

**WORK PLAN FOR PRELIMINARY INVESTIGATION OF ORGANIC  
CONSTITUENTS IN GROUND WATER AT THE NEW RIFLE SITE  
RIFLE, COLORADO**

**January 1996**

**Work performed under DOE Contract No. DEAC04-91AL62350**

**Prepared for  
U.S. Department of Energy  
Albuquerque Operations Office  
Grand Junction Projects Office**

**Prepared by  
Jacobs Engineering Group Inc.  
Albuquerque, New Mexico**

**DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

**MASTER**

## **DISCLAIMER**

**Portions of this document may be illegible  
in electronic image products. Images are  
produced from the best available original  
document.**

TABLE OF CONTENTS

| <u>Section</u> |                                                  | <u>Page</u> |
|----------------|--------------------------------------------------|-------------|
| 1.0            | INTRODUCTION.....                                | 1           |
| 1.1            | Purpose .....                                    | 1           |
| 1.2            | Background information.....                      | 1           |
| 1.3            | Data collection objectives.....                  | 2           |
| 2.0            | WELL POINT INSTALLATION TASKS .....              | 3           |
| 2.1            | Site conditions .....                            | 3           |
| 2.2            | Well point locations .....                       | 3           |
| 2.3            | Permits, clearances, and access agreements ..... | 6           |
| 2.4            | Well installation methods.....                   | 6           |
| 2.5            | Well development .....                           | 8           |
| 2.6            | Surveying .....                                  | 8           |
| 2.7            | Water sampling and analysis.....                 | 9           |
| 2.8            | Site restoration.....                            | 10          |
| 2.9            | Field documentation.....                         | 10          |
| 2.10           | Anti-contamination measures.....                 | 11          |
| 3.0            | HEALTH AND SAFETY.....                           | 13          |
| 3.1            | Site-specific health and safety measures.....    | 13          |
| 3.2            | Health and safety audits.....                    | 14          |
| 4.0            | WELL INSTALLATION TASK SCHEDULE.....             | 15          |
| 5.0            | LIST OF CONTRIBUTORS.....                        | 17          |
| 6.0            | REFERENCES .....                                 | 19          |

ATTACHMENT 1      RESULTS OF 1989 APPENDIX IX SCREENING

ATTACHMENT 2      MK-FERGUSON ORGANIC ANALYSIS

ATTACHMENT 3      FINAL GRADING PLAN

ATTACHMENT 4      WORK ORDER

**LIST OF FIGURES**

| <u>Figure</u> |                                                                                                     | <u>Page</u> |
|---------------|-----------------------------------------------------------------------------------------------------|-------------|
| 2.1           | Water table contour map of the alluvial aquifer, New Rifle, Colorado, processing site vicinity..... | 4           |
| 2.2           | Locations of proposed monitor wells, New Rifle, Colorado, site .....                                | 5           |

**LIST OF TABLES**

| <u>Table</u> |                                                                                                                     | <u>Page</u> |
|--------------|---------------------------------------------------------------------------------------------------------------------|-------------|
| 2.1          | Approximate northing and easting coordinates for proposed well points (based on MK-F construction coordinates)..... | 6           |

LIST OF ACRONYMS

| <u>Acronym</u> | <u>Definition</u>                      |
|----------------|----------------------------------------|
| DCO            | data collection objective              |
| DOE            | U.S. Department of Energy              |
| EPA            | U.S. Environmental Protection Agency   |
| FTR            | field technical representative         |
| GC             | gas chromatography                     |
| MS             | mass spectrometry                      |
| PID            | photoionization detector               |
| PRS            | project regulatory specialist          |
| PVC            | polyvinyl chloride                     |
| RAC            | Remedial Action Contractor             |
| RCRA           | Resource Conservation and Recovery Act |
| SOP            | standard operating procedure           |
| TAC            | Technical Assistance Contractor        |
| UMTRA          | Uranium Mill Tailings Remedial Action  |

## 1.0 INTRODUCTION

### 1.1 PURPOSE

A special study screening for Appendix IX (40 CFR Part 264) analytes identified the New Rifle site as a target for additional screening for organic constituents. Because of this recommendation and the findings in a recent independent technical review, the U.S. Department of Energy (DOE) has requested that the Technical Assistance Contractor (TAC) perform a preliminary investigation of the potential presence of organic compounds in the ground water at the New Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project site, Rifle, Colorado. From 1958 to 1972, organic chemicals were used in large quantities during ore processing at the New Rifle site, and it is possible that some fraction was released to the environment. Therefore, the primary objective of this investigation is to determine whether organic chemicals used at the milling facility are present in the ground water.

The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water well points at the New Rifle site. The selection of analytes and the procedures for collecting ground water samples for analysis of organic constituents are also described.

### 1.2 BACKGROUND INFORMATION

Sampling for organic compounds was performed at New Rifle and other sites early in 1989 and the results were reported in an 8 November 1989 letter from the TAC to the DOE (Attachment 1). Samples of tailings and ground water were analyzed for Appendix IX (40 CFR Part 264) analytes; traces of several chemicals, including 2,4,5-T, di-n-octylphthalate, and toluene were reported in New Rifle ground water. In addition, there have been reports of black (possibly organic) materials in some soils and sheens on the water surface during subpile test pitting and during later stages of surface remediation. While neither of these characteristics is definitive regarding composition or source, MK-Ferguson has commissioned analysis of several soil samples and petroleum hydrocarbons have been quantified in the 4000 to 5000 milligram per kilogram (mg/kg) range (Farquhar, 1995) (Attachment 2). Sample collection protocol and laboratory quality assurance/quality control (QA/QC) procedures that were followed in the generation of these data are unknown.

Even though the Appendix IX list provides coverage of most Resource Conservation and Recovery Act (RCRA)-regulated hazardous chemicals that are commonly monitored in an aqueous medium, it does not provide straightforward coverage of complex mixtures such as kerosene or No. 2 fuel oil, which were process carrier chemicals used in large quantities at many UMTRA sites. The Appendix IX list also does not cover many of the extracting solvents commonly

used in uranium milling, notably di(2-ethylhexyl)phosphoric acid and tributyl phosphate in the case of New Rifle.

Although no specific toxicological information on di(2-ethylhexyl)phosphoric acid has been located, other organophosphorus esters, including tributyl phosphate, have been identified as potentially hazardous to human health (Casarett and Doull, 1991; Sabine and Hayes, 1952; Gerhart et al., 1993; EPA, 1989; Laham et al., 1985; Laham et al., 1984; Laham et al., 1983; Proctor et al., 1988).

Other potentially toxic extractants such as high-molecular-weight secondary and tertiary amines could also have been used at the site (Merritt, 1971; EPA, 1980; AIHAAP, 1962; HYDRA, 1978; Eder et al., 1979). EPA does not list these specific organic compounds in Table 1 to Subpart A or Appendix 1 of 40 CFR 192; however, more commonly used organic compounds of this class are present in Appendix I to 40 CFR Part 192. Therefore, due to potential for toxicity, TAC will screen for these compounds.

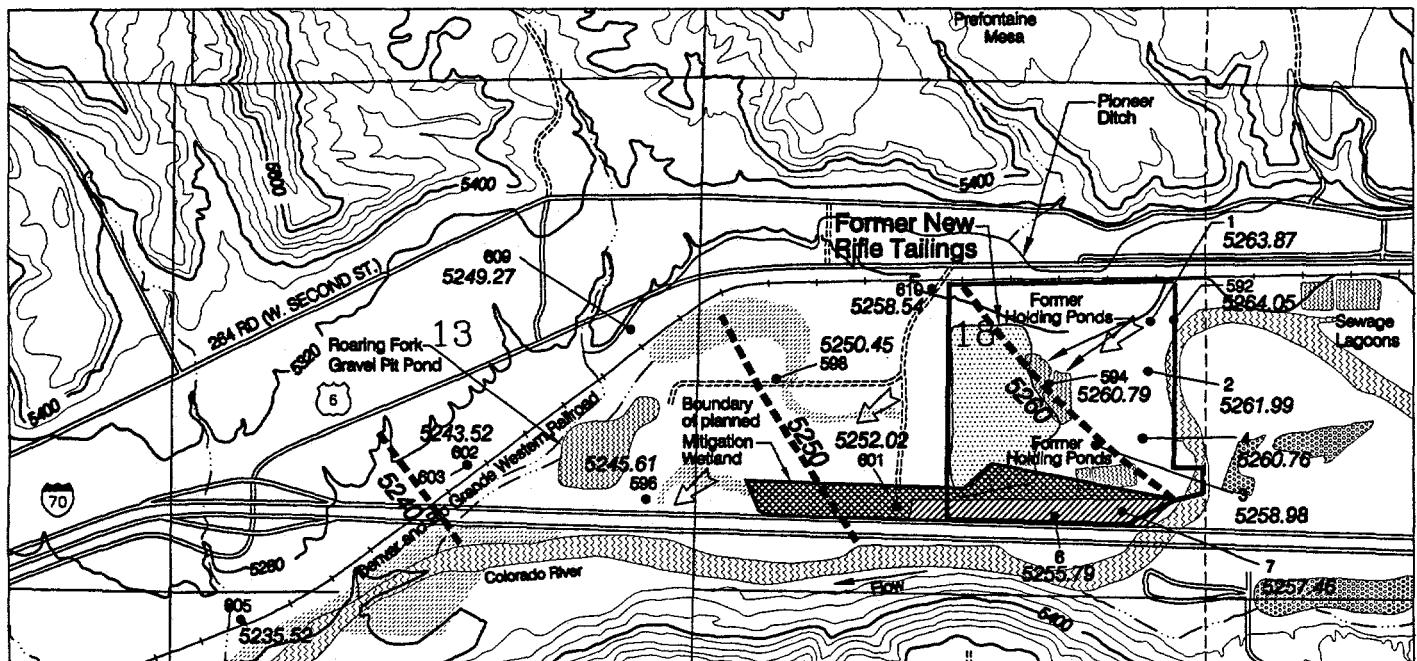
### 1.3 DATA COLLECTION OBJECTIVES

Data collection objectives (DCO) identify reasons for collecting data. Following are DCOs for the assessment of organic constituents at the New Rifle site:

- Ground water quality screening for the presence or absence of kerosene or No. 2 fuel oil (process carrier chemicals that likely were used in large quantities) in ground water near likely source areas at the New Rifle site. This will include screening for the benzene, toluene, ethylbenzene, xylene component and other constituents that are included in the Appendix IX list.
- Ground water quality screening for the presence or absence of extracting solvents commonly used in uranium milling (notably di(2-ethylhexyl)phosphoric acid and tributyl phosphate) in ground water near likely source areas at the New Rifle site.
- Ground water quality screening for inorganic contaminants that may or may not be associated with organic constituents at the New Rifle site.
- Ground water quality screening for the presence or absence of organic constituents upgradient of locations that may have been the focus of processing-related activities in order to assess the potential for other, non-UMTRA sources of organic constituents.

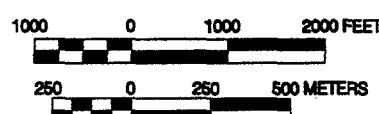
## 2.0 WELL POINT INSTALLATION TASKS

### 2.1 SITE CONDITIONS


A water table contour map for the alluvial aquifer at the New Rifle site (Figure 2.1) indicates that ground water flows southwest in the area of the former tailings pile (the general area encompassed by this study) and that ground water surface elevations are near 5260 feet (ft) (1620 meters [m]) above sea level. Ground water at the New Rifle site in the alluvial aquifer flows southwest at a rate of approximately 300 ft (90 m) per year. Alluvial material in this area has been excavated to near the water table during surface remediation. Native alluvium, into which well points will be driven, consists of medium to fine sand, silt, gravels, and cobbles. A high percentage of cobbles are present in remaining native alluvial material. Usually, the percentage of cobbles increases abruptly near the water table. The underlying, semiconfined Wasatch Formation is usually encountered between 10 to 30 ft (3 to 9 m) below the former land surface. The site is currently being backfilled with clean fill material. A final grading plan for surface remediation at the site (included as Attachment 3 to this report) shows that final ground elevations range from near 5270 ft (1620 m) above sea level north of the former tailings pile to near 5260 ft (1620 m) above sea level south of the former tailings pile. The depth to the water table when backfilling is complete is anticipated to be within 5 to 10 ft (2 to 3 m) of land surface in most of the area of investigation. Depths to ground water north of the pile near Highway 6 may be greater than 15 ft (4.6 m).

Redox conditions in the alluvial aquifer are generally oxidizing (350 to 450 millivolts [mV]) and dissolved oxygen is commonly in the 0.5 to 2 milligrams per liter range, indicating that conditions are favorable for the aerobic biodegradation of organic constituents.

### 2.2 WELL POINT LOCATIONS


Four well point locations have been selected that have high probability of organic contamination (Figure 2.2). These locations include one in a former depression in Area 4 (an area where MK-Ferguson has identified organic material in soils) (well point RFN-01-0656), one location just downgradient of the former positions of a series of storage tanks possibly used to store organic liquids (well point RFN-01-0657), one location in the former gypsum pond area (well point RFN-01-0658), and one downgradient location within the footprint of the former tailings pile (well point RFN-01-0659). The latter two locations are in areas of the high recorded levels of inorganic contamination. Table 2.1 shows approximate northing and easting coordinates for each proposed well point. Several of these approximate well point locations may be adjusted slightly as a result of information obtained from recent MK-Ferguson soil sampling.

One well point (well point RFN-01-0655) will be installed upgradient from the former pile and from any potential contamination from the New Rifle site. This



NOTE:

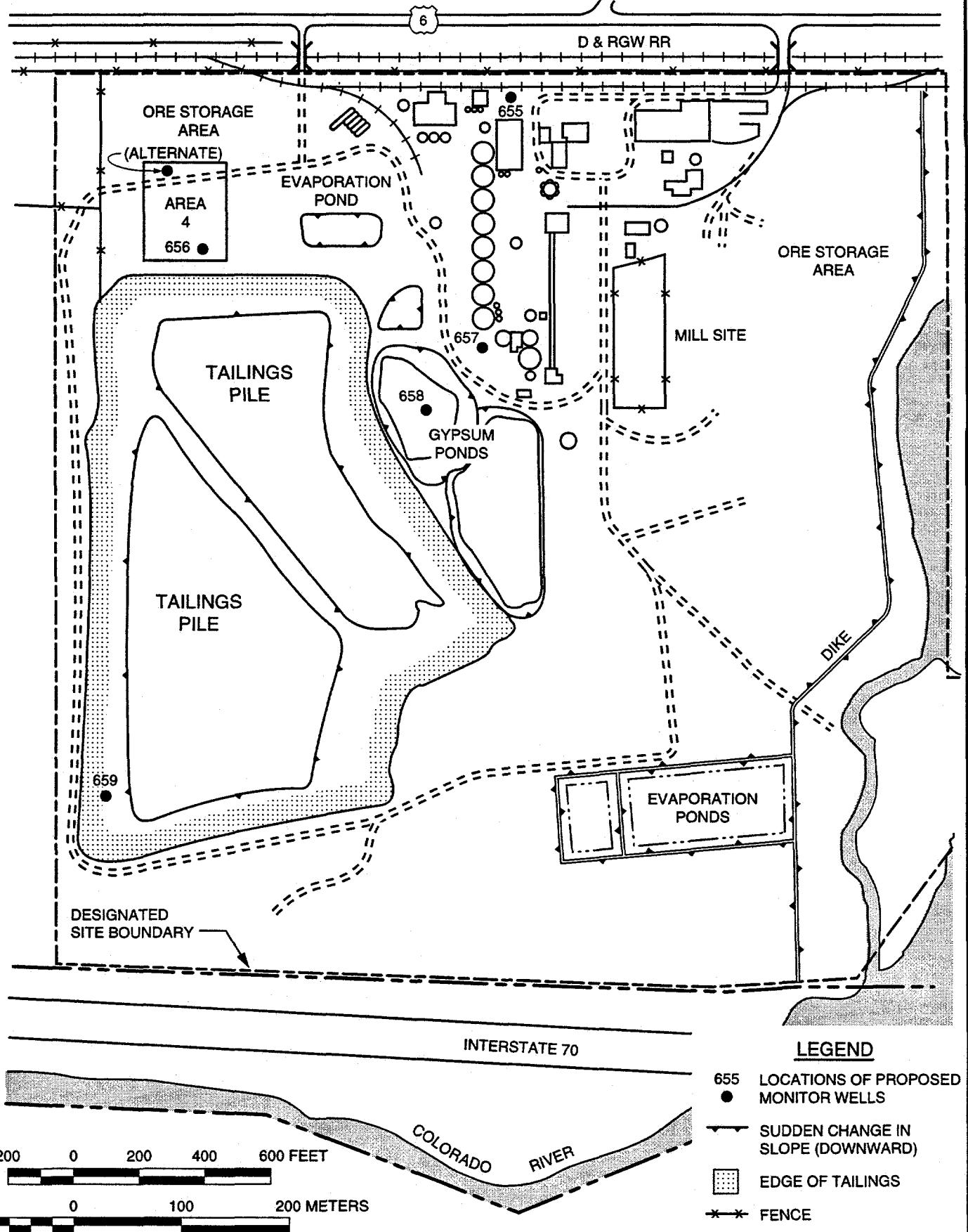
1. WELLS 1,2,3,4,6, AND 7 ARE MK WELL POINTS.



LEGEND

5260 — ALLUVIAL (WATER TABLE) OR  
WASATCH FORMATION (POTENTIOMETRIC)  
CONTOUR - DASHED WHERE INFERRED  
(ELEVATION IN FEET ABOVE MSL)

602 • 5243.52  
ALLUVIAL MONITOR WELL AND  
GROUND WATER ELEVATION  
IN FEET ABOVE MSL


← GROUND WATER  
FLOW DIRECTION

|                      |                                |
|----------------------|--------------------------------|
| ■ NEW RIFLE WETLANDS | ■ PROPOSED<br>WET MEADOW SHRUB |
| ■ SURFACE WATER      | □ DESIGNATED<br>SITE BOUNDARY  |
| ■ GRAVEL PIT         | 70 INTERSTATE                  |
| ■ PROPOSED CATTAIL   | 8 U.S. HIGHWAY                 |

NOTES:

1. WATER DATA COLLECTED  
SEPTEMBER 1989.
2. TOPOGRAPHIC CONTOUR  
INTERVAL IS 40 FEET.

**FIGURE 2.1**  
**WATER TABLE CONTOUR MAP OF THE ALLUVIAL AQUIFER**  
**NEW RIFLE, COLORADO, PROCESSING SITE VICINITY**



**FIGURE 2.2**  
**LOCATIONS OF PROPOSED MONITOR WELLS**  $\equiv\equiv\equiv$  DIRT ROAD  
**NEW RIFLE, COLORADO, SITE**

**Table 2.1 Approximate northing and easting coordinates for proposed well points (based on MK-F construction coordinates)**

| Well point number | North coordinate | East coordinate | Location/justification                                                                                                              |
|-------------------|------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| RFN-01-0655       | 25,500           | 48,000          | Upgradient from any known potential site contamination.                                                                             |
| RFN-01-0656       | 25,040           | 47,175          | Depression in Area 4 (MK-Ferguson has identified organic material in soils in Area 4).                                              |
| RFN-01-0657       | 24,775           | 47,850          | Downgradient of the former positions of a series of storage tanks.                                                                  |
| RFN-01-0658       | 24,550           | 47,675          | Former gypsum pond area (highest recorded levels of certain inorganic constituents).                                                |
| RFN-01-0659       | 23,550           | 46,875          | Downgradient location within the footprint of the former tailings pile (highest recorded levels of certain inorganic constituents). |
| (alternate)       | 25,295           | 47,075          | Depression in Area 4 (MK-Ferguson has identified organic material in soils in Area 4).                                              |

well point will be located downgradient from an existing petroleum product tank farm.

An alternate location will be in Area 4 within the area of another former depression where MK-Ferguson has identified organic material in soils (Figure 2.2)

## **2.3 PERMITS, CLEARANCES, AND ACCESS AGREEMENTS**

Proposed well points RFN-01-0655 through -0659 (Figure 2.2) will require access agreements prior to fieldwork. These new well points will also require well permits.

The Colorado Division of Water Resources will be contacted by the project regulatory specialist (PRS) for permitting information. The PRS and the site hydrogeologist will apply for and obtain any necessary permits. Property Management will obtain any needed access agreements before any fieldwork is initiated.

## **2.4 WELL INSTALLATION METHODS**

Because of the heterogeneous nature of the aquifer materials and the presence of cobbles, a backhoe will be used to assist in well point installation at the site. Each shallow well will be approximately 10 to 15 ft (3 to 5 m) deep and (655 may be 5 to 10 ft [2 to 3 m] deeper than other wells) and consist of

approximately 10 ft (3 m) of 2-inch (5-centimeter [cm])-diameter schedule 40 stainless steel well screen and approximately 2 to 8 ft (1 to 2 m) of 4-inch (5-cm)-diameter schedule 40 stainless steel casing. The wells will be screened such that screens straddle the seasonal high and low water table.

Well points will be installed by first excavating with a backhoe to the water table. During excavation a photoionization detector (PID) will be used to take field readings to qualitatively assess any organic levels. When the water table is reached, the casing and screen will be placed upright in the excavated pit and the point will then be driven further. The pit excavation will then be backfilled with cuttings to the original surface. Sand and bentonite may be added to the annulus as required.

A 5-ft (2 m)-long steel protective casing will be installed over the well and a 4-inch (10 cm)-thick concrete pad will be constructed around the base. A locking protective cap will be attached to the top of the casing.

Well construction materials will consist of the following:

- 2-inch (5 cm) stainless steel casing.
- 2-inch (5 cm) stainless steel screen (0.010 slot) with stainless steel points.
- 6-inch (15 cm) polyvinyl chloride (PVC) temporary casing.
- 2-inch (5 cm) carbon steel drive casing.
- Locking 6-inch (15 cm) protective steel casing.
- Silica sand.
- Cement grout.
- Concrete.
- Bentonite chips.
- Rubber caps.
- Locks.

When applicable the following standard operating procedures (SOP) (JEG, n.d.) will be followed during well point installation:

- 14.1.2 Instructions for Field Technical Representative (FTR)
- 14.1.3 Drilling and Test Pit Technical Representative
- 14.1.4 Verification of Grout Mix for Monitor Wells
- 14.1.5 FTR Daily Diary
- 14.1.6 Procedures for Completing the Daily Field Activity Report
- 14.1.7 Field/Off-Site Procurement of Supplies & Services
- 14.4.1 Soil and Rock Core Borehole and Test Pit Logging

- 14.4.2 Preparation of Logs for UMTRAP (UMTRA Project) Documents
- 16.1.1 Monitor Well Installation
- 16.1.2 Well Development
- 16.1.19 Permitting Procedures for Installation or Decommissioning of Monitor Wells
- 16.1.22 Controlled Disposal of Potentially Contaminated Materials or memorandum from Don Metzler to Clinton Smythe entitled "Evaluating Drill Cuttings and Well Development and Purge Waters"
- 17.4.1 Location ID for Test Borings, Test Pits, and Monitoring Locations

Internal communications will be maintained among the field representatives, site hydrogeologists, the TAC Contracts Department, Property Management, the site manager, and the DOE. Before any wells are installed, the Remedial Action Contractor (RAC) site manager will be notified of the upcoming activities, and the work party will check in with the RAC. Any problems or complications encountered during fieldwork will be reported to the TAC site manager, who will forward the information to the DOE.

## 2.5 WELL DEVELOPMENT

No sooner than 48 hours after new well point completion, the well will be developed until the discharge is clear. The amount of water removed and approximate well yields will be recorded. An assessment of development water will be performed in the field as described in the *Technical Approach for the Management of UMTRA Ground Water Investigation-Derived Wastes* (DOE, 1994). Development water will be stored in 55-gallon (210-liter) drums at the New Rifle site, if determined necessary. If development water must be containerized, provisions will be made to properly dispose of the water.

Following development, at the well will be purged until turbidity is at an acceptable range.

## 2.6 SURVEYING

Before installation, surveying techniques will be used to accurately place the proposed well point locations relative to former positions of features that have been removed by surface remediation. After installation, the new well points will be surveyed by a local surveying contractor to establish top-of-casing elevation and final Colorado state plane coordinates.

## 2.7 WATER SAMPLING AND ANALYSIS

The TAC field staff will collect filtered samples from each new well point for the organic chemical assessment. In addition, quality assurance samples will consist of one field blank, one equipment blank, one trip blank, and one duplicate. The duplicate sample will be collected at location RFN-01-0659.

### Sampling protocol

Sample collection will proceed one week after all of the newly installed ground water well points have been properly developed. Because these wells are constructed of stainless steel and will be screened across the water table, representative samples can be obtained without purging. Therefore, wells will not be purged before sampling, thus insuring the maximum possibility of detecting any organic contamination that might be present. An effort will be made to minimize drawdown during sampling to prevent water from cascading down the sides of the well screen during recharge, thereby minimizing loss of volatile organic constituents.

Disposable plastic bailers will be on hand at the site. Either the bailers or a peristaltic pump may be used for sampling for organic compounds. The pump and associated equipment will be decontaminated according to standard UMTRA protocols; these procedures conform to U.S. Environmental Protection Agency (EPA) guidance governing decontamination of equipment intended for use for sampling organic compounds in ground water. After sampling for organic constituents, samples will be taken for inorganic constituents using a peristaltic pump.

The organic samples will be placed with zero headspace in laboratory-supplied containers (see Attachment 4), placed on ice to preserve temperature less than 4 degrees Celsius, and shipped under strict chain of custody to the contract laboratory for analysis. Holding times are specified in the laboratory contract.

### Analysis

Samples will be subjected to multiple analyses to learn as much as possible about their composition.

1. All samples will be screened by EPA gas chromatography (GC) Method 8015, modified for diesel-range organics.
2. All samples will be further analyzed for ammonium, arsenic, calcium, chloride, fluoride, iron, magnesium, molybdenum, nitrate, sodium, sulfate, uranium and vanadium to determine key inorganic characteristics in the shallow ground water in order to resolve relationships between inorganic and organic contaminants.

3. All samples will be analyzed by EPA GC/mass spectrometry (MS) Methods 8260 (volatile compounds) and 8270 (semivolatile compounds) plus a routine extra peak (nontarget compound) report.
4. The analyses listed above will be performed by a commercial laboratory under contract to Jacobs Engineering Group Inc.
5. In parallel, splits of all samples will be sent to the RUST-Geotech Laboratory at the Grand Junction Projects Office compound. The chemists there will use their extensive analytical chemistry capabilities to attempt identification and quantification of process-related organics compounds, specifically those not on the target list for the EPA methods listed above.

#### Quality assurance samples

Quality assurance samples will consist of one field blank, one equipment blank, one trip blank, and one duplicate. The duplicate sample will be collected at location RFN-01-0659. One trip blank will be carried and analyzed by method 8260 for volatile compounds.

### **2.8 SITE RESTORATION**

Pits that are excavated by backhoe will be restored to their approximate original contours, and only moderate site disturbance is anticipated. However, areas of disturbed soil will be raked smooth by hand; all trash will be collected and disposed of properly. Established roadways and paths will be used whenever possible.

Immediately following well installation and development, any contaminated water will be properly disposed of. All drums will be removed from the site.

### **2.9 FIELD DOCUMENTATION**

In addition to the daily diary kept by the FTR, the following documentation will be compiled and data collected:

- The well point locations will be photographed and located on a map.
- The elevations of the top of casing for each well and the ground surface and northing and easting coordinates will be surveyed by the surveying subcontractor.
- Water sampling field forms will be completed, recording the following field parameters for ground water at the processing site:

|                       |                               |             |
|-----------------------|-------------------------------|-------------|
| Static water level    | Total depth of well           | Alkalinity  |
| Dissolved oxygen      | Oxidation-reduction potential | pH          |
| Specific conductivity | Turbidity                     | Temperature |

Copies of all pertinent field documentation will be maintained in the UMTRA Project Document Control Center.

## 2.10 ANTI-CONTAMINATION MEASURES

Prior to the beginning of well installation procedures, an area free of contamination will be selected as the cleaning and staging area. All screen and casing materials to be used in constructing the well points will be steam cleaned and thoroughly scrubbed using an Alconox solution prior to installation. Before taking the backhoe onto the site, the backhoe bucket, arm, and controls will be cleaned as required. The FTR will inspect the backhoe for the presence of hydraulic oil or grease and all equipment will be steam cleaned to remove such material before each hole is dug. Proposed well points are in areas of suspected low-level ground water contamination. Therefore, to ensure that cross contamination does not occur, wells that are least likely to show organic contamination will be installed first. The backhoe arm and bucket will be steam cleaned between well sites and after the last pit has been completed.



## 3.0 HEALTH AND SAFETY

### 3.1 SITE-SPECIFIC HEALTH AND SAFETY MEASURES

Prior to excavation at each site, a safe area will be identified by barricading (with tape), the swing radius of the backhoe. The backhoe will be kept 2 to 4 ft (1 m) away from the trench at all times. The excavated alluvial material will be kept on one side of the hole and a minimum of 2 ft (1 m) away from the excavation. All individuals involved with the work will stand beyond the pile of excavated material. No planks or bridges will be constructed across the excavated zone. Any ropes used during the installation will be loosely held by individuals to avoid their being pulled into the excavated zone. Ropes will not be left on the ground in a way that would increase the possibility of a worker's being caught by the rope. No one will enter the excavated area until it approximates land surface elevation.

The excavation will be monitored for organic fumes with a PID. If fumes are detected, all individuals with potential to be exposed will don respirators and Tyvek™ protective clothing for further work. Respirators will be of the air-purifying half-mask type with organic cartridges. Individuals will be fit-tested before respirator use.

The attached "Hazard Review and Worker Safety Supplement for the Rifle Site" will be reviewed prior to conducting any fieldwork. All personnel involved with well point installation will have the following equipment:

- Hard hat.
- Steel-toed boots.
- Safety glasses.
- Work gloves.
- Sunblock lotion.
- Fresh drinking water.
- Respirator.
- Tyvek™ protective clothing.

The following items will be on the site:

- First-aid kit.
- Fire extinguisher.
- Cellular telephone.
- PID.

The location of the nearest hospital in case of emergency is Clagett Memorial Hospital (303-625-1510) located at 701 E. 5th Street, Rifle, Colorado. A map showing the route to the hospital from the site is included in the attached

"Hazard Review and Worker Safety Supplement for the Rifle Site." The phone number for all emergencies is 911.

### **3.2     HEALTH AND SAFETY AUDITS**

The time on-site to complete well installation is likely to be less than 3 days, and it is not anticipated that an audit will be required. However, the FTR will be responsible for observing that individuals involved in work activities are in compliance with UMTRA Project health and safety requirements and that Occupational Safety and Health Administration codes 29 CFR Parts 1910 and 1926 are followed during all phases of well installation. The applicable SOPs (JEG, n.d.) are as follows:

#### **7.3.1   Occupational Safety and Health Complaints**

#### **7.3.2   Occupational Safety and Health Complaints for TAC Subcontractors**

#### **14.1.2   Instructions for FTR**

#### 4.0 WELL INSTALLATION TASK SCHEDULE

Well installation will follow placement of clean backfill at the New Rifle processing site. Placement of backfill could continue until January, thereby delaying completion of tasks included in this schedule. Therefore, the following schedule reflects the earliest possible date for the completion of each task.

The tasks and accompanying tentative completion dates for this work plan are as follows:

| <u>Task</u>                                  | <u>Completion</u> |
|----------------------------------------------|-------------------|
| Site visit                                   | November 15       |
| Equipment procurement                        | December 15       |
| Well permits                                 | January 3         |
| Access agreements                            | January 3         |
| Conduct field operation readiness evaluation | January 9         |
| Install wells                                | January 22        |
| Survey wells                                 | January 22        |
| Sample wells                                 | January 29        |



## 5.0 LIST OF CONTRIBUTORS

The following individuals contributed to the preparation of this report.

| Name                          | Contribution         |
|-------------------------------|----------------------|
| D. Erskine                    | Document coordinator |
| D. Erskine, T. Monks, B. Toth | Primary authors      |
| S. Cox, A. Holm               | Document review      |
| J. Jones                      | Editing              |
| K. DeGruyter, S. Suniga       | Graphics             |
| L. Sanchez                    | Text processing      |



## 6.0 REFERENCES

AIHAAP, 1962. *American Industrial Hygiene Association Journal*, Vol. 23, p. 95.

Casarett L. J., and J. Doull, 1991. *Toxicology: The Basic Science of Poisons*, fourth edition, M. O. Amdur, J. Doull, and C. D. Klaassen, eds., Pergamon Press, New York, New York.

DOE (U.S. Department of Energy), 1994. *Technical Approach for the Management of UMTRA Ground Water Investigation-Derived Wastes*, DOE/AL/62350-109, prepared by the U.S. Department of Energy, UMTRA Project Office, Albuquerque, New Mexico.

Eder et al., 1979. Preparations for defoliation; GER. OFFEN. PATENT 2914164, 25 October 1979, (SANDOZ-PATENT-GMBH).

EPA (U.S. Environmental Protection Agency), 1989. *Two Generation Range Finding Study of Tributyl Phosphate Administered in the Feed to CD (Sprague-Dawley) Rats*, EPA/OTS, Doc. No. 89-910000143, U.S. Environmental Protection Agency.

EPA (U.S. Environmental Protection Agency), 1980. Chemical Hazard Information Profiles (CHIPs), TSCA Chemical Assessment Series, August 1976 - August 1978, pp. 176-182 and 269-282.

Farquhar, T., 1995. Morrison Knudsen-Ferguson, personal communication to S. Arp, U.S. Department of Energy, UPDCC File Location No. 6.19.4.6, Albuquerque, New Mexico, 2 November 1995.

Gerhart et al. (J. M. Gerhart, R. W. Tyl, C. B. Myers, M. C. Marr, D. R. Brine, J. C. Seely), 1993. "Two Generation Study of Dietary Tributyl Phosphate (TBP) in CD Rats," *Toxicologist*, Vol. 13, No. 1, p. 76

HYDRA, 1978. *Hydrometallurgy*, Vol. 3, p. 201.

JEG (Jacobs Engineering Group Inc.), n.d. *Albuquerque Operations Manual*, standard operating procedures, prepared by Jacobs Engineering Group Inc., Albuquerque, New Mexico, for the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.

Laham et al. (S. Laham, B. Broxup, G. Long), 1985. "Induction of Urinary Bladder Hyperplasia in Sprague-Dawley Rats Orally Administered Tri-n-butyl Phosphate," *Arch. Environ. Health*, Vol. 40, pp. 301-306.

Laham et al. (S. Laham, G. Long, B. Broxup), 1984. "Subacute Oral Toxicity of Tri-n-butyl Phosphate in the Sprague-Dawley Rat," *J. Appl. Toxicol.*, Vol. 4, pp. 150-154.

Laham et al. (S. Laham, J. Szabo, G. Long), 1983. "Effects of Tri-n-butyl Phosphate on the Peripheral Nervous System of the Sprague-Dawley Rat," *Drug Chem. Toxicol.*, Vol. 6, pp. 363-377.

Meritt R. C., 1971. *The Extractive Metallurgy of Uranium*, Colorado School of Mines Research Institute, Golden, Colorado.

Proctor et al. (N. H. Proctor, J. P. Hughes, M. L. Fischman), 1988. *Chemical Hazards of the Workplace*, second edition, SIRS, pp. 484-485.

Sabine, J. C., and F. N. Hayes, 1952. "Anticholinesterase Activity of Tributyl Phosphate," *Archives of Industrial Hygiene and Occupational Medicine*, Vol. 6, pp. 174-177.

#### CODE OF FEDERAL REGULATIONS

29 CFR Part 1910, *Occupational Safety and Health Standards*, Occupational Safety and Health Administration, U.S. Department of Labor.

29 CFR Part 1926, *Safety and Health Regulations for Construction*, Occupational Safety and Health Administration, U.S. Department of Labor.

40 CFR Part 192, *Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings*, U.S. Environmental Protection Agency.

40 CFR Part 264, *Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities*, U.S. Environmental Protection Agency.

|     |                                | TAILINGS       |              | GROUNDWATER   |             |
|-----|--------------------------------|----------------|--------------|---------------|-------------|
|     |                                | Conc.<br>Ug/Kg | MDL<br>Ug/Kg | Conc.<br>Ug/L | MDL<br>Ug/L |
| MON | Bis(2-ethylhexyl)<br>phthalate | nd             | 330          | 46            | 10          |
|     | Diethyl phthalate              | 220-410j       | 330          | nd            | 10          |
|     | Methyl iodide                  | nd             | 5            | 4j            | 5           |
|     | 2,4,5-T                        | 44             | 40           | nd            | 2           |
| LKV |                                | na             |              | nd            |             |
| RFN | Acetone                        | nd             | 10           | 5-17b         | 10          |
|     | Acrylonitrile                  | 6j             | 100          | nd            | 100         |
|     | Benzene                        | 3j             | 5            | nd            | 5           |
|     | 2,4-D                          | 410            | 200          | nd            | 10          |
|     | 2,4,5-T                        | nd             | 160          | 5             | 2           |
|     | 2,4,5-TP                       | 62             | 40           | nd            | 2           |
|     | Carbon disulfide               | nd             | 5            | 4j            | 5           |
|     | Chloroform                     | 3j             | 5            | nd            | 5           |
|     | Di-n-octylphthalate            | nd             | 330          | 11-12         | 10          |
|     | Methyl bromide                 | 7j             | 10           | nd            | 5           |
|     | Methyl chloride                | nd             | 5            | 2-4j,b        | 10          |
|     | Methyl ethyl ketone            | nd             | 10           | 4j            | 10          |
|     | Trichlorofluoromethane         | nd             | 5            | 8b            | 5           |
|     | Toluene                        | nd             | 5            | 8-18          | 5           |
|     | Xylene                         | nd             | 5            | 2j,b          | 5           |
| RFO | Acetone                        | 7j             | 10           | 13b           | 10          |
|     | Acrylonitrile                  | 19j-15j        | 100          | nd            | 10          |
|     | Alpha-BHC                      | nd             | 16           | 0.23          | .05         |
|     | Anthracene                     | 130j           | 330          | nd            | 10          |
|     | Benzene                        | 3j-5           | 5            | nd            | 5           |
|     | Benzo[a]anthracene             | 770            | 330          | nd            | 10          |
|     | Benzo[a]pyrene                 | 1000           | 330          | nd            | 10          |
|     | Benzo[ghi]perylene             | 250j           | 330          | nd            | 10          |
|     | Chrysene                       | 1400           | 330          | nd            | 10          |
|     | Diethyl phthalate              | 520            | 330          | nd            | 10          |
|     | Dibenz[a,h]anthracene          | 180j           | 330          | nd            | 10          |
|     | Fluoranthene                   | 990            | 330          | nd            | 10          |
|     | Indeno(1,2,3-cd)pyrene         | 830            | 330          | nd            | 10          |
|     | Methyl Ethyl Ketone            | 4j             | 10           | nd            | 10          |
|     | Methylene chloride             | 4j             | 5            | nd            | 5           |
|     | Pyrene                         | 630            | 330          | nd            | 10          |
| SPK |                                | na             |              | nd            |             |
| TUB | Bis(2-ethylhexyl)<br>phthalate | na             |              | 23-12         | 10          |

MDL = laboratory method detection limit  
j = compound appears present but concentration is below  
detection limit  
b = present in lab blank  
e = above analytical threshold  
na = no sample was analyzed  
nd = none detected

**ATTACHMENT 1**  
**RESULTS OF 1989 APPENDIX IX SCREENING**



# JACOBS ENGINEERING GROUP INC.

ALBUQUERQUE OPERATIONS

JEGA/UMT/1189-0472

5301 CENTRAL AVENUE N.E. — SUITE 1700, ALBUQUERQUE, NEW MEXICO 87108  
TELEPHONE (505) 846-4030

November 8, 1989

DOCUMENT CONTROL

Mr. Mark Matthews  
Acting UMTRA Project Manager  
U.S. Department of Energy  
Uranium Mill Tailings Project Office  
5301 Central Avenue, N.E., Suite 1720  
Albuquerque, New Mexico 87108

Attention: Steve Hamp

Re: Results of Appendix IX Screening  
Contract No. DE-AC0482-AL14086

Dear Mark:

Enclosed are the findings of the Appendix IX Special Study. The object of this effort was to screen twelve UMTRA Project sites for the organic constituents listed in 40 CFR 264 Appendix IX. The sites screened were Ambrosia Lake, Durango, Grand Junction, Green River, Gunnison, Lakeview, Mexican Hat, Monument Valley, Old and New Rifle, Spook and Tuba City. This screening effort evaluated both tailings and groundwater samples, where available. While a number of sites showed detectable concentrations of hazardous constituents, only the New Rifle site shows concentrations sufficiently high to require further characterization. The further characterization will be conducted using site-specific funds.

This submittal concludes the work on the Appendix IX Special Study. If you have any questions, please contact Frank Titus or me.

Very truly yours,  
JACOBS ENGINEERING GROUP INC.

*Steven R. Hill*  
Steven R. Hill, Manager  
Albuquerque Operations Office

SRH/FT/BD/11  
Enclosure

cc: KAgogino  
KBostick  
SHill  
DLechel  
BMukhopadhyay

October 1989

UPDATE ON THE RESULTS OF SCREENING THE HAZARDOUS ORGANIC CONSTITUENTS IN  
THE TAILINGS AND GROUNDWATERS OF THE UMTRA TITLE I SITES

The results of screening for the hazardous organic constituents listed in Appendix IX, 40 CFR 264 and (consistent with those listed in the draft-final version of Appendix I, 40 CFR 192) in the tailings and groundwaters at the UMTRA processing sites currently completed, are shown in Table 1.

The organic compounds in Table 1 include those that appear to be present but are below the laboratory method detection limit (MDL), (footnote "j" in Table 1, and those that were also detected in laboratory blanks; footnote "b"). This table also contains, a) phthalates that are common organic contaminants, and b) common laboratory reagents methyl chloride and methyl iodide with concentration levels at or near the (MDL). These compounds should be dropped from further consideration. Table 2 contains only those compounds that need further evaluation for their potential presence as groundwater contaminants at the UMTRA sites. Where more than one sample was analyzed, Table 2 shows the maximum observed concentration of a constituent present in either or both tailings and groundwaters beneath and downgradient from the tailings.

Table 2 shows that a groundwater sample from HAT contains lindane (an insecticide). It's concentration (.18 ug/l) however, is below the EPA MCL for lindane (4 ug/l) and therefore, does not require further consideration. Likewise, the alpha BHC (also an insecticide; lindane is gamma BHC) which appears to be present in the groundwater sample from beneath the Old Rifle processing site, occurs at about the same concentration level as lindane but is less toxic, and therefore, can be eliminated from further consideration.

A small amount (3.6 times the MDL) of toluene appears present in the groundwater beneath the tailings pile of the New Rifle site (RFN). This RFN groundwater also appears to contain a trace (2.5 times the MDL) amount of 2, 4, 5-T (a defoliant). A systematic sampling and analysis of groundwater at this site needs to be carried out in order to, a) confirm the presence of these compounds, and b) if present, define the size of the contaminant plume(s).

A number of organic compounds at a concentration level up to about 4 times the MDL appears to be present in the tailings at a number of sites (Table 2). However, one AMB tailings sample contains toluene at a concentration level of 30 times the MDL and two HAT tailings samples contain acetone at concentration level set about 1000 times the MDL. None of these compounds is present in the groundwater for a given site. Therefore, it can be assumed that they are not available to, or are insoluble in, groundwaters beneath the tailings.

In summary, additional groundwater sampling and analyses should be conducted at the RFN site in order to, a) confirm the presence of the hazardous organic contaminants that appear to be present at these sites, and b) if present, to define their concentration level(s) and plume size(s). No further analyses appear to be needed at the other sites for which screening of the hazardous organic constituents was completed.



**II. WORK ORDER PLAN - CHEMICAL ANALYSIS OF  
UMTRA TAC SAMPLES**

**SITE HYDROLOGIST: TMonks**

NAME (print)

SIGNATURE

SITE ID(s): RFN-01

DATE

SAMPLE MATRIX: Ground Water

**SITE GEOCHEMIST: DErskine**

NAME (print)

SIGNATURE

SAMPLE ID(S): 000X

DATE

| Bottle Name      | Cu | Fe | Pb | Mn | Hg | Mo | Ni | Se | Ag | Sr | Sn | Tl | U | V | Zn | TDS | TOC & DOC |
|------------------|----|----|----|----|----|----|----|----|----|----|----|----|---|---|----|-----|-----------|
| M-2              | X  |    |    |    | X  |    |    |    |    |    |    | X  | X |   |    |     |           |
|                  |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    |     |           |
|                  |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    |     |           |
|                  |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    |     |           |
|                  |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    |     |           |
|                  |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    |     |           |
|                  |    |    |    |    |    |    |    |    |    |    |    |    |   |   |    |     |           |
| Total # of Tests | 8  |    |    |    |    |    |    |    |    |    |    |    |   |   |    | 8   | 8         |

COMMENTS:

Please analyze samples RFN01-655-0001, RFN01-656-0001, RFN01-657-0001, RFN01-658-0001, RFN01-659-0001, RFN01-659-0002, RFN01-999-0001, and RFN01-999-0003.

TABLE 1 : SCREENING RESULTS OF THE EPA APPENDIX IX (40CFR264)  
HAZARDOUS ORGANIC COMPOUNDS IN THE UMTRA  
TITLE I SITES

| Site | Compound                    | TAILINGS       |              | GROUNDWATER   |             |
|------|-----------------------------|----------------|--------------|---------------|-------------|
|      |                             | Conc.<br>Ug/Kg | MDL<br>Ug/Kg | Conc.<br>Ug/L | MDL<br>Ug/L |
| AMB  | Methyl Ethyl Ketone         | nd             | 10           | 7j            | 10          |
|      | Acetone                     | 1j             | 10           | nd            | 10          |
|      | Carbon disulfide            | 1j             | 5            | nd            | 5           |
|      | Methyl Chloride             | 6              | 5            | nd            | 5           |
|      | Styrene                     | 14b            | 5            | nd            | 5           |
|      | Toluene                     | 150            | 5            | nd            | 5           |
|      | Trichlorofluoromethane      | 62b            | 5            | nd            | 5           |
|      | Xylene (total)              | 5              | 6            | nd            | 5           |
| DUR  | Pentachlorophenol           | na             | na           | 7j            | 10          |
|      | Trichlorofluoromethane      | na             | na           | 3j            | 5           |
| GRJ  | Toluene                     | 3j-1j          | 5            | nd            | 5           |
|      | Bis(2-Ethylhexyl) phthalate | nd             | 330          | 120-16        | 10          |
| GRN  | Acetone                     | 6-4j           | 10           | nd            | 10          |
|      | Bis(2-Ethylhexyl) phthalate | nd             | 330          | 12-10         | 10          |
|      | Toluene                     | 9              | 5            | nd            | 5           |
| GUN  | Diethylphthalate            | 356            | 330          | nd            | 10          |
|      | Bis(2-ethylhexyl) phthalate | nd             | 330          | 360-110       | 10          |
|      | Trichlorofluoromethane      | 1.7j           | 5            | nd            | 5           |
| HAT  | Acetone                     | 12000e         | 10           | nd            | 10          |
|      | 2,4-D                       | 195-216        | 200          | nd            | 10          |
|      | Lindane                     | nd             | 8            | .18           | .05         |
|      | Methyl Iodide               | nd             | 5            | 5             | 5           |
|      | Bis(2-ethylhexyl) phthalate | 440            | 330          | nd            | 10          |
|      | Toluene                     | 11-250         | 5            | nd            | 5           |

TABLE 2 : POTENTIAL HAZARDOUS ORGANIC CONSTITUENTS

| Site | Constituent            | TAILINGS       |              | GROUNDWATER   |             |
|------|------------------------|----------------|--------------|---------------|-------------|
|      |                        | Conc.<br>Ug/Kg | MDL<br>Ug/Kg | Conc.<br>Ug/L | MDL<br>Ug/L |
| AMB  | Toluene                | 150            | 5            | -             |             |
| GRN  | Toluene                | 9              | 5            | -             |             |
| HAT  | Acetone                | 12000e         | 10           | -             |             |
|      | 2,4-D                  | 216            | 200          | -             |             |
|      | Toluene                | 250            | 5            | -             |             |
|      | Lindane                | -              |              | .18           | .05         |
| MON  | 2,4,5-T                | 44             | 40           | -             |             |
| RFN  | 2,4-D                  | 410            | 200          | -             |             |
|      | 2,4,5-T                | -              |              | 5             | 2           |
|      | 2,4,5-TP               | 62             | 40           | -             |             |
|      | Toluene                | -              |              | 18            | 5           |
| RFO  | Alpha-BHC              | -              |              | .2            | .05         |
|      | Benzo[a]anthracene     | 770            | 330          | -             |             |
|      | Benzo[a]pyrene         | 1000           | 330          | -             |             |
|      | Chrysene               | 1400           | 330          | -             |             |
|      | Fluoranthene           | 990            | 330          | -             |             |
|      | Indeno(1,2,3-cd)pyrene | 830            | 330          | -             |             |
|      | Pyrene                 | 630            | 330          | -             |             |

a: see text for discussion on significance

Legend: - = probably not present  
MDL = laboratory method detection limit  
e = above analytical threshold

**ATTACHMENT 2**  
**MK-FERGUSON ORGANIC ANALYSIS**



**MK-FERGUSON COMPANY**  
A MORRISON KNUDSEN COMPANY

DATE: 11/2/95 TIME: 4:05

RUSH/Deliver Immediately  Deliver ASAP

PLEASE DELIVER THE FOLLOWING TO:

NAME: Sharon Arp

FROM: Teresa Fargulur

LOCATION: DOE

LOCATION: ALBUQUERQUE, NM PROJECT OFFICE

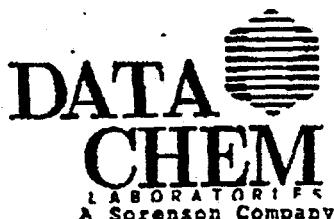
FAX TO (PH. NUMBER): \_\_\_\_\_

FAX USER (PH. NUMBER):

505/766-3318 or 505/766-1813

■ TOTAL # OF PAGES 15 (EXCLUDING COVER SHEET)

■ IF YOU DO NOT RECEIVE ALL PAGES, CALL FAX USER AT 1-800-443-4379 or 505/845-5868


REMARKS: \_\_\_\_\_

Sharon,

Call John Isham & myself

to discuss these results.

Teresa



## ANALYTICAL REPORT

**Form ARF-AL**

Page 6 of 7  
Part 6 of 6

Date OCT 15 1995

Agency Identification Number S95-1106-CE  
Account No. 03018

MK-Ferguson Company  
P.O. Box 151  
Rifle, CO 81650  
Attention: Kathy Benson

FAX (303) 625-4623

**Telephone**

#### **Sampling Collection and Shipment**

Sampling Site \_\_\_\_\_ Date of Collection October 03, 1995

Date Samples Received at Laboratory October 04, 1995

## Analysis

Method of Analysis EPA 8240

Date(s) of Analysis October 09, 1995

## Analytical Results

1 See comment on last page.  
ND Parameter not detected.  
NR Parameter not requested.

\*\* See comment on last page.  
( ) Parameter between LOD and LOQ.





**MK-FERGUSON COMPANY**  
A MORRISON KNUDSEN COMPANY

**NEW RIFLE PROCESS SITE SOIL SAMPLES**  
**1993-95**

**Rifle UMTRA**

| <u>Map #</u> | <u>Soil Sample #</u>   | <u>Area</u> | <u>Concern</u>        | <u>Status</u>     |
|--------------|------------------------|-------------|-----------------------|-------------------|
| 1            | RFL-PS-93-1 and 2      | K           | Organics              | Soil removed      |
| 2            | RFL-PS-1 through 6     | C           | pH                    | Acid pond removed |
| 3            | RFL-PS-94-7 through 10 | G           | Organics              | Gyp pond removed  |
| 4            | RFL-PS-95-1 through 3  | B           | Organics              | Rad cleaned only  |
| 5            | RFL-PS-95-4            | G           | Organics              | Soil removed      |
| 6            | RFL-PS-95-5            | C           | Organics,<br>Sulfates | Rad cleaned only  |

Note: The Area designation, "K," "C," "G," etc. are referring to radiological verification maps, not engineering excavation maps.

FUSON COMPANY  
MK-FERGUSON COMPANY

HOLE: 970 675 468

ATTACHMENT 3

## LABORATORY SERVICES AUTHORIZATION AND CHAIN OF CUSTODY FORM

DATA CHEM LABORATORIES  
960 W. LEVOY DRIVE  
SALT LAKE CITY, UTAH 84123

FROM: KATHY BENSON  
MK-FERGUSON COMPANY  
P.O. BOX 151  
RIFLE, CO 81650

PAGE 1 OF 1Date 8/30/95

2050 511-11081  
P.O. NO.

REQUEST NO. 61

NEED DATE 9/13/95

PRIORITY  
 STANDARD

SAMPLE TYPE: Filter Cassette Weight Soil  Bulk Sample Other (List)

ANALYSIS REQUESTED: BTEXN - TPH Kerosene

SPECIAL INSTRUCTIONS/COMMENTS:

PRIOR TO SUBMITTING WRITTEN REPORT, ALL RESULTS ARE TO BE TELEPHONED TO THE REQUESTING SITE.  
 ADDITIONALLY, ALL BULK SAMPLES WILL BE RETURNED FOR DISPOSAL.

| SAMPLE ID NUMBER | NO. OF SMPLS | DATE COLLECTED<br>(mm/dd/yy) | SAMPLE DESCRIPTION | ACTIVITY<br>PC/0 | VOLUME<br>(ml) | SEALED BY<br>(INITIALS) |
|------------------|--------------|------------------------------|--------------------|------------------|----------------|-------------------------|
| REF-PS-95-01     | 1            | 8/30/95                      | Area B             | .70              |                | KB                      |
| REF-PS-95-02     | 1            | 8/30/95                      | Area B             | .70              |                | KB                      |
| REF-PS-95-03     | 1            | 8/30/95                      | Area B             | .70              |                | KB                      |
|                  |              |                              |                    |                  |                |                         |
|                  |              |                              |                    |                  |                |                         |
|                  |              |                              |                    |                  |                |                         |
|                  |              |                              |                    |                  |                |                         |

APPROVED BY:

J. R. R.  
 SITE EST. MANAGER  
Kathy Benson  
 MK-F SITE MANAGER

DATE: 08/30/95  
 DATE: 8/30/95

TECHNICAL REVIEW

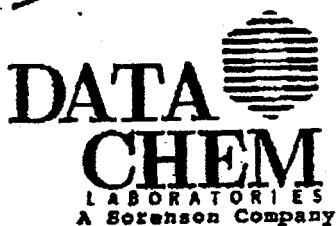
DATE

1) Relinquished by: (Site Representative Signature)

Kathy Benson

Received in Lab:

Date/Time: A2-5 2) Carrier:Date/Time: 8-30-95/0855 UPS (SEE LOG BOOK)


Date/Time:

Date/Time:

Date/Time:

Date/Time:

Samples sent back to the site for disposal shall be accompanied by the Laboratory Chain-of-Custody and Condition of Sample forms, as per the contract.



## **ANALYTICAL REPORT**

**Form ARF-AL**

Page 1 of 2  
Part 1 of 1

Date SEP 25 1995

Agency Identification Number M95-0020-AB  
Account No. 03020

MK-Ferguson Company  
P.O. Box 151  
Rifle, CO 81650  
Attention: Kathy Benson

FAX (303) 625-4623

### Telephone

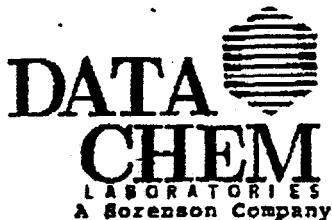
### **Sampling Collection and Shipment**

Sampling Site \_\_\_\_\_ Date of Collection August 30, 1995

Date Samples Received at Laboratory August 31, 1995

## Analysis

### Method of Analysis OG-DC-TPHD


Date(s) of Analysis September 15, 1995 - September 19, 1995

## Analytical Results

! See comment on last page.  
ND Parameter not detected.  
NR Parameter not requested.

\*\* See comment on last page.  
( ) Parameter between LOB and LOQ.

Analyst: Lawrence E. Miller  
A2-6  
Review: Daniel J. Bruch



## ANALYTICAL REPORT

Form ARF-C

Page 2 of 2

Date SEP 13 1995Agency Identification Number M95-0020-CB

## General Set Comments

Sample BL-100331-1 was analyzed as the method blank. Sample QC-100331-1 was analyzed as the laboratory control sample (LCS). Sample MC 00142 was used to prepare the matrix spike and matrix spike duplicate samples (MS and MSD). The LCS, MS, and MSD were spiked at 400 ug/kg with benzene, toluene, and ethylbenzene, and at 1200 ug/kg with total xylene.

Reported values have not been corrected for moisture content.

## Sample Comments

Laboratory  
Number

-- Comment --

|             |     |
|-------------|-----|
| BL-100331-1 | (J) |
| MC 00143    | (J) |
| MC 00144    | (J) |


**MK-FERGUSON COMPANY**  
 A MORRISON KNUDSEN COMPANY

ATTACHMENT 3

## LABORATORY SERVICES AUTHORIZATION AND CHAIN OF CUSTODY FORM

DATA CHEM LABORATORIES  
960 W. LEVOY DRIVE  
SALT LAKE CITY, UTAH 84123  
ATTN: East Dock  
mixed waste lab  
3050-511-11081  
P.O. NO.

FROM: KATHY BENSON  
Requisitioner  
MK-FERGUSON COMPANY  
P.O. BOX 151  
RIFLE, COLORADO 81650  
067  
REQUEST NO.

PAGE 2 OF 2  
 Date 10/13/95
 PRIORITY  
 STANDARD
SAMPLE TYPE:  Filter  Cassette  Water  Soil  Bulk Sample  Other (Specify) \_\_\_\_\_ANALYSIS REQUESTED: EPA 8240 Volatile organics, EPA 300.0 SulfatesSPECIAL INSTRUCTIONS/COMMENTS: and pH. Sample checked forradioactivity by Rifle Health Physics lab. Report is  
attached.PRIOR TO SUBMITTING WRITTEN REPORT, ALL RESULTS ARE TO BE TELEPHONED TO THE REQUESTING SITE.  
 ADDITIONALLY, ALL BULK SAMPLES WILL BE RETURNED FOR DISPOSAL.

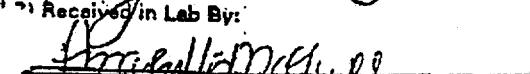
| SAMPLE ID NUMBER | NO. OF SMPLS | DATE COLLECTED (mm/dd/yy) | SAMPLE DESCRIPTION                            | ACTIVITY | VOLUME | SEALED BY (INITIALS) |
|------------------|--------------|---------------------------|-----------------------------------------------|----------|--------|----------------------|
| RFK-PS-95-05     | 1            | 10/13/95                  | Area C West of Nordic Shop<br>Soil/w tailings | PC110    | 9.9    | N/A KB               |
| ED 9757          |              |                           |                                               |          |        |                      |
|                  |              |                           |                                               |          |        |                      |
|                  |              |                           |                                               |          |        |                      |
|                  |              |                           |                                               |          |        |                      |
|                  |              |                           |                                               |          |        |                      |
|                  |              |                           |                                               |          |        |                      |

APPROVED BY:  
  
 SITE ESH MANAGER10/13/95  
 DATE

TECHNICAL REVIEW

DATE

Scott B. \_\_\_\_\_  
 MK-F SITE MANAGER10/13/95  
 DATE1) Relinquished by (Site Representative Signature)  



Date/Time

2) Carrier:

Date/Time

10/13/95 0345

UPS (SEE LOG BOOK)

2) Received in Lab By:  


Date/Tim

A2-8  
 10/13/95 00:00

Samples sent back to the site for disposal shall be accompanied by the Laboratory Chain-of-Custody and Condition of Sample forms, as per the contract.

NOTE: All reports and invoices must reference P.O. and Request numbers. The original report and the original Authorization/Chain-of-Custody



## ENVIRONMENTAL SOIL REPORT

Form EPRS-A

Page 1 of 1  
Part 1 of 1

Date OCT 16 1995

Agency Identification Number S95-1106-DE  
Account No. 03018

MK-Ferguson Company  
P.O. Box 151  
Rifle, CO 81650  
Attention: Kathy Benson

FAX (303) 625-4623

## Telephone

### **Sampling Collection and Shipment**

Sampling Site \_\_\_\_\_ Date of Collection October 03, 1995

Date Samples Received at Laboratory October 04, 1995

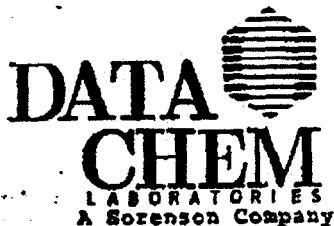
## Analytical Results

1 See comment on last page  
ND Parameter not detected.  
NR Parameter not requested.  
1 Analyses completed on

~~Analyses completed or on or before this date.~~

1 Date \_\_\_\_\_  
1 total pages \_\_\_\_\_

total pages


This report is 7-

\*\* Parameter not analyzed (See comment page).  
{ } Parameter between LOD and LOQ.  
} Method Reference (See comments page.)

Anaxys - Nannie A. Christensen

A2-9

~~Reviewer: Dawnmarie Rushing~~



## ENVIRONMENTAL WATER REPORT

Form EPRW-A .  
Page 1 of 2  
Part 1 of 1

Date OCT 10 1995

Agency Identification Number S95-1106-EE  
Account No. 03018

MK-Ferguson Company  
P.O. Box 151  
Rifle, CO 81650  
Attention: Kathy Benson

FAX (303) 525-4623  
Telephone \_\_\_\_\_

#### Sampling Collection and Shipment

Sampling Site \_\_\_\_\_ Date of Collection October 03, 1995

Date Samples Received at Laboratory October 04, 1995

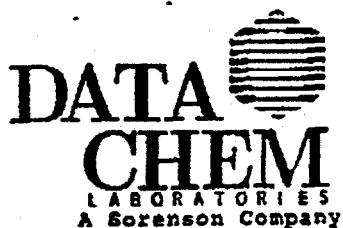
## Analytical Results

† See comment on last page.

ND Parameter not detected.

NR Parameter not requested.  
Analysis completed on 01/01/2010.

Analyses completed on or before this date.


\*\* Parameter not analyzed (See comment page).

( ) Method Reference (See comments page.)

~~RECEIVED: FEB 19, 1968~~

ANALYST: A2-10

Suzanne T  
Reviewer: Suzanne W. Bower



## **ANALYTICAL REPORT**

**Form ARF-AL**

Page 1 of 7  
Part 1 of 6

Date OCT 16 1995

Agency Identification Number S95-1106-CE  
Account No. 03018

MK-Ferguson Company  
P.O. Box 151  
Rifle, CO 81650  
Attention: Kathy Benson

FAX (303) 625-4623

Telephone \_\_\_\_\_

### **Sampling Collection and Shipment**

Sampling Site \_\_\_\_\_ Date of Collection October 03, 1995

Date of Collection October 03, 1995

Date Samples Received at Laboratory October 04, 1995

## Analysis

Method of Analysis EPA 8240

Date(s) of Analysis October 09, 1995

## Analytical Results

! See comment on last page.  
ND Parameter not detected.  
NR Parameter not requested.

( ) Parameter between LOD and LOQ.

This report is  
dated 19/12/2013.

Analyst: Steven J. Sagers  
A2-11

Reviewer: Thomas N. Beach Smp 10-16-95



## ANALYTICAL REPORT

Form ARF-AL

Page 2 of 7

Part 2 of 6

OCT 16 1995

Date \_\_\_\_\_

Agency Identification Number S95-1106-CE

Account No. 03018

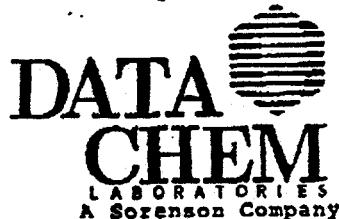
MK-Ferguson Company  
 P.O. Box 151  
 Rifle, CO 81650  
 Attention: Kathy Benson

FAX (303) 625-4623  
 Telephone \_\_\_\_\_

## Sampling Collection and Shipment

Sampling Site \_\_\_\_\_ Date of Collection October 03, 1995

Date Samples Received at Laboratory October 04, 1995


## Analysis

Method of Analysis EPA 8240

Date(s) of Analysis October 09, 1995 and by

## Analytical Results

| Field Sample Number   | Laboratory Number | Sample Type | 1,1-Dichloroethane<br>UG/KG | 1,1-Dichloroethene<br>UG/KG | total-1,2-Dichloroethene<br>UG/KG | Chloroform<br>UG/KG | 1,2-Dichloroethane<br>UG/KG | Iodomethane<br>UG/KG | Acrolein<br>UG/KG | Acrylonitrile<br>UG/KG |
|-----------------------|-------------------|-------------|-----------------------------|-----------------------------|-----------------------------------|---------------------|-----------------------------|----------------------|-------------------|------------------------|
| BL-101672-1           | BL-101672-1       | SOIL        | ND                          | ND                          | ND                                | ND                  | ND                          | ND                   | ND                | ND                     |
| QC-101672-1           | QC-101672-1       | SOIL        | NR                          | 47.                         | NR                                | NR                  | NR                          | NR                   | NR                | NR                     |
| RFL-PS-95-05          | EO 9757           | SOIL        | ND                          | ND                          | ND                                | ND                  | ND                          | ND                   | ND                | ND                     |
| RFL-PS-95-05          | EO 9757MS         | SOIL        | NR                          | 49.                         | NR                                | NR                  | NR                          | NR                   | NR                | NR                     |
| RFL-PS-95-05          | EO 9757MSD        | SOIL        | NR                          | 53.                         | NR                                | NR                  | NR                          | NR                   | NR                | NR                     |
| Limit of Detection    |                   |             | .11                         | .082                        | .24                               | .090                | .14                         | 1.3                  | 2.2               | 2.3                    |
| Limit of Quantitation |                   |             | 5                           | 5                           | 5                                 | 5                   | 5                           | 5                    | 20                | 20                     |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |
|                       |                   |             |                             |                             |                                   |                     |                             |                      |                   |                        |



## **ANALYTICAL REPORT**

**Form ARF-AL**

Page 3 of 7  
Part 3 of 6

Date OCT 16 1995

Agency Identification Number S95-1106-CE  
Account No. 03018

MK-Ferguson Company  
P.O. Box 151  
Rifle, CO 81650  
Attention: Kathy Benson

FAX (303) 625-4623  
Telephone \_\_\_\_\_

### **Sampling Collection and Shipment**

Sampling Site \_\_\_\_\_ Date of Collection October 03, 1995

Date Samples Received at Laboratory October 04, 1995

## Analysis


Method of Analysis EPA 8240

Date(s) of Analysis October 09, 1995

## Analytical Results

† See comment on last page.  
ND Parameter not detected.  
NR Parameter not requested.

\*\* See comment on last page.  
( ) Parameter between LOD and LOG.



## **ANALYTICAL REPORT**

Form ARF-AL  
Page 4 of 7  
Part 4 of 6

Date OCT 16 1995

Agency Identification Number S95-1106-CE  
Account No. 03018

MK-Ferguson Company  
P.O. Box 151  
Rifle, CO 81650  
Attention: Kathy Benson

FAX (303) 625-4623  
Telephone \_\_\_\_\_

### **Sampling Collection and Shipment**

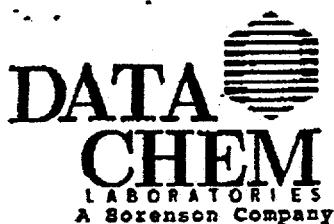
Sampling Site \_\_\_\_\_ Date of Collection October 03, 1995

Date Samples Received at Laboratory October 04, 1995

## Analysis

Method of Analysis EPA 8240

Date(s) of Analysis October 09, 1995


## Analytical Results

! See comment on last page.  
ND Parameter not detected.  
NR Parameter not requested.

\*\* See comment on last page.  
( ) Parameter between LOD and LOG.

A2-14

960 West LeVoy Drive / Salt Lake City, Utah 84123-2547 / (801) 266-7700 604  
A Sorenson Company



## ANALYTICAL REPORT

**Form ARF-AL**

Page 1 of 2  
Part 1 of 1

Date SEP 13 1995

Agency Identification Number M95-0020-CB

Account No. 03020

MK-Ferguson Company  
P.O. Box 151  
Rifle, CO 81650  
Attention: Kathy Benson

FAX (303) 625-4623

### Telephone

### **Sampling Collection and Shipment**

Sampling Site \_\_\_\_\_ Date of Collection August 30, 1995

Date Samples Received at Laboratory August 31, 1995

## Analysis

## Method of Analysis 8020 MOD

Date(s) of Analysis September 12, 1995

## Analytical Results

! See comment on last page.  
ND Parameter not detected.  
NR Parameter not requested.

\*\* See comment on last page.  
( ) Parameter between LOD and LOQ.

✓ 400ug/kg BTE  
1200ug/kg. X

Analyst: Steven J. Sagers

**A2-15**

Reviewers: J. Chris Taylor



## ANALYTICAL REPORT

**Form ARF-AI**

Page 1 of 2  
Part 1 of 1

Date SEP 25 1995

Agency Identification Number M95-0020-AB  
Account No. 03020

MK-Ferguson Company  
P.O. Box 151  
Rifle, CO 81650  
Attention: Kathy Benson

FAX (303) 625-4623  
Telephone \_\_\_\_\_

### **Sampling Collection and Shipment**

Sampling Site \_\_\_\_\_ Date of Collection August 30, 1995

Date Samples Received at Laboratory August 31, 1995

## Analysis

### Method of Analysis OG-DC-TPHD

Date(s) of Analysis September 15, 1995 - September 19, 1995

## Analytical Results

! See comment on last page.  
ND Parameter not detected.  
NR Parameter not requested.

\*\* See comment on last page.  
( ) Parameter between LOG and LOG.

THE REPORT  
TO THE  
COUNCIL PAPERS.

Analyst: Lawrence E. Miller  
A2-16  
Reviewer: Daniel J. Bruch

**ATTACHMENT 3**  
**FINAL GRADING PLAN**



JACOBS ENGINEERING GROUP INC.  
ALBUQUERQUE OPERATIONS

## Work Order Plan: Chemical Analysis of UMTRA TAC Samples—Organic Constituents

| Hydrogeologist | Date | Matrix       | Ground Water             |
|----------------|------|--------------|--------------------------|
| TMonks         |      | Site IDs     | RFN-01                   |
| Geochemist     | Date | Location IDs | 000X                     |
| DErskine       |      | Sample IDs   | Enter in table at bottom |

| Bottle Name           | EPA 8015-mod (DRO) | EPA method 8260 | EPA method 8270 | EPA method 8021 |
|-----------------------|--------------------|-----------------|-----------------|-----------------|
| DRO                   | 7                  | 7               | 7               |                 |
| Other                 |                    |                 |                 |                 |
| <b>Total Analyses</b> | <b>7</b>           | <b>7</b>        | <b>7</b>        |                 |

A4-1

| Sample ID | RFN01-655-0001 | RFN01-656-0001 | RFN01-657-0001 | RFN01-658-0001 | RFN01-659-0001 | RFN01-659-0002 |
|-----------|----------------|----------------|----------------|----------------|----------------|----------------|
|           | RFN01-655-0001 | RFN01-656-0001 | RFN01-657-0001 | RFN01-658-0001 | RFN01-659-0001 | RFN01-659-0002 |



## II. WORK ORDER PLAN - CHEMICAL ANALYSIS OF UMTAC SAMPLES

SAMPLE MATRIX: Ground Water

SITE HYDROLOGIST: TMonks

NAME (print)

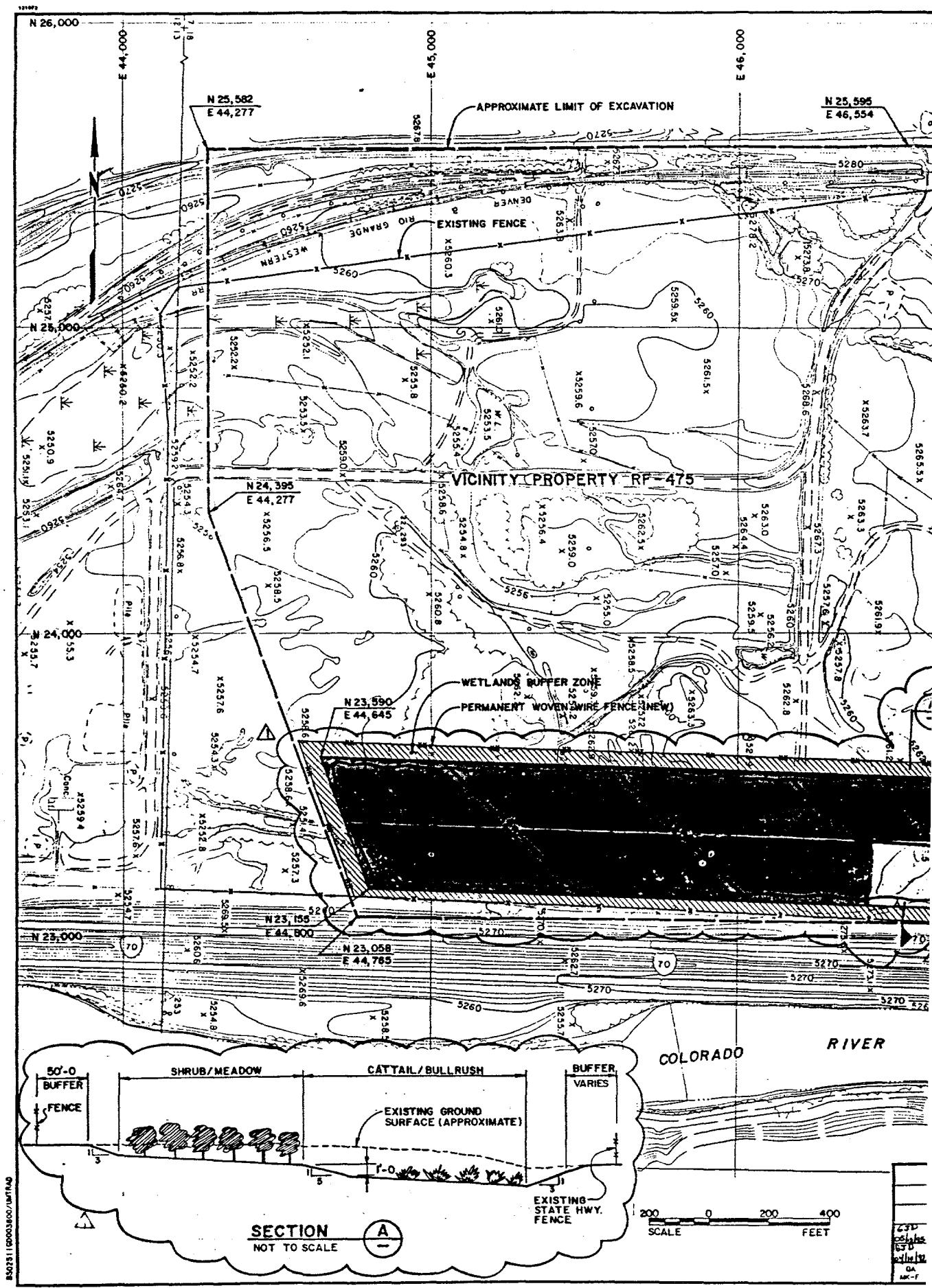
SITE ID(s): RFN-01

DATE

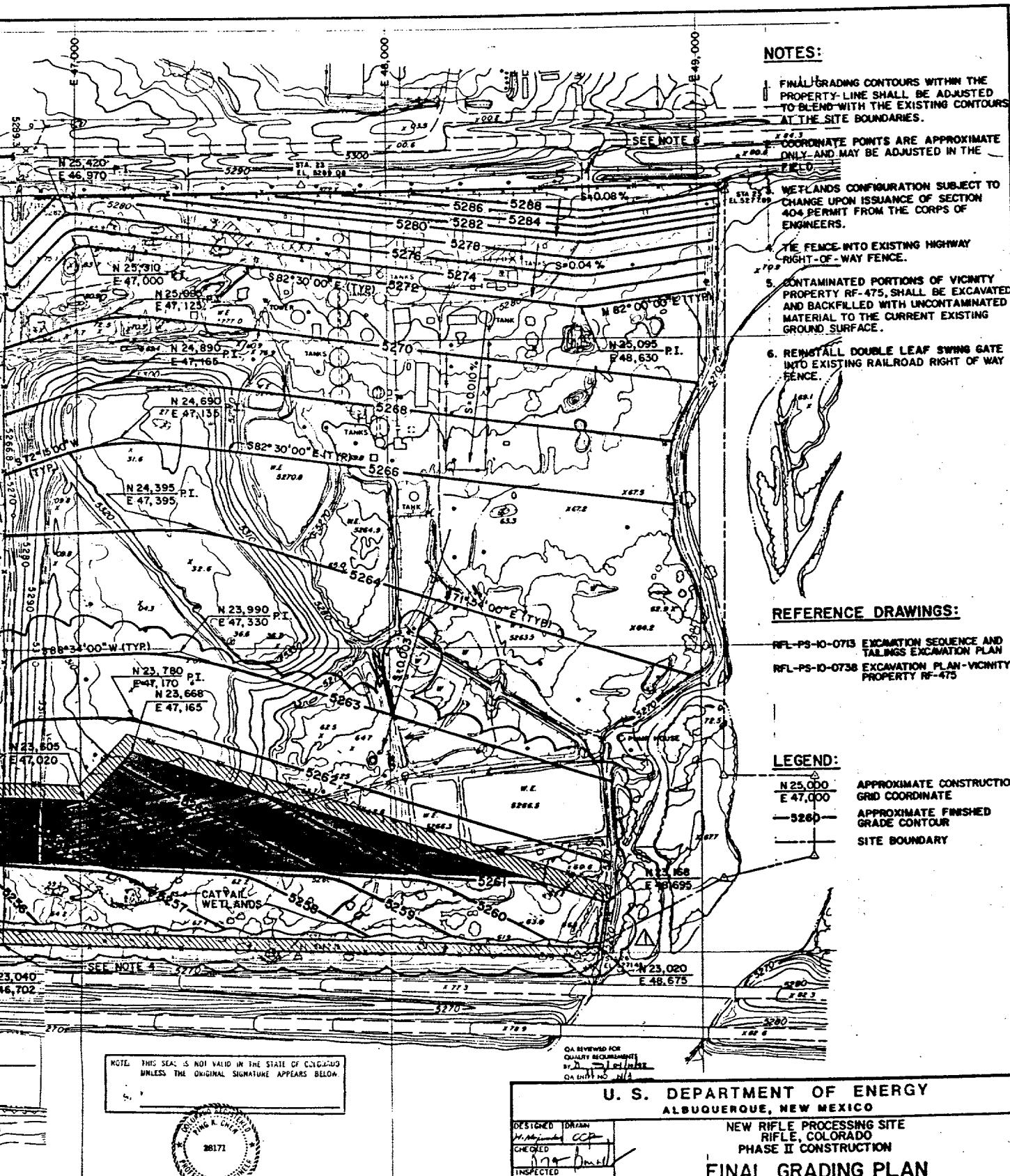
LOCATION ID(s): See BelowSITE GEOCHEMIST: DErskine

NAME (print)

SIGNATURE


SAMPLES ID(S): 000X

DATE


| Bottle Name      | Cl | SO <sub>4</sub> | Na | K | Mg | Ca | B | F | CN | S | TKN | NH <sub>4</sub> | NO <sub>3</sub> & NO <sub>2</sub> | SiO <sub>2</sub> | PO <sub>4</sub> | Br | Al | Sb | As | Ba | Be | Cd | Cr | Co |
|------------------|----|-----------------|----|---|----|----|---|---|----|---|-----|-----------------|-----------------------------------|------------------|-----------------|----|----|----|----|----|----|----|----|----|
| A-1              | X  | X               |    |   |    |    |   | X |    |   |     |                 |                                   |                  |                 |    |    |    |    |    |    |    |    |    |
| M-2              |    | X               |    | X | X  |    |   |   |    |   |     |                 |                                   |                  |                 |    |    |    |    |    |    |    | X  |    |
| N-1              |    |                 |    |   |    |    |   |   |    |   |     | X               |                                   | X                |                 |    |    |    |    |    |    |    |    |    |
| Total # of Tests | 8  | 8               | 8  | 8 | 8  | 8  | 8 | 8 | 8  | 8 | 8   | 8               | 8                                 | 8                | 8               | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  |

## COMMENTS:

Please analyze samples RFN01-655-0001, RFN01-656-0001, RFN01-657-0001, RFN01-658-0001, RFN01-659-0001, RFN01-659-0002, RFN01-999-0001 and RFN01-999-0003.



A3-1



**U. S. DEPARTMENT OF ENERGY  
ALBUQUERQUE, NEW MEXICO**

**NEW RIFLE PROCESSING SITE  
RIFLE, COLORADO  
PHASE II CONSTRUCTION**

**FINAL GRADING PLAN  
AND WETLANDS RELOCATION**

|                                     |                                    |                          |                                          |
|-------------------------------------|------------------------------------|--------------------------|------------------------------------------|
| DESIGNED BY: <i>[Signature]</i> CCP | REVIEWED BY: <i>[Signature]</i>    | DATE: <i>[Signature]</i> | DOC PROJECT ENGINEER: <i>[Signature]</i> |
| CHECKED BY: <i>[Signature]</i>      | APPROVED BY: <i>[Signature]</i>    | DATE: <i>[Signature]</i> | DATE: <i>[Signature]</i>                 |
| INSPECTED BY: <i>[Signature]</i>    | RECOMMENDED BY: <i>[Signature]</i> | DATE: <i>[Signature]</i> | DATE: <i>[Signature]</i>                 |
| RECORDED BY: <i>[Signature]</i>     | APPROVED BY: <i>[Signature]</i>    | DATE: <i>[Signature]</i> | DATE: <i>[Signature]</i>                 |

**MORRISON-KNUDSEN ENGINEERS, INC.**  
A DIVISION OF KBR INCORPORATED  
UNTRAC PROJECT  
100 MARIANO ST., SAN FRANCISCO, CA 94103

PROJECT NO. DE-AC04-83AL18796  
DRAWING NO. RFL-PS-10-0737  
REV. 1

|         |                                       |    |    |                    |                    |
|---------|---------------------------------------|----|----|--------------------|--------------------|
| 5-12-90 | REVISED WETLAND PLAN (P.I.D. 06-S-41) | YM | FC | <i>[Signature]</i> | <i>[Signature]</i> |
| 4-8-92  | ISSUED FOR CONSTRUCTION               | —  | —  | —                  | —                  |
| DATE    | REVISIONS                             | BY | CK | EED<br>MGR.        | CHIEF<br>ENG.      |

**ATTACHMENT 4**

**WORK ORDER**