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About Me
B.S. W&M ’00

Double Major (CS & Math).
Research in optimization & applied statistics w/ Torczon
and Trosset (Indiana).

Ph.D. UIUC ’06
CS w/ Computational Science & Engineering option.
Research in numerical linear algebra w/ de Sturler(VT).

Sandia National Laboratories, Postdoc
Scalable algorithms group.
Research in multilevel methods w/ Tuminaro and Hu.
Trilinos project: http://trilinos.sandia.gov
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Course Background
Assumed audience background:

Multivariable calculus (MATH 212).
Linear algebra (MATH 211).

A more detailed talk would require:
Algorithms (CS 303).
Advanced linear algebra (MATH 408).
Numerical analysis (MATH 413, 414).
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What is Computational Science?
What do we think of when we think of
computational science?

Usually “big” things. . .
Airplanes, cars, rockets, etc.
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What is Computational Science?
What do we think of when we think of
computational science?

Usually “big” things. . .
Airplanes, cars, rockets, etc.

BUT computational science touches
everyday things as well!
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Process of Computational Science
Model the problem.
Discretize the model.
Solve the discrete problem.
Analyze results.
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Process of Computational Science
Model the problem.
Discretize the model.
Solve the discrete problem.
Analyze results.

Note: There are more “steps,” which I am neglecting.
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Model the Problem
“All models are wrong; some models are useful” – George Box

For this talk, we consider only PDE-based models.
Example problem: thermal diffusion on a beam.

Model: Heat Equation

∂u

∂t
= c

∂2u

∂x2
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Discretize the Problem
“Truth is much too complicated to allow anything but approximations” – John von Neumann

Problem must be discrete to solve on a computer.
Why not analytic methods?

Complicated geometries.
Complicated physics.

Analytic methods critical for verification & validation.
Types of discretization: Finite difference, finite element,
finite volume.
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Example: Finite Differences (1)
Limit definition of derivative:

f ′(x) = lim
h→0

f(x + h) − f(x)

h

Basic idea: pick a finite h.

f ′(x) ≈
f(x + h) − f(x)

h

We can do this for 2nd derivatives as well:

f ′′(x) ≈
f(x + h) − 2f(x) + f(x − h)

h2
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Example: Finite Differences (2)
Model:

∂u

∂t
= c

∂2u

∂x2

Discretization — Backward Euler (subscript = space,
superscript = time):

Uk+1
j − Uk

j

∆t
= c

Uk+1
j+1 − 2Uk+1

j + Uk+1
j−1

(∆x)2

Mesh:
∆x ∆x ∆x ∆x

Introduction to Multilevel Solvers for the Physical Sciences – p.13/48



Solve the Discrete Problem
“Mathematics is the queen of the sciences” – Carl Friedrich Gauss

Backward Euler (subscript = space, superscript = time):

Uk+1
j − Uk

j

∆t
= c

Uk+1
j+1 − 2Uk+1

j + Uk+1
j−1

(∆x)2

This is a linear system:

[

−
c

(∆x)2

(

2 c
(∆x)2 + 1

∆t

)

−
c

(∆x)2

]







Uk+1
j−1

Uk+1
j

Uk+1
j+1






=

Uk
j

∆x

for j = 1, . . . , n.
Introduction to Multilevel Solvers for the Physical Sciences – p.14/48



Analyze the Results
“When you are solving a problem, don’t worry. Now, after you have solved

the problem, then that’s the time to worry.” – Richard Feynman

Is there something we missed in the model?
Does the answer look plausible?
Does the answer match experiment (if applicable)?
Does the answer change with mesh refinement?
What does the answer tell us about the underlying
problem?
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Importance of Linear Algebra
Solving linear systems was critical to the example
⇒ One linear solve per time step!
We can do this w/ Gaussian elimination.
But is it fast enough?
How long does GE take for an n × n matrix?
We need time complexity analysis!
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Gaussian Elimination






a b c

d e f

g h i













x

y

z






=







α

β

γ







Total Operations = 0
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Gaussian Elimination






1 b c

d e f

g h i













x

y

z






=







α

β

γ







Total Operations ≈ n

1. Divide through the 1st row by a.

Introduction to Multilevel Solvers for the Physical Sciences – p.19/48



Gaussian Elimination






1 b c

0 e f

g h i













x

y

z






=







α

β

γ







Total Operations ≈ 2n
1. Divide through the 1st row by a.
2. Subtract off d times the first row from the second.
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Gaussian Elimination






1 b c

0 e f

0 h i













x

y

z






=







α

β

γ







Total Operations ≈ n2

1. Divide through the 1st row by a.
2. Subtract off d times the first row from the second.
3. Do the same for the remaining n − 2 rows.
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Gaussian Elimination






1 b c

0 1 f

0 0 1













x

y

z






=







α

β

γ







Total Operations ≈ n3

1. Divide through the 1st row by a.
2. Subtract off d times the first row from the second.
3. Do the same for the remaining n − 2 rows.
4. Repeat the for the remaining n − 1 columns.
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Is Gauss Good Enough?
For dense problems (almost all entries non-zero), yes.
But what about sparse problems?
Example: 1D Heat equation has 3 non-zeros per row.
Sparse GE is better, but not good enough
⇒ work is heavily dependent on matrix structure.
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Is Gauss Good Enough?
For dense problems (almost all entries non-zero), yes.
But what about sparse problems?
Example: 1D Heat equation has 3 non-zeros per row.
Sparse GE is better, but not good enough
⇒ work is heavily dependent on matrix structure.

n work GOOD!n3work BAD!
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Introducing Iterative Methods
Ax = b

Idea: Sparse matrix-vector products are cheap
cost = # non-zeros.
This is the basic idea behind iterative methods.
Jacobi’s method:

xi+1 = D−1(b − (A − D)xi)

where D is the diagonal of A.
Total Operations ≈ bn per step, where b = avg. nnz per row.
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Speed of Various Methods
Consider a model Laplace problem of size: n = kd, where
d = 2, 3.

Method 2D 3D
Dense GE k6 k9

Sparse GE k3 k6

Jacobi k4 log k k5 log k

Multigrid k2 k3

Table from:

Scientific Computing: An Introductory Survey, 2nd ed. by M.T. Heath
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Speed of Various Methods
Consider a model Laplace problem of size: n = kd, where
d = 2, 3.

Method 2D 3D
Dense GE k6 k9

Sparse GE k3 k6
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Multigrid k2 k3
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Introducing Multilevel Methods
Goal: Solve problem with specified mesh spacing, h.
Idea: Approximate with solution of problem with coarse
mesh H, where H > h.
How to move from coarse (H) to fine (h) ⇒ interpolation.
How to solve coarse (H) problem ⇒ GE, or more multigrid.
Use Jacobi to clean up the rest.

Big Question: Will this work?
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Fourier Series
Consider a (real) Fourier series

f(x) =
a0

2
+

∞
∑

i=1

αi cos(2πxi)

What do these functions look like?
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Sampling Fourier Modes
What modes can a discretization sample?
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Multigrid & Fourier Modes
Question: What does this have to do with multigrid?
Coarse grids can only resolve smooth modes.
Coarse grids cannot resolve oscillatory modes (aliasing).
Next question: What about oscillatory modes?
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Coarse Grid OK. Coarse Grid no help.
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Jacobi to the Rescue
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Oscillatory Mode
1 Jacobi Step
2 Jacobi Steps
5 Jacobi Steps
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Multigrid by Picture

Fine Grid Smooth

Coarser Grid Smooth

Coarsest Grid Solve
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Multigrid Method for Ahx = b

Loop until convergence...
1. Smooth on fine grid.

jacobi(Ah, x, b).
2. Transfer residual (b − Ahx) to coarse grid (restriction).

rc = P T (b − Ahx).
3. Solve on coarse grid.

xc = A−1
H rc.

4. Transfer solution to fine grid (prolongation).
x = x + Pxc

5. Smooth on fine grid.
jacobi(A,x, b).
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Algebraic Multigrid
Previous method is known as Geometric Multigrid
⇒ New discretization required for each H.
This is not necessary. . . we can do this algebraically.
Algebraic Multigrid (AMG)

Only needs matrix Ah.
Generates grid transfer (P ) by grouping variables
together.
Coarse matrix formed by matrix-matrix multiplication
AH = P T AhP .
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Open Questions in Multigrid
MG is designed problems like Laplace or Heat equation.
On other problems additional issues arise.
Mathematical issues: anisotropy, systems, variable
materials.
Computer science issues: parallelism, scalability.
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Math Issue #1: Anisotropy
∂2u

∂x2
+ ε

∂2u

∂y2
= f

Anisotropic operators have direction-dependent behavior.
Example: Heat diffuses “faster” in y direction (ε small).
Tests varying ε w/ 10, 000 unknowns.

ε = 1 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

Iterations 14 20 53 129 189

This is BAD!
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Reacting to Anisotropy
Better meshes fix simple problems

Isotropic Mesh Anisotropic Mesh
Meshes alone cannot solve hard problems.
One solution: Hot-dog shaped aggregates (change coarse
operator).
Research problem: Robust detection of anisotropy.
Research problem: Non-axial anisotropy.
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Math Issue #2: PDE Systems
PDE systems have more variables and larger null spaces.
Example: Linear elasticity.

One solution: Smoothed aggregation — explicitly preserve
null space on coarse levels.
Research problem: Fluid problems (e.g. Navier-Stokes).
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Math Issue #3: Multimaterial
Material interfaces can be sites of discontinuities
⇒ oscillatory modes at boundaries.
Features can be hard to resolve on coarse grid.

Research problem: Detecting material interfaces.
Research problem: Handling disappearing features.
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CS Issues: Parallelism
More processors should lead to faster solutions.
Strong scaling — fix work, increase processors.
Example: 2,000 steps of Jacobi.
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CS Issues: Parallelism
More processors should lead to faster solutions.
Strong scaling — fix work, increase processors.
Example: 2,000 steps of Jacobi.
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Strong Scaling

Question: What causes the loss in efficiency?
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Understanding Efficiency
Answer: Computation to communication ratio
Weak scaling — fix work per processor.
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Strong Scaling
Weak Scaling

Message: What works on a small # of procs, might
not work on a large #.
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CS Issue #1: Scalability
Coarse grids ⇒ less work per proc ⇒ poor performance
One solution: Repartitioning to purposely leave some
procs idle.
Research problem: What is the best way to repartition?
Research problem: How to address poor performance on
really big (terascale) computers.
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Take Home
“I would rather have today’s algorithms on yesterday’s computers

than vice versa.” - Reported by P. Toint

Ubiquity of computational science.
Importance of good algorithms.
Rationale behind multilevel algorithms.
Nature of the “big questions” in multilevel algorithm
research.

Math: Anisotropy, multimaterial, PDE systems.
CS: parallelism, scalability.
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Useful References
A Multigrid Tutorial, 2nd ed. W.L. Briggs, V.E. Henson and
S.F. McCormick.
Scientific Computing: An Introductory Survey, 2nd ed.
M.T. Heath.
Numerical Solution of Partial Differential Equations. K.W.
Morton and D.R. Mayers.
Trilinos project: http://trilinos.sandia.gov
My web site: http://www.sandia.gov/~csiefer
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