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Motivation

Strategic Goals of Encore

Enable predictive simulation
@ Unified, modular services for code and solution verification.
@ Manage tradeoff of resources versus accuracy.
@ Make it easy for users and developers to provide extensions.
@ Bridge between ASC codes and UQ tools (Dakota, Trilinos).
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Encore Features

e Code/Solution Verification
o Facilities for generating and driving manufactured solutions.
o Comparison between two simulations or simulation and analytic.
e Tools for order of accuracy verification and extrapolation.
@ Postprocessing
o Calculating derived (response, observable) quantities.
o Extendable through simple user subroutine capability.
@ Error Estimation
o Suite of physics independent error indicators.
o Support for physics dependent error estimation. (Adjoint, etc.)
o Adaptivity
o New flexible, user driven adaptive system.
o Markers based on features or error.
o Consolidation of Sierra adaptivity infrastructure.
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Encore Vitals

@ Version 1.0 released Oct. 2007
Presentation Nov. 5th, 2007
Hands-On training Dec. 6th, 2007
@ Funded in part by ASC Algorithms and V&V Program.
@ Software Quality Data:
o Trackers Submitted: 233 Closed: 152
o Lines of Code: 30,000 (about 1/3 of Calore)
o Regression Tests: Over 120
75% Line Coverage
@ Online library linked with any Sierra Mechanics application.
Currently Adagio, Aria and Calore.
o Off-line stand-alone executable.
Physics independent, read and write Exodus files.
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Leveraging SIERRA Mechanics Technology

Can be run from any Sierra Mechanics supported platform.

Encore output is either Exodus file(s) or tabular data.
No graphical output.

Ability to process application’s runtime data.
o SIERRA Framework Features used by Encore:

Parallel load balancing

Distributed I/O database

Element library (2D and 3D, unstructured grids)

Data transfers across different grids

Dynamic mesh refinement/coarsening and rebalancing
Curved geometry definition
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Overview of Verification and Postprocessing

@ Function Interface

@ Postprocessors
Evaluation
Norms

Integrals
Import/Create
Interpolate
Patch Recovery
o User Subroutines

o Grid to grid transfers
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Verification and Postprocessing

Function—abstract interface

Jx)

Users do not need to know implementation details.
Functions can represent analytic expressions or simulation results.
Users can mix and match types of functions.

Functions can be scalar/vector/tensor valued.

All types of functions provide:
Value

Gradient

Time derivative

Flux
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Function—abstract interface

Jx)

@ Users do not need to know implementation details.
@ Functions can represent analytic expressions or simulation results.
@ Users can mix and match types of functions.
e Functions can be scalar/vector/tensor valued.
@ All types of functions provide:
o Value
o Gradient
o Time derivative
o Flux
o Stress
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Types of Functions

@ A Field Function represents simulation fields on a mesh.

@ String Functions are analytic expressions that users type in an
input file.

o For example: “x + a * sin(y)".

@ User Functions are C++ code that users write, allowing piecewise
defined values and series solutions. They are dynamically linked into
a SIERRA Mechanics applications—fast and easy.

@ Function combinations: Difference Function, Product Function.

o For example: the difference between a String Function and Field
Function
error = u(x, t) — un(x, t)
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Postprocessors

@ Postprocessors (PPs) are calculations that run:
o After initial conditions,
o After a non-linear step,
o After every timestep,
o At a certain simulation time.

Input to most PPs are Functions.
Output of PPs are

e Simulation fields (on nodes, elements, etc.)
o Formatted tables in a text file—for Excel/Matlab/etc.

PPs are fully parallel.
@ Can be easily extended by users.
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Evaluate Postprocessor

@ In order to compare to experimental values, analysts need to probe simulation
values.

@ The Evaluation PP takes a Function and evaluates it at any point in space/time.

@ Any type of evaluation (Value, Gradient, Time Derivative, Stress, Flux) can be
performed on a function.

@ In order to perform code verification, a user could evaluate the difference
between the simulation and an analytic solution while the simulation is running.

Example: Evaluate the simulation field temperature at a point, T(0,0,0)

encorereg Postprocessor Output for Group agroup
Time Evaluate: ffunc

0 -0.901515

0.005 -0.900399

Temperature 0.01 -0.899257

-0.6078 0.015 -0.898088
-0.7059
& -0.8039
7 -0.9020

-1.0001
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Verification Using Norms

@ For code verification using order of convergence, accurate
calculation of global norms is essential.
@ Output of Encore Norms:

o element-wise contributions for visualization or adaptivity,
o global values in text file.

@ Common global norms in Encore:

lolloar = ( [ 1P 0x)’

Q

(T3 ) sl )

elem q

element contribution

ey = ([ V6P )" ~ (XX 1Vut)F pwly)’

elem q

Q

element contribution
[[ul| (@) = max |u(x)| = max  max |u(xg)]
xEN elem q q

—_———
element contribution
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Example: Calore Verification

@ These norms have been used in verification studies of Calore (FY07
Level 2 Tri-Lab Verification Milestone).
e Example: Calore coupled conduction/enclosure radiation problem.

Error Rate

Global Error Norm

- O(h?) ™ V
M?o 1lc ‘V!)] : v'”‘ ”wlcf‘ .J_’

number of elements +
3000602
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Example: Calore Verification

@ These norms have been used in verification studies of Calore (FY07
Level 2 Tri-Lab Verification Milestone).
e Example: Calore coupled conduction/enclosure radiation problem.

@ Using an exact analytic solution, the error in each global norm can
be calculated, and the order of convergence verified.

Global Error Norm

H1 error
L2 error
L-infinity error

O(hz):

T
10

102 L Ll
10 10 10°

number of elements
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Verification of Mechanical Response

@ A major activity in FYO08 is Time = 4.380
verification for the Sierra codes
Adagio and Presto (with Joe Bishop
and Pat Knupp).

Example: Presto verification
Example: Adagio stress/displacement verification for linear elastic beam.
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Figure: (left) Stress error rates (right) Stress/displacement error distribution
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Verification of Mechanical Response

@ A major activity in FY08 is Time = 4.380
verification for the Sierra codes
Adagio and Presto (with Joe Bishop
and Pat Knupp).

@ This will involve Encore tools for
norms, transfers, manufactured
solutions, and error estimators.

Example: Presto verification
Example: Adagio stress/displacement verification for linear elastic beam.

—8— Coarso Grid
s Madium Grid
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Figure: (left) Stress error rates (right) Stress/displacement error distribution
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Integral Based PPs

@ Many quantities that analysts calculate are spatial integrals of
simulation fields.

Accurate integrals can be computed with higher order quadrature.
Integral: computes integral over a volume or sideset.

Average Value: computes integral then divides by the volume/area.

Surface Normal: computes integral of the Function dotted with the
unit normal over a sideset.
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domain and use Dakota to optimize that quantity.
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Impact: Integral PP

Charon is an electrical and reacting flow simulation code.

Dakota is an optimization toolkit.

An analyst using Charon wanted to compute a mass flux exiting the
domain and use Dakota to optimize that quantity.

Encore calculates the mass flux correctly.

This is an improvement over existing processing tools which give
inaccurate values on curved geometries.
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Impact: Integral PP

@ Charon is an electrical and reacting flow simulation code.

o Dakota is an optimization toolkit.

@ An analyst using Charon wanted to compute a mass flux exiting the
domain and use Dakota to optimize that quantity.

@ Encore calculates the mass flux correctly.

@ This is an improvement over existing processing tools which give
inaccurate values on curved geometries.

@ The procedure: Charon — Exodus — Encore — Text File — Dakota.

il
Oxygen Density.
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o If the values of a Function are derived from a material property, then
you can visualize an interpolation of that property into an element
field.
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Postprocessors That Create Fields

@ Often users need to calculate auxiliary simulation fields for analysis
or to feedback into the simulation.

@ Import Field reads a field from an Exodus file.

@ Create Field allows for creation of any size and type of field.

o Interpolate Function takes a Function, interpolating it into a nodal
or element field.

o Allows visualization of an analytic Function.

o Useful for viewing the difference between two Functions.

o If the values of a Function are derived from a material property, then
you can visualize an interpolation of that property into an element
field.

@ Recover Function performs nodal patch recovery on a field. Useful
for higher order recovery or nodal recovery of an element field (such
as stress).
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Verification and Postprocessing

Example: Interpolate Function PP

@ Calore users wanted to
compute the heat flux field.

@ In online mode, Encore can
access material properties
for calculating heat flux.

@ The Interpolate PP puts
Function values into an
element vector field.

@ Example: transient Calore
simulation with thermal
contact between blocks.
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@ Stress recovery (averaging) is a common technique in solid
mechanics.

5607101

e . Ji2e01

Element oy, Recovered Nodal oy,
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Example: Recover Function PP

@ Stress recovery (averaging) is a common technique in solid
mechanics.

@ This can be used for postprocessing or to create an error estimator.

4406¢-01
000000

8812601
5607 101 i —4406e-01 i
L1212 J812e-01

Element oy, Recovered Nodal oy,



Verification and Postprocessing

Example: Recover Function PP

@ Stress recovery (averaging) is a common technique in solid
mechanics.
@ This can be used for postprocessing or to create an error estimator.

@ The quasistatics code Adagio computes one stress per element,
which is discontinuous and low order.

stress.
L121ei02
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Verification and Postprocessing

Example: Recover Function PP

@ Stress recovery (averaging) is a common technique in solid
mechanics.

@ This can be used for postprocessing or to create an error estimator.

@ The quasistatics code Adagio computes one stress per element,
which is discontinuous and low order.

@ Encore can recover this stress to create a continuous stress field that
is also more accurate.

S
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5607101
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Verification and Postprocessing

Transfers

@ Transfers project solutions from one mesh to another.
@ This allows for solution comparison on different grids.
@ 3 types of transfers: Nodal, Element, Quadrature.

Coarse grid solution L2 error HI error Nodal error
™ -
E IEES 1.
] 3%
r = = T
=
HI error Nodal error

L2 error

Fine grid solution



Verification and Postprocessing

Impact: Transfers for Simulation Comparison

@ A Calore customer noticed a discrepancy between runs done in
Coyote and Calore.

temperature diff
6.396¢+00
4798¢+00

temperature_diff

6.832¢-00
5.124e-00
3416¢+00

3.199+00
1,600e+00

1.708¢-00
1.421e-03 1.345¢-04

Figure: Temperature difference before and after bug fix.
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Impact: Transfers for Simulation Comparison

@ A Calore customer noticed a discrepancy between runs done in

Coyote and Calore.
@ To investigate, a developer used Encore to compare the solutions.

temperature diff temperature_diff
6.396e+00 6.832e-00
4.798e+00 5.124e+00
3.416¢+00

3.199+00
1,600¢+00 1.708¢-00
1.421e-03 1.345¢-04

Figure: Temperature difference before and after bug fix.
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Impact: Transfers for Simulation Comparison

@ A Calore customer noticed a discrepancy between runs done in
Coyote and Calore.

@ To investigate, a developer used Encore to compare the solutions.

@ Encore can handle comparing solutions with differing timesteps.

temperature diff temperature_diff

6.396¢+00 6.832¢-00
4.798e+00 5.124e-00 U

3.199+00 3416600
1,600¢+00 1.708¢-00
1.421e-03 1.345¢-04

Figure: Temperature difference before and after bug fix.



Verification and Postprocessing

Impact: Transfers for Simulation Comparison

@ A Calore customer noticed a discrepancy between runs done in
Coyote and Calore.

@ To investigate, a developer used Encore to compare the solutions.

@ Encore can handle comparing solutions with differing timesteps.

@ Being able to visualize the differences led to finding a bug in the way
triangles were being handled in the Calore input file.

temperature diff temperature_diff

6.396¢+00 6.832¢-00
4.798e+00 5.124e-00
3.199+00 3416¢+00

1.708¢-00
1.345¢-04

1,600e+00
1.421e-03

Figure: Temperature difference before and after bug fix.



Verification and Postprocessing

Impact: User Postprocessor

@ A User PP can be created allowing for complete flexibility to
calculate whatever is desired.

@ Writing a User PP is similar to a User Function.

@ An external customer has used this capability to calculate a time
integrated nodal quantity in both online and offline modes.

(a) Temperature. (b) Time Integrated PP Value.
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Overview of Error Estimation and Adaptivity
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The Adaptivity Cycle

Physics Independent Error Indicators
Adjoint Based Error Estimators
Markers

User-Driven Control of Adaptivity
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The Adaptivity Cycle

Initial Grid

Compute Solution

Compute
Re-Compute Error
Solution Indicator

= .

Mark Elements to
Adape coarsen refine be Refined and
Mesh Coarsened
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Physics Independent Error Indicators

@ Error Indicators have two purposes:
o Estimate the numerical error in the simulation on a given grid.
o Provide input to mesh adaptivity, in the form of a spatial error
distribution
@ Encore implements several physics independent error indicators,
allowing re-use in multiple application codes.
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Error Estimation and Adaptivity

Physics Independent Error Indicators

@ Error Indicators have two purposes:
o Estimate the numerical error in the simulation on a given grid.
o Provide input to mesh adaptivity, in the form of a spatial error
distribution
@ Encore implements several physics independent error indicators,
allowing re-use in multiple application codes.
@ Physics independent indicators operate solely on computed fields
without knowledge of engineering/physics equations.

Error = 133% Error = 46%



Error Estimation and Adaptivity

Recovery Indicator

@ Recovery Indicator computes difference between flux/stress and
recovered (averaged) flux/stress (ZZ estimator).

lo = onll = llo*(an) — oull

S8c.01
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Recovery Indicator

@ Recovery Indicator computes difference between flux/stress and
recovered (averaged) flux/stress (ZZ estimator).

lo = onll = llo*(an) — oull

o Example: simplistic rolling tire result from Adagio using feature
based refinement in a box.
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Error Estimation and Adaptivity

Recovery Indicator

@ Recovery Indicator computes difference between flux/stress and
recovered (averaged) flux/stress (ZZ estimator).

lo = onll = llo*(an) — oull

o Example: simplistic rolling tire result from Adagio using feature
based refinement in a box.

o Figures are of tire surface that is in contact with the road.

8501
0.000e100
7388:-01

Taseron

Recovered o, Log of Indicator
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Jump Indicator

@ Jump Indicator computes jumps (residuals) across inter-element
interfaces.
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Error Estimation and Adaptivity

Jump Indicator

@ Jump Indicator computes jumps (residuals) across inter-element
interfaces.

o Gradients/fluxes produce normal jumps.

@ Stresses produce jumps in tractions.

1000e+05
0000600

Calore thermal contact Adagio stress jump
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Error Estimation and Adaptivity

Adjoint Based Error Estimators

o Often analysts are interested in specific outputs of a simulation,
rather than simulation fields:

o Point values
o Integral/average values
o Surface fluxes

@ These outputs correspond exactly to Encore PPs.

@ Adjoint based error estimators and adaptivity are targeted to
produce accurate PPs with efficient use of resources.

@ These error estimators require an auxiliary linear adjoint solve.

@ An FY08 ASC funded project (Algorithm Integration) is working on
this technology for Sierra Mechanics codes.

@ This work will directly impact the Sierra multiphysics code Aria.
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Examples: Adjoint Based Error Estimators

T —
T [ 13
L¢7
@ Temperature field from Calore thermal
advection-diffusion example. ciis i
@ The PP is point evaluation near right boundary. : %:‘E
; :
I
NEEEE [ mmR s
T i i
T mish
| T b
T T

00006400 U




Error Estimation and Adaptivity

Examples: Adjoint Based Error Estimators
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Examples: Adjoint Based Error Estimators
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@ Aria nonlinear quasistatics example.
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Examples: Adjoint Based Error Estimators

@ Temperature field from Calore thermal
advection-diffusion example. gL .

@ The PP is point evaluation near right boundary. :

i
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@ The adjoint error estimator produces adaptivity that
is optimal for this output.
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@ Aria nonlinear quasistatics example.

@ Contours of Von Mises stress field colored by
magnitude of adjoint displacement field.
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Examples: Adjoint Based Error Estimators
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@ Aria nonlinear quasistatics example.

@ Contours of Von Mises stress field colored by
magnitude of adjoint displacement field.

@ The PP is the integral surface traction on the upper
left surface.
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Examples: Adjoint Based Error Estimators

s
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@ Temperature field from Calore thermal
advection-diffusion example. gL

THE

@ The PP is point evaluation near right boundary. : B
L :
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@ The adjoint error estimator produces adaptivity that
is optimal for this output. I

T Temperanure:

H= 127301
9.544c-02
6363¢.02
3181602
00006400

@ Aria nonlinear quasistatics example.

@ Contours of Von Mises stress field colored by
magnitude of adjoint displacement field.

@ The PP is the integral surface traction on the upper
left surface.

@ The adaptivity resolves stress singularities critical to
calculation of an accurate force-displacement curve.
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Error Estimation and Adaptivity

Markers

@ Mesh adaptivity requires elements to be marked to be refined, to be
coarsened, or not at all.
@ Markers can be

o Error Based: element-wise error distribution in the simulation
o Feature Based: geometric or solution features to resolve

Figure: REFINE, DO NOTHING, COARSEN
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Error Based Markers

@ Error based markers always take an element indicator field as input.
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Error Based Markers

@ Error based markers always take an element indicator field as input.
@ The values are the element contributions to total error.
e Example: REFINE, DO NOTHING, COARSEN

o
wn
=

Indicator Values
Linear In x from 0 to 10 | | |

Percent Of Elements
Coarsen 30% Refine 30%

Percent Of Max Error
Coarsen Below 20% Refine Above 80%

Coarsen 20% Refine 40%

Above | Below
Coarsen Below 3 Refine Above 7
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Error Estimation and Adaptivity

Feature Based Markers

@ Sometimes users need to adapt the mesh based on
geometric/solution features.

@ Example: some basic geometric markers

two element blocks mark left block mark a sideset

mark a nodeset exterior boundary  block interfaces

@ Some additional markers

when solution values are in an interval
adjacent to re-entrant corners

within a specified distance to a level-set
within a bounding box
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Error Estimation and Adaptivity

Impact: Feature Based Markers

@ Aria is a Sierra Mechanics multiphysics code.

@ A level set equation is used to model multiphase flow for mold filling.
@ The Level Set Marker marks elements to resolve the level set.

@ This can be combined with error based markers.

Speed

15
10
0.5
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Error Estimation and Adaptivity

User-Driven Control of Adaptivity

@ Users can gain from using error estimation and adaptivity to verify
the accuracy of calculations.

@ This solution verification must be reliable and easy to use.

@ Encore has implemented an adaptivity system that is transparent,
flexible, and user-driven.

@ This is combined with the physics independent and adjoint-based
error estimators.

@ Uses of adaptivity:

Initial adaptive refinement before solve

Uniform refinement of a mesh (no solve)

Adaptive refinement loop for stationary/transient problems

]
]
]
o Adaptivity based on combining error and feature based markers
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Current and Future Activities
@ Error estimation and adaptivity for transient non-linear simulations
@ Verification of mechanical response

Adjoint based sensitivity analysis

Adjoint based error estimation for quantities of interest

User requirements

Linking directly to codes outside Sierra Mechanics
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