

Cogeneration of Transportation Fuels and Clean Water from Littoral Feedstock

Ben Allan, Dov Cohen, Cosmin Safta, Jaideep Ray

The idea

- Climate change and a 1.5 m sea-level rise
- 65,000 sq. miles inundated, 35,000 sq. miles become tidal / estuarine / water-logged / damp
- Highly populated area, ripe for distributed energy production and supply
 - But what feedstock to exploit the inundation?
 - What form of power/energy? Electricity? Ethanol? Hydrogen?
- Can we desalinate and get potable water too, from the vegetation?

The vegetation

- These are water-logged / damp / brackish / saline regions
 - Corn, soy, and other starch-bearing cereal crops will not thrive
- Typically vegetation : grasses (reeds)
 - Reed canary grass (RCG) : Everywhere except SE
 - Arundo donax : Warm coastal areas
 - Cordgrass (Spartina) : Salt marshes, Atlantic and Gulf coast, SF Bay, Humboldt Bay
 - Note: Spartina has a C4 photosynthesis mechanism; can produce sugars for ethanol
- Also, weedy softwoods
 - Cottonwood : Eastern US
 - Willow : temperate N. America

Figures from Wikipedia

Questions

- **How can we turn this biomass into energy?**
- **What are the biomass yields?**
- **What are the energy yields (vis-à-vis coal)? Energy balance?**
- **What forms of energy can we turn the biomass into?**
 - **What has already been done?**
- **With what efficiency can we turn the biomass into various forms of energy?**
- **It will not be sufficient to displace all petroleum, but will it be economic? At what price of petroleum?**
- **What are its non-energy advantages/disadvantages?**
- **What are its prowess at water desalination?**

Water co-generation

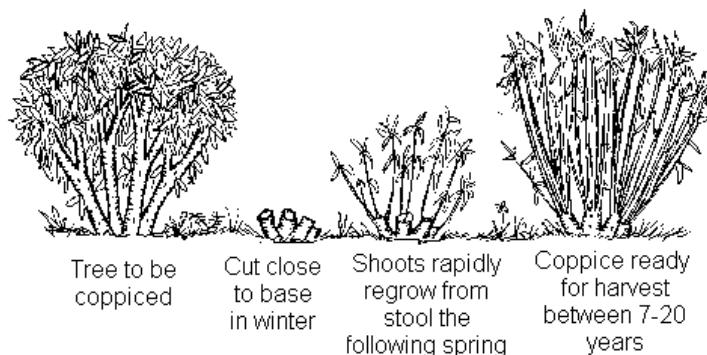
- Salt-marsh plants are desalinating at the cellular level.
- Some pollutants are locked in the roots, others in stems, leaves etc.
- Existing water extraction technologies (non-solvent):
 - Mechanical
 - E.g. sludge drying, wood waste resizing and drying.
 - Thermal
 - Air drying (no water capture, however)
 - Steam/kiln drying.

Deal-breaker

- Desalination using plants seems uneconomic
 - Much water in plants is in capillaries rather than cells: contaminants from the water source.
 - Mechanical:
 - Dissolved salts, organics remain.
 - Thermal:
 - Volatile organic pollutants extract with water product.
- Not as much free filtration work as expected– if you want clean water from littoral water, just clean it directly.

Biomass supply -1

- **Grasses/reeds grow well in estuarine / brackish / moderately saline water**
 - Florida forage production: 5 Dry Mass ton/acre/yr (= 12.5 DM ton/ha/yr)
 - **Yields in colder climates (N. Europe)**
 - Reed canary grass: 7-13 DM ton/ha/yr
 - Cordgrass: 15-20 DM ton/ha/yr
 - Arundo donax: 23 DM ton/ha/yr
 - **States yields are fertilizer-free yields, else 100 DM ton/ha/yr are possible**
 - **Yearly harvests, sometime twice**
- **Grasses grow from rhizomes, so no replanting**
- **Some (fossil fuel?) energy expended in planting, harvest etc**
 - Energy balance later


Figure from National Park Service

Biomass supply - 2

- **Weedy softwoods (cottonwoods, willow) grow in damp (riparian) regions**
 - Cultivated via Short Rotation Coppice (SRC)
- **Coppice:**
 - Old forest management technique to keep trees juvenile
 - Frequent harvest
 - Cottonwood, birch : 2-year rotation
 - Willow : 4-year rotation
- **Fossil energy expenditure : planting, harvesting**
- **Yields:**
 - Cottonwood: 5-9 DM ton/ha/yr
 - Willow: 15-18 DM ton/ha/yr

Figures from Wikipedia

Energy balance

	Biomass yield, DM ton/ha/yr	Energy input GJ / ton DM	Energy output GJ / ton DM
Reed canary grass	7-13	0.8	16.2
Cordgrass	15-20	0.8	17
Arundo donax	23 (100 with fertilizer)	1	17
Cottonwood	5-9	0.5	19
Willow	15-18	0.67	19

- To date, biomass has only been burnt, usually with coal
 - Coal energy output: 30 GJ/ton

Converting biomass to other fuels

- Lignocellulosic ethanol
 - Lots of research, still experimental
- Direct fired turbines
- Biomass gasification to syngas
 - Syngas then reformed to H_2 , CH_4 , MeOH, EtOH

Lignocellulosic Biomass to Ethanol

- Necessary in order to expand ethanol production past 6-8 billion gallons a year
- Feedstock (lignocellulosic biomass) includes waste paper, wood waste, pulp sludge and grass straw.
- Process:
 - mechanical preparation steps include cleaning, drying and reducing the size of biomass feedstock.
 - Cellulose-to-ethanol technology converts lignocellulosic feedstock (LCF) into component sugars, which are then fermented to ethanol.
 - Efficiency: 8% (considering only fossil energy inputs) to 39% if by-products are used in the conversion process
 - Technology is currently in an early stage of commercial development.

Biomass Gasification

- Two-stage process
 - 1st stage: pyrolysis→heat vaporizes the volatile components of biomass in the absence of air. Pyrolysis vapor consists of CO, H₂, CH₄, volatile tars, CO₂ and water and about 10-25% charcoal residue.
 - 2nd stage: char conversion→charcoal residue from the pyrolysis stage reacts with oxygen producing CO
- Systems :
 - Large scale gasification
 - staged steam reformation with a fluidized-bed reactor
 - staged steam reformation with a screw auger gasifier
 - entrained flow steam reformation
 - Small scale biomass systems – via partial oxidation
 - promising technology to supply electricity and heat to rural areas, businesses
 - Technologies are in the development stage

Direct-fired gas turbine

- Convert biomass to electricity.
- Process
 - fuel pretreatment reduces biomass to a particle size of less than 2 millimeters and a moisture content of less than 25 percent.
 - then the fuel is burned with compressed air.
 - cleanup of the combustion gas to reduce particulate matter before the gas expands through the turbine stage.

Synthetic Gas Assessment

- Possible products from biomass via synthetic gas
 - Hydrogen
 - mainly consumed for ammonia production
 - Methanol
 - one of the top ten chemicals produced globally
 - Mixed higher alcohols
 - more attractive gasoline blending stock for octane enhancement compared to methanol
 - Ethanol
 - obtained from syngas via fermentation

Energy Yields and Efficiency

Conversion process	Energy yield / ton of feed (GJ/ton)	Energy (product) / Energy input (fossil + biomass)	Energy (product) / Energy input (fossil fuel)
Biomass - syngas - H ₂	6 – 13	0.36 – 0.73	14 - 29
Biomass - syngas - MeOH	5 – 11	0.29 – 0.65	12 - 26
Biomass - syngas - Mixed Alcohol	135 – 223	0.18 – 0.3	8 - 13
Biomass - syngas - EtOH	228	0.35	16

Values based on LHV (lower heating value)

Data extracted from NREL report TP-510-34929 (Dec 2003)

Syngas Yields and Economics

- Ethanol via syngas fermentation: wet gas cleaning, fermentation, distillation, EtOH dehydration

Fuel	\$/GJ (LHV)	\$/gallon
Gasoline	10.4	1.25
Diesel	9.13	1.24
Ethanol (via syngas fermentation)	13-35	1.0-1.40

- Gasoline and diesel prices exclude distribution, marketing and taxes (about 50%); gasoline price as of 2005, diesel as of 2006
- Ethanol price as of 2000
- Data based on NREL report TP-510-34929 (Dec 2003)
- Energy Information Administration
(http://www.eia.doe.gov/oil_gas/petroleum/info_glance/petroleum.html)

Other features

- The good :
 - Good at fixing Nitrogen, can be used with wastewater
 - Flood and soil erosion control
 - Wildlife habitat
 - Can be mixed and matched for biodiversity, pest and disease resistance (cut down on herbicide and pesticide)
- The bad :
 - Droughts affect production of SRC
 - Fires will require replanting and a long wait (4 yrs for willow)
 - Biomass storage required (for drying)
- The ugly : What new area should Sandia invest in ?
 - Lignocellulosic EtOH research is widespread
 - NREL owns syngas and process / manufacturing research