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Strategic Goals of Encore

Enable predictive simulation

Unified, modular services for code and solution verification.

Manage tradeoff of resources versus accuracy.

Make it easy for users and developers to provide extensions.

Bridge between ASC codes and UQ tools (Dakota, Trilinos).
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Encore Features

Code/Solution Verification

Facilities for generating and driving manufactured solutions.
Comparison between two simulations or simulation and analytic.
Tools for order of accuracy verification and extrapolation.

Postprocessing

Calculating derived (response, observable) quantities.
Extendable through simple user subroutine capability.

Error Estimation

Suite of physics independent error indicators.
Support for physics dependent error estimation. (Adjoint, etc.)

Adaptivity

New flexible, user driven adaptive system.
Markers based on features or error.
Consolidation of Sierra adaptivity infrastructure.
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Encore Vitals

Version 1.0 released Oct. 2007
Presentation Nov. 5th, 2007
Hands-On training Dec. 6th, 2007

Funded in part by ASC Algorithms and V&V Program.

Software Quality Data:

Trackers Submitted: 233 Closed: 152
Lines of Code: 30,000 (about 1/3 of Calore)
Regression Tests: Over 120
75% Line Coverage

Online library linked with any Sierra Mechanics application.
Currently Adagio, Aria and Calore.

Off-line stand-alone executable.
Physics independent, read and write Exodus files.
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Leveraging SIERRA Mechanics Technology

Can be run from any Sierra Mechanics supported platform.

Encore output is either Exodus file(s) or tabular data.
No graphical output.

Ability to process application’s runtime data.

SIERRA Framework Features used by Encore:

Parallel load balancing
Distributed I/O database
Element library (2D and 3D, unstructured grids)
Data transfers across different grids
Dynamic mesh refinement/coarsening and rebalancing
Curved geometry definition
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Overview of Verification and Postprocessing

Function Interface

Postprocessors

Evaluation
Norms
Integrals
Import/Create
Interpolate
Patch Recovery
User Subroutines

Grid to grid transfers
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Function—abstract interface

Users do not need to know implementation details.

Functions can represent analytic expressions or simulation results.

Users can mix and match types of functions.

Functions can be scalar/vector/tensor valued.

All types of functions provide:

Value
Gradient
Time derivative
Flux
Stress



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Function—abstract interface

Users do not need to know implementation details.

Functions can represent analytic expressions or simulation results.

Users can mix and match types of functions.

Functions can be scalar/vector/tensor valued.

All types of functions provide:

Value
Gradient
Time derivative
Flux
Stress



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Function—abstract interface

Users do not need to know implementation details.

Functions can represent analytic expressions or simulation results.

Users can mix and match types of functions.

Functions can be scalar/vector/tensor valued.

All types of functions provide:

Value
Gradient
Time derivative
Flux
Stress



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Function—abstract interface

Users do not need to know implementation details.

Functions can represent analytic expressions or simulation results.

Users can mix and match types of functions.

Functions can be scalar/vector/tensor valued.

All types of functions provide:

Value
Gradient
Time derivative
Flux
Stress



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Function—abstract interface

Users do not need to know implementation details.

Functions can represent analytic expressions or simulation results.

Users can mix and match types of functions.

Functions can be scalar/vector/tensor valued.

All types of functions provide:

Value
Gradient
Time derivative
Flux
Stress



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Function—abstract interface

Users do not need to know implementation details.

Functions can represent analytic expressions or simulation results.

Users can mix and match types of functions.

Functions can be scalar/vector/tensor valued.

All types of functions provide:

Value
Gradient
Time derivative
Flux
Stress



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Function—abstract interface

Users do not need to know implementation details.

Functions can represent analytic expressions or simulation results.

Users can mix and match types of functions.

Functions can be scalar/vector/tensor valued.

All types of functions provide:

Value
Gradient
Time derivative
Flux
Stress



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Function—abstract interface

Users do not need to know implementation details.

Functions can represent analytic expressions or simulation results.

Users can mix and match types of functions.

Functions can be scalar/vector/tensor valued.

All types of functions provide:

Value
Gradient
Time derivative
Flux
Stress



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Function—abstract interface

Users do not need to know implementation details.

Functions can represent analytic expressions or simulation results.

Users can mix and match types of functions.

Functions can be scalar/vector/tensor valued.

All types of functions provide:

Value
Gradient
Time derivative
Flux
Stress



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Function—abstract interface

Users do not need to know implementation details.

Functions can represent analytic expressions or simulation results.

Users can mix and match types of functions.

Functions can be scalar/vector/tensor valued.

All types of functions provide:

Value
Gradient
Time derivative
Flux
Stress



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Types of Functions

A Field Function represents simulation fields on a mesh.

String Functions are analytic expressions that users type in an
input file.

For example: “x + a * sin(y)”.

User Functions are C++ code that users write, allowing piecewise
defined values and series solutions. They are dynamically linked into
a SIERRA Mechanics applications—fast and easy.

Function combinations: Difference Function, Product Function.

For example: the difference between a String Function and Field
Function

error = u(x, t)− uh(x, t)
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Postprocessors

Postprocessors (PPs) are calculations that run:

After initial conditions,
After a non-linear step,
After every timestep,
At a certain simulation time.

Input to most PPs are Functions.

Output of PPs are

Simulation fields (on nodes, elements, etc.)
Formatted tables in a text file—for Excel/Matlab/etc.

PPs are fully parallel.

Can be easily extended by users.
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Evaluate Postprocessor

In order to compare to experimental values, analysts need to probe simulation
values.

The Evaluation PP takes a Function and evaluates it at any point in space/time.

Any type of evaluation (Value, Gradient, Time Derivative, Stress, Flux) can be
performed on a function.

In order to perform code verification, a user could evaluate the difference
between the simulation and an analytic solution while the simulation is running.

Example: Evaluate the simulation field temperature at a point, T (0, 0, 0)

encorereg Postprocessor Output for Group agroup
Time Evaluate: ffunc
----- ---------------

0 -0.901515
0.005 -0.900399
0.01 -0.899257

0.015 -0.898088
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Verification Using Norms

For code verification using order of convergence, accurate
calculation of global norms is essential.

Output of Encore Norms:
element-wise contributions for visualization or adaptivity,
global values in text file.

Common global norms in Encore:

||u||L2(Ω) ≡
(∫
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|u|2 dx
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Example: Calore Verification

These norms have been used in verification studies of Calore (FY07
Level 2 Tri-Lab Verification Milestone).

Example: Calore coupled conduction/enclosure radiation problem.

Using an exact analytic solution, the error in each global norm can
be calculated, and the order of convergence verified.
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Verification of Mechanical Response

A major activity in FY08 is
verification for the Sierra codes
Adagio and Presto (with Joe Bishop
and Pat Knupp).

This will involve Encore tools for
norms, transfers, manufactured
solutions, and error estimators.

Example: Presto verification

Example: Adagio stress/displacement verification for linear elastic beam.

Figure: (left) Stress error rates (right) Stress/displacement error distribution
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Integral Based PPs

Many quantities that analysts calculate are spatial integrals of
simulation fields.

Accurate integrals can be computed with higher order quadrature.

Integral: computes integral over a volume or sideset.

Average Value: computes integral then divides by the volume/area.

Surface Normal: computes integral of the Function dotted with the
unit normal over a sideset.
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Impact: Integral PP

Charon is an electrical and reacting flow simulation code.
Dakota is an optimization toolkit.
An analyst using Charon wanted to compute a mass flux exiting the
domain and use Dakota to optimize that quantity.
Encore calculates the mass flux correctly.
This is an improvement over existing processing tools which give
inaccurate values on curved geometries.
The procedure: Charon→ Exodus→ Encore→ Text File→ Dakota.

X Velocity Component.

Oxygen Density.
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Postprocessors That Create Fields

Often users need to calculate auxiliary simulation fields for analysis
or to feedback into the simulation.

Import Field reads a field from an Exodus file.

Create Field allows for creation of any size and type of field.

Interpolate Function takes a Function, interpolating it into a nodal
or element field.

Allows visualization of an analytic Function.
Useful for viewing the difference between two Functions.
If the values of a Function are derived from a material property, then
you can visualize an interpolation of that property into an element
field.

Recover Function performs nodal patch recovery on a field. Useful
for higher order recovery or nodal recovery of an element field (such
as stress).
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Example: Interpolate Function PP

Calore users wanted to
compute the heat flux field.

In online mode, Encore can
access material properties
for calculating heat flux.

The Interpolate PP puts
Function values into an
element vector field.

Example: transient Calore
simulation with thermal
contact between blocks.



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Example: Interpolate Function PP

Calore users wanted to
compute the heat flux field.

In online mode, Encore can
access material properties
for calculating heat flux.

The Interpolate PP puts
Function values into an
element vector field.

Example: transient Calore
simulation with thermal
contact between blocks.



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Example: Interpolate Function PP

Calore users wanted to
compute the heat flux field.

In online mode, Encore can
access material properties
for calculating heat flux.

The Interpolate PP puts
Function values into an
element vector field.

Example: transient Calore
simulation with thermal
contact between blocks.



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Example: Interpolate Function PP

Calore users wanted to
compute the heat flux field.

In online mode, Encore can
access material properties
for calculating heat flux.

The Interpolate PP puts
Function values into an
element vector field.

Example: transient Calore
simulation with thermal
contact between blocks.



Motivation Verification and Postprocessing Error Estimation and Adaptivity Future Plans

Example: Recover Function PP

Stress recovery (averaging) is a common technique in solid
mechanics.

This can be used for postprocessing or to create an error estimator.

The quasistatics code Adagio computes one stress per element,
which is discontinuous and low order.

Encore can recover this stress to create a continuous stress field that
is also more accurate.

Element σyz Recovered Nodal σyz
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Impact: Transfers for Simulation Comparison

A Calore customer noticed a discrepancy between runs done in
Coyote and Calore.

To investigate, a developer used Encore to compare the solutions.

Encore can handle comparing solutions with differing timesteps.

Being able to visualize the differences led to finding a bug in the way
triangles were being handled in the Calore input file.

Figure: Temperature difference before and after bug fix.
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Impact: User Postprocessor

A User PP can be created allowing for complete flexibility to
calculate whatever is desired.

Writing a User PP is similar to a User Function.

An external customer has used this capability to calculate a time
integrated nodal quantity in both online and offline modes.

(a) Temperature. (b) Time Integrated PP Value.
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Physics Independent Error Indicators

Error Indicators have two purposes:
Estimate the numerical error in the simulation on a given grid.
Provide input to mesh adaptivity, in the form of a spatial error
distribution

Encore implements several physics independent error indicators,
allowing re-use in multiple application codes.

Physics independent indicators operate solely on computed fields
without knowledge of engineering/physics equations.

Error = 133% Error = 46%
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Recovery Indicator

Recovery Indicator computes difference between flux/stress and
recovered (averaged) flux/stress (ZZ estimator).

‖σ − σh‖ ≈ ‖σ∗(σh)− σh‖

Example: simplistic rolling tire result from Adagio using feature
based refinement in a box.

Figures are of tire surface that is in contact with the road.

Recovered σyz Log of Indicator
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Jump Indicator

Jump Indicator computes jumps (residuals) across inter-element
interfaces.

Gradients/fluxes produce normal jumps.

Stresses produce jumps in tractions.

Calore thermal contact Adagio stress jump
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Adjoint Based Error Estimators

Often analysts are interested in specific outputs of a simulation,
rather than simulation fields:

Point values
Integral/average values
Surface fluxes

These outputs correspond exactly to Encore PPs.

Adjoint based error estimators and adaptivity are targeted to
produce accurate PPs with efficient use of resources.

These error estimators require an auxiliary linear adjoint solve.

An FY08 ASC funded project (Algorithm Integration) is working on
this technology for Sierra Mechanics codes.

This work will directly impact the Sierra multiphysics code Aria.
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Examples: Adjoint Based Error Estimators

Temperature field from Calore thermal
advection-diffusion example.

The PP is point evaluation near right boundary.

The adjoint error estimator produces adaptivity that
is optimal for this output.

Aria nonlinear quasistatics example.

Contours of Von Mises stress field colored by
magnitude of adjoint displacement field.

The PP is the integral surface traction on the upper
left surface.

The adaptivity resolves stress singularities critical to
calculation of an accurate force-displacement curve.
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Markers

Mesh adaptivity requires elements to be marked to be refined, to be
coarsened, or not at all.

Markers can be

Error Based: element-wise error distribution in the simulation
Feature Based: geometric or solution features to resolve

Figure: REFINE, DO NOTHING, COARSEN
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Error based markers always take an element indicator field as input.

The values are the element contributions to total error.
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Feature Based Markers

Sometimes users need to adapt the mesh based on
geometric/solution features.

Example: some basic geometric markers

two element blocks mark left block mark a sideset

mark a nodeset exterior boundary block interfaces

Some additional markers

when solution values are in an interval
adjacent to re-entrant corners
within a specified distance to a level-set
within a bounding box
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Impact: Feature Based Markers

Aria is a Sierra Mechanics multiphysics code.
A level set equation is used to model multiphase flow for mold filling.
The Level Set Marker marks elements to resolve the level set.
This can be combined with error based markers.
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User-Driven Control of Adaptivity

Users can gain from using error estimation and adaptivity to verify
the accuracy of calculations.

This solution verification must be reliable and easy to use.

Encore has implemented an adaptivity system that is transparent,
flexible, and user-driven.

This is combined with the physics independent and adjoint-based
error estimators.

Uses of adaptivity:

Initial adaptive refinement before solve
Uniform refinement of a mesh (no solve)
Adaptive refinement loop for stationary/transient problems
Adaptivity based on combining error and feature based markers
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