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Overview

* Relative slowdown as the blob grows
exponentially

* Fault tolerance is the wrong mindset

* We need good design, not bad design, in
kernels

* Programming to 100M CPUs is a different
game



Fault Oblivious computing

* Application not aware of faults
* Does not respond to them

* Computes correctly even as they occur

— You don't know about each disk error, do you?

* Works @ Google

* This is NOT “fault tolerance”!



One of the questions

* Should we add a system call to frob the natz?
* Ooops. The question presupposes many things

* In particular, that adding a system call is
required to gain functionality

* In all too many cases, that's really covering up
for poor design



Poor Design

| know!
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HEAVY
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Good Design
Procos <

With a common server interface,
location of services is no longer
important. The differentiation of
char/block is archaic. Processes no
longer distinguish servers and devices.
Devices no longer have numbers.



LIGHT
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Kernel iIs a multicore application

* And hence should be as easily parallelized as
your app
* But Linux and LWK are not that way

- Well, LWK doesn't do much anyway

* Trend: file systems, drivers are moving out of
Linux as it is so hard to work in-kernel

* Sooner or later, Linux will be a server mux

* l.e. a poor man's Plan 9



Example: CPU and file server

switch




This structure makes no sense

* All the power, bandwidth is on the CPU side

* Need to get file server components running in
the fabric!

* Dynamically activate CPUs to take on some
functions of file servers, as determined by the
application

= This is NOT “l/O nodes”
* Easy given the right OS



Non-product-derived structure

=
==

switch

* Server
components
migrate to CPU
nodes on demand



None of the software we use

functions this way
* This is a distributed system

* As our computers grow, they will resemble
distributed systems, not 1992 MPPs

* We should plan for this change now

* Not continue to pretend that we can scale
RHEL 5 forever



The rule

* Common interface to multiple subsystems

* The kernel's job is to multiplex process
connections to servers



Exascale question:
How to run 100 MILLION cores?

* Just keep running Linux forever; it'll work fine

* Throw Linux away and run limited LWKs



The end of the free ride

Linux continues to grow exponentially

Up to now, piggy OS compensated for by fast
clock

From here on out, performance comes from lots
of cores

oops -- Linux will consume a growing fraction of
ever-relatively-slower CPUs

Unless you can split it into lots of parallel bits



Growth happens

* “A handful of characteristics of Unix are
responsible for its resilience. First, Unix is
simple: whereas some operating systems
implement thousands of system calls and have
unclear design goals, Unix systems typically
implement only hundreds of system calls and
have a very clear design” -- Linux Kernel
Development, 2nd Ed. by Robert Love

* When was “hundreds” ever small?



So we just run an LWK, right?

Something small, something simple
As long as it can support Python
And remote access (ssh?)
And NFS, and xterms,
And gdb, and Emacs

It's 4K desktops!



So ...

LWK works, if enhanced until it becomes Linux
— Which is why BG/x LWK keeps growing ...
Can Light-Weight Linux fill the bill?

- Just a kernel and a remote exec daemon?

LANL experience says no
Bproc was shown to be as light as it can get

“too light” for some users (LWK problem redux)



Plan 9 Is smaller than Linux, far
more capable than LWK

* Most services (e.g. file systems) run outside the
kernel

* as unprivileged user processes

* And hence can be started, and controlled, by
the application

* Get exactly the capability you want/need, no
more



Status

Running on BG/L with 16 man-weeks effort

— We've run window manager on BG/L compute
nodes :-)

Port to BG/P starts 2008
Port to XT/4 starts 2008
Possible port to siCortex

App port work in progress (HPCC to start)



Hence the



Slow-motion tsunami

* MegaCore systems are coming

* Today's capacity cluster is 3 years ago
capability cluster is 6 years ago HPC system

* HPC systems lead clusters by about 6 years

* Growth in “node address space”:

— .57+ bits/yr for HPC systems (14 years, 8 bits)
— .98+ bits/yr for cluster system (16 years, 9 bits)

* What about the software?



Well, what about the software?

* Current plans are “more of the same”

* Just stack a thousand, er, thousands, er tens of
thousands, err, ah, well millions of RHEL 5
desktops

* And just make everything look like a 1024-node
cluster

* Yeah, that's gonna work ...



What's that look like in 20157

* Question: do you
want to run 1M
desktops?

* Does anyone in their
right mind?

N NP * And what's happening
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S0 what are we doing about it?
Nothing

* A full desktop per node is unacceptable
* How long have we known”? 5 years

* How long do we have? Maybe 5 years
* Will people be surprised anyway? Yes

* Slow-motion Tsunami

— We can see it coming

— We're still sitting on the beach drinking mai-tai's



What we can predict

* Whatever we're doing today won't work
tomorrow

* If we try to freeze the structure of the software
we are using, we guarantee obsolescence

- For “freeze” substitute “standardize”

* Unfortunately, we've just done that

* Our old software dividing lines are making less
and less sense
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What's the OS doing?

* It's time sharing

* The name even says it: “The Unix Time-Sharing
System”



The promise
e




T il

The reality




Time sharing CPUs?

* This thing we are drowning in?

* The whole structure of our OS is designed
around something we no longer need to do

* Trend observable in 1996

* So, | proposed in 1996 that we start research in
non-time-shared OSes



How you can tell you're on the right

track

* “That idea is so ridiculous | won't even put it on
the slide” -- Eminent computer scientist #1

* “You're proposing to take a 30 Mhz. MIPS CPU
with 8 MB memory and just let it sit idle?\” --
Eminence #2

* And yet here we are ... with a 128,000 CPU
machine with non-time-sharing OS

Because time-share OSes are the wrong idea



That's nice, but what have you done

for me lately”
* This quote could define our business

* This is the computer industry; you don't get to
say “we're done”

* S0, yes, it's nice that we've done some good
work; now it's time to go solve some problems



