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Overview
● Relative slowdown as the blob grows 

exponentially
● Fault tolerance is the wrong mindset
● We need good design, not bad design, in 

kernels
● Programming to 100M CPUs is a different 

game



   

Fault Oblivious computing
● Application not aware of faults
● Does not respond to them
● Computes correctly even as they occur

– You don't know about each disk error, do you?
● Works @ Google
● This is NOT “fault tolerance”!



   

One of the questions
● Should we add a system call to frob the natz?
● Ooops. The question presupposes many things
● In particular, that adding a system call is 

required to gain functionality
● In all too many cases, that's really covering up 

for poor design



   

Poor Design
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HEAVY
● _llseek _newselect _sysctl access acct add_key adjtimex afs_syscall alarm bdflush break brk capget capset chdir chmod chown chown32 chroot clock_getres

● clock_gettime clock_nanosleep clock_settime clone close creat create_module delete_module dup dup2 epoll_create epoll_ctl epoll_pwait epoll_wait execve exit exit_group faccessat fadvise64 fadvise64_64

● fchdir fchmod fchmodat fchown fchown32 fchownat fcntl fcntl64 fdatasync fgetxattr flistxattr flock fork fremovexattr fsetxattr fstat fstat64 fstatat64 fstatfs fstatfs64

● fsync ftime ftruncate ftruncate64 futex futimesat get_kernel_syms get_mempolicy get_robust_list get_thread_area getcpu getcwd getdents getdents64 getegid getegid32 geteuid geteuid32 getgid getgid32

● getgroups getgroups32 getitimer getpgid getpgrp getpid getpmsg getppid getpriority getresgid getresgid32 getresuid getresuid32 getrlimit getrusage getsid gettid gettimeofday getuid 

● getuid32 getxattr gtty idle init_module inotify_add_watch inotify_init inotify_rm_watch io_cancel io_destroy io_getevents io_setup io_submit ioctl ioperm iopl ioprio_get ioprio_set ipc kexec_load

● keyctl kill lchown lchown32 lgetxattr link linkat listxattr llistxattr lock lookup_dcookie lremovexattr lseek lsetxattr lstat lstat64 madvise madvise1 mbind migrate_pages

● mincore mkdir mkdirat mknod mknodat mlock mlockall mmap mmap2 modify_ldt mount move_pages mprotect mpx mq_getsetattr mq_notify mq_open mq_timedreceive mq_timedsend mq_unlink

● mremap msync munlock munlockall munmap nanosleep nfsservctl nice oldfstat oldlstat oldolduname oldstat olduname open openat pause personality pipe pivot_root poll

● ppoll prctl pread64 prof profil pselect6 ptrace putpmsg pwrite64 query_module quotactl read readahead readdir readlink readlinkat readv reboot remap_file_pages removexattr

● rename renameat request_key restart_syscall rmdir rt_sigaction rt_sigpending rt_sigprocmask rt_sigqueueinfo rt_sigreturn rt_sigsuspend rt_sigtimedwait sched_get_priority_max sched_get_priority_min sched_getaffinity 

● sched_getparam sched_getscheduler sched_rr_get_interval sched_setaffinity sched_setparam sched_setscheduler sched_yield select sendfile sendfile64 set_mempolicy set_robust_list set_thread_area set_tid_address setdomainname

● setfsgid setfsgid32 setfsuid setfsuid32 setgid setgid32 setgroups setgroups32 sethostname setitimer setpgid setpriority setregid setregid32 setresgid setresgid32 setresuid setresuid32 setreuid setreuid32

● setrlimit setsid settimeofday setuid setuid32 setxattr sgetmask sigaction sigaltstack signal sigpending sigprocmask sigreturn sigsuspend socketcall splice ssetmask stat stat64 statfs

● statfs64 stime stty swapoff swapon symlink symlinkat sync sync_file_range sysfs sysinfo syslog tee tgkill time timer_create timer_delete timer_getoverrun timer_gettime timer_settime

● times tkill truncate truncate64 ugetrlimit ulimit umask umount umount2 uname unlink unlinkat unshare uselib ustat utime utimes vfork vhangup vm86 vm86old vmsplice vserver wait4 waitid waitpid write writev 
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Good Design

With a common server interface,
location of services is no longer
important. The differentiation of 
char/block is archaic. Processes no
longer distinguish servers and devices.
Devices no longer have numbers. 
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LIGHT
● BIND CHDIR CLOSE DUP ALARM EXEC
● EXITS FAUTH SEGBRK OPEN OSEEK SLEEP
● RFORK PIPE CREATE FD2PATH BRK_ REMOVE
● NOTIFY NOTED SEGATTACH SEGDETACH SEGFREE
● SEGFLUSH RENDEZVOUS UNMOUNT SEMACQUIRE 
● SEMRELEASE SEEK FVERSION ERRSTR STAT FSTAT
● WSTAT FWSTAT MOUNT AWAIT PREAD PWRITE



   

Kernel is a multicore application
● And hence should be as easily parallelized as 

your app
● But Linux and LWK are not that way 

– Well, LWK doesn't do much anyway
● Trend: file systems, drivers are moving out of 

Linux as it is so hard to work in­kernel
● Sooner or later, Linux will be a server mux
● I.e. a poor man's Plan 9



   

Example: CPU and file server

switch



   

This structure makes no sense
● All the power, bandwidth is on the CPU side
● Need to get file server components running in 

the fabric!
● Dynamically activate CPUs to take on some 

functions of file servers, as determined by the 
application
– This is NOT “I/O nodes”

● Easy given the right OS



   

Non­product­derived structure

switch
● Server 

components 
migrate to CPU 
nodes on demand



   

None of the software we use 
functions this way

● This is a distributed system
● As our computers grow, they will resemble 

distributed systems, not 1992 MPPs
● We should plan for this change now
● Not continue to pretend that we can scale 

RHEL 5 forever



   

The rule
● Common interface to multiple subsystems
● The kernel's job is to multiplex process 

connections to servers



   

Exascale question:
How to run 100 MILLION cores?

● Just keep running Linux forever; it'll work fine
● Throw Linux away and run limited LWKs



   

The end of the free ride
● Linux continues to grow exponentially
● Up to now, piggy OS compensated for by fast 

clock
● From here on out, performance comes from lots 

of cores
● oops ­­ Linux will consume a growing fraction of 

ever­relatively­slower CPUs
● Unless you can split it into lots of parallel bits



   

Growth happens
● “A handful of characteristics of Unix are 

responsible for its resilience. First, Unix is 
simple: whereas some operating systems 
implement thousands of system calls and have 
unclear design goals, Unix systems typically 
implement only hundreds of system calls and 
have a very clear design”  ­­ Linux Kernel 
Development, 2nd Ed. by Robert Love

● When was “hundreds” ever small?



   

So we just run an LWK, right?
● Something small, something simple
● As long as it can support Python
● And remote access (ssh?)
● And NFS, and xterms,
● And gdb, and Emacs
● It's 4K desktops!



   

So ...
● LWK works, if enhanced until it becomes Linux

– Which is why BG/x LWK keeps growing ...
● Can Light­Weight Linux fill the bill?

– Just a kernel and a remote exec daemon?
● LANL experience says no
● Bproc was shown to be as light as it can get
● “too light” for some users (LWK problem redux)



   

Plan 9 is smaller than Linux, far 
more capable than LWK

● Most services (e.g. file systems) run outside the 
kernel 

● as unprivileged user processes
● And hence can be started, and controlled, by 

the application
● Get exactly the capability you want/need, no 

more



   

Status
● Running on BG/L with 16 man­weeks effort

– We've run window manager on BG/L compute 
nodes :­)

● Port to BG/P starts 2008
● Port to XT/4 starts 2008
● Possible port to siCortex
● App port work in progress (HPCC to start)



   

Hence the 



   

Slow­motion tsunami
● MegaCore systems are coming
● Today's capacity cluster is 3 years ago 

capability cluster is 6 years ago HPC system
● HPC systems lead clusters by about 6 years
● Growth in “node address space”:

– .57+ bits/yr for HPC systems (14 years, 8 bits)
– .58+ bits/yr for cluster system (16 years, 9 bits)

● What about the software?



   

Well, what about the software?
● Current plans are “more of the same”
● Just stack a thousand, er, thousands, er tens of 

thousands, err, ah, well millions of RHEL 5 
desktops

● And just make everything look like a 1024­node 
cluster

● Yeah, that's gonna work ...



   

What's that look like in 2015?
● Question: do you 

want to run 1M  
desktops?

● Does anyone in their 
right mind? 

● And what's happening 
in Linux anyway?

● Growth ...



   

So what are we doing about it?
Nothing

● A full desktop per node is unacceptable
● How long have we known? 5 years
● How long do we have? Maybe 5 years
● Will people be surprised anyway? Yes
● Slow­motion Tsunami

– We can see it coming
– We're still sitting on the beach drinking mai­tai's



   

What we can predict
● Whatever we're doing today won't work 

tomorrow
● If we try to freeze the structure of the software 

we are using, we guarantee obsolescence
– For “freeze” substitute “standardize”

● Unfortunately, we've just done that
● Our old software dividing lines are making less 

and less sense



   

Another notional graph
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What's the OS doing?
● It's time sharing
● The name even says it: “The Unix Time­Sharing 

System”



   

The promise



   

The reality



   

Time sharing CPUs? 
● This thing we are drowning in?
● The whole structure of our OS is designed 

around something we no longer need to do
● Trend observable in 1996
● So, I proposed in 1996 that we start research in 

 non­time­shared OSes



   

How you can tell you're on the right 
track

● “That idea is so ridiculous I won't even put it on 
the slide” ­­ Eminent computer scientist #1

● “You're proposing to take a 30 Mhz. MIPS CPU 
with 8 MB memory and just let it sit idle?!” ­­ 
Eminence #2

● And yet here we are ... with  a 128,000 CPU 
machine with  non­time­sharing OS

● Because time­share OSes are the wrong idea



   

That's nice, but what have you done 
for me lately”

● This quote could define our business
● This is the computer industry; you don't get to 

say “we're done”
●  So, yes, it's nice that we've done some good 

work; now it's time to go solve some problems


