB4 at failure also has 
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close temperature conditions to PB3, but PB4 appears from Table 5.3 to have a wall thickness 

not as close to the 0.02” value used in Figure 5.8 and Table 5.5.  

 

 
Table 5.5  Experimental failure pressures for nominal PB1 conditions and pipe wall 

thicknesses listed.  

Pipe wall thicknes measured failure pressure  

0.02” 606 psi 

0.05” 1498 psi 

 

 

Given the potential errors in both the simulated and experimental slopes, the following course is 

taken. The differences in failure pressures in the PB1 and PB4 replicate tests is 49 psi, from 

Table 5.1. This is used as a scale of experimental variability to work with. perturbing the 

experimental failure pressures in Table 5.5 by ±49 psi  gives four combinations from which the 

lowest and highest slopes are 26,467 and 33,000 psi/inch-wall-thickness. If we liberally double 

the perturbations to ±100 psi at both wall thicknesses, then the lowest and highest slopes are 

23,067 and 36,400. The upper value is about 15% less than the slope in Figure 5.8 from the 

model simulations. We choose to use the higher value of 42,286 psi/inch from the simulations as 

a liberal upper value in our UQ analysis. We use the experimentally based liberal lower value 

23,067 psi/inch as a lower limit.     

 

                          U[
           

    
] = [23,067, 42,286] psi/inch-wall-thickness.         Eqn. 5.8                       

 

The term (TnomTC4-PB1 - Tact@fail_point-PB1) in Equation 5.6 captures the difference between the 

nominal hot-spot temperature (reading from TC4 in Figure 4.3), and the actual temperature at the 

location of failure initiation in the PB1 test. With this term and the partial derivative 
           

               
 we normalize between the nominal temperature conditions modeled, and the 

actual temperature conditions in the test. For reasons mentioned earlier we normalize only for 

local temperature differences at the failure initiation point (close vicinity of TC4) and ignore 

measurement uncertainties of the other TCs. The difference (TnomTC4-PB1 - Tact@fail_point-PB1) is 

separated into two components:  

 

A) TC4 measurement error – the difference between the TC4 reading value TnomTC4-PB1 

and the actual pipe temperature at that location, TactTC4-PB1;  

  

B) TC4 location related error – any difference between the TC4 temperature after being 

corrected for any measurement error, TactTC4-PB1, and the temperature where failure 

occurs, Tact@fail_point-PB1.  

 

The following identity is written in terms of components A and B. 

 

TnomTC4-PB1 - Tact@fail_point-PB1= (TnomTC4-PB1 – Tact@TC4-PB1) + (Tact@TC4-PB1 - Tact@fail_point-PB1). 



                                                 =   TC4 measurement error    +    TC4 location related error   

                                          Eqn. 5.9                                                                                   

Component A, TC4 measurement error, itself has several components: 

 

       TC4 measurement error = TnomTC4-PB1 - Tact@TC4-PB1 = (TnomTC4-PB1 - TofTC4-PB1) 

                     + (TofTC4-PB1 – Tact@TC4-PB1). Eqn. 5.10 

                                                                                                      

Here, {TnomTC4-PB1 - TofTC4-PB1} = ∆Tmeas-TC/DAQ is the difference or error between the TC’s 

actual temperature, TofTC4-PB1, and the temperature TnomTC4-PB1 reported by the data acquisition 

system (DAQ). This error is caused by inaccuracies associated with the TC transducer itself, the 

calibration standard and procedure used to calibrate the TCs if calibration is performed, and the 

DAQ. The combined TC/calibration/DAQ errors are typically very small. Uncertainty on the 

combined error is estimated from information in [31] as: 

 

   U[∆Tmeas-TC/DAQ] = U[TnomTC4-PB1 - TofTC4-PB1] = [-0.25%, 0.25%] of TC4 reading in °C.  

      Eqn. 5.11 

TofTC4-PB1 – Tact@TC4-PB1 = ∆Tmeas-contact is the difference or error between the TC’s actual 

temperature, TofTC4-PB1, and the temperature Tact@TC4-PB1 of the pipe surface at the TC4 location.  

This error is caused by contact resistance between the surface and the attached TC, and by 

convective and radiative conditions affecting heat losses from the TC bead or attached wire tips 

if an intrinsic TC. The PB tests used intrinsic TCs with very small wire tip diameters of 0.005-in. 

Uncertainty on the temperature difference between the TC and the surface point it is attached to 

is estimated from information in [32]: 

 

     U[∆Tmeas-contact] = U[TofTC4-PB1 – Tact@TC4-PB1] = [0., 0.25%] of TC4 reading in °C.   Eqn. 5.12 

 

The uncertainty ranges from zero to + 0.25% because the TC4 leads are between the surface 

being measured and the heating plate. Therefore, at the attachment location the leads will be 

hotter than the surface. Hence the error will be positive. In general, errors ∆Tmeas in Equation 

5.11 and 5.12 have positive values when, taken alone, they cause an overestimate of the true 

surface temperature at the TC4 location. 

 

Component B of failure-temperature error in Equation 5.9 is due to TC4’s location being 

potentially different from where failure occurs:  

 

Tact@TC4-PB1 - Tact@fail_point-PB1 = ∆TTC4location                           Eqn. 5.13 

 

We mentioned earlier that the actual peak temperature on the pipe could be a small distance 

away from TC4, and as much as 15C above the true pipe surface temperature at TC4. Then 

Equation 5.13 yields ∆TTC4location = -15C as the largest negative value we estimate can occur.  

 

But in the real experiment, failure will not necessarily occur at the hottest point on the pipe due 

to wall thickness and material strength spatial variations. Instead it occurs at the location of the 

weakest combination of thickness, temperature, and material strength. Therefore we must also 

consider possible failure temperatures lower than the temperature Tact@TC4-PB1 at TC4. It is more 
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difficult to propose a reasonable lower bound for the possible true failure temperature 

Tact@fail_point-PB1. We simply guess that failure could occur at a point that is as much as 15C 

below the pipe temperature at the TC4 location. Then Equation 5.13 yields a maximum value of 

15C for ∆TTC4location. Thus,  

  

     U[∆TTC4location] = U[Tact@TC4-PB1 - Tact@fail_point-PB1] = [-15, +15]°C.             Eqn. 5.14 

 

In all we have:  

TnomTC4-PB1 - Tact@fail_point-PB1= (TnomTC4-PB1 – Tact@TC4-PB1) + (Tact@TC4-PB1 - Tact@fail_point-PB1). 

                                                 =  TC4 measurement error    +    TC4 location related error   

                          = (∆TmeasTC/DAQ + ∆Tmeas-contact)  +          ∆TTC4location.         Eqn. 5.15 

               

Failure pressure difference due to different nominal and actual wall thicknesses in the PB1test is 

approximated in Equation 5.6 by 
           

    
•(wnomPB1 – wactPB1), whereas failure pressure 

difference due to different local material temperatures is approximated by (from equations 5.6 

and 5.15):   

 

                     
           

               
 (∆Tmeas-TC/DAQ + ∆Tmeas-contact +  ∆TTC4location).                   Eqn. 5.16 

 

The partial derivative in the above equation is approximated by the slope of the curve in Figure   

2.9 evaluated for the temperature at the failure location. The slopes are calculated from the 

means of the data at the various temperature levels in Table 2.3. The slope in Figure 2.6 between 

the data means at 600C and 700C is -1.71 psi/C. The slope between the data means at 700C and 

800C is -2.61 psi/C. Averaging these two slopes gives -2.16 psi/C, which is the same value that 

would come from central-differencing for a second-order approximation to the slope at 700C. 

The temperature perturbations in Equations 5.6 (and 5.16) are relative to the PB1 nominal failure 

temperature of 706C, and applicable temperatures remain within about [-30, +80] of 700C. 

Given all this information the previously mentioned values of -1.71 psi/C and -2.61 psi/C are 

used as uncertainty extremes about the nominal 700C value of -2.16 psi/C. Thus,    

 

         U[ 
           

               
] =   ─ [1.71, 2.61] psi/C.                                            Eqn. 5.17 

 

Given the uncertainty descriptions of the applicable terms on the RHS of Equation 5.6 we are 

now ready to sample the uncertainties to estimate the uncertainty on the LHS term. The resulting 

uncertainty, U[PfailPB1( ⃗nomPB1)], is the uncertainty of the PB1 failure pressure when normalized 

to the nominal experimental conditions input to the model simulations in Section 5.2. We obtain 

samples j=1,J of the uncertainty U[PfailPB1( ⃗nomPB1)] by combining j=1,J realizations of the 

uncertainties on the RHS terms in Equation 5.6. In terms of the intervening developments, the 

realizations are written as:  

 

    PfailPB1( ⃗nomPB1) j ≈ PfailPB1( ⃗actPB1) j + { 
           

    
•∆wPB1 }j 

                                                 + {
           

               
 (∆Tmeas-TC/DAQ + ∆Tmeas-contact +  ∆TTC4location)}j  Eqn. 5.18 



 

where the ∆ terms have already been defined except for 

 

∆wPB1 = wnomPB1 – wactPB1.                                                                      Eqn. 5.19 

 

A spreadsheet is a convenient way to do the sampling and processing of the realizations. From 

Equation 5.18 we populate a spreadsheet as illustrated by Tables 5.6 and 5.7. The quantities in 

yellow highlighted columns 2, 5, 8, and 10 in Table 5.6 designate correlated uncertainties with 

the same-numbered columns for other tests to be described later. For all uncertainties in Tables 

5.6 and 5.7 designated by interval ranges […] (e.g. from Equation 5.17), samples from uniform 

distributions are obtained from available sampling tools in the spreadsheet, or are imported from 

external sampling operations.  

 

The uncertainties in the present application are defined as interval ranges. Both interval and 

probabilistic (PDF) uncertainties have been treated in other applications ([25], [28], [29]). A 

different method of treatment of interval uncertainties in [29] used interval propagation and 

aggregation techniques to deal with interval uncertainties over the monotonic uncertainty space 

in that problem. But this method of aggregation almost certainly gives a grossly exaggerated 

estimate of the uncertainty when more than a couple of interval uncertainties are present. This is 

because combinations of the extreme values of the interval uncertainties present an increasingly 

remote possibility as the number of interval uncertainties rises. We use the sensibility that the 

validation conclusions should not be driven by the remote possibilities of compounded extremes 

of the interval uncertainties. Rather, we here use uniform PDF representations of the interval 

uncertainties and propagate them probabilistically via the spreadsheet. If sufficient sampling is 

performed (and this is very fast and inexpensive inside or outside of the spreadsheet), then the 

resulting density function (DF) will have endpoints that coincide with the endpoints from an 

interval UQ treatment. But the DF will not weight the very remote extreme combinations as 

prominently. Thus, this manner of treatment moderates a compounded interval treatment. But we 

do not interpret the resultant DF as a probability density. We use the DF to arrive at a moderated 

magnitude of interval uncertainty for the validation assessment (see section 5.4).  

 

A similar moderating approach is used in [28] where both interval and probabilistic uncertainties 

are present and are propagated in a segregated fashion. In [25] the intervals were simply treated 

as uniform PDFs and comingled with the probabilistic uncertainties in propagation. The 

treatment in [28] is now preferred when both interval and probabilistic uncertainties are present.    

 

Care should be exercised with random number generator seeds and sequences in the spreadsheet 

so that the columns of random samples in Table 5.7 (and Table 5.9 etc.) are independent of each 

other unless correlation is intended and is purposely imposed. For the particular comparisons to 

be made in Section 5.4 it is recommended that at least 1000 realizations be taken (J ≥ 1000 in 

Tables 5.6, 5.7, etc.). In the following we use J=1000. 
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Table 5.6  Spreadsheet formulas for uncertain experimental quantities in Equation 5.18 for 
test PB1.  
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Table 5.7  Spreadsheet realizations for uncertain experimental quantities in test PB1.  

 
 

 

Column A12 of Table 5.7 contains the realizations of uncertainty of PB1 failure pressure, 

U[PfailPB1( ⃗nomPB1)], when normalized to the nominal PB1 experimental conditions input to 

the model simulations in Section 5.2. These realizations are histogrammed in Figure 5.9 

along with realizations from similar normalizations of other tests. The other tests and their 

normalized results will be discussed later. 

 



Statistics at the bottom of Table 5.7 summarize the impacts of various uncertainties in the 

normalization of PB1 failure pressure. The green box in column A6 shows the average 

adjustment of PB1 experimental failure pressure normalized for possible differences from the 

nominal 0.02” wall thickness used in the simulations in Section 5.2. The green box in column 

A11 shows the average bias adjustment when PB1 failure pressure is normalized for possible 

differences from the nominal temperature field and failure location in the simulations. The 

green box in column A2 shows a zero average bias adjustment when PB1 failure pressure is 

normalized for possible measurement error affecting the nominal pressure values used in the 

simulations. The zero average adjustment occurs because the measurement uncertainty [-10, 

+10] psi is symmetric about a value of zero measurement error. The average adjustment of -

17.8 psi for wall thickness adds with the average adjustment of -2 psi for temperature 

normalization to yield a combined adjustment of -19.8 psi from the nominal measured failure 

pressure of 606 psi in Table 5.1. The resulting average normalized failure pressure is 586.2 

psi listed in the pink box at the bottom of Table 5.7. Regarding sensitivity rankings, the 

average adjustment of -17.8 psi associated with wall thickness normalization is much larger 

than the average adjustment of -2 psi due to temperature normalization.  

 

Possible wall thickness differences from nominal lead to variations in normalized failure 

pressure characterized by the standard deviation of 28.1 psi in the grey box in column A6. 

Possible failure temperature differences from nominal yield a standard deviation of 17.1 psi 

in normalized failure pressure per the grey box in column A11. Possible pressure 

measurement error yields a standard deviation of 5.8 psi in failure pressure per the grey box 

in column A2. These three sources of variance combine to yield a variance characterized by 

the standard deviation in the pink box at the bottom of Table 5.7. The individual variance 

effects add according to the sum of the squares of their standard deviations. The square root 

of this sum is 33.4 psi. This closely agrees with the standard deviation 32.8 psi in the pink 

box, calculated directly from the realizations in column A12. The 1.9% discrepancy between 

the two methods of calculation is attributed to sampling differences underlying the standard 

deviations calculated from the realizations down columns A2, A6, and A11 vs. the standard 

deviation of the realizations in column A12 calculated from row sums of uncorrelated 

random values across the rows of columns A2, A6, and A11. The discrepancy between 

standard deviation calculated these two ways is expected to diminish as the number of 

realizations J → ∞.  

 

In terms of sensitivity ranking, the variance contributed by wall thickness normalization is 

much larger than variance contributed by temperature normalization, which itself is much 

larger than variance contributed by pressure measurement uncertainty. Comparing the 

temperature uncertainties in columns A7, A8, and A9 shows that, by far, the largest 

component of variance due to failure temperature normalization is contributed by the [-15, 

+15] failure temperature uncertainty due to uncertainty in the location of failure initiation. 
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Figure 5.9  Uncertainty histograms of PB test failure pressures normalized to input conditions of 

model validation simulations. 

 

 

 

5.3.2  Normalization for replicates of the reference test 
 

To write normalization equations for tests other than the one we are normalizing to (here 

PB1), we illustrate the procedure for test PB4. We start by writing a characteristic identity for 

such tests. For PB4:  

 

   PfailPB4( ⃗nomPB1) = PfailPB4( ⃗actPB4) 

                                   + [PfailPB4( ⃗nomPB4) - PfailPB4( ⃗actPB4)]                    Eqn. 5.20   

                                   + [PfailPB4( ⃗nomPB1) - PfailPB4( ⃗nomPB4)]. 

 

The term in the second row of Equation 5.20 is evaluated from a PB4 analogue of Equation 

5.5, to normalize test results between PB4 actual and nominal experimental conditions: 

 

PfailPB4( ⃗nomPB4) - PfailPB4( ⃗actPB4) ≈ Σ 
           

     
•(xi_nomPB4 – xi_actPB4).          Eqn. 5.21 

 

The term in the third row of Equation 5.20 represents the difference that would exist if the 

PB4 pipe was subjected to the nominal input conditions from test PB1. We use the simulation 

model to approximate this difference by simulating to failure with the nominal PB1 inputs 

and then with the nominal PB4 inputs:  

 



PfailPB4( ⃗nomPB1) - PfailPB4( ⃗nomPB4) ≈ Pfailmodel( ⃗nomPB1) – Pfailmodel( ⃗nomPB4).   Eqn. 5.22 

 

The model is used as the best available mechanism for estimating how things would change 

in reality under these perturbations to the input conditions. The model doesn’t have to be 

accurate in an absolute sense. But over the uncertainty ranges of the uncertain inputs  ⃗i it 

must be sufficiently accurate in a relative sense of providing trend information (e.g. slope if 

linear UQ is used) such that propagating and accounting for these uncertainties improves the 

validation analysis vs. simply ignoring them. This is often a judgment call by the physics 

modelers and VVUQ analysts in the project.  

 

Substituting equations 5.21 and 5.22 into Equation 5.20 yields   

 

PfailPB4( ⃗nomPB1) ≈ [Pfailmodel( ⃗nomPB1) – Pfailmodel( ⃗nomPB4)] 

                                 + PfailPB4( ⃗actPB4) + Σ 
           

     
•(xi_nomPB4 – xi_actPB4).     Eqn. 5.23   

 

The term in row 1 of the RHS of Equation 5.23 enacts an approximate adjustment for PB1 

vs. PB4 nominal input conditions,  ⃗nomPB1 vs.  ⃗nomPB4. The term in row 2 of the RHS enacts 

an approximate adjustment for PB4 nominal vs. actual conditions,  ⃗nomPB4 vs.  ⃗actPB4. The 

treatment of row 2 is analogous to Equation 5.5 and hence ultimately Equation 5.18. The new 

information required for the PB4 evaluation in Table 5.8 follows.  

 

The wall thickness uncertainty in PB4 is modeled as the interval range given in Table 5.3: 

 

 U[wactPB4] = [0.02, 0.024] inch.                          Eqn. 5.24 

  

The failure pressure in PB4 has an uncertainty U[PfailPB4( ⃗actPB4)] = 655 psi ± 10 psi (see 

Table 5.1). In Tables 5.8 and 5.9 this ±10 psi uncertainty is treated as being perfectly 

correlated to the pressure measurement uncertainty ±10 psi in PB1 (Tables 5.6 and 5.7) 

because the same pressure gauge was used in the two tests so systematic measurement error 

exists among the two tests. Assuming that the random-error component is small relative to 

the systematic component, the gage’s majority of error and the associated uncertainty are 

systematic over the replicate tests. Hence the realizations in column B2 are taken to be the 

same as in column A2. The heading in column B2 is highlighted yellow to signify 

commonality of this quantity with the quantity in column A2 for test PB1.  

 

The quantities in columns B5, B8, and B10 of Tables 5.8 and 5.9 are also highlighted yellow for 

similar reasons. The green-highlighted entries in Table 5.8 denote changes from PB1’s Table 5.6. 

Column A12 of Table 5.6 is shifted rightward to become column B13 in Table 5.8, with other 

changes highlighted in green in the column B13 heading. The new column B12 represents row 1 

of the RHS of Equation 5.23. This term enacts an approximate adjustment to PB4 failure 

pressure according to the difference in computational model results at PB1 nominal inputs and 

PB4 nominal inputs. Note that the uncertainties [-15, +15]C in column B9 and in column A9 for 

PB1 are of the same magnitude but independent of each other; the realizations in a given row j of 

columns A9 and B9 are uncorrelated. Different initial seeds are used to sample all column 

quantities for PB1 and PB4 except for the yellow highlighted columns as explained earlier. 
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Table 5.8  Spreadsheet formulas for uncertain experimental quantities in Equation 5.23 for 
test PB4.  
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Table 5.9  Spreadsheet realizations for uncertain experimental quantities in test PB4.  

 
 

 

Column B13 of Table 5.9 contains the realizations of uncertainty of PB4 failure pressure 

when normalized to the nominal PB1 reference experimental conditions input to the model 

simulations in Section 5.2. These realizations are histogrammed in Figure 5.9. The 



realizations are processed with realizations from the other replicate tests as explained in the 

next section. 

 

The statistics at the bottom of Table 5.9 summarize the impacts of various uncertainties in the 

normalization of PB4 failure pressure. The green boxes reveal that the average normalization 

adjustment in PB4 experimental failure pressure is greatest (-62.8 psi) due to possible 

differences from the nominal 0.02” wall thickness used in the simulations. This is a much 

larger mean adjustment than the -17.8 psi mean adjustment for PB1 normalization because 

PB4’s [0.02”, 0.024”] range of wall thickness uncertainty is centered significantly further 

from the nominal 0.02” than is PB1’s [0.019”, 0.022”] uncertainty range. Next in magnitude 

of normalization adjustment is the -8 psi in column B12, which comes from simulations at 

nominal PB1 and PB4 test conditions (Equation 5.22). Next in magnitude is the average 

normalization adjustment of -0.96 psi due to failure temperature normalization. The green 

box in column B2 shows a zero average bias adjustment for failure pressure measurements 

error. The green boxes yield a combined bias shift of -71.8 psi from the nominal measured 

failure pressure of 655 psi in Table 5.1. The resulting average normalized failure pressure is 

583.2 psi listed in the pink box at the bottom of Table 5.9.  

 

Potential wall thickness differences from nominal lead to variations in normalized failure 

pressure characterized by a standard deviation of 39.1 psi. This is significantly larger than the 

value of 28.1 psi for PB1. This is because of PB4’s larger [0.02”, 0.024”] wall thickness 

uncertainty compared to PB1’s [0.019”, 0.022”] uncertainty. Potential failure temperature 

perturbations from PB4 nominal yield a standard deviation of 17.0 psi in normalized failure 

pressure. This very closely reflects the value of 17.1 psi for PB1 failure temperature 

normalization. Column B2’s repeat of column A2 of course also here yields a standard 

deviation of 5.8 psi due to possible pressure measurement error. 

 

The square root of the sum of squares of the contributing standard deviations in the grey 

boxes in Table 5.9 is 42.99 psi. This closely agrees with the value 42.97 psi in the pink box, 

calculated directly from the realizations in column B13. This standard deviation is 

significantly greater than that for PB1 (32.8 psi). This is reflected in the relative widths of the 

distributions in Figure 5.9.  

 

The variance contributed by wall thickness normalization is here proportionately even greater 

(compared to the PB1 case) than the variances contributed by failure temperature 

normalization and by pressure measurement uncertainty. As in the PB1 case, the largest 

component of variance due to failure temperature normalization is contributed by the [-15, 

+15]C failure temperature uncertainty due to uncertainty in the location of failure initiation. 

 

5.3.3  Combining possible values of normalized failure pressures to yield estimated 
ranges of failure population statistics 

 

Columns A12 of Table 5.7 and B13 of Table 5.9 yield, for each row j, a pair of potential 

failure pressures from replicate experiments normalized to the same experimental input 

conditions (and to the same input conditions used in the simulations in Section 5.2). Then, 

hypothetically, if the realizations in a given row j happen to correspond to exact 



75 
 

normalizations for the true input conditions in the tests, the disparities between the two 

values in that row are not attributable to differences in input conditions between tests or to 

measurement errors on the outputs. The disparities would then reflect differences between 

the two tests that were not accounted for in the normalization procedure. In the present case 

the only apparent element of major importance that was not explicitly normalized is material 

strength differences at the failure initiation locations in the tests. Thus we attribute any 

differences in exactly normalized failure pressures to material strength variability between 

tests.  

 

The failure pressure disparities are a gauge of the material strength variability, just like in the 

simulated PDFs of failure pressure variability depicted in Figure 5.5 and originating from 

material variability parameterized by differing stress-strain curves from the material 

characterization tests. For validation comparisons of experimental failure pressures against 

the predicted PDFs of failure pressure we form compatible PDFs of experimental failure 

pressure variability. From the row j (hypothetical) exactly normalized pair of PB1 and PB4 

failure pressures we can form a n=2-sample 0.95/0.90 tolerance interval (TI) and associated 

Normal PDF to compare against the predicted range of 0.95/0.90 TIs and associated PDFs in 

Figure 5.5. (See Table 2.1 and surrounding text for details on how to construct 2-sample 

0.95/0.90 TIs and associated Normal PDFs.) 

 

In our procedure we do not expect that the J=1000 realizations will contain a row j that has 

perfectly normalized failure pressures for PB1 and PB4. But if the following conditions apply 

then one or more rows will come arbitrarily close to perfectly normalized failure pressures 

jointly (simultaneously) for PB1 and PB4.  

 

Conditions 

 Parameters explicitly normalized-for contain the actual experimental values within 

the stated uncertainty ranges.  

 The modeling of response (here failure pressure) over the ranges of the normalization 

parameters is sufficiently accurate that sufficient sampling of the modeled response 

over the parameter values in the normalization procedure yields one or more rows of 

normalized PB1 and PB4 failure pressures that are simultaneously closely 

representative of exactly normalized PB1 and PB4 failure pressures.  

In the present analysis it may be that the J=1000 realizations and/or the models used (the 

physics model, the experimental slope information, the estimated uncertainty ranges, and 

linear+ Taylor Series model) are not sufficient to meet the stated conditions. Because this is a 

relatively new methodology we have not yet looked into ways of determining or establishing 

the said sufficiencies. Nonetheless, we anticipate that several rows of realizations have values 

that are simultaneously closely representative of exactly normalized PB1 and PB4 failure 

pressures. We proceed assuming this is the case. Then the sought results from exactly 

normalized PB1 and PB4 failure pressures will lie within the uncertainty ranges defined by 

the 1000 realizations.   

 

The present analysis produces J=1000 2-sample 0.95/0.90 TIs from the 1000 rows of 

estimates of PB1 and PB4 normalized failure pressures in columns A12 of Table 5.7 and B13 

of Table 5.9. A convenient notional representation of the significance of the 1000 TIs is 



portrayed by the associated Normal PDFs depicted notionally in Figure 5.10. The Normal 

PDFs in the figure only serve as a conceptualization aid; they are not constructed in the 

course of the analysis. The Figure Aepicts the uncertainty range of the 1000 TI estimates for 

lower bounds on the 0.025 percentile of response. An uncertainty range is also depicted for 

the estimated upper bounds on the 0.975 percentile of response. We can compare these 

uncertainty ranges against the uncertainty ranges for predicted 0.025 and 0.975 percentiles of 

response from model simulations (Figure 5.5) under the common reference experimental 

conditions. Such comparisons are made and interpreted in Section 5.4. 

 

Note that the 0.025 and 0.975 percentiles of response are the only response statistics that can 

be addressed from the current construction. For example, the uncertainty of the means of the 

depicted Normal PDFs in Figure 5.10 (same as the means of the underlying 0.95/0.90 TIs) 

are not appropriate to compare against the range of means denoted by the upper and lower 

simulation PDFs in Figure 5.5. Instead, the 1000 rows of PB1 and PB4 normalized results 

would need to be processed to create 1000 n=2-sample t-distributions. Each such distribution 

characterizes the uncertainty of a population mean calculated from just two samples of data. 

So the processing of the PB1 and PB4 normalized failure pressures must be tailored to 

specific response statistics that are to be compared in the validation assessment. 

Experimental and simulated 0.025 and 0.975 percentiles of response were chosen as 

validation quantities in this project because these percentiles combine the effects of small-

sample uncertainties in both the response mean and variance, and appear more relevant to the 

validation assessment of a model that is to be used for design or safety margin predictions.    

 

 
Figure 5.10  Uncertainty of statistical bounds on 0.025 and 0.975 failure pressure percentiles inferred 

from a small number of tests normalized to PB1 nominal experimental conditions.   

 

 

5.3.4  Pooling more PB tests/results to reduce uncertainty of population statistics 
 

The results from using the n=2 samples from the PB1 and PB4 tests yield unreasonable 

uncertainty ranges for the sought percentiles. In particular, a substantial portion of the 
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uncertainty range for the lower percentile (0.025) of response reached into negative 

(impossible) values of failure pressure. A large contributor to these uncertainty ranges is the 

large value f0.95/0.90 = 18.8 that multiplies the response standard deviation  ̃ from two tests to 

obtain 0.95/0.90 tolerance intervals of half-length 18.8 ̃ (see Table 2.1 and surrounding text). 

  

To obtain more statistical precision we note that two similar tests, PB4 and PB10, were 

performed at 650C-hold conditions with similar pressurization profiles as in the PB1 and 

PB4 tests. The 650C-hold tests were planned replicates of each other. In Appendix B these 

test are described and their results are normalized to the PB1 nominal conditions so they can 

be pooled with the normalized PB1 and PB4 results to get a population of 4 samples, which 

decreases the multipler value to f0.95/0.90 = 4.94 (Table 2.1), about ¼ the 2-sample magnitude 

of 18.8.  

 

The 650C-hold tests PB2 and PB10 are similar enough to the 700C-hold tests PBs 1 and 4 

that it is reasonable to expect PB2 and PB10 failure pressures can be normalized to the 

nominal PB1 test conditions accurately enough that pooling of the four tests’ results is 

justified. Figure 5.11 shows the axial and circumferential temperature profiles at failure for 

PBs 1, 2, 4, 10. The temperature profiles are approximately the same shape but are vertically 

shifted relative to each other in the hot spot region. The principal effects of the different hot-

spot temperatures in the tests are approximately normalized-out in Appendix B by assuming 

that the peak temperature at TC4 determines the failure pressure far more than temperatures 

away from this peak. Then the temperature vs. failure pressure relationship in Figure 2.6 is 

used to normalize for different peak (TC4) temperatures. Though this approach is deemed 

sufficient to support the ultimate conclusions of the validation analysis, it is less accurate 

than using the physics model as was done to normalize PB2 failure pressure for its 

differenent temperature profile vs. PB1 (see Equation 5.22 and column 12 in Table 5.8). But 

it was determined late in the validation project that working with just PB1 and PB4 tests led 

to unacceptably large tolerance intervals for many of the realizations of normalized failure 

pressures. There was insufficient time to use the simulation model for PB 2 and 10 analogues 

of Equation 5.22 given the model’s ~month-long run times on 800 processors.    

 

  
 

Figure 5.11. Pipe axial (left plot) and circumferential (right plot) TC temperatures at time of failures in 

the 650-hold and 700C-hold experiments.  



Tables B.4 and B.6 list sample realizations from the normalization of PBs 2 and 10. Columns 13 

contain the realizations of the normalized failure pressures. The realizations are histogrammed in 

Figure 5.9. In the figure the normalized 650C-hold  PB 2 and 10 results are lower by 50 – 100 psi 

on average than the normalized PB 1 and 4 results. It would not be surprising to get a systematic 

difference between the normalized 650C-hold  PB 2 and 10 results vs. the normalized 700C-hold 

PB 1 and 4 results. The PB 2 and 10 tests involve pipe temperature fields that are more than a 

small perturbation away from the reference PB1 conditions. Moreover, normalization for this 

large difference was not as accurate as it could have been if project resources would have 

allowed running the physics model at the PB2 and PB10 input conditions. Instead, a less accurate 

approach considered only the hottest TC’s temperature (TC4) and normalized using the 

relationship in Figure 2.6 as described in Appendix B.  

 

The J=1000 realizations for each of the four PB tests normalized to the reference PB1 

experimental conditions are histogrammed in Figure 5.9. From these, J=1000 TIs are 

constructed: a 4-sample 0.95/0.90 TI is constructed for each row of estimates of normalized 

failure pressures in column A12 of Table 5.7 and columns 13 in Tables 5.9, B.4, and B.6. Again, 

a convenient notional representation of the significance of the 1000 TIs is portrayed in Figure 

5.10. Uncertainty bands of the 1000 lower ends and 1000 upper ends of the constructed TIs are 

portrayed. Actual values defining such uncertainty bands for the present problem are binned in 

Table 5.10. Corresponding histograms are shown at right in Figure 5.12. In the next section we 

compare and interpret these uncertainty ranges against the uncertainty ranges for predicted 0.025 

and 0.975 percentiles of response from model simulations (Figure 5.5).  

 

 
Table 5.10  Binned endpoints of 0.95/0.90 TIs constructed from realizations of normalized 

failure pressures of tests PB 1, 2, 4, 10.  

bins,  2.5%ile  
(µ - 4.94σ,  
4-sample 
95/90 Tol. 

Intvl.) Frequency Cumulative % 
 0 2 0.20% 
 50 2 0.40% 
 100 15 1.90% 
 150 67 8.61% 
 200 120 20.62% 
 250 208 41.44% 
 300 218 63.26% 
 350 202 83.48% 
 400 116 95.10% 
 450 40 99.10% 
 500 9 100.00% 
 

 

bins,  97.5%ile 
(µ + 4.94σ,  
4-sample 
95/90 Tol. 

Intvl.) Frequency Cumulative % 
 570 0 0.00% 
 630 11 1.10% 
 690 65 7.61% 
 750 135 21.12% 
 810 214 42.54% 
 870 265 69.07% 
 930 183 87.39% 
 990 96 97.00% 
 1050 26 99.60% 
 1110 4 100.00% 
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5.4 Model validation comparisons and observations 
 
In Figure 5.12 the histograms reflect Table 5.10’s binned uncertain values of the upper and 

lower endpoints of 0.95/0.90 tolerance intervals from the four normalized tests. As explained 

earlier, the interval uncertainties input to the data normalization operations are temporarily 

represented as uniform PDFs and sampled accordingly. If the interval uncertainties were 

instead propagated as intervals, the lower and upper interval limits on the 0.975 percentile of 

response would extend somewhat beyond the range of the red histogram in Figure 5.12. But 

the joint extremes of the uncertainty ranges that would produce these interval limits are 

considered exceedingly unlikely. Instead the 0.05 and 0.95 percentiles of the red histogram 

are chosen to represent a more reasonable range of uncertainty for the 0.975 percentile of 

response (failure pressure). The corresponding red interval in the figure represents the 

moderated interval uncertainty used in the following. Similar considerations underlie the 

rightmost green interval in the figure. 

 

The histrograms at right in Figure 5.12 were constructed from interval uncertainties input to the 

data normalization operations. But the methodology is readily extendable to non-interval 

uncertainties. Any of the random and systematic measurement/processing/inference uncertainties 

in the columns of the spreadsheets could alternatively have been PDFs or histograms or 

probability boxes [44]. The sampling and processing would be similar to what has been 

presented, but the sample realizations would be drawn from PDFs and/or histograms and/or 

probability boxes and/or interval uncertainties. In any of these cases, histograms like at right in 

Figure 5.12 would result. It is recommended that corresponding intervals like the ones at right in 

the figure be used for comparison to uncertainties of the model-predicted percentiles. But if all 

data uncertainties are represented as PDFs in the columns, the simplified treatment discussed in 

section 5.5 can be employed and the resulting histograms can be interpreted as a PDFs of 

probabilistic uncertainty. Then either the PDFs or representative spans, e.g. the 0.05 to 0.95 

spans, can be compared to the uncertainty ranges of the model-predicted percentiles.   

 

 

 



 

Figure 5.12  Model validation comparison of uncertainty ranges of simulation percentiles of response 

and normalized experimental percentiles of response.  

 

 

The red and green intervals at left in Figure 5.12 are obtained from the 0.025 and 0.975 

percentiles of the upper and lower Normal PDFs of predicted response in Figure 5.5. Consider 

the green intervals in Figure 5.12 for 0.025 percentiles of predicted and experimental response. 

The green intervals do not overlap. Therefore it is straightforward that, for this lower percentile 

of response, the model predicts higher failure pressures than inferred from testing. If, for 

instance, this lower percentile of response is written into a design or safety spec that <2.5% of 

pipes of this design are to fail under applied pressure and temperature conditions emulated in the 

tests, then the experiments are indicating a lower failure pressure for 2.5% of pipes than the 

model is predicting. The model therefore gives unconservative predictions for these 

circumstances.  

 

How these results extrapolate to other applications of the constitutive model (different pressure 

vessel geometries, heating conditions, wall thicknesses, etc.) is a very difficult issue and beyond 

the scope of this project. But with some reasonable assumptions and a little more analysis one 

could take the results in Figure 5.12 and extend them to cases where the same pipe design and 

experimental conditions exist but the spec has lower allowable percentages of failure like 1% or 

0.001%. We could tentatively conclude similarly that the model would be unconservative for 
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those spec regimes as well. With less assumptions one could reprocess the experimental and 

simulation data for a more definitive assessment of prediction conservatism or not, and by how 

much, for specific individual percentiles of behavior. For example, the data can be reprocessed 

for two-sided confidence intervals on an individual percentile of interest like the 99
th

 percentile 

of behavior, or can be reprocessed for one-sided confidence or tolerance bounds associated with 

a prescribed statistical confidence that a particular percentile of response meets, exceeds, or does 

not encroach upon a threshold response level, from below or above as specified.   

 

Now consider the red intervals in Figure 5.12 for 0.975 percentiles of response. These intervals 

overlap and the experimental and simulation uncertainties they represent are statistically 

independent. Therefore there are numerous possibilities that the experimental 0.975 percentile of 

response is higher than the predicted 0.975 percentile, and vice versa. So we cannot conclude, as 

was done for the 0.025 percentile, that the predictions are unconservative (or alternatively that 

they are conservative). One limiting case for these ranges of uncertainty is that the predicted 

0.975 percentile is as high as 951 psi as labeled in the figure, while the experimental percentile is 

as low as 669 psi, as labeled. In this limiting case the predicted 0.975 percentile is up to 282 psi 

higher than the experimental percentile. The opposite limiting possibility is that the predicted 

0.975 percentile is as low as 814 psi, while the experimental percentile is as high as 969 psi. 

Then the predicted 0.975 percentile is as much as 155 psi lower than the experimental percentile. 

 

Thus the uncertainty U{predicted 0.975 percentile minus experimental 0.975 percentile} = [-155, 

282] psi = the model’s range of potential prediction bias. Information in this form accounts for 

all the experimental and simulation non-traveling uncertainties combined. This combined non-

traveling uncertainty defines the uncertainty resolution limit below which the model’s exact bias 

cannot be determined (similar to the concept introduced in [34], and adopted in [22], but which 

does not distinguish between traveling and non-traveling uncertainties).  

 

Because the non-traveling uncertainties of the simulations and experiments are combined, a 

given source of non-traveling uncertainty can be aggregated either with the simulation non-

traveling uncertainties, or with the experimental non-traveling uncertainties, and the combined 

experimental and simulation uncertainty will be essentially the same—provided a few 

restrictions are met as discussed in Appendix A. Hence it is often a matter of convenience, 

constrained by convention and sensibility, where individual (negligibly correlated or interacting) 

non-traveling uncertainties are brought into the Real Space accounting ledger—either within the 

simulation UQ rollup or within the experimental UQ rollup. An example of such 

interchangeability is given in Appendix A. 

 

How to best use a model’s validation-characterized bias uncertainty to mitigate prediction risk in 

use of the model beyond the validation conditions is beyond the scope of this document. This is a 

very difficult question and an active area of research (see e.g. [6], [8], [26], [28]). See also [35] – 

[37] for different extrapolation approaches based on other representations of model bias 

information.  

 

As a final observation, correlation exists among the realizations that define the ranges of the red 

and green intervals on the simulation side in Figure 5.12. Correlation (but weaker) also exists 

among the realizations that define the ranges of the red and green intervals on the experimental 



side. Given the correlation structure there are many more possibilities (potential realizations) that 

the distance between the 0.025 and 0.975 predicted percentiles is less than the distance between 

the 0.025 and 0.975 experimental percentiles. This tends to indicate that the predicted variance of 

failure pressures is less than the experimental variance. However, arriving at a firmer 

quantitative conclusion requires processing the experimental and simulation data each for 

variance and uncertainty thereof, and then compare the results. Likewise, the relative positioning 

of uncertainty ranges tends to support a conclusion that mean experimental failure pressure is 

lower than the mean predicted failure pressure. But one would have to process for mean 

estimates and uncertainty thereof in order to form a firm conclusion.  

  

5.5 Simpler treatment for problems involving suitably-random measurement 
errors or insignificantly small random measurement errors 

 

Consider a situation where the exact locations of failure initiation in the four pipes were 

somehow known a-priori. Then the temperature and wall-thickness values at the failure locations 

could have potentially been measured. If measured, and if errors in the measurements are  

Normally distributed random perturbations about the actual values in the four tests, then the data 

normalization treatment in section 5.3 can be simplified and a significant decrease of overall 

experimental uncertainty in Figure 5.12 would result. Columns A9, B9, C9, D9 in Tables 4.6, 

4.8, B.3, and B.5 would be eliminated because the uncertainty associated with location is 

eliminated. But more to the point of this section, a generic simplification is possible given 

Normality of random measurement errors over the tests. For example, let the (uncorrelated) 

temperature measurement-error uncertainty ranges in columns A7, B7, C7, D7 be replaced by 

uncorrelated Normal PDFs whose ± 3 standard-deviation extents lie at the ends of the stated 

ranges. Let analogous PDFs replace the (uncorrelated) wall-thickness uncertainty ranges in 

columns A3, B3, C3, D3.  

 

If the normalization protocol in section 5.3 is followed, these Normal PDFs would be sampled 

for potential combinations of random measurement errors in the four tests. This is still legitimate 

under the new conditions of this section. But when linked with the 0.95/0.90 Tolerance Interval 

approach to account for limited #s of replicate tests (section 5.3.3), the processing although 

legitimate is unnecessary and perhaps yields overly conservative results. Numerical experiments 

for generic problems show this ([45]). Conservatism is shown in to increase as the number of 

replicate tests increases, as the number of measurement error sources increases (represented by 

the wall and temperature measurement sources here), and as the magnitude of potential 

measurement errors (spread of the error PDFs) increases.  

 

Therefore, if the conditions described in the first paragraph of this section did exist, it is judged 

that the generic problems studied ([45]) are similar enough to support a recommendation to alter 

the normalization protocol from section 5.3. The random component of measurement error 

would be ignored. This is equivalent to having constant values in columns A3/B3/C3/D3 and 

A7/B7/C7/D7 instead of randomly sampling from the uncertainty ranges presently prescribed in 

the columns. The fixed values would be at the midpoints of the said uncertainty ranges, as these 

correspond to the means of the Normal PDFs of measurement errors postulated above. Based on 

the studies [11] and [45] it would not be surprising if this simplified treatment is also applicable 

for random measurement errors governed by reasonably symmetric central-tending PDF shapes 
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and even uniform PDFs over the stipulated uncertainty ranges. But numerical experiments have 

not yet been conducted to assess this.  

 

If using a different approach such as the Pradlwarter-Schueller method [14] or bootstrapping to 

compensate for limited #s of replicate tests, it is presently not recommended that random 

measurement errors be ignored even if Normally distributed. More research is necessary. For 

example, over the test cases in [11] it was found that the Pradlwarter-Schueller approach is 

substantially less reliably conservative than the (~90% reliable) 0.95/0.90 TI approach. Sampling 

for the random measurement error possibilities, per the protocol in section 5.3, may serve to 

increase to acceptably high levels the reliability of using the Pradlwarter-Schueller approach. But 

this has not been investigated or established yet. Bootstrapping has also not been investigated in 

this context. 

 

If random uncertainties among replicate tests are not present or are insignificantly small, or do 

not need to be sampled because they are Normal or otherwise suitably distributed and a TI 

approach is being used, then a simplified approach can be taken (see e.g. [28], calibration-data 

section) to process the systematic uncertainties in the problem if the following additional 

restriction is met:  

─ no scaling of the systematic uncertainties is present (i.e., a value 1.0 exists in place of 

scale factors 1.07 and 0.95 in columns C5 and C8 (Table B.3) and 1.13 and 0.92 in 

columns D5 and D8 (Table B.5)). 

The simplifications discussed in this section do not apply for the PB problem. The wall 

thicknesses and temperatures at the failure locations vary randomly from test to test. But the 

associated interval uncertainties in columns A3/B3/C3/D3, A7/B7/C7/D7, and A9/B9/C9/D9 are 

estimated by rather crude techniques—the variations are not actually measured (with known 

~symmetric probability distributions for measurement error about the measured values). Hence 

the interval uncertainties reflect two types of uncertainty. A large element of epistemic 

uncertainty exists in the interval descriptions which attempt to characterize possible random 

variability in the tests. This brings into question potential similarities to the generic problems 

previously studied ([45]) and the scenario outlined at the top of this section, which have no error 

or epistemic uncertainty in their PDF characterizations of random variability in the replicate 

tests. So for the PB problem it is most prudent to use the more conservative interval-respecting 

UQ treatment in section 5.3. 

 
  



6. Closing Remarks 

 

A pragmatic and novel Real Space model validation methodology has been presented that is 

geared for: 

 very expensive computational models (minimal number of function evaluations); 

 quantification and economical management of mesh and solver discretization effects; 

 rollup of various types, sources, and representations of uncertainty; 

 sparse experimental data; 

 multiple replicate experiments; 

 stochastic phenomena and models. 

 

The validation approach and metrics: 

 segregate aleatory and epistemic uncertainties in the validation activity;  

 are relatively straightforward to interpret; 

 are especially suited for assessing models and prediction quantities to be used in the 

analysis of performance and safety margins. 

 

Among the other established model validation frameworks discussed in Appendix C, the Real 

Space approach appears to uniquely have the required features to appropriately handle all the 

attributes of the PB validation problem. See [7] and [8] for further comparisons of the Real 

Space approach against other established model validation frameworks.  

 

In the PB validation problem the largest uncertainty contributors are the sparseness of repeat 

experiments at the pipe level, followed by solution uncertainty (discretization effects), and then 

by experimental variations and uncertainties in the tests. Substantial simplifications, 

approximations, and assumptions have been made in representing and processing these 

uncertainties in a practical and affordable manner given the high computational expense of the 

model and the experimental challenges and constraints. It is judged that the large magnitude of 

the experimental and modeling/simulation uncertainties themselves—and not the propagation 

errors from uncertainty linearization and decoupling in processing the uncertainties—dominate 

the results. Given the uncertainties, it could not be determined whether the model is biased high 

or low (relative to the tests) in prediction of the 0.975 percentile of failure pressure. But at the 

lower end of response, model bias shows up unequivocally. The tests indicate a lower 0.025 

percentile of failure pressure than the model predicts. So the model (without a factor of safety) 

may be unconservative for design or safety analysis purposes in that actual failures at the lower 

end of the failure-pressure spectrum are indicated to occur at lower pressures than the model 

predicts.  

 

The experimental and simulation results could be reprocessed for similar validation comparisons 

of other statics of response such as mean, variance, and individual percentiles. By analogy with 

the presented example, the reader should be able to treat a large variety of model validation 

applications, issues, constraints, and purposes that arise in industrial practice. 
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Appendix A: Example of bias correction for spatially correlated temperature measurement  

                       errors 

 

Thermocouple (TC) temperature measurements for steel surfaces at temperatures very different 

from the effective temperature of the surroundings can have significant measurement error 

caused by TC contact resistance and fin effects ([Nakos et al.]). This “TC attachment” 

measurement bias can, for properly calibrated TCs, swamp errors associated with the data 

acquisition system, the calibration procedure, and TC-to-TC accuracy variations due to 

manufacturing variability ([Nakos]). The primary factors governing attachment bias error are: the 

TC wire/bead diameter; method of TC bonding or attachment to the surface; temperature 

differences between the measured surface and the effective radiative and convective 

temperatures of the surroundings; and the convective and radiative properties and conditions 

affecting heat transfer between the TC bead and its surroundings.  

 

The experimental and physics modeling investigations and analysis in [Nakos et al.] provide a 

sufficient basis to estimate the attachment bias errors in the PB project. Early in the PB 

validation analysis a miscommunication occurred regarding the diameter of the TCs used in the 

project. It was initially understood that the TCs had a wire/bead diameter of 0.05”. This lies 

between the 0.04” and 0.063” diameter data sets in [Nakos et al.]. Adjustments of the 0.04” and 

0.063” diameter data were made for differences in geometry and the surrounding conditions in 

the PB experiments vs. the experiments in [Nakos et al.]. The adjusted data were then 

interpolated to get TC measurement biases and corresponding corrections for 0.05” diameter TCs 

as exemplified in Figure A.1. With the environment and geometry parameters fixed for a given 

PB test, TC measurement bias and associated corrections vary in sign and magnitude according 

to the TC’s temperature and location (which dictates its radiative and convective environment). 

Therefore the % bias and correction varies in time and space. Figure A.1 shows that the TCs 

facing the heating plate register hotter temperatures than the surface they are attached to, and 

therefore require downward (negative) correction. The TCs on the unheated back side of the pipe 

are cooled by the environment they are exposed to, so they register cooler temperatures than the 

surface they are attached to, and therefore require upward correction.       

 

A simulation was run with nominal corrections to the TC temperatures. The same solver settings 

and 1tt mesh full-model were used as for the calculations in sections 4.2 and 4.3.  

The calculated failure pressure was 24 psi greater with TC correction. Lowering the hot-spot 

region temperatures as indicated in Figure A.1 has the effect of strengthening the pipe wall 

material there. So a higher pressure is required to initiate failure. Figure A.2 shows a 

corresponding +24 psi offset arising from TC measurement bias correction. Uncertainty on the 

nominal corrections was not determined because this would require more model simulations, 

which could not be afforded.  

 

 

 



 
Figure A.1:  Percent bias corrections to TC temperatures input to simulation of test PB1 with 
hypothetical large TC diameters of 0.05”. Corrections are for the shown temperature field at the 
time of failure. Corrections are for temperature measurement errors caused by contact 
resistance between TC and the surface it is attached to, and by convective and radiative heat 
transfer between TC wire/bead and the surroundings.  

 

 

It is judged that the true TC bias corrections for each TC are within +/- 50% of the nominal 

corrections used in the simulation. The methodology for estimating the nominal corrections arose 

from a single person’s (the first author’s) analysis and projection of the information in [Nakos et 

al.], so a high degree of systematic error may exist in the calculated biases and corrections. 

Therefore their uncertainties would be treated as highly correlated over the pipe surface. In any 

case, uncertainties could not be explored because of simulation budget constraints.     

 

Later in the project it was determined that intrinsic TCs with an order of magnitude smaller 

diameter, 0.005”, had actually been used. This made the TC-attachment component of 

measurement error much less important. Therefore the truncated approach explained in Section 

5.3.1 was used for this component of error. A data set in [Nakos et al.] close to 0.005” diameter 

was used to get the TC attachment bias and uncertainty values in Equation 5.12.  

 

Note that the approach in this appendix put the correction (and any uncertainty that would have 

been affordable to quantify) into the Simulation UQ Rollup. But the truncated approach in 

Section 5.3.1 adds the correction (and associated uncertainty) to the processing and rollup of 

experimental uncertainties. The correction is in the positive (+) direction in the simulation UQ 

rollup, whereas it is in the negative (-) direction in the experimental UQ rollup. This is 

consistent, and an important property of the Real Space validation method when treating non-

traveling uncertainties, as we are dealing with here.  
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Figure A.2:  Early version of Figure 5.5 with +24 psi failure pressure correction labeled ‘TC bias 
correct’ arising from nominal corrections to TC temperatures input to simulation of test PB1 (for 
hypothetical large TC diameters of 0.05”).  

 

 

For example, the indicated correction of +24 psi for 0.05” dia. TCs can be added to the 

simulation UQ rollup as we established for Figure A.2. This moves the simulation result up 

relative to the experimental failure pressures. The experimental data is not normalized with 

respect to this factor because the input TC temperatures in the simulation have been corrected (as 

close as we can reasonably come) to be the actual temperatures that occurred in the experiments. 

Then the simulations and experiments are on the same basis with respect to this factor.  

 

Alternatively the bias correction can be applied to the experimental results. Then the rolled-up 

simulation results in Figure 5.5 apply (where no correction for TC measurement bias has been 

done). Then the experimental result is normalized downward by 24 psi to put it on the same basis 

of biased temperatures that the simulations were run with. That is, the experimental failure 

pressures correspond to the actual temperatures at the TC locations, not to the biased measured 

values input to the validation simulations. To normalize the experimental results to the 

temperature conditions input to the simulations (to put experimental and simulation results on the 



same basis for comparison), we use the model to estimate how the experimental failure pressures 

would change if the pipe temperatures were perturbed to the biased temperatures in the 

simulations. We have already established that the model run with the biased temperatures gives a 

24 psi lower failure pressure than the model run with the corrected temperatures. Thus we 

estimate that experimental failure pressures would change commensurately, decreasing by 24 psi 

and thereby moving downward relative to the simulated failure pressure.   

 

So either the simulation results are corrected up by 24 psi relative to the experimental results, or 

the experimental results are corrected down by 24 psi relative to the simulation results. Either 

case gives essentially the same combined uncertainty range
5
 for the model’s prediction bias, as 

discussed in section 5.4. Thus it is often a matter of convenience, constrained by convention and 

sensibility, where individual (negligibly correlated or interacting) non-traveling uncertainties are 

bought into the RS accounting ledger—either within the simulation UQ rollup or within the 

experimental UQ rollup.   
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5
 This assumes that the same UQ propagation approaches are used for simulation uncertainty rollup and for 

normalization of the experimental data, something not done in the present chapter. Even if the same UQ propagation 

approaches are used, small differences in the combined uncertainty may exist if interval descriptions exist for some 

or all non-traveling uncertainties in the simulations and experiments. 
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Appendix B: Description of PB2 and 10 tests and Normalization of their failure pressures  to 

PB1 reference nominal conditions 
 

This appendix pertains to section 5.3.4, which introduces this appendix. Figures B.1 and B.2 

plot the thermocouple temperature histories in tests PB2 and PB10. The peak hot-spot 

temperatures at the pipe front-center location, as indicated by TCs #4 in each plot, were 

ramped at a rate of approximately 31C/min., just as for PB1 and PB4.  

 

 
Figure B.1  Thermocouple temperature measurements in experiment PB2. TC numbering in this 

figure corresponds to numbered locations in Figure 4.3.   

 

 



 
Figure B.2  Thermocouple temperature measurements in experiment PB10. TC numbering in 

this figure corresponds to numbered locations in Figure 4.3.   

 

 

Table B.1 lists the linear regression values (over the last 60 seconds before failure) of the TC#4 

temperatures. Tests PB 2 and 10 also used intrinsic TCs of 0.005-inch diameter, so very small 

measurement uncertainties exist due to random and systematic sources of error described in 

Section 5.3 (see Equations 5.9 and 5.10). The largest uncertainties are indicated in Table B.1, 

corresponding to the hottest TCs on the pipes. These uncertainties are less than the line thickness 

in the plots in Figures B.1 and B.2. 

 
Table B.1  Pipe front-center thermocouple temperature at failure in 650C-hold 

experiments  

Exper. Measured 
temperature at 

failure 
(after regression) 

% uncertainty in 
temperature 

measurement  

uncertainty in 
temperature 

measurement 

PB 2 672 C 
[-0.25%, +0.5%] 

of reading in 
degrees C 

[-1.7, +3.4] C 

PB 10 648 C 
[-0.25%, +0.5%] 

of reading in 
degrees C 

[-1.6, +3.2] C 
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When the control TC4 in each test reached nominally 650C, this temperature was maintained 

while the pipes were pressurized until failure as shown in Figure B.3. Pressures were measured 

with the same pressure gage as in tests PB1 and 4. Therefore the uncertainty is within +/- 10 psi 

of the measured pressures in the figure. This amounts to about double the line thickness in the 

plots. Table B.2 lists the failure pressures and measurement uncertainties for the PB2 and PB10 

tests. These measurement uncertainties are perfectly correlated with those in the PB1 and PB4 

tests because the same pressure gage was used in all four tests.  

 
   Table B.2  Failure pressures measured in 650C-hold experiments. Pressure measurement 

uncertainties are explained in Section 5.1.1.  

Exper. Measured 
pressure at 

failure  

Uncertainty in 
pressure 

measurement  

PB2 587 psi ± 10 psi 

PB10 647 psi ± 10 psi 

 

 

The target pressure ramp rate of 1.3 psi/sec. was met within a few % in both tests, same as in 

tests PB1 and PB4. PB2 pressurization started about 40 sec. after 650C was reached. PB10 

pressurization started about 30 seconds after 650C was reached. In tests PB1 and PB4, 

pressurization started respectively about 4 minutes and 1.5 minutes after the target temperature 

of 700C was reached. These test-to-test differences in pressurization delay after target 

temperatures were reached are not expected to affect failure pressure levels significantly. 

Certainly they do not in the model simulations because the modeled physics are agnostic to any 

such time delay effects.  

 

Figure B.3 also shows the pipe axial loading profiles in the two experiments. The uncertainty on 

the axial loading measurements is ±0.1% of reading, or < ±3 lb. for the highest axial load in the 

tests. This is far less than the line thickness in the plots. Investigations with the PB model 

indicated that this magnitude of uncertainty has negligible effect on failure pressures. 

 

Table 5.3 lists minimum and maximum measured pipe-wall thicknesses for tests PB2 and PB10. 

These min to max ranges of thickness are less than the ranges for PBs 1 and 4. Therefore, 

significantly smaller normalization variance exists for wall-thickness normalizations of PBs 2 

and 10 than for PBs 1 and 4.   

 

 

 



 
 

 

 
 

Figure B.3  Measured pressure (referenced to scale on right axis), and axial fixture loading 

(referenced to scale on left axis) in 650C-hold pressurization experiments. Note that plotted 

PB10 results here were incorrectly shifted to zero reference time. These results must be 

shifted earlier by 123 sec. so that the failure time in this plot coincides with that in Figure 

B.2 at 1769 sec.    

 

 

 



97 
 

 

PB2 normalization 

 

Tables B.3 and B.4 list test PB2 normalization quantities and sample realizations. Again, the 

quantities in yellow highlighted columns C2, C5, C8, and C10 designate correlated results with 

the analogous columns for tests PB1 and PB4. Different initial seeds are used to sample all 

column quantities for PBs 1, 2, 4, and 10 except for the yellow-highlighted columns. The green-

highlighted entries in Table B.3 denote changes from PB4’s Table 5.8. Of particular note are the 

entry in column C12 and the multipliers 1.07 and 0.95 in columns C5 and C8. These are 

explained next. 

 

The quantity in column C12 represents the third row of Equation 5.20, which here becomes the 

failure pressure adjustment for differences between the nominal input conditions for tests PB2 

and PB1. It was determined late in the project to include the PB2 and 10 tests in the validation 

assessment, so there was insufficient time to use the simulation model to evaluate the PB2 

analogue of Equation 5.22. Therefore we used the following strategy.  

 

It is observed that the small differences in pressurization delay times and ramp rates in the tests 

will not yield differences in predicted failure pressures because the modeled physics are agnostic 

to such differences. But temperature field differences will affect predicted failure pressure. We 

note from Figure 5.11 that the spatial temperature field is approximately the same shape for PBs 

1, 2, 4, and 10, but the fields are vertically shifted relative to each other in the hot spot region. 

This region, and in particular the mapped peak temperature at TC4 in the simulations, determines 

the calculated failure pressure far more than any of the other TCs. We make an approximation 

that the predicted failure pressure depends fully on the differences of the TC4 peak temperatures 

at failure. The applicable temperatures are then 707C @failure for TC4 in PB1 (Table 5.2) and 

672C @failure for TC4 in PB2 (Table B.1). Therefore the entry in column C12 of Table B.3 

serves as an approximate replacement for the term in row 1 of the RHS of Equation 5.23. The 

said temperature difference is proposed to affect the predicted failure pressure in the way that the 

other approximate temperature-related adjustments in columns C7-C9 do, via the temperature 

effect factor in column C10, obtained from the trends in Figure 2.6.   

 

The multiplier 0.95 in column C8 adjusts the uncertainty of TC4 temperature measurement error 

∆Tmeas-contact caused by convective and radiative heat losses from the TC and by contact resistance 

between the pipe surface and the TC. An adjustment to the lower and upper uncertainty bounds 

in Equation 5.12 is required because the PB2 TC4 temperature at failure (672C) is significantly 

different from the PB1 and PB4 temperatures of 707C and 711C for which the values in 

Equation 5.12 apply. From [32] the uncertainty bounds in Equation 5.12 are reduced by 5% for 

PB2’s TC #4 @ 672C. The implementation of this adjustment in column C8 preserves the 

correlation with realizations in columns A8, B8, and D8 for PBs 1, 4, and 10. This enforced 

correlation reflects the view that the ∆Tmeas-contact error is consistent among TC4s in the PB tests 

rather than randomly differing. But epistemic uncertainty exists regarding the value of ∆Tmeas-

contact error at a given temperature (e.g. per Equation 5.12).  

 

 



 

Table B.3  Spreadsheet formulas for uncertain experimental quantities in modified version 
of Equation 5.23 for test PB2  
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Table B.4  Spreadsheet realizations for uncertain experimental quantities in test PB2  
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The multiplier 1.07 in column C5 adjusts the upper and lower bounding slopes 
           

    
 in 

Equation 5.8 to PB2 temperature conditions. First it is noted that the calculated failure pressure 

at the nominal 0.02” wall thickness in Figure 5.8 corresponds to a PB1 hot-spot TC4 temperature 

of 707 C. This calculated failure pressure is then adjusted to a PB2 TC4 temperature of 672 C as 

follows. A temperature effect factor of 
        

               
 = -1.94 psi/C is calculated as the average 

of the upper and lower bounds in Equation 5.17. These bounds are derived from a consideration 

of Figure 2.6 over the temperature range 600C – 800C applicable here. We have  

Eqn. E.1         PfailPB2-modeled( ⃗nomPB2) ≈ PfailPB1-modeled( ⃗actPB1) +  

                                                                  +  
           

               
 (Temp_TC4-PB2 - Temp_TC4-PB1)  

    

   = 839 psi + (-1.94 psi/C)(672 C - 707 C)  

   = 907 psi. 

 

In Figure 5.8 we plot the temperature-adjusted failure pressure 907 psi at a wall thickness 

abscissa of 0.02”.  Through this point we create a line intersecting also the origin of the plot from 

physical reasoning that zero wall thickness must corresponding to failure pressure = 0. This line 

has a slope = 45,345 psi/in. Thus the original calculated slope 42,286 psi/inch for PB1 nominal 

conditions must be multiplied by an adjustment factor of 1.07 to get the PB2 temperature-

adjusted slope of 45,345 psi/in. We use this same multiplier 1.07 to similarly adjust the lower-

bound slope in Equation 5.8. Hence, 

 

Eqn. E.2           
           

               
 = 1.07∙ 

           

               
 

 

The implementation of this equation in column C5 preserves the correlation with realizations in 

columns A5, B5, and D5 for PBs 1, 4, and 10. This enforced correlation represents the view that 

failure pressure (adjusted for temperature differences as above) scales with wall thickness 

similarly in the tests—not randomly from test to test—but epistemic uncertainty exists regarding 

the scaling value as reflected in the different experimental and simulation-based estimates in 

Figure 5.8.  

 

Column C13 of Table B.4 contains the realizations of uncertainty of PB2 failure pressure when 

normalized to the nominal PB1 reference experimental conditions input to the model simulations 

in Section 5.2. These realizations are histogrammed in Figure 5.9.  

 

The statistics at the bottom of Table B.4 summarize the impacts of various uncertainties in the 

normalization of PB2 failure pressure. The green boxes reveal that the average adjustment in 

PB2 experimental failure pressure is greatest (-68 psi) due to normalization for the TC4 peak 

temperature difference between nominal PB1 and nominal PB2 conditions. 

 

Next in magnitude is -34.2 psi for average normalization adjustment for possible differences 

from the nominal 0.02” wall thickness in the simulations. This is a much larger mean adjustment 

than the -17.8 psi mean adjustment for PB1 normalization, but much smaller than the -62.8 psi 

mean adjustment for PB4 normalization.  

 



Next in magnitude is -1.5 psi average adjustment for the other temperature normalizations for 

columns C7-C9. The green box in column C2 shows a zero average bias adjustment for failure 

pressure measurements error. The green boxes show a combined bias shift of -103.4 psi from the 

nominal measured failure pressure of 587 psi in Table B.2. The resulting average normalized 

failure pressure is 483.6 psi listed in the pink box at the bottom of Table B.4.  

 

The grey boxes in Table B.4 show the relative contributions to normalization uncertainty. 

Potential wall thickness differences are the largest uncertainty contributor (standard deviation of 

21.1 psi), but this is significantly smaller than the values 28.1 psi for PB1 and 39.1 for PB4.  

 

The square root of the sum of squares of the contributing standard deviations in the grey boxes is 

28.1 psi. This closely agrees with the value 27.2 psi in the pink box calculated directly from the 

realizations in column C13. The normalization uncertainty for PB2 is smaller than for PBs 1, 4, 

and 10 as reflected by the relative widths of the distributions in Figure 5.9. 

 

PB10 normalization 

 

Tables B.5 and B.6 list test PB10 normalization quantities and sample realizations. The 

comments above concerning the yellow highlighting of columns apply here as well. The green-

highlighted entries in Table B.5 denote changes from PB2’s Table B.3. Changes that may need 

explanation are the following. Column D8: the uncertainty bounds of Equation 5.12 are reduced 

by 8% for PB10’s TC4 failure temperature of 648C. Column D5: use Equation B.1 and change 

its PB2 failure temperature of 672 C to a value 648C for PB10. A result of 953 psi is obtained. 

Then perform the steps in the paragraph following Equation B.1, where 907 psi in that paragraph 

is replaced by 953 psi and PB2 is replaced by PB10. The result is the multiplier 1.13 in column 

D5. 
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Table B.5  Spreadsheet formulas for uncertain experimental quantities in modified version 
of Equation 5.23 for test PB10  
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Table B.6  Spreadsheet realizations for uncertain experimental quantities in test PB10  

 
 

 

 



Column D13 of Table B.6 contains the realizations of uncertainty of PB10 failure pressure 

when normalized to the nominal PB1 reference conditions. These realizations are 

histogrammed in Figure 5.9.  

 

The green boxes at the bottom of Table B.6 reveal that the average adjustment in PB10 

experimental failure pressure is greatest (-114.2 psi) due to normalization for the TC4 peak 

temperature difference between nominal PB1 and nominal PB10 conditions. Next in 

magnitude is the average normalization adjustment of -2.7 psi due to the other temperature 

normalizations for columns D7-D9. Next in magnitude is the 0.4 psi mean adjustment due to 

possible differences from the nominal 0.02” wall thickness used in the simulations. This is so 

small (much smaller than for any of the other PBs 1, 2, and 4) because of the perfect 

symmetry (about the nominal 0.02”) of the uncertainty range listed in column D3 of Table 

B.5.  

 

The green boxes yield a combined normalization shift of -116.5 for PB10. This shift, due 

predominantly to PB10’s much lower hot-spot temperature, is the largest combined 

normalization shift vs. any of the other tests (PB 1, 2, 4).  

 

The grey boxes in Table B.6 show the relative contributions to normalization uncertainty. 

Potential wall thickness differences are the largest uncertainty contributor (standard deviation 

of 20.8 psi). This is similar to the value for PB2 but significantly smaller than the values 28.1 

psi for PB1 and 39.1 for PB4.  

 

The square root of the sum of squares of the contributing standard deviations in the grey 

boxes is 28.6 psi. This closely agrees with the value 29.0 psi in the pink box calculated 

directly from the realizations in column D13. The normalization uncertainty for PB2 is 

slightly larger than for PB10 but still significantly smaller than the values 33 psi and 43 psi 

for PBs 1 and 4, which are driven mostly by their larger uncertainties of wall thickness. 
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Appendix C: Brief comparison of the Real Space model validation approach against several 

other established model validation approaches 
 

 

Some observations are made here concerning the applicability of several model validation 

methodologies to the pipe bomb validation problem. The Real Space approach appears to 

uniquely have the required features to appropriately handle all the attributes of the PB validation 

problem.  

 

─ It appears that the ASME VV20 methodology [22] and its companion document [38] on 

test uncertainty could be used to assess models of stochastic phenomena if the bias in 

mean response and uncertainty of the bias are the quantities of interest, although this is 

not discussed in [22]. Uncertainties due to limited #s of tests, due to stochastic variability 

in the systems tested, and due to random and systematic uncertainties contributed by the 

testing are all combined into a total “validation uncertainty”. However, the Real Space 

method’s percentile measures of stochastic behavior in Figure 5.12 reflect uncertainty of 

both mean and variance of stochastic response, and may be more relevant for assessing 

the accuracy of models for certain analysis purposes involving predictions of stochastic 

behavior/response. Another feature of the RS method is that it separates uncertainty 

contributions into the three categories at left in Figure 5.10. This is important primarily 

because the uncertainties associated with stochastic material behavior and the limited # of 

material characterization tests are intrinsic aspects of the constitutive model being 

validated for eventual use in other application settings. These traveling uncertainties are 

treated differently in the RS framework than the non-traveling uncertainties contributed 

by the execution of the tests because traveling and non-traveling uncertainties have 

different implications for model predictivity in post-validation use of the model (see e.g. 

Appendix A in [8]). 

 

For problems involving non-traveling experimental uncertainties, Equation 5.4 with 

linear UQ ultimately yields the combined “validation uncertainty” in [22] when its 1
st
-

order linear UQ version is used and the non-traveling uncertainties from the simulations 

are taken into account per the different approaches in the two methods—provided the 

conditions in the examples in [22] are met: A) uncertainty is assumed to be probabilistic 

and represented and propagated accordingly; B) only non-traveling uncertainties exist in 

the models and experiments; C) the system of interest (in the models and experiments) 

has no significant degree of stochastic behavior/response affecting the quantities of 

interest. This is a reassuring corroboration of both methods (RS and [22]) for the subset 

of conditions cited, given that their derivations come from very different conceptual 

approaches. 

 

─ The Oberkampf & Barone approach [39] addresses the uncertainty elements at left in 

Figure 5.10 for stochastic system behavior/response and confidence levels from limited # 

of tests. But the measure of the stochastic behavior is limited to uncertainty of mean 

response. Furthermore, [39] does not address most of the uncertainties in the category 

‘experimental factors in the tests’. Systematic experimental uncertainties are ignored 

altogether. For model prediction a single deterministic model run is made for comparison 



against the uncertainty PDF of the experimental mean (a very limited basis for assessing 

accuracy and adequacy of models of stochastic phenomena).  

 

─ The validation approaches in [40] and [41] focus on models of stochastic phenomena or 

systems. The “area” validation metric compares CDFs (cumulative density functions) of 

predicted and experimental responses. A numerical value for discrepancy between 

experimental and predicted CDFs is obtained. A value of zero indicates perfect 

agreement at all CDF percentiles. However, for non-perfect agreement it is not clear how 

non-zero values relate to more directly interpretable measures of prediction error like 

mean prediction error, error of predicted standard deviation of response, or error of 

predicted percentiles of response. Furthermore, the methodology does not directly 

address epistemic uncertainty (including accounting for the bias toward underestimating 

experimental variability) from limited #s of tests—although the uncertainty indicated by 

the area metric is generally found to be larger for smaller #s of tests. The remaining 

element at left in Figure 5.10 (experimental factors in the tests) is only partially 

addressed. Random variations of experimental inputs and of measurement errors in 

multiple replicate experiments are treated, but systematic experimental uncertainties are 

not. In this regard [40] and [41] incur somewhat more Model User’s Risk concerning 

systematic uncertainties than the RS and ASME VV20 approaches do ([8]). The latter 

take a more conservative slant, mitigating Model User’s Risk by explicitly accounting for 

systematic measurement uncertainties.   

 

─ Two validation approaches are presented in the ASME VV10 methodology guide [42]. 

One is apparently an implementation of the approaches in [40] and [41], while the other 

does not address stochastic elements of behavior in the model predictions, so is very 

limited.   

 

─ Finally, in contrast to the other validation approaches mentioned, the Real Space 

methodology recognizes that models can have traveling epistemic uncertainties that are 

an intrinsic aspect of the model. These are not present in the PB validation problem but 

occur e.g. in [28], [29], and [43] as parametric uncertainties in physics modeling 

parameters, and in [29] as multiple plausible discrete submodels for turbulence. The RS 

method treats these differently from the non-traveling epistemic uncertainties contributed 

by testing because they have different implications for model predictivity in post-

validation use of the model (e.g. [6], and [8]-Appendix A and pp. 50).  

 
 


