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Outline ) &

= QOptical polarization in AlGaN based ultra-violet LEDs.

= Anisotropic and influenced by many variables.

= Used to determine internal emission patterns that affect light extraction.
= Experimental data on optical polarization and power (or

efficiency) of ~275 nm LEDs.

= Dependence on quantum well (QW) thickness

= Dependence on current (carrier density)
= Theoretical simulations.

= Created a model that matches experiential trends.

= Complex changes in valence subbands change optical polarization




Optical polarization in AlIGaN QW:s ) .
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= Use optical polarization to determine the internal emission patterns.

= |tis the emission patterns that affect light extraction efficiency.




Optical polarization in AlIGaN QW:s ) .

Four known variables that affect optical polarization:
= Al concentration in the AlGaN alloy.
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= Lower Al content is favorable. i
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= Lower carrier density is favorable.




Experimental details
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= ~275 nm AlGaN flip-chip LEDs.
= Active region:

3 periods of Al ,,Gay 5gN/Al csGag 45N
~2.6 nm and ~2.9 nm thick, respectively.
~78% compressively strained to AIN.

= Measured two ways:

Power from the bottom. (Efficiency of the LED.)

Polarized power from the side. (Internal emission
of the active region.)

Degree of pOIarization = (IE||y — IE||Z)/(IE||y + IE||Z)
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Optical polarization and power 1) .
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» Large dependence of bottom power and degree of polarization with position.
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Quantum well thickness varies ) s,
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= Growth variations produce thickness variations across the wafer.
= Therefore polarization and light extraction vary across the wafer.

= Use a polynomial fit to determine thickness vs. position.

= Find dependence of bottom power, peak wavelength, and degree of
polarization vs. quantum well thickness.




QW thickness dependence ) .
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Thinner quantum wells have:
= Higher and more favorable degree of polarization.
" |ncreased bottom power (improved extraction efficiency).
= |nternal emission pattern better overlaps with escape cone.
=  Shorter peak wavelengths.
= QOpposes Al composition trend on optical polarization.



Current (carrier density) dependence @
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= Degree of polarization decreases with current (or carrier density).
= Therefore extraction efficiency decreases with current.
= |dentified efficiency droop mechanism in AlGaN QWs.

= QOccurs for all investigated quantum well thicknesses.
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Theoretical simulations ) i,

= Schrodinger-Poisson solver to calculate the spontaneous
emission spectrum.

= Accounts for:
= Spontaneous and piezoelectric polarization.
= Screening potential introduced by charged carriers

= Many-body effects.

= Transform the spontaneous emission from inside to outside
the semiconductor to compare with experiment.

= Details in:

JOURNAL OF APPLIED PHYSICS 115, 174501 (2014)
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Comparing experiment and theory

82Experimental data:
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= Simulations match the experimental trends.
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QW thickness dependence ) S,
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= When QW thickness increases: i

= Separation of electron and HH, LH, and CH
wavefunctions increases.

= CHis not as localized and has better overlap.

= Results in more in-plane light, and reduced V2
extraction efficiency.
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Carrier density dependence

= Subband coupling leads to CH envelope
wavefunction in higher valence
subbands.

= When carrier density increases:

=  Amount of carriers in lower valence
subbands increases.

= Carriers populate higher k..
= Therefore transitions to CH increase.

= Results in more in-plane light, and
reduced extraction efficiency.
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Conclusion ) &

= Measuring optical polarization of AlIGaN based ultra-violet
LEDs allows for:
= Determining the internal emission patterns.

= Understanding light extraction.
= Demonstrated experimentally and theoretically that quantum
well thickness and carrier density affect optical polarization.

= Are a result of changes in the valence subbands.
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