Trends in HPC OS s

SIEVEN MEUUEEN ANETA CORSEALT - - EARL ROWE
JACK H-HARRIS - RVIN . EKWORTH, R THEODORE smnﬂsuu..rmf PHILLIPS

FROM AN (DA BY SNE H MRAGATE A TONN PRIGUCEEN - C00R £

Ron Minnich, SNL

Overview

* Relative slowdown as the blob grows
exponentially

* Fault tolerance is the wrong mindset

* We need good design, not bad design, in
kernels

* Programming to 100M CPUs is a different
game

Fault Oblivious computing

* Application not aware of faults
* Does not respond to them

* Computes correctly even as they occur

— You don't know about each disk error, do you?

* Works @ Google

* This is NOT “fault tolerance”!

One of the questions

* Should we add a system call to frob the natz?
* Ooops. The question presupposes many things

* In particular, that adding a system call is
required to gain functionality

* In all too many cases, that's really covering up
for poor design

Poor Design

| know!
Let's put
devices

-47
in the
— > <+ file

system!

-

HEAVY

_llseek _newselect _sysctl access acct add_key adjtimex afs_syscall alarm bdflush break brk capget capset chdir chmod chown chown32 chroot clock_getres

clock_gettime clock_nanosleep clock_settime clone close creat create_module delete_module dup dup2 epoll_create epoll_ctl epoll_pwait epoll_wait execve exit exit_group faccessat fadvise64 fadvise64_64

fchdir fchmod fchmodat fchown fchown32 fchownat fentl fentl64 fdatasync fgetxattr flistxattr flock fork fremovexattr fsetxattr fstat fstat64 fstatat64 fstatfs fstatfs64

fsync ftime ftruncate ftruncate64 futex futimesat get_kernel_syms get_mempolicy get_robust_list get_thread_area getcpu getcwd getdents getdents64 getegid getegid32 geteuid geteuid32 getgid getgid32

getgroups getgroups32 getitimer getpgid getpgrp getpid getpmsg getppid getpriority getresgid getresgid32 getresuid getresuid32 getrlimit getrusage getsid gettid gettimeofday getuid

getuid32 getxattr gtty idle init_module inotify_add_watch inotify_init inotify_rm_watch io_cancel io_destroy io_getevents io_setup io_submit ioctl ioperm iopl ioprio_get ioprio_set ipc kexec_load

keyctl kill Ichown Ichown32 Igetxattr link linkat listxattr llistxattr lock lookup_dcookie Iremovexattr Iseek Isetxattr Istat Istat64 madvise madvise1 mbind migrate_pages

mincore mkdir mkdirat mknod mknodat mlock mlockall mmap mmap2 modify_Idt mount move_pages mprotect mpx mq_getsetattr mq_notify mg_open mq_timedreceive mqg_timedsend mq_unlink

mremap msync munlock munlockall munmap nanosleep nfsservctl nice oldfstat oldistat oldolduname oldstat olduname open openat pause personality pipe pivot_root poll

ppoll pretl pread64 prof profil pselect6 ptrace putpmsg pwrite64 query_module quotactl read readahead readdir readlink readlinkat readv reboot remap_file_pages removexattr

rename renameat request_key restart_syscall rmdir rt_sigaction rt_sigpending rt_sigprocmask rt_sigqueueinfo rt_sigreturn rt_sigsuspend rt_sigtimedwait sched_get_priority_max sched_get_priority_min sched_getaffinity
sched_getparam sched_getscheduler sched_rr_get_interval sched_setaffinity sched_setparam sched_setscheduler sched_yield select sendfile sendfile64 set_mempolicy set_robust_list set_thread_area set_tid_address setdomainname
setfsgid setfsgid32 setfsuid setfsuid32 setgid setgid32 setgroups setgroups32 sethostname setitimer setpgid setpriority setregid setregid32 setresgid setresgid32 setresuid setresuid32 setreuid setreuid32

setrlimit setsid settimeofday setuid setuid32 setxattr sgetmask sigaction sigaltstack signal sigpending sigprocmask sigreturn sigsuspend socketcall splice ssetmask stat stat64 statfs

statfs64 stime stty swapoff swapon symlink symlinkat sync sync_file_range sysfs sysinfo syslog tee tgkill time timer_create timer_delete timer_getoverrun timer_gettime timer_settime

times tkill truncate truncate64 ugetrlimit ulimit umask umount umount2 uname unlink unlinkat unshare uselib ustat utime utimes vfork vhangup vm86 vm86old vmsplice vserver wait4 waitid waitpid write writev

Good Design
Procos <

With a common server interface,
location of services is no longer
important. The differentiation of
char/block is archaic. Processes no
longer distinguish servers and devices.
Devices no longer have numbers.

LIGHT

BIND CHDIR CLOSE DUP ALARM EXEC

EXITS FAUTH SEGBRK OPEN OSEEK SLEEP

RFORK PIPE CREATE FD2PATH BRK_ REMOVE
NOTIFY NOTED SEGATTACH SEGDETACH SEGFREE
SEGFLUSH RENDEZVOUS UNMOUNT SEMACQUIRE
SEMRELEASE SEEK FVERSION ERRSTR STAT FSTAT
WSTAT FWSTAT MOUNT AWAIT PREAD PWRITE

Kernel iIs a multicore application

* And hence should be as easily parallelized as
your app
* But Linux and LWK are not that way

- Well, LWK doesn't do much anyway

* Trend: file systems, drivers are moving out of
Linux as it is so hard to work in-kernel

* Sooner or later, Linux will be a server mux

* l.e. a poor man's Plan 9

Example: CPU and file server

switch

This structure makes no sense

* All the power, bandwidth is on the CPU side

* Need to get file server components running in
the fabric!

* Dynamically activate CPUs to take on some
functions of file servers, as determined by the
application

= This is NOT “l/O nodes”
* Easy given the right OS

Non-product-derived structure

=
==

switch

* Server
components
migrate to CPU
nodes on demand

None of the software we use

functions this way
* This is a distributed system

* As our computers grow, they will resemble
distributed systems, not 1992 MPPs

* We should plan for this change now

* Not continue to pretend that we can scale
RHEL 5 forever

The rule

* Common interface to multiple subsystems

* The kernel's job is to multiplex process
connections to servers

Exascale question:
How to run 100 MILLION cores?

* Just keep running Linux forever; it'll work fine

* Throw Linux away and run limited LWKs

The end of the free ride

Linux continues to grow exponentially

Up to now, piggy OS compensated for by fast
clock

From here on out, performance comes from lots
of cores

oops -- Linux will consume a growing fraction of
ever-relatively-slower CPUs

Unless you can split it into lots of parallel bits

Growth happens

* “A handful of characteristics of Unix are
responsible for its resilience. First, Unix is
simple: whereas some operating systems
implement thousands of system calls and have
unclear design goals, Unix systems typically
implement only hundreds of system calls and
have a very clear design” -- Linux Kernel
Development, 2nd Ed. by Robert Love

* When was “hundreds” ever small?

So we just run an LWK, right?

Something small, something simple
As long as it can support Python
And remote access (ssh?)
And NFS, and xterms,
And gdb, and Emacs

It's 4K desktops!

So ...

LWK works, if enhanced until it becomes Linux
— Which is why BG/x LWK keeps growing ...
Can Light-Weight Linux fill the bill?

- Just a kernel and a remote exec daemon?

LANL experience says no
Bproc was shown to be as light as it can get

“too light” for some users (LWK problem redux)

Plan 9 Is smaller than Linux, far
more capable than LWK

* Most services (e.g. file systems) run outside the
kernel

* as unprivileged user processes

* And hence can be started, and controlled, by
the application

* Get exactly the capability you want/need, no
more

Status

Running on BG/L with 16 man-weeks effort

— We've run window manager on BG/L compute
nodes :-)

Port to BG/P starts 2008
Port to XT/4 starts 2008
Possible port to siCortex

App port work in progress (HPCC to start)

Hence the

Slow-motion tsunami

* MegaCore systems are coming

* Today's capacity cluster is 3 years ago
capability cluster is 6 years ago HPC system

* HPC systems lead clusters by about 6 years

* Growth in “node address space”:

— .57+ bits/yr for HPC systems (14 years, 8 bits)
— .98+ bits/yr for cluster system (16 years, 9 bits)

* What about the software?

Well, what about the software?

* Current plans are “more of the same”

* Just stack a thousand, er, thousands, er tens of
thousands, err, ah, well millions of RHEL 5
desktops

* And just make everything look like a 1024-node
cluster

* Yeah, that's gonna work ...

What's that look like in 20157

* Question: do you
want to run 1M
desktops?

* Does anyone in their
right mind?

N NP * And what's happening

- STEVEN MCQUEEN anern coRscAuT - ExR. Rowe in Linux anyway?
JAGKHHARRSS RV . VEAWRTH, .- THEDDORE SIMONSON < ATE PHLLIPS
o * Growth ...

FROM AN DER BY SRE H MBLGATE S A TOMYLYN PRODLETEN - CR0R £

S0 what are we doing about it?
Nothing

* A full desktop per node is unacceptable
* How long have we known”? 5 years

* How long do we have? Maybe 5 years
* Will people be surprised anyway? Yes

* Slow-motion Tsunami

— We can see it coming

— We're still sitting on the beach drinking mai-tai's

What we can predict

* Whatever we're doing today won't work
tomorrow

* If we try to freeze the structure of the software
we are using, we guarantee obsolescence

- For “freeze” substitute “standardize”

* Unfortunately, we've just done that

* Our old software dividing lines are making less
and less sense

10000000000
1000000000
100000000
10000000
1000000
100000
10000

1000

100

10

1,
1950

Another notional graph

processors, #Procs per processor

CPUs
Procs/CPU

1960 1970 1980 1990 2000 2010

What's the OS doing?

* It's time sharing

* The name even says it: “The Unix Time-Sharing
System”

The promise
e

T il

The reality

Time sharing CPUs?

* This thing we are drowning in?

* The whole structure of our OS is designed
around something we no longer need to do

* Trend observable in 1996

* So, | proposed in 1996 that we start research in
non-time-shared OSes

How you can tell you're on the right

track

* “That idea is so ridiculous | won't even put it on
the slide” -- Eminent computer scientist #1

* “You're proposing to take a 30 Mhz. MIPS CPU
with 8 MB memory and just let it sit idle?\” --
Eminence #2

* And yet here we are ... with a 128,000 CPU
machine with non-time-sharing OS

Because time-share OSes are the wrong idea

That's nice, but what have you done

for me lately”
* This quote could define our business

* This is the computer industry; you don't get to
say “we're done”

* S0, yes, it's nice that we've done some good
work; now it's time to go solve some problems

