
   

Trends in HPC OS

Ron Minnich, SNL

SAND2007-7494P



   

Overview
● Relative slowdown as the blob grows 

exponentially
● Fault tolerance is the wrong mindset
● We need good design, not bad design, in 

kernels
● Programming to 100M CPUs is a different 

game



   

Fault Oblivious computing
● Application not aware of faults
● Does not respond to them
● Computes correctly even as they occur

– You don't know about each disk error, do you?
● Works @ Google
● This is NOT “fault tolerance”!



   

One of the questions
● Should we add a system call to frob the natz?
● Ooops. The question presupposes many things
● In particular, that adding a system call is 

required to gain functionality
● In all too many cases, that's really covering up 

for poor design



   

Poor Design

Process

UFS

Char Device

Block Device

Block 
Interface

Char 
Interface

VFS 
Interface

VFS

Other file system

sysfs

Kernel

I know!
Let's put
devices
in the 
file 
system!

Sockets

Sysctl

Lotsa stuff!



   

HEAVY
● _llseek _newselect _sysctl access acct add_key adjtimex afs_syscall alarm bdflush break brk capget capset chdir chmod chown chown32 chroot clock_getres

● clock_gettime clock_nanosleep clock_settime clone close creat create_module delete_module dup dup2 epoll_create epoll_ctl epoll_pwait epoll_wait execve exit exit_group faccessat fadvise64 fadvise64_64

● fchdir fchmod fchmodat fchown fchown32 fchownat fcntl fcntl64 fdatasync fgetxattr flistxattr flock fork fremovexattr fsetxattr fstat fstat64 fstatat64 fstatfs fstatfs64

● fsync ftime ftruncate ftruncate64 futex futimesat get_kernel_syms get_mempolicy get_robust_list get_thread_area getcpu getcwd getdents getdents64 getegid getegid32 geteuid geteuid32 getgid getgid32

● getgroups getgroups32 getitimer getpgid getpgrp getpid getpmsg getppid getpriority getresgid getresgid32 getresuid getresuid32 getrlimit getrusage getsid gettid gettimeofday getuid 

● getuid32 getxattr gtty idle init_module inotify_add_watch inotify_init inotify_rm_watch io_cancel io_destroy io_getevents io_setup io_submit ioctl ioperm iopl ioprio_get ioprio_set ipc kexec_load

● keyctl kill lchown lchown32 lgetxattr link linkat listxattr llistxattr lock lookup_dcookie lremovexattr lseek lsetxattr lstat lstat64 madvise madvise1 mbind migrate_pages

● mincore mkdir mkdirat mknod mknodat mlock mlockall mmap mmap2 modify_ldt mount move_pages mprotect mpx mq_getsetattr mq_notify mq_open mq_timedreceive mq_timedsend mq_unlink

● mremap msync munlock munlockall munmap nanosleep nfsservctl nice oldfstat oldlstat oldolduname oldstat olduname open openat pause personality pipe pivot_root poll

● ppoll prctl pread64 prof profil pselect6 ptrace putpmsg pwrite64 query_module quotactl read readahead readdir readlink readlinkat readv reboot remap_file_pages removexattr

● rename renameat request_key restart_syscall rmdir rt_sigaction rt_sigpending rt_sigprocmask rt_sigqueueinfo rt_sigreturn rt_sigsuspend rt_sigtimedwait sched_get_priority_max sched_get_priority_min sched_getaffinity 

● sched_getparam sched_getscheduler sched_rr_get_interval sched_setaffinity sched_setparam sched_setscheduler sched_yield select sendfile sendfile64 set_mempolicy set_robust_list set_thread_area set_tid_address setdomainname

● setfsgid setfsgid32 setfsuid setfsuid32 setgid setgid32 setgroups setgroups32 sethostname setitimer setpgid setpriority setregid setregid32 setresgid setresgid32 setresuid setresuid32 setreuid setreuid32

● setrlimit setsid settimeofday setuid setuid32 setxattr sgetmask sigaction sigaltstack signal sigpending sigprocmask sigreturn sigsuspend socketcall splice ssetmask stat stat64 statfs

● statfs64 stime stty swapoff swapon symlink symlinkat sync sync_file_range sysfs sysinfo syslog tee tgkill time timer_create timer_delete timer_getoverrun timer_gettime timer_settime

● times tkill truncate truncate64 ugetrlimit ulimit umask umount umount2 uname unlink unlinkat unshare uselib ustat utime utimes vfork vhangup vm86 vm86old vmsplice vserver wait4 waitid waitpid write writev 

●



   

Good Design

With a common server interface,
location of services is no longer
important. The differentiation of 
char/block is archaic. Processes no
longer distinguish servers and devices.
Devices no longer have numbers. 

With a common server interface,
location of services is no longer
important. The differentiation of 
char/block is archaic. Processes no
longer distinguish servers and devices.
Devices no longer have numbers. 

With a common server interface,
location of services is no longer
important. The differentiation of 
char/block is archaic. Processes no
longer distinguish servers and devices.
Devices no longer have numbers. 

Process Server
(i.e. process)

Device

Server
Interface



   

LIGHT
● BIND CHDIR CLOSE DUP ALARM EXEC
● EXITS FAUTH SEGBRK OPEN OSEEK SLEEP
● RFORK PIPE CREATE FD2PATH BRK_ REMOVE
● NOTIFY NOTED SEGATTACH SEGDETACH SEGFREE
● SEGFLUSH RENDEZVOUS UNMOUNT SEMACQUIRE 
● SEMRELEASE SEEK FVERSION ERRSTR STAT FSTAT
● WSTAT FWSTAT MOUNT AWAIT PREAD PWRITE



   

Kernel is a multicore application
● And hence should be as easily parallelized as 

your app
● But Linux and LWK are not that way 

– Well, LWK doesn't do much anyway
● Trend: file systems, drivers are moving out of 

Linux as it is so hard to work in­kernel
● Sooner or later, Linux will be a server mux
● I.e. a poor man's Plan 9



   

Example: CPU and file server

switch



   

This structure makes no sense
● All the power, bandwidth is on the CPU side
● Need to get file server components running in 

the fabric!
● Dynamically activate CPUs to take on some 

functions of file servers, as determined by the 
application
– This is NOT “I/O nodes”

● Easy given the right OS



   

Non­product­derived structure

switch
● Server 

components 
migrate to CPU 
nodes on demand



   

None of the software we use 
functions this way

● This is a distributed system
● As our computers grow, they will resemble 

distributed systems, not 1992 MPPs
● We should plan for this change now
● Not continue to pretend that we can scale 

RHEL 5 forever



   

The rule
● Common interface to multiple subsystems
● The kernel's job is to multiplex process 

connections to servers



   

Exascale question:
How to run 100 MILLION cores?

● Just keep running Linux forever; it'll work fine
● Throw Linux away and run limited LWKs



   

The end of the free ride
● Linux continues to grow exponentially
● Up to now, piggy OS compensated for by fast 

clock
● From here on out, performance comes from lots 

of cores
● oops ­­ Linux will consume a growing fraction of 

ever­relatively­slower CPUs
● Unless you can split it into lots of parallel bits



   

Growth happens
● “A handful of characteristics of Unix are 

responsible for its resilience. First, Unix is 
simple: whereas some operating systems 
implement thousands of system calls and have 
unclear design goals, Unix systems typically 
implement only hundreds of system calls and 
have a very clear design”  ­­ Linux Kernel 
Development, 2nd Ed. by Robert Love

● When was “hundreds” ever small?



   

So we just run an LWK, right?
● Something small, something simple
● As long as it can support Python
● And remote access (ssh?)
● And NFS, and xterms,
● And gdb, and Emacs
● It's 4K desktops!



   

So ...
● LWK works, if enhanced until it becomes Linux

– Which is why BG/x LWK keeps growing ...
● Can Light­Weight Linux fill the bill?

– Just a kernel and a remote exec daemon?
● LANL experience says no
● Bproc was shown to be as light as it can get
● “too light” for some users (LWK problem redux)



   

Plan 9 is smaller than Linux, far 
more capable than LWK

● Most services (e.g. file systems) run outside the 
kernel 

● as unprivileged user processes
● And hence can be started, and controlled, by 

the application
● Get exactly the capability you want/need, no 

more



   

Status
● Running on BG/L with 16 man­weeks effort

– We've run window manager on BG/L compute 
nodes :­)

● Port to BG/P starts 2008
● Port to XT/4 starts 2008
● Possible port to siCortex
● App port work in progress (HPCC to start)



   

Hence the 



   

Slow­motion tsunami
● MegaCore systems are coming
● Today's capacity cluster is 3 years ago 

capability cluster is 6 years ago HPC system
● HPC systems lead clusters by about 6 years
● Growth in “node address space”:

– .57+ bits/yr for HPC systems (14 years, 8 bits)
– .58+ bits/yr for cluster system (16 years, 9 bits)

● What about the software?



   

Well, what about the software?
● Current plans are “more of the same”
● Just stack a thousand, er, thousands, er tens of 

thousands, err, ah, well millions of RHEL 5 
desktops

● And just make everything look like a 1024­node 
cluster

● Yeah, that's gonna work ...



   

What's that look like in 2015?
● Question: do you 

want to run 1M  
desktops?

● Does anyone in their 
right mind? 

● And what's happening 
in Linux anyway?

● Growth ...



   

So what are we doing about it?
Nothing

● A full desktop per node is unacceptable
● How long have we known? 5 years
● How long do we have? Maybe 5 years
● Will people be surprised anyway? Yes
● Slow­motion Tsunami

– We can see it coming
– We're still sitting on the beach drinking mai­tai's



   

What we can predict
● Whatever we're doing today won't work 

tomorrow
● If we try to freeze the structure of the software 

we are using, we guarantee obsolescence
– For “freeze” substitute “standardize”

● Unfortunately, we've just done that
● Our old software dividing lines are making less 

and less sense



   

Another notional graph

1950 1960 1970 1980 1990 2000 2010
1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

# processors, #procs per processor

CPUs
Procs/CPU



   

What's the OS doing?
● It's time sharing
● The name even says it: “The Unix Time­Sharing 

System”



   

The promise



   

The reality



   

Time sharing CPUs? 
● This thing we are drowning in?
● The whole structure of our OS is designed 

around something we no longer need to do
● Trend observable in 1996
● So, I proposed in 1996 that we start research in 

 non­time­shared OSes



   

How you can tell you're on the right 
track

● “That idea is so ridiculous I won't even put it on 
the slide” ­­ Eminent computer scientist #1

● “You're proposing to take a 30 Mhz. MIPS CPU 
with 8 MB memory and just let it sit idle?!” ­­ 
Eminence #2

● And yet here we are ... with  a 128,000 CPU 
machine with  non­time­sharing OS

● Because time­share OSes are the wrong idea



   

That's nice, but what have you done 
for me lately”

● This quote could define our business
● This is the computer industry; you don't get to 

say “we're done”
●  So, yes, it's nice that we've done some good 

work; now it's time to go solve some problems


