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}About Me

o B.S. W&M 00
o Double Major (CS & Math).
o Research in optimization & applied statistics w/ Torczon
and Trosset (Indiana).
o Ph.D. UIUC '06
o CS w/ Computational Science & Engineering option.
o Research in numerical linear algebra w/ de Sturler(VT).

# Sandia National Laboratories, Postdoc
o Scalable algorithms group.
o Research in multilevel methods w/ Tuminaro and Hu.
# Trilinos project: http://trilinos.sandia.gov
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http://trilinos.sandia.gov

}Course Background

#® Assumed audience background:
o Multivariable calculus (MATH 212).
o Linear algebra (MATH 211).

#® A more detailed talk would require:
o Algorithms (CS 303).
o Advanced linear algebra (MATH 408).
o Numerical analysis (MATH 413, 414).
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What is Computational Science?

#® What do we think of when we think of
computational science?

o Usually “big” things. ..
o Airplanes, cars, rockets, eftc.
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% What is Computational Science?

#® What do we think of when we think of
computational science?

o Usually “big” things. ..
o Airplanes, cars, rockets, efc.

o BUT computational science touches
everyday things as well!
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Model the problem.
Discretize the model.
Solve the discrete problem.
Analyze results.

Intro

.y '
}Process of Computational Science
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} Process of Computational Science

Model the problem.
Discretize the model.
Solve the discrete problem.
Analyze results.

Note: There are more “steps,” which | am neglecting.
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Model the Problem

“All models are wrong; some models are useful” — George Box

# For this talk, we consider only PDE-based models.
# Example problem: thermal diffusion on a beam.

| )

|
l

#® Model: Heat Equation
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Discretize the Problem

“Truth is much too complicated to allow anything but approximations” — John von Neumann

# Problem must be discrete to solve on a computer.

o Why not analytic methods?
o Complicated geometries.
o Complicated physics.

# Analytic methods critical for verification & validation.

# Types of discretization: Finite difference, finite element,
finite volume.
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} Example: Finite Differences (1)

® Limit definition of derivative:

o) — pim LEEH) = @)

h—0 h

# Basic idea: pick a finite h.

flz+h)— f(z)

HOPEES=

® We can do this for 2nd derivatives as well:

fle+h) —2f(z) + flz —h)

f(z) ~ y
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} Example: Finite Differences (2)

» Model:
ou _
ot  0x?
# Discretization — Backward Euler (subscript = space,
superscript = time):
k+1 k k+1 k+1 k+1
Uit - Up U - 20+ U
At (Ax)?

® Mesh:
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“ Solve the Discrete Problem

“Mathematics is the queen of the sciences” — Carl Friedrich Gauss

#® Backward Euler (subscript = space, superscript = time):

U]]-H_l . Uk Ujkj—ll . QUJI:H_l 4 Uk—|—1

At © (Az)?

# This is a linear system:

T k41 T
{ __c (2 C + L) __C } Uk_i_l — _J
(Az) AxZ T A (Ax)? J Ar
U +1
J+1
forj=1,..., n. @ﬁg?igi:al_
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Analyze the Results

“When you are solving a problem, don’t worry. Now, after you have solved

Does t
Does t

Does t

the problem, then that’s the time to worry.” — Richard Feynman

s there something we missed in the model?

ne answer look plausible?
ne answer match experiment (if applicable)?

ne answer change with mesh refinement?

What does the answer tell us about the underlying
problem?
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}Importance of Linear Algebra

Solving linear systems was critical to the example
= One linear solve per time step!

We can do this w/ Gaussian elimination.
But is it fast enough?

How long does GE take for an n x n matrix?
We need time complexity analysis!

Sandia
National
Laboratories

Introduction to Multilevel Solvers for the Physical Sciences — p.17/48



o Q. &

Total Operations =0

b
e
h

S~ O

“ Gaussian Elimination

@
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o Qo =

Total Operations ~ n

1. Divide through the 1st row by a.

b
e
h

J Gaussian Elimination

@
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j Gaussian Elimination

1 b c T Q
0 e f y | =128
_ghz__z_ s

Total Operations =~ 2n
1. Divide through the 1st row by a.
2. Subtract off d times the first row from the second.
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Gaussian Elimination

1 b c T Q
0 e f y =128
_Ohi__z_ Y

Total Operations ~ n?

1. Divide through the 1st row by a.

2. Subtract off d times the first row from the second.
3. Do the same for the remaining n — 2 rows.
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jﬁ Gaussian Elimination

1 b c T Q
0 1 f y | =108
_OOl__z_ Y]

Total Operations ~ n?

1. Divide through the 1st row by a.

2. Subtract off d times the first row from the second.
3. Do the same for the remaining n — 2 rows.

4. Repeat the for the remaining n — 1 columns.
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}.Is Gauss Good Enough?

For dense problems (almost all entries non-zero), yes.
But what about sparse problems?
Example: 1D Heat equation has 3 non-zeros per row.

Sparse GE is better, but not good enough
— work is heavily dependent on matrix structure.
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}AIS Gauss Good Enough?

For dense problems (almost all entries non-zero), yes.
But what about sparse problems?
Example: 1D Heat equation has 3 non-zeros per row.

Sparse GE is better, but not good enough
— work is heavily dependent on matrix structure.

> work — = BAD! n work — = GOOD!
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}Introducing Iterative Methods

Ar =0

|dea: Sparse matrix-vector products are cheap
cost = # non-zeros.

This is the basic idea behind iterative methods.
Jacobi’s method:

ziy1=D"'(b— (A— D)x;)

where D is the diagonal of A.
Total Operations ~ bn per step, where b = avg. nnz per row.
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}Speed of Various Methods

Consider a model Laplace problem of size: n = k¢, where

d=2,3.
Method 2D 3D
Dense GE I k9
Sparse GE k3 kO
Jacobi klogk | k% logk
Table from:

Scientific Computing: An Introductory Survey, 2nd ed. by M.T. Heath
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}Speed of Various Methods

Consider a model Laplace problem of size: n = k¢, where

d=2,3.
Method 2D 3D
Dense GE kO k9
Sparse GE k3 kO
Jacobi klogk | k% log k
Multigrid k? k3
Table from:

Scientific Computing: An Introductory Survey, 2nd ed. by M.T. Heath

Sandia
National
Laboratories

Introduction to Multilevel Solvers for the Physical Sciences — p.27/48



© o o o 0

_ '
}Outline

Background.

Computation in the Physical Sciences.

Solving Linear Systems with lterative Methods.
Introduction Multilevel Methods.

Open Questions in Multilevel Methods.

Sandia
National
Laboratories

Introduction to Multilevel Solvers for the Physical Sciences — p.28/48



}Introducing Multilevel Methods

# Goal: Solve problem with specified mesh spacing, h.

# |dea: Approximate with solution of problem with coarse
mesh H, where H > h.

# How to move from coarse (H) to fine (k) = interpolation.
# How to solve coarse (H) problem = GE, or more multigrid.
# Use Jacobi to clean up the rest.

# Big Question: Will this work?
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Fourier Series

# Consider a (real) Fourier series

f(x) = % + Z o; cos(2mxi)
i=1

® What do these functions look like?

T~ 1 T T T T T T T T 1 y T T T T T

08 B 0.8 1 0.8
08 B 0.6- 1 0.6}
04 4 0.4r q 0.4r
02f 4 0.2F B 0.2
of - or q
0.2 0.2

0.4 0.4

L L L L L L 4 L L L L ~
3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ‘o 0.1 02 03 04 05 06 07 08 0.9 1
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} Sampling Fourier Modes

nat modes can a discretization sample?

AN

@
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}Multigrid & Fourier Modes

Question: What does this have to do with multigrid?
Coarse grids can only resolve smooth modes.
Coarse grids cannot resolve oscillatory modes (aliasing).

® o o 0

Next question: What about oscillatory modes?

N/ T

T 0z 03 o4 05 o6 o7 o5 o Z;UU Us 94\\&6 7U UU

Coarse Grid OK. Coarse Grid no help.
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J - J acobi to the Rescue

| | | | | | [— Oscillalltory Molde
0-8* R * 1 Jacobi Step *
2 Jacobi Steps
0.6 ” 5 Jacobi Steps
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Fine Grid Smooth

Smooth

Coarser Grid

Coarsest Grid Solve
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}Mulﬁgrid Method for A,x = b

Loop until convergence...

1.

2.

Smooth on fine grid.
jacobi( Ay, x,b).

Transfer residual (b — A, z) to coarse grid (restriction).
Te = PT(b — Ahil?)

. Solve on coarse grid.

:%:A;%.

. Transfer solution to fine grid (prolongation).

r=x+ Px.

. Smooth on fine grid.

jacobi(A x,b).
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} Algebraic Multigrid

# Previous method is known as Geometric Multigrid
— New discretization required for each H.

# This is not necessary...we can do this algebraically.

# Algebraic Multigrid (AMG)
o Only needs matrix Ay,

o Generates grid transfer (P) by grouping variables
together.

o (Coarse matrix formed by matrix-matrix multiplication
A = PTA,P.
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}Open Questions in Multigrid

#® MG is designed problems like Laplace or Heat equation.
# On other problems additional issues arise.

# Mathematical issues: anisotropy, systems, variable
materials.

# Computer science issues: parallelism, scalability.
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}Math Issue #1: Anisotropy

Pu | o _
Ox? €8y2 B
#® Anisotropic operators have direction-dependent behavior.

f

# Example: Heat diffuses “faster” in y direction (e small).
#® Tests varying ¢ w/ 10,000 unknowns.

‘ e=1 e=10"" ¢=10"2 =103 e=10""*
lterations | 14 20 53 129 189

# This is BAD!
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}Reacting to Anisotropy

# Better meshes fix simple problems

Isotropic Mesh  Anisotropic Mesh
#® Meshes alone cannot solve hard problems.

# One solution: Hot-dog shaped aggregates (change coarse
operator).

# Research problem: Robust detection of anisotropy.
® Research problem: Non-axial anisotropy.
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}Math Issue #2: PDE Systems

#® PDE systems have more variables and larger null spaces.
#® Example: Linear elasticity.

# One solution: Smoothed aggregation — explicitly preserve
null space on coarse levels.

# Research problem: Fluid problems (e.g. Navier-Stokes).
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Math Issue #3: Multimaterial

® Material interfaces can be sites of discontinuities
= oscillatory modes at boundaries.

# Features can be hard to resolve on coarse grid.

#® Research problem: Detecting material interfaces.
#® Research problem: Handling disappearing features.
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CS Issues: Parallelism

#® More processors should lead to faster solutions.
#® Strong scaling — fix work, increase processors.
® Example: 2,000 steps of Jacobi.

] —— Strong Scaling

10 10’ 10
Processors
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Efficiency

Example: 2,000 steps of Jacobi.

CS Issues: Parallelism

More processors should lead to faster solutions.
Strong scaling — fix work, increase processors.

1

0.9¢
0.8¢

©o o o o o
w N ~
T T T T

0.2f

0.1

10°

»
T

] ——Strong Scaling\

Processors

10

# Question: What causes the loss in efficiency?
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Understanding Efficiency

#® Answer: Computation to communication ratio
#® Weak scaling — fix work per processor.

19

0.9¢

o
o
T

o
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T

Efficiency
o o

o
~
T

o
w
T
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10° 10’ 10

—— Strong Scaling
——Weak Scaling |

\'

2

Processors

#® Message: What works on a small # of procs, might

not work on a larg
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}CS Issue #1: Scalability

o Coarse grids = less work per proc = poor performance

# One solution: Repartitioning to purposely leave some
procs idle.

# Research problem: What is the best way to repartition?

# Research problem: How to address poor performance on
really big (terascale) computers.
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Take Home

“I would rather have today’s algorithms on yesterday’s computers
than vice versa.” - Reported by P. Toint

Ubiquity of computational science.
Importance of good algorithms.
Rationale behind multilevel algorithms.

Nature of the “big questions” in multilevel algorithm
research.
o Math: Anisotropy, multimaterial, PDE systems.

o CS: parallelism, scalability.
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’i Useful References

A Multigrid Tutorial, 2nd ed. W.L. Briggs, V.E. Henson and
S.F. McCormick.

Scientific Computing: An Introductory Survey, 2nd ed.
M.T. Heath.

Numerical Solution of Partial Differential Equations. K.W.
Morton and D.R. Mayers.

Trilinos project: http://trilinos.sandia.gov
My web site: http://www.sandia.gov/~csiefer
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