

Exceptional service in the national interest

Practical Considerations for Feature, Event, and Process (FEP) Analysis

Geoff Freeze, Sandia National Laboratories

Performance and Risk Assessment Community
of Practice (P&RA CoP) Webinar

June 3, 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This presentation is approved as SAND2014-4505P.

Outline

■ FEP Analysis Overview

- FEP analysis supplements scenario development, PA modeling, and the safety case
- FEP analysis for Deep Geologic Disposal of Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW)
- FEP Analysis for Near Surface Disposal of Low-Level Waste (LLW) and Intermediate Level Waste (ILW)

■ FEP Analysis Approaches

- Traditional Bottom-Up
- Top-Down, Bottom-Up for LLW/ILW Disposal

What is a FEP?

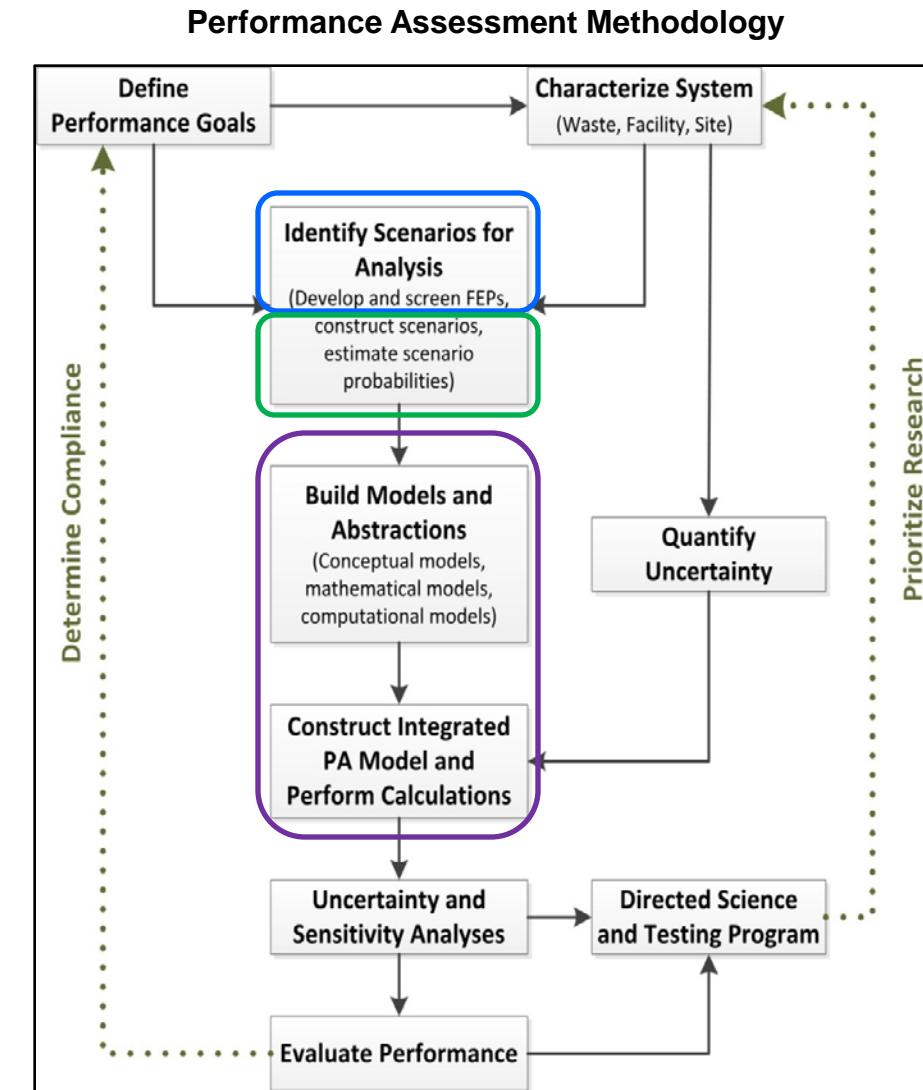
■ Feature

- An *object, structure, or condition* that has a potential to affect repository system performance (NRC 2003, Section 3)

■ Event

- A natural or human-caused *phenomenon* that has a potential to affect repository system performance and that occurs during an interval that is short compared to the period of performance (NRC 2003, Section 3)

■ Process


- A natural or human-caused *phenomenon* that has a potential to affect repository system performance and that occurs during all or a significant part of the period of performance (NRC 2003, Section 3)

■ A “FEP” generally encompasses a single phenomenon

- A repository is comprised of engineered and natural *features*
- A FEP typically is a *process or event acting upon or within a feature*
- FEPs can be defined at various levels of detail

What is FEP Analysis?

- **FEP analysis is part of a broader performance assessment (PA) methodology that supports:**
 - Scenario Development
 - Implementation in a PA Model
 - Safety Case and Safety Functions

- **FEP analysis includes the following steps:**
 - FEP (Phenomena) Identification
 - FEP (Phenomena) Screening

FEP Analysis for SNF/HLW Disposal

- **Long history of FEP analysis, starting in the early to mid-1980s**
 - Backup slides provide references
- **FEP analysis is promoted by international organizations for deep geologic disposal of SNF/HLW**
 - International Atomic Energy Agency (IAEA) (IAEA 1983; 2011)
 - Nuclear Energy Agency (NEA) (NEA 1992; 2012)
- **FEP analysis is used in all advanced repository programs for deep geologic SNF/HLW repositories**
 - U.S.
 - Waste Isolation Pilot Plant (WIPP) (DOE 1996; 2009)
 - Yucca Mountain Project (YMP) (BSC 2005; SNL 2008; Freeze and Swift 2010)
 - DOE-NE Used Fuel Disposition Campaign (UFD) (Freeze et al. 2010; 2011)
 - NEA International FEP Database (NEA 1999; 2006)
 - Sweden, Switzerland, Belgium, U.K., Canada, US (WIPP)
 - Other Countries
 - Germany, Japan, Finland, France, South Korea, Spain, Netherlands

FEP Analysis for LLW Disposal

- **FEP analysis has been undertaken for near surface and borehole disposal of LLW (and ILW)**
 - General Lists, originating from NEA International FEP Database for SNF/HLW
 - IAEA Improvement of Safety Assessment Methodologies (ISAM) for Near Surface Disposal Facilities FEP List (IAEA 2004)
 - DOE-NE UFD LLW (Jones 2011)
 - Project-Specific Lists
 - U.S.: Greater Confinement Disposal (GCD) Facility (Guzowski and Newman 1993)
 - U.S.: Clive UT LLW Disposal Facility (Tauxe 2012)
 - U.K.: Drigg LLW Repository (Phifer 2011; www.llwrsite.com)
 - Canada: Ontario Power Generation (OPG) Deep Geologic Repository (DGR) for LLW/ILW (Garisto et al. 2009; www.nwmo.ca/dgr)

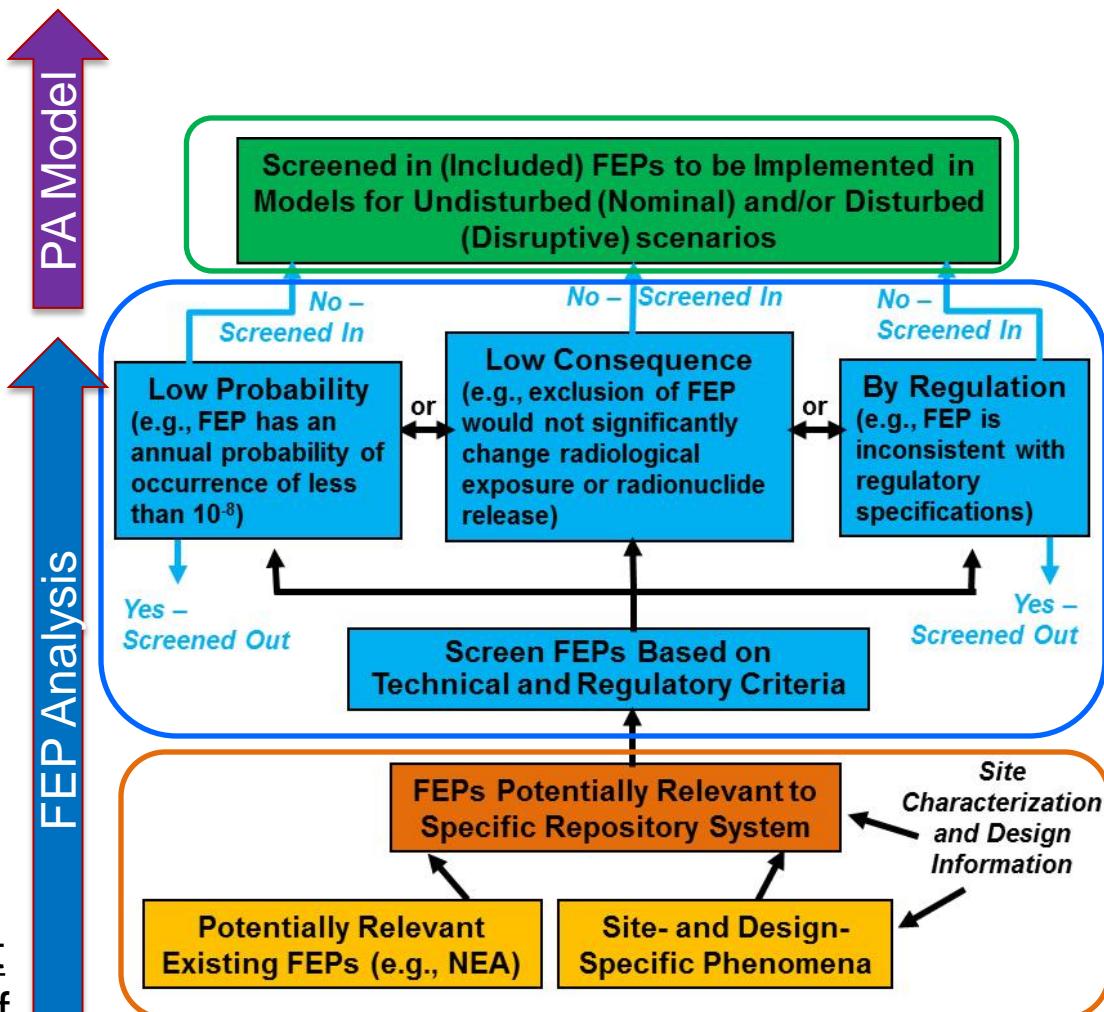
FEP Analysis for LLW Disposal

■ 381 DOE UFD LLW FEPs (Jones 2011)

- Shallow (< 100 m depth) disposal concepts
 - Near Surface Facility
 - Intermediate Depth Borehole
- FEP sources (1194 total FEPs)
 - UFD SNF/HLW FEPs (Freeze et al. 2011)
 - IAEA ISAM Co-ordinated Research Project (IAEA 2004)
 - Greater Confinement Disposal Facility (Guzowski et al. 1993)
 - Ontario Power Generation (OPG) Deep Repository for LLW/ILW (Garisto et al. 2009)
 - SNF/HLW Deep Borehole Disposal (Brady et al. 2009)
 - Drigg Low Level Waste Repository (Phifer 2011)
- Differences from SNF/HLW FEPs are:
 - more LLW FEPs related to proximity to surface
 - *surficial events and processes* (e.g., *subsidence, erosion, surficial transport*)
 - *human intrusion*
 - more LLW FEPs related to additional EBS features
 - *engineered covers, disposal units* (e.g., *concrete vaults*)
 - *underlying layers* (e.g., *drains, geomembranes, etc.*)

FEP Analysis – Traditional Bottom-Up Approach

■ Scenario Development


- The included FEPs define the range of possible future states (i.e., scenarios) of the system

■ FEP Screening

- The specification of a subset of important FEPs that individually, or in combination with other FEPs, contribute to long-term performance

■ FEP Identification

- Development and classification of a list of FEPs that capture the entire range of phenomena potentially relevant to the long-term performance of the repository system

FEP Analysis – Traditional Bottom-Up Approach

Pros and Cons

■ **Results in a large number of FEPs**

- NEA FEP Database (NEA 2006) is the basis for most FEP lists
 - NEA FEP list contains ~2000 FEPs from 10 international programs in 6 countries
 - DOE UFD LLW FEP list contains 381 FEPs

■ **Difficult to uniquely categorize and screen**

- Considerable redundancy and overlap in the large number of NEA FEPs
- Screening of overlapping FEPs leads to situations where individual FEPs are partially included and partially excluded
 - Application of quantitative screening criteria not always possible

■ **Time consuming and costly**

- Acceptable for a large national repository program
- Cost prohibitive for smaller LLW sites

■ **Helps to demonstrate comprehensiveness of the FEP list**

- Although comprehensiveness can never be “proven”

FEP Analysis – Top-Down Reality

■ PA Model Implementation

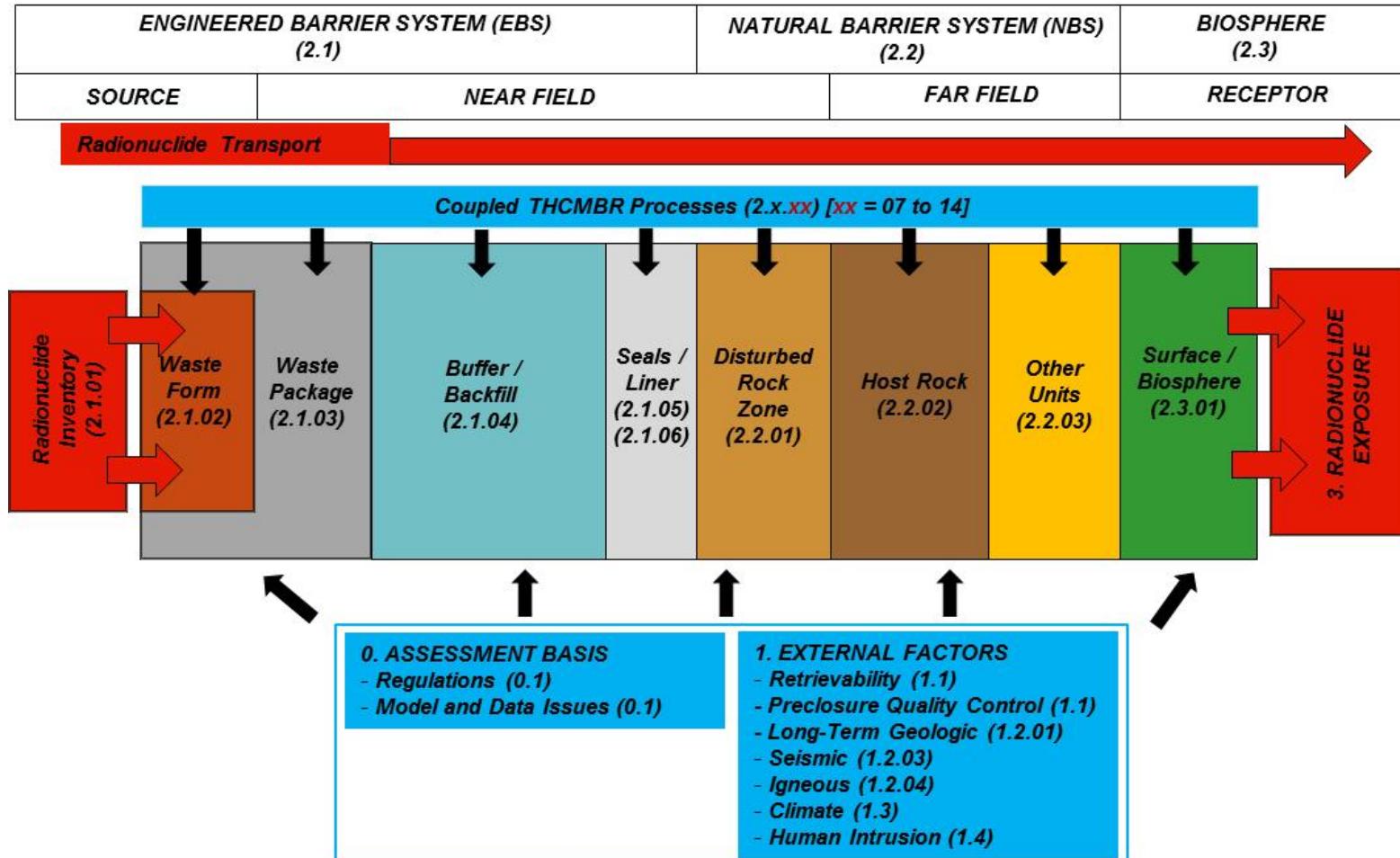
- Apply “favored” code to simulate “inherent” scenarios and FEPs

■ Scenario Development and FEP Screening

- Included scenarios and FEPs are phenomena that are represented by the conceptual/numerical models in the selected code
 - e.g., waste degradation/source term, flow and transport
- FEP screening and exclusion is not systematic or comprehensive
 - Guided by expert judgment and experience rather than a formalized process

■ FEP Identification

- Provides a bottom-up audit of included FEPs and scenarios
 - Supports demonstration of comprehensiveness of FEP list
 - Confirms adequacy of capabilities in “favored” code
 - Identifies new FEPs to be implemented through alternate code, code modification, and/or parameter adjustment



Pros and Cons

- **Top-down development of phenomena models, scenarios and FEPs**
 - Provides efficient organization/mapping of phenomena
 - Level of effort can be commensurate with project scope and budget
 - Level of detail (fewer broad scenarios/FEPs vs. many detailed scenarios/FEPs)
 - Rigor level must meet expectation of regulators
- **Bottom-up FEP identification**
 - Provides a check on comprehensiveness of scenarios/FEPs
 - Use an existing FEP list as an audit
 - Supports systematic documentation of FEP screening

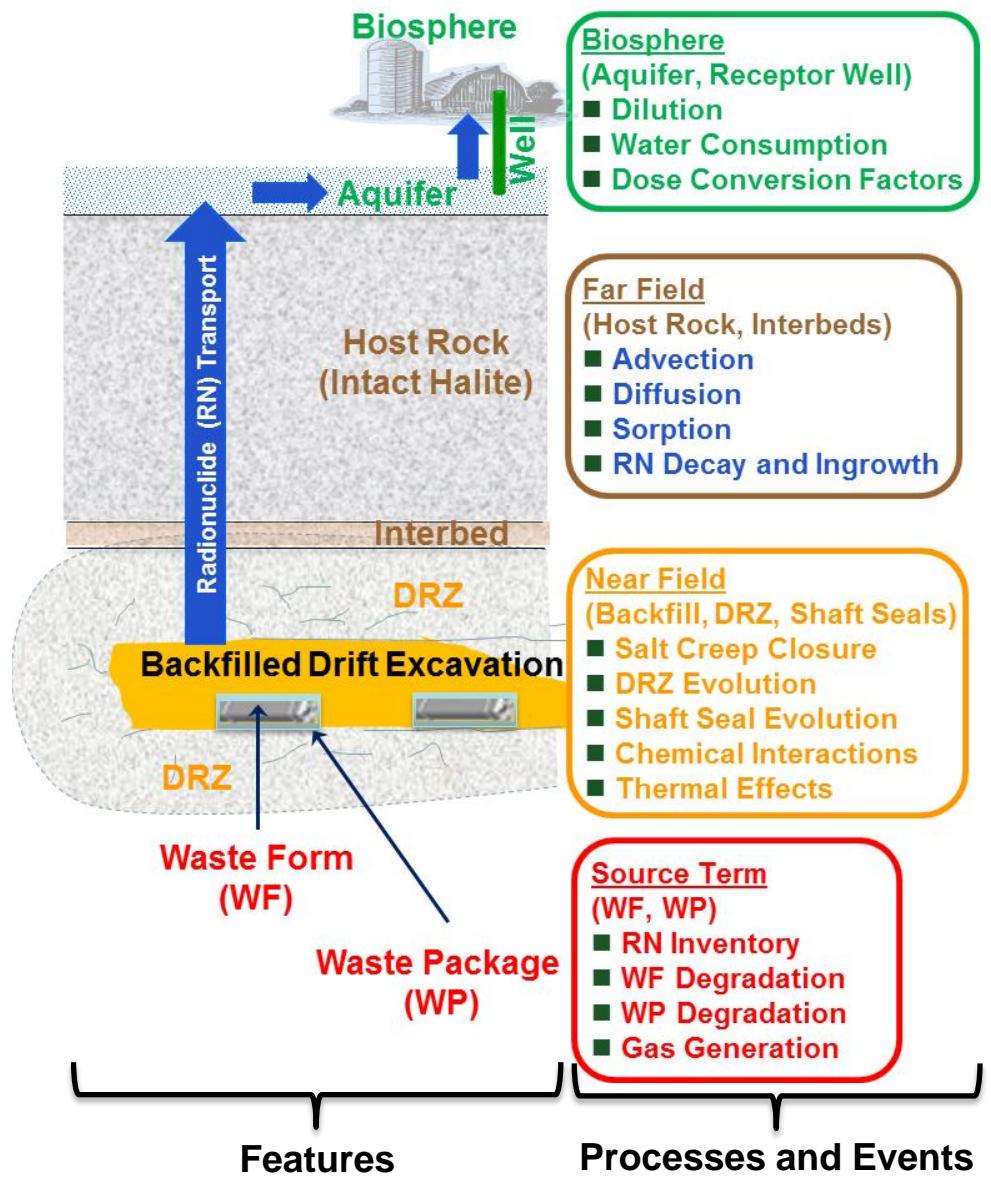
FEP Analysis – Top-Down, Bottom-Up Approaches

- Top-Down from General NEA SNF/HLW FEP Database Categories
 - Features must be adapted for LLW

FEP Analysis – Top-Down, Bottom-Up Approaches

■ Top-Down from FEP Matrix

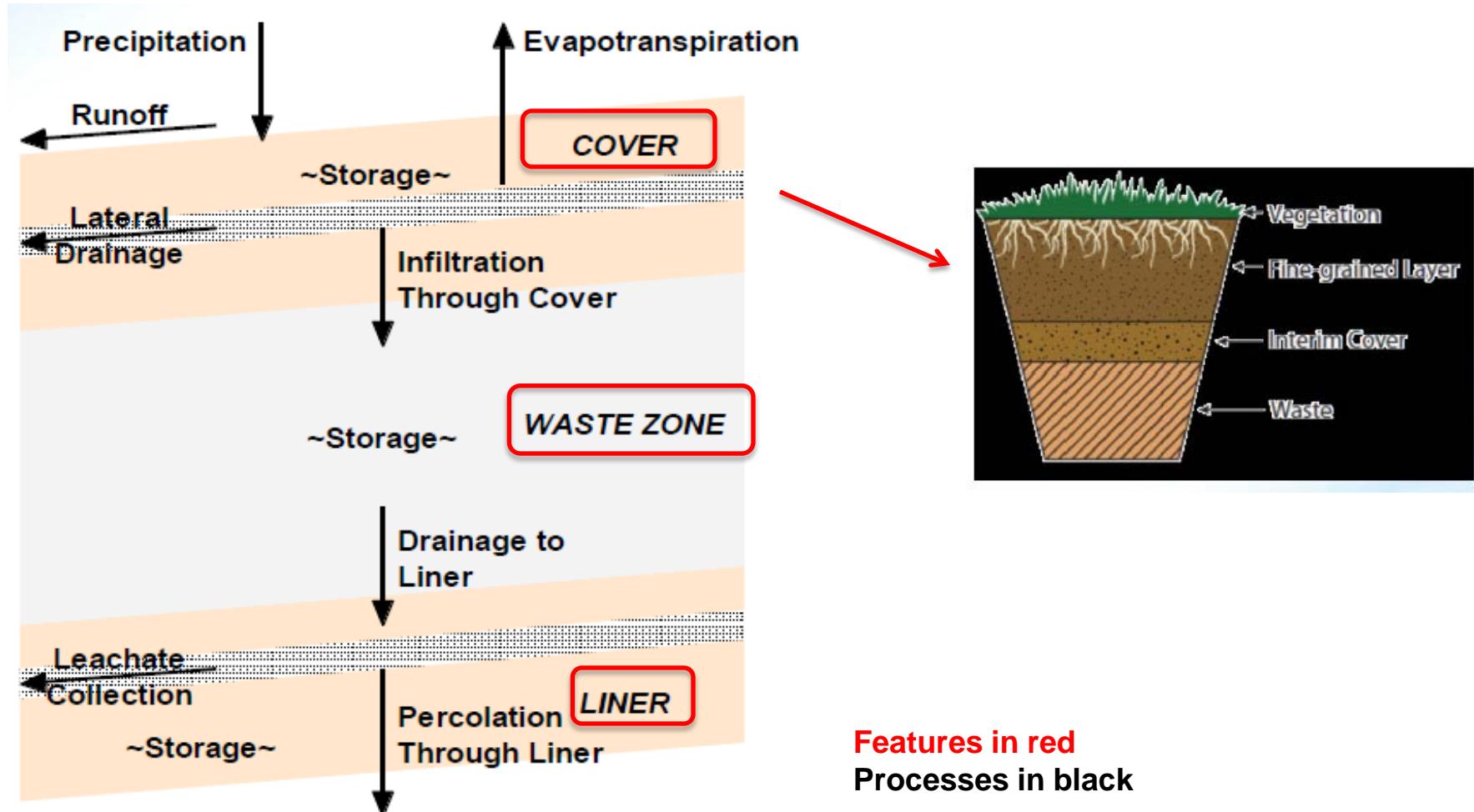
- Freeze et al. (2013)


- Matrix Rows = Features
- Matrix Columns = Process / Events
- Matrix Cell contains all FEPs related to the “Process/Event” acting upon or within the “Feature”
- e.g., hydro processes in the backfill

		Processes and Events													
		Processes							Events						
Features	Characteristics	Characteristics, Processes, and Events													
		Mechanical and Thermal-Mechanical	Hydrological and Thermal-Hydrologic	Chemical and Thermal-Chemical	Biological and Thermal-Biological	Transport and Thermal-Transport	Thermal	Radiological	Long-Term Geologic	Climatic	Human Activities (Long Timescale)	Other	Nuclear Criticality	Early Failure	Seismic
		Waste and Engineered Features													
		Waste Form and Cladding													
		Waste Package and Internals													
		Buffer/Backfill													
		Emplacement Tunnels/Drifts and Mine Workings													
		Seals/Plugs													
		Geosphere Features													
		Host Rock (Repository Horizon)													
		Other Geologic Units (non-Repository Horizon)													
		Surface Features													
		Biosphere													
		System Features													
		Repository System													

FEP Analysis – Top-Down, Bottom-Up Approaches

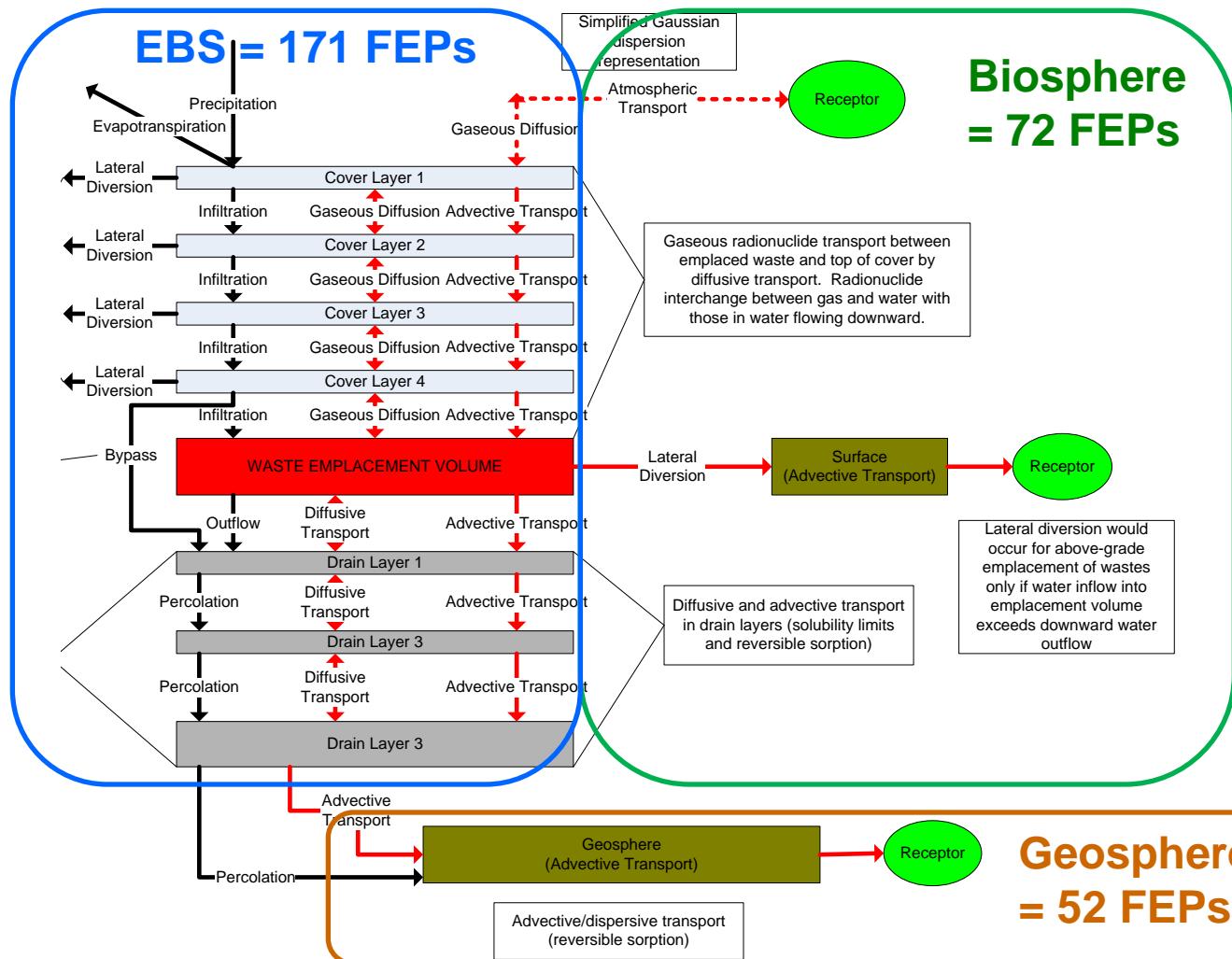
■ Top-Down from Specific Repository Phenomena


- Example here is SNF/HLW Repository in Bedded Salt

FEP Analysis – Top-Down, Bottom-Up Approaches

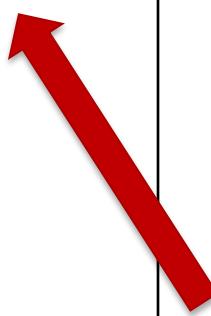
■ Top-Down from Specific Repository Phenomena

- Example here is Generic Near-Surface Facility (from Seitz 2014)



FEP Analysis – Top-Down, Bottom-Up Approaches

■ Bottom-Up Audit using UFD LLW list (381 FEPs)


Assessment Basis = 10 FEPs

External Factors = 76 FEPs

FEP Analysis – Top-Down, Bottom-Up Approaches

■ Specific FEP from UFD LLW list

FEP Number	FEP Title	FEP Description	FEP Screening (Included / Excluded)	Disposal Option (Near Surface / Borehole)	Basis for Exclusion
2.1.05.02	Engineered Covers and Their Degradation Processes	<p>FEPs related to the performance of engineered cover materials above the emplaced waste vaults, trenches, etc. such as:</p> <ul style="list-style-type: none"> - soil layers - rock armoring - low permeability layers (earthen materials, geotextiles, geomembranes) - drainage layers - side slopes / side fill <p>Degradation processes include:</p> <ul style="list-style-type: none"> - embrittlement, cracking - loss of ductility - movement - hydrostatic pressure - swelling corrosion products - chemical effect of water on polymeric materials - Fracturing of near field rock (such as by initial stresses during excavation, ice sheet loading/unloading or seismic activity) with subsequent impact on containers already compromised by other degradation mechanisms. Gas pressure may enhance cracking in the excavation disturbed zone. 	Included		<div style="border: 1px solid blue; padding: 5px; display: inline-block;"> Jones (2011) did preliminary screening for two generic designs </div>

FEP Analysis – Top-Down, Bottom-Up Approaches

- **Bottom-Up Audit using IAEA LLW FEP list (IAEA 2004)**
 - Specific FEP

<p>FEP 2.1.05 Engineered barrier system characteristics and degradation processes</p>
<p>Definition: FEPs related to the design, physical, chemical, hydraulic etc. characteristics of the cavern/tunnel/shaft seals at the time of sealing and closure and also as they may evolve in the repository, including FEPs which are relevant specifically as cavern/tunnel/shaft seal and cap degradation processes. (Effect on hydrology / flow – change over time).</p>
<p>Comment: Cavern/tunnel/shaft seal and cap failure may result from gradual degradation processes, or may be the result of a sudden event. The importance is that alternative routes for groundwater flow and radionuclide transport may be created along the various layers and tunnels and/or shafts and associated EDZ (see FEP 2.2.01).</p>
<p>Key Concepts, examples, and related FEPs:</p> <ul style="list-style-type: none">- Engineered caps (cover)- Cover degradation- Intrusion resistance caps- Cap materials: clay, concrete

Conclusions

- **Practical FEP analysis can be performed at a level of effort commensurate with project scope and budget**
 - Supports scenario development, PA modeling, and the safety case
- **Top-down, bottom-up approach for LLW disposal**
 - Top-down scenario development, supplemented by bottom-up FEP analysis
 - Identify key scenarios
 - Build a top-down feature-based organizational structure (e.g., matrix)
 - Map key scenarios, FEPs/phenomena
 - Use existing FEP lists for audit

References

- BSC (Bechtel SAIC Company) 2005. *The Development of the Total System Performance Assessment-License Application Features, Events, and Processes*. TDR-WIS-MD-000003 REV 02. Las Vegas, Nevada: Bechtel SAIC Company.
- DOE (U.S. Department of Energy) 1996. *Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant*. DOE/CAO-1996-2184. Twenty-one volumes. Carlsbad, New Mexico: U.S. Department of Energy, Carlsbad Area Office.
- DOE (U.S. Department of Energy) 2009. *Title 40 CFR Part 191 Subparts B and C Compliance Recertification Application for the Waste Isolation Pilot Plant, Appendix SCR-2009 Feature, Event, and Process Screening for PA*. DOE/WIPP 09-3424, U.S. Department of Energy, Carlsbad Area Office, Carlsbad, New Mexico.
- Freeze, G., Mariner, P., Houseworth, J.E., and Cunnane, J.C. 2010. *Used Fuel Disposition Campaign Features, Events, and Processes (FEPs): FY10 Progress Report*. SAND2010-5902, Sandia National Laboratories, Albuquerque, New Mexico.
- Freeze, G., Mariner, P., Blink, J.A., Caporuscio, F.A., Houseworth, J.E., and Cunnane, J.C. 2011. *Disposal System Features, Events, and Processes (FEPs): FY11 Progress Report*. SAND2011-6059P, Sandia National Laboratories, Albuquerque, New Mexico.
- Freeze, G. and Swift, P. 2010. *Comprehensive Consideration of Features, Events, and Processes (FEPs) for Repository Performance Assessments*. PSAM 10 Conference Proceedings. Seattle, Washington: International Association for Probabilistic Safety Assessment and Management.
- Freeze, G., Sevougian, S.D., and Gross, M. 2013. *Safety Framework for Disposal of Heat-Generating Waste in Salt: Features, Events, and Processes (FEPs) Classification*, FCRD-USED-2012-000431, SAND2012-10797P, Sandia National Laboratories, Albuquerque, New Mexico.
- Garisto, N.; Avis, J.; Fernandes, S.; Jackson, R.; Little, R.; Rees, J.; Towler, G. and Walke, R., July 2009, *Deep Geologic Repository for OPG's Low and Intermediate Level Waste, Postclosure Safety Assessment (VI): Features, Events and Processes*, NWMO DGR-TR-2009-05
- Guzowski, R. V. and Newman, G., December 1993, *Preliminary Identification of Potentially Disruptive Scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site*, SAND93-7100
- IAEA (International Atomic Energy Agency) 1983. *Concepts and Examples of Safety Analyses for Radioactive Waste Repositories in Continental Geological Formations*. Safety Series No. 58. Vienna, Austria: International Atomic Energy Agency.

References

- IAEA (International Atomic Energy Agency) 2004, *Safety Assessment Methodologies for Near Surface Disposal Facilities, Results of a Co-ordinated Research Project*
- IAEA (International Atomic Energy Agency). 2011. *Disposal of Radioactive Waste, Specific Safety Requirements*. IAEA Safety Standards Series No. SSR-5. Vienna, Austria: International Atomic Energy Agency.
- Jones, R.H. 2011. *Features, Events, and Processes for the Disposal of Low Level Radioactive Waste - FY 2011 Status Report, Revision 0*, Prepared for U.S. Department of Energy Used Fuel Disposition Campaign, FCRD-USED-2011-000297
- NEA (Nuclear Energy Agency) 1992. *Systematic Approaches to Scenario Development: A Report of the NEA Working Group on Identification and Selection of Scenarios for Performance Assessment of Radioactive Waste Disposal*. Paris, France: Nuclear Energy Agency, Organisation for Economic Co-operation and Development.
- NEA (Nuclear Energy Agency) 1999. *An International Database of Features, Events and Processes*. Paris, France: Organisation for Economic Co-operation and Development.
- NEA (Nuclear Energy Agency) 2006. *The NEA International FEP Database: Version 2.1*. Paris, France: Organisation for Economic Co-operation and Development.
- NEA (Nuclear Energy Agency) 2012. *Methods for Safety Assessment of Geological Disposal Facilities for Radioactive Waste, Outcomes of the NEA MeSA Initiative*. NEA No. 6923. Paris, France: Organisation for Economic Co-Operation and Development, Nuclear Energy Agency.
- NRC (U.S. Nuclear Regulatory Commission) 2003. *Yucca Mountain Review Plan, Final Report*. NUREG-1804, Revision 2. Washington, D.C.: U.S. Nuclear Regulatory Commission.
- Phifer, M.; March 2011, *2002 LLW Repository PCSC – FEP Consideration*
- Seitz, R. 2014. *Practical Considerations for Development and Selection of Scenarios*. Presentation to PA&RA Community of Practice, Savannah River National Laboratory.
- SNL (Sandia National Laboratories) 2008. *Features, Events, and Processes for the Total System Performance Assessment: Analysis*. ANL-WIS-MD-000027 REV 01. Las Vegas, Nevada: Sandia National Laboratories.
- Tauxe, J. 2012. *FEPs Approach and Lessons Learned at Clive, Utah*. NRC Workshop on Performance Assessments of Near-Surface Disposal Facilities. Rockville, MD.

Backup Slides

FEP Analysis for SNF/HLW Disposal

- **Early (mid 1980's) FEP lists were generic**
 - IAEA (IAEA 1983)
 - US NRC (Cranwell et al. 1990)
 - NEA (NEA 1992)
- **More recent (1990's) project-specific FEP lists and analyses are contained in the NEA FEP Database (NEA 1999, NEA 2006)**
 - Canada – AECL (Goodwin et al. 1994)
 - Switzerland – NAGRA (NAGRA 1994)
 - USA – DOE WIPP (DOE 1996)
 - Sweden – SKI and SKB (Chapman et al. 1995; Miller et al. 2002)
 - UK – HMIP (Miller and Chapman 1993)
 - Belgium – SCK-CEN (Bronders et al. 1994)

FEP Analysis for SNF/HLW Disposal

- Additional project specific FEP lists not contained in the NEA FEP database
 - 1990s (summarized in NEA 1999)
 - Netherlands – ECN/RIVM/RGD (Prij 1993)
 - Spain – ENRESA (ENRESA 1995)
 - 2000s
 - NEA – Clay (Mazurek et al. 2003)
 - South Korea – KAERI (Hwang et al. 2006)
 - USA – DOE YMP (BSC 2005; SNL 2008; Freeze and Swift 2010)
 - USA – DOE NE (Freeze et al. 2010; Freeze et al. 2011; Freeze et al. 2013)

References for Backup Slides

- Bronders, J.; Patyn, J.; Wemaere, I.; and Marivoet, J. 1994. *Long term Performance Studies, Catalogue of Events, Features and Processes Potentially Relevant to Radioactive Waste Disposal in the Boom Clay Layer at the Mol Site*. SCK-CEN Report R-2987 Annex. Mol, Belgium
- Chapman, N.A.; Andersson, J.; Robinson, P.; Skagius, K.; Wene, C-O.; Wiborgh, M.; and Wingefors, S. 1995. *Systems Analysis, Scenario Construction and Consequence Analysis Definition for SITE-94*. SKI Report 95:26. Stockholm, Sweden: Swedish Nuclear Power Inspectorate.
- Cranwell, R.M.; Guzowski, R.V.; Campbell, J.E.; and Ortiz, N.R. 1990. *Risk Methodology for Geologic Disposal of Radioactive Waste, Scenario Selection Procedure*. NUREG/CR-1667. Washington, D.C.: U.S. Nuclear Regulatory Commission.
- ENRESA (Empresa Nacional de Residuos Radioactivos SA) 1995. Evaluacion del Comportamiento Opcion Granito. Identificacion de Factores. Proyecto AGP, Fase II, 48-1p-I-00G-03
- Goodwin, B.W.; Stephens, M.E.; Davison, C.C.; Johnson, L.H.; and Zach, R. 1994. *Scenario Analysis for the Postclosure Assessment of the Canadian Concept for Nuclear Fuel Waste Disposal*. AECL-10969. Pinawa, Manitoba, Canada: AECL Research, Whiteshell Laboratories.
- Hwang, Y.S; Kang, C.H.; and Soo, E.J. 2006. *Development of the KAERI FEP, Scenario, and Assessment Method Database for Permanent Disposal of HLW in Korea*. Progress in Nuclear Energy Volume 48, Issue 2 pp 165-172. Daejeon, South Korea: Korea Atomic Energy Research Institute.
- Mazurek, M.; Pearson, J.F.; Volckaert, G.; and Bock, H. 2003. *Features, Events and Processes Evaluation Catalogue for Argillaceous Media*. Paris, France: Organisation for Economic Co-Operation and Development, Nuclear Energy Agency.
- Miller, B.; Savage, D.; McEwen, T.; and White, M. 2002. *Encyclopaedia of Features, Events and Processes (FEPs) for the Swedish SFR and Spent Fuel Repositories, Preliminary Version*. SKI Report 02:35.
- Miller, W.M. and Chapman, N.A. 1993. *HMIP Assessment of Nirex Proposals, Identification of Relevant Processes (System Concept Group Report)*. Technical Report IZ3185-TR1 (Edition 1). [London], United Kingdom: Her Majesty's Inspectorate of Pollution (HMIP), Department of the Environment.
- NAGRA (Nationale Genossenschaft fur die Lagerung Radioaktiver Abfalle) 1994. *Kristallin-I, Safety Assessment Report*. NAGRA Technical Report 93-22. Wettingen, Switzerland: National Cooperative for the Disposal of Radioactive Waste.
- Prij, J. (editor) 1993. *PROSA – Probabilistic Safety Assessment – Final Report*. ECN, RIVM, RGD Report OPLA-1A. Petten, Netherlands