

2007 Annual Report IEA Task 22 Hydrogen Storage Materials**Project H-31: Borohydride Materials Discovery and Development****Expert name:** Ewa Rönnebro and Eric Majzoub**Institution:** Sandia National Laboratories**E-mail:** ecronne@sandia.gov; ehmajzo@sandia.gov**Background**

Sandia/CA has been involved in hydrogen research, for over 40 years, and manages the USDOE Metal Hydrogen Center of Excellence. Hydride research at Sandia focused on complex hydrides for over 8 years, beginning with sodium alanate. More recently a combined effort of theory and experiment in materials searching and synthesis has yielded new metal hydride materials. New mixed cation materials based on AlH_n or BH_n anions are screened theoretically using a prototype electrostatic ground state (PEGS) method for generating low energy structures used in calculating the estimated enthalpy of decomposition. Synthesis methods involve mechanical alloying and a high pressure synthesis method employed at Sandia. This method utilizes compressed pellets of hydride precursor material, as well as potential catalysts, to exposure materials at pressures up to 2000 bar H_2 , and temperatures up to 500°C.

Activities in 2007

We have continued our explorations of $\text{Ca}(\text{BH}_4)_2$, this year focusing on identifying crystal structures and exploration of reversibility in a collaborative effort with groups in the US and Europe. We had earlier shown that it is possible to prepare $\text{Ca}(\text{BH}_4)_2$ by reacting CaB_6 with CaH_2 if adding an additive, but higher pressures (i.e. 70MPa) were utilized. *In situ* synchrotron data collected at ESRF (in collaboration with Filinchuk, ESRF and Chandra, UNR) revealed the crystal structures of two polymorphs of $\text{Ca}(\text{BH}_4)_2$, labeled α -phase and β -phase, formed upon removal of solvent from $\text{Ca}(\text{BH}_4)_2 \cdot 2\text{THF}$, and a third polymorph, α' -phase, formed upon a second order transformation of the α -phase at 495K as also observed by DSC. The α' -phase changes into the β -phase upon heating above 453K and decomposes at 655 K into unknown products which according to TGA is associated with a weight loss, likely due to release of hydrogen. Another set of *in situ* synchrotron data collected at Brookhaven (in collaboration with Zhao et al of GE), revealed re-formation of $\text{Ca}(\text{BH}_4)_2$ after desorption, showing that this material is promising for reversible applications.

We are also exploring bialkali borohydrides. The four highest symmetry crystal structures from a PEGS search for $\text{NaK}(\text{BH}_4)_2$ are, from lowest to highest symmetry, $R3$, $R-3$, $P3m1$, and $R-3m$. Remarkably, all generated structures were trigonal. The total DFT energies, at T=0K, of the four structures are ordered monotonically with the crystal symmetry, with the highest symmetry $R-3m$ having the lowest energy. The $P3m1$, $R-3$, and $R3$ structures have a T=0K total energy of 76, 80, and 110 meV above the $R-3m$ structure, respectively. Using the lowest energy $R-3m$ structure for $\text{NaK}(\text{BH}_4)_2$, and ignoring the phonon contribution to the total free energy, we have calculated the energy for the decomposition reaction of $\text{NaK}(\text{BH}_4)_2$ into NaBH_4 and KBH_4 to be near -3kJ/mol formula unit at T=0K. This indicates that the decomposition will proceed spontaneously. However, zero point energy (ZPE) phonon contributions can easily be larger than 3kJ/mol and the potential for a stable compound could not be ruled out initially. We were able to prepare this compound by high-energy mechanical alloying, and indeed, the phase is metastable and slowly decomposes. Rietveld refinements of experimental X-ray data confirmed the predicted structures. We are continuing exploring other bialkali borohydrides and also mixed alkali-transition metal borohydrides.

Published papers

1. Rönnebro, E.; Majzoub, E., Calcium Borohydride for Hydrogen Storage: Catalysis and Reversibility, *J. Phys. Chem. B Letters*, 2007, 111, 12045.
2. Filinchuk, Y.; Rönnebro, E.; Chandra, D., Crystal Structures and Phase Transformations in $\text{Ca}(\text{BH}_4)_2$, manuscript submitted.

Patent

1. E. Rönnebro, E. Majzoub, "Direct Synthesis of Calcium Borohydride", U.S. Patent Application Serial Number 60/901,248 filed 02/12/2007.